]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - drivers/cpufreq/cpufreq_ondemand.c
cpufreq: Use sizeof(*ptr) convetion for computing sizes
[mirror_ubuntu-eoan-kernel.git] / drivers / cpufreq / cpufreq_ondemand.c
1 /*
2 * drivers/cpufreq/cpufreq_ondemand.c
3 *
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/cpu.h>
16 #include <linux/percpu-defs.h>
17 #include <linux/slