]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/cpufreq/cpufreq_governor.c
cpufreq: governor: Rename skip_work to work_count
[mirror_ubuntu-zesty-kernel.git] / drivers / cpufreq / cpufreq_governor.c
1 /*
2 * drivers/cpufreq/cpufreq_governor.c
3 *
4 * CPUFREQ governors common code
5 *
6 * Copyright (C) 2001 Russell King
7 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
8 * (C) 2003 Jun Nakajima <jun.nakajima@intel.com>
9 * (C) 2009 Alexander Clouter <alex@digriz.org.uk>
10 * (c) 2012 Viresh Kumar <viresh.kumar@linaro.org>
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
15 */
16
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18
19 #include <linux/export.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/slab.h>
22
23 #include "cpufreq_governor.h"
24
25 DEFINE_MUTEX(dbs_data_mutex);
26 EXPORT_SYMBOL_GPL(dbs_data_mutex);
27
28 static struct attribute_group *get_sysfs_attr(struct dbs_governor *gov)
29 {
30 return have_governor_per_policy() ?
31 gov->attr_group_gov_pol : gov->attr_group_gov_sys;
32 }
33
34 void dbs_check_cpu(struct cpufreq_policy *policy)
35 {
36 int cpu = policy->cpu;
37 struct dbs_governor *gov = dbs_governor_of(policy);
38 struct policy_dbs_info *policy_dbs = policy->governor_data;
39 struct dbs_data *dbs_data = policy_dbs->dbs_data;
40 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
41 struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
42 unsigned int sampling_rate;
43 unsigned int max_load = 0;
44 unsigned int ignore_nice;
45 unsigned int j;
46
47 if (gov->governor == GOV_ONDEMAND) {
48 struct od_cpu_dbs_info_s *od_dbs_info =
49 gov->get_cpu_dbs_info_s(cpu);
50
51 /*
52 * Sometimes, the ondemand governor uses an additional
53 * multiplier to give long delays. So apply this multiplier to
54 * the 'sampling_rate', so as to keep the wake-up-from-idle
55 * detection logic a bit conservative.
56 */
57 sampling_rate = od_tuners->sampling_rate;
58 sampling_rate *= od_dbs_info->rate_mult;
59
60 ignore_nice = od_tuners->ignore_nice_load;
61 } else {
62 sampling_rate = cs_tuners->sampling_rate;
63 ignore_nice = cs_tuners->ignore_nice_load;
64 }
65
66 /* Get Absolute Load */
67 for_each_cpu(j, policy->cpus) {
68 struct cpu_dbs_info *j_cdbs;
69 u64 cur_wall_time, cur_idle_time;
70 unsigned int idle_time, wall_time;
71 unsigned int load;
72 int io_busy = 0;
73
74 j_cdbs = gov->get_cpu_cdbs(j);
75
76 /*
77 * For the purpose of ondemand, waiting for disk IO is
78 * an indication that you're performance critical, and
79 * not that the system is actually idle. So do not add
80 * the iowait time to the cpu idle time.
81 */
82 if (gov->governor == GOV_ONDEMAND)
83 io_busy = od_tuners->io_is_busy;
84 cur_idle_time = get_cpu_idle_time(j, &cur_wall_time, io_busy);
85
86 wall_time = (unsigned int)
87 (cur_wall_time - j_cdbs->prev_cpu_wall);
88 j_cdbs->prev_cpu_wall = cur_wall_time;
89
90 if (cur_idle_time < j_cdbs->prev_cpu_idle)
91 cur_idle_time = j_cdbs->prev_cpu_idle;
92
93 idle_time = (unsigned int)
94 (cur_idle_time - j_cdbs->prev_cpu_idle);
95 j_cdbs->prev_cpu_idle = cur_idle_time;
96
97 if (ignore_nice) {
98 struct cpu_dbs_info *cdbs = gov->get_cpu_cdbs(cpu);
99 u64 cur_nice;
100 unsigned long cur_nice_jiffies;
101
102 cur_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE] -
103 cdbs->prev_cpu_nice;
104 /*
105 * Assumption: nice time between sampling periods will
106 * be less than 2^32 jiffies for 32 bit sys
107 */
108 cur_nice_jiffies = (unsigned long)
109 cputime64_to_jiffies64(cur_nice);
110
111 cdbs->prev_cpu_nice =
112 kcpustat_cpu(j).cpustat[CPUTIME_NICE];
113 idle_time += jiffies_to_usecs(cur_nice_jiffies);
114 }
115
116 if (unlikely(!wall_time || wall_time < idle_time))
117 continue;
118
119 /*
120 * If the CPU had gone completely idle, and a task just woke up
121 * on this CPU now, it would be unfair to calculate 'load' the
122 * usual way for this elapsed time-window, because it will show
123 * near-zero load, irrespective of how CPU intensive that task
124 * actually is. This is undesirable for latency-sensitive bursty
125 * workloads.
126 *
127 * To avoid this, we reuse the 'load' from the previous
128 * time-window and give this task a chance to start with a
129 * reasonably high CPU frequency. (However, we shouldn't over-do
130 * this copy, lest we get stuck at a high load (high frequency)
131 * for too long, even when the current system load has actually
132 * dropped down. So we perform the copy only once, upon the
133 * first wake-up from idle.)
134 *
135 * Detecting this situation is easy: the governor's utilization
136 * update handler would not have run during CPU-idle periods.
137 * Hence, an unusually large 'wall_time' (as compared to the
138 * sampling rate) indicates this scenario.
139 *
140 * prev_load can be zero in two cases and we must recalculate it
141 * for both cases:
142 * - during long idle intervals
143 * - explicitly set to zero
144 */
145 if (unlikely(wall_time > (2 * sampling_rate) &&
146 j_cdbs->prev_load)) {
147 load = j_cdbs->prev_load;
148
149 /*
150 * Perform a destructive copy, to ensure that we copy
151 * the previous load only once, upon the first wake-up
152 * from idle.
153 */
154 j_cdbs->prev_load = 0;
155 } else {
156 load = 100 * (wall_time - idle_time) / wall_time;
157 j_cdbs->prev_load = load;
158 }
159
160 if (load > max_load)
161 max_load = load;
162 }
163
164 gov->gov_check_cpu(cpu, max_load);
165 }
166 EXPORT_SYMBOL_GPL(dbs_check_cpu);
167
168 void gov_set_update_util(struct policy_dbs_info *policy_dbs,
169 unsigned int delay_us)
170 {
171 struct cpufreq_policy *policy = policy_dbs->policy;
172 struct dbs_governor *gov = dbs_governor_of(policy);
173 int cpu;
174
175 gov_update_sample_delay(policy_dbs, delay_us);
176 policy_dbs->last_sample_time = 0;
177
178 for_each_cpu(cpu, policy->cpus) {
179 struct cpu_dbs_info *cdbs = gov->get_cpu_cdbs(cpu);
180
181 cpufreq_set_update_util_data(cpu, &cdbs->update_util);
182 }
183 }
184 EXPORT_SYMBOL_GPL(gov_set_update_util);
185
186 static inline void gov_clear_update_util(struct cpufreq_policy *policy)
187 {
188 int i;
189
190 for_each_cpu(i, policy->cpus)
191 cpufreq_set_update_util_data(i, NULL);
192
193 synchronize_rcu();
194 }
195
196 static void gov_cancel_work(struct policy_dbs_info *policy_dbs)
197 {
198 /* Tell dbs_update_util_handler() to skip queuing up work items. */
199 atomic_inc(&policy_dbs->work_count);
200 /*
201 * If dbs_update_util_handler() is already running, it may not notice
202 * the incremented work_count, so wait for it to complete to prevent its
203 * work item from being queued up after the cancel_work_sync() below.
204 */
205 gov_clear_update_util(policy_dbs->policy);
206 irq_work_sync(&policy_dbs->irq_work);
207 cancel_work_sync(&policy_dbs->work);
208 atomic_set(&policy_dbs->work_count, 0);
209 }
210
211 static void dbs_work_handler(struct work_struct *work)
212 {
213 struct policy_dbs_info *policy_dbs;
214 struct cpufreq_policy *policy;
215 struct dbs_governor *gov;
216 unsigned int delay;
217
218 policy_dbs = container_of(work, struct policy_dbs_info, work);
219 policy = policy_dbs->policy;
220 gov = dbs_governor_of(policy);
221
222 /*
223 * Make sure cpufreq_governor_limits() isn't evaluating load or the
224 * ondemand governor isn't updating the sampling rate in parallel.
225 */
226 mutex_lock(&policy_dbs->timer_mutex);
227 delay = gov->gov_dbs_timer(policy);
228 policy_dbs->sample_delay_ns = jiffies_to_nsecs(delay);
229 mutex_unlock(&policy_dbs->timer_mutex);
230
231 /*
232 * If the atomic operation below is reordered with respect to the
233 * sample delay modification, the utilization update handler may end
234 * up using a stale sample delay value.
235 */
236 smp_mb__before_atomic();
237 atomic_dec(&policy_dbs->work_count);
238 }
239
240 static void dbs_irq_work(struct irq_work *irq_work)
241 {
242 struct policy_dbs_info *policy_dbs;
243
244 policy_dbs = container_of(irq_work, struct policy_dbs_info, irq_work);
245 schedule_work(&policy_dbs->work);
246 }
247
248 static inline void gov_queue_irq_work(struct policy_dbs_info *policy_dbs)
249 {
250 #ifdef CONFIG_SMP
251 irq_work_queue_on(&policy_dbs->irq_work, smp_processor_id());
252 #else
253 irq_work_queue(&policy_dbs->irq_work);
254 #endif
255 }
256
257 static void dbs_update_util_handler(struct update_util_data *data, u64 time,
258 unsigned long util, unsigned long max)
259 {
260 struct cpu_dbs_info *cdbs = container_of(data, struct cpu_dbs_info, update_util);
261 struct policy_dbs_info *policy_dbs = cdbs->policy_dbs;
262
263 /*
264 * The work may not be allowed to be queued up right now.
265 * Possible reasons:
266 * - Work has already been queued up or is in progress.
267 * - The governor is being stopped.
268 * - It is too early (too little time from the previous sample).
269 */
270 if (atomic_inc_return(&policy_dbs->work_count) == 1) {
271 u64 delta_ns;
272
273 delta_ns = time - policy_dbs->last_sample_time;
274 if ((s64)delta_ns >= policy_dbs->sample_delay_ns) {
275 policy_dbs->last_sample_time = time;
276 gov_queue_irq_work(policy_dbs);
277 return;
278 }
279 }
280 atomic_dec(&policy_dbs->work_count);
281 }
282
283 static void set_sampling_rate(struct dbs_data *dbs_data,
284 struct dbs_governor *gov,
285 unsigned int sampling_rate)
286 {
287 if (gov->governor == GOV_CONSERVATIVE) {
288 struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
289 cs_tuners->sampling_rate = sampling_rate;
290 } else {
291 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
292 od_tuners->sampling_rate = sampling_rate;
293 }
294 }
295
296 static struct policy_dbs_info *alloc_policy_dbs_info(struct cpufreq_policy *policy,
297 struct dbs_governor *gov)
298 {
299 struct policy_dbs_info *policy_dbs;
300 int j;
301
302 /* Allocate memory for the common information for policy->cpus */
303 policy_dbs = kzalloc(sizeof(*policy_dbs), GFP_KERNEL);
304 if (!policy_dbs)
305 return NULL;
306
307 mutex_init(&policy_dbs->timer_mutex);
308 atomic_set(&policy_dbs->work_count, 0);
309 init_irq_work(&policy_dbs->irq_work, dbs_irq_work);
310 INIT_WORK(&policy_dbs->work, dbs_work_handler);
311
312 /* Set policy_dbs for all CPUs, online+offline */
313 for_each_cpu(j, policy->related_cpus) {
314 struct cpu_dbs_info *j_cdbs = gov->get_cpu_cdbs(j);
315
316 j_cdbs->policy_dbs = policy_dbs;
317 j_cdbs->update_util.func = dbs_update_util_handler;
318 }
319 return policy_dbs;
320 }
321
322 static void free_policy_dbs_info(struct cpufreq_policy *policy,
323 struct dbs_governor *gov)
324 {
325 struct cpu_dbs_info *cdbs = gov->get_cpu_cdbs(policy->cpu);
326 struct policy_dbs_info *policy_dbs = cdbs->policy_dbs;
327 int j;
328
329 mutex_destroy(&policy_dbs->timer_mutex);
330
331 for_each_cpu(j, policy->related_cpus) {
332 struct cpu_dbs_info *j_cdbs = gov->get_cpu_cdbs(j);
333
334 j_cdbs->policy_dbs = NULL;
335 j_cdbs->update_util.func = NULL;
336 }
337 kfree(policy_dbs);
338 }
339
340 static int cpufreq_governor_init(struct cpufreq_policy *policy)
341 {
342 struct dbs_governor *gov = dbs_governor_of(policy);
343 struct dbs_data *dbs_data = gov->gdbs_data;
344 struct policy_dbs_info *policy_dbs;
345 unsigned int latency;
346 int ret;
347
348 /* State should be equivalent to EXIT */
349 if (policy->governor_data)
350 return -EBUSY;
351
352 policy_dbs = alloc_policy_dbs_info(policy, gov);
353 if (!policy_dbs)
354 return -ENOMEM;
355
356 if (dbs_data) {
357 if (WARN_ON(have_governor_per_policy())) {
358 ret = -EINVAL;
359 goto free_policy_dbs_info;
360 }
361 dbs_data->usage_count++;
362 policy_dbs->dbs_data = dbs_data;
363 policy->governor_data = policy_dbs;
364 return 0;
365 }
366
367 dbs_data = kzalloc(sizeof(*dbs_data), GFP_KERNEL);
368 if (!dbs_data) {
369 ret = -ENOMEM;
370 goto free_policy_dbs_info;
371 }
372
373 dbs_data->usage_count = 1;
374
375 ret = gov->init(dbs_data, !policy->governor->initialized);
376 if (ret)
377 goto free_policy_dbs_info;
378
379 /* policy latency is in ns. Convert it to us first */
380 latency = policy->cpuinfo.transition_latency / 1000;
381 if (latency == 0)
382 latency = 1;
383
384 /* Bring kernel and HW constraints together */
385 dbs_data->min_sampling_rate = max(dbs_data->min_sampling_rate,
386 MIN_LATENCY_MULTIPLIER * latency);
387 set_sampling_rate(dbs_data, gov, max(dbs_data->min_sampling_rate,
388 latency * LATENCY_MULTIPLIER));
389
390 if (!have_governor_per_policy())
391 gov->gdbs_data = dbs_data;
392
393 policy_dbs->dbs_data = dbs_data;
394 policy->governor_data = policy_dbs;
395
396 ret = sysfs_create_group(get_governor_parent_kobj(policy),
397 get_sysfs_attr(gov));
398 if (ret)
399 goto reset_gdbs_data;
400
401 return 0;
402
403 reset_gdbs_data:
404 policy->governor_data = NULL;
405
406 if (!have_governor_per_policy())
407 gov->gdbs_data = NULL;
408 gov->exit(dbs_data, !policy->governor->initialized);
409 kfree(dbs_data);
410
411 free_policy_dbs_info:
412 free_policy_dbs_info(policy, gov);
413 return ret;
414 }
415
416 static int cpufreq_governor_exit(struct cpufreq_policy *policy)
417 {
418 struct dbs_governor *gov = dbs_governor_of(policy);
419 struct policy_dbs_info *policy_dbs = policy->governor_data;
420 struct dbs_data *dbs_data = policy_dbs->dbs_data;
421
422 /* State should be equivalent to INIT */
423 if (policy_dbs->policy)
424 return -EBUSY;
425
426 if (!--dbs_data->usage_count) {
427 sysfs_remove_group(get_governor_parent_kobj(policy),
428 get_sysfs_attr(gov));
429
430 policy->governor_data = NULL;
431
432 if (!have_governor_per_policy())
433 gov->gdbs_data = NULL;
434
435 gov->exit(dbs_data, policy->governor->initialized == 1);
436 kfree(dbs_data);
437 } else {
438 policy->governor_data = NULL;
439 }
440
441 free_policy_dbs_info(policy, gov);
442 return 0;
443 }
444
445 static int cpufreq_governor_start(struct cpufreq_policy *policy)
446 {
447 struct dbs_governor *gov = dbs_governor_of(policy);
448 struct policy_dbs_info *policy_dbs = policy->governor_data;
449 struct dbs_data *dbs_data = policy_dbs->dbs_data;
450 unsigned int sampling_rate, ignore_nice, j, cpu = policy->cpu;
451 int io_busy = 0;
452
453 if (!policy->cur)
454 return -EINVAL;
455
456 /* State should be equivalent to INIT */
457 if (policy_dbs->policy)
458 return -EBUSY;
459
460 if (gov->governor == GOV_CONSERVATIVE) {
461 struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
462
463 sampling_rate = cs_tuners->sampling_rate;
464 ignore_nice = cs_tuners->ignore_nice_load;
465 } else {
466 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
467
468 sampling_rate = od_tuners->sampling_rate;
469 ignore_nice = od_tuners->ignore_nice_load;
470 io_busy = od_tuners->io_is_busy;
471 }
472
473 for_each_cpu(j, policy->cpus) {
474 struct cpu_dbs_info *j_cdbs = gov->get_cpu_cdbs(j);
475 unsigned int prev_load;
476
477 j_cdbs->prev_cpu_idle =
478 get_cpu_idle_time(j, &j_cdbs->prev_cpu_wall, io_busy);
479
480 prev_load = (unsigned int)(j_cdbs->prev_cpu_wall -
481 j_cdbs->prev_cpu_idle);
482 j_cdbs->prev_load = 100 * prev_load /
483 (unsigned int)j_cdbs->prev_cpu_wall;
484
485 if (ignore_nice)
486 j_cdbs->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
487 }
488 policy_dbs->policy = policy;
489
490 if (gov->governor == GOV_CONSERVATIVE) {
491 struct cs_cpu_dbs_info_s *cs_dbs_info =
492 gov->get_cpu_dbs_info_s(cpu);
493
494 cs_dbs_info->down_skip = 0;
495 cs_dbs_info->requested_freq = policy->cur;
496 } else {
497 struct od_ops *od_ops = gov->gov_ops;
498 struct od_cpu_dbs_info_s *od_dbs_info = gov->get_cpu_dbs_info_s(cpu);
499
500 od_dbs_info->rate_mult = 1;
501 od_dbs_info->sample_type = OD_NORMAL_SAMPLE;
502 od_ops->powersave_bias_init_cpu(cpu);
503 }
504
505 gov_set_update_util(policy_dbs, sampling_rate);
506 return 0;
507 }
508
509 static int cpufreq_governor_stop(struct cpufreq_policy *policy)
510 {
511 struct policy_dbs_info *policy_dbs = policy->governor_data;
512
513 /* State should be equivalent to START */
514 if (!policy_dbs->policy)
515 return -EBUSY;
516
517 gov_cancel_work(policy_dbs);
518 policy_dbs->policy = NULL;
519
520 return 0;
521 }
522
523 static int cpufreq_governor_limits(struct cpufreq_policy *policy)
524 {
525 struct policy_dbs_info *policy_dbs = policy->governor_data;
526
527 /* State should be equivalent to START */
528 if (!policy_dbs->policy)
529 return -EBUSY;
530
531 mutex_lock(&policy_dbs->timer_mutex);
532 if (policy->max < policy->cur)
533 __cpufreq_driver_target(policy, policy->max, CPUFREQ_RELATION_H);
534 else if (policy->min > policy->cur)
535 __cpufreq_driver_target(policy, policy->min, CPUFREQ_RELATION_L);
536 dbs_check_cpu(policy);
537 mutex_unlock(&policy_dbs->timer_mutex);
538
539 return 0;
540 }
541
542 int cpufreq_governor_dbs(struct cpufreq_policy *policy, unsigned int event)
543 {
544 int ret = -EINVAL;
545
546 /* Lock governor to block concurrent initialization of governor */
547 mutex_lock(&dbs_data_mutex);
548
549 if (event == CPUFREQ_GOV_POLICY_INIT) {
550 ret = cpufreq_governor_init(policy);
551 } else if (policy->governor_data) {
552 switch (event) {
553 case CPUFREQ_GOV_POLICY_EXIT:
554 ret = cpufreq_governor_exit(policy);
555 break;
556 case CPUFREQ_GOV_START:
557 ret = cpufreq_governor_start(policy);
558 break;
559 case CPUFREQ_GOV_STOP:
560 ret = cpufreq_governor_stop(policy);
561 break;
562 case CPUFREQ_GOV_LIMITS:
563 ret = cpufreq_governor_limits(policy);
564 break;
565 }
566 }
567
568 mutex_unlock(&dbs_data_mutex);
569 return ret;
570 }
571 EXPORT_SYMBOL_GPL(cpufreq_governor_dbs);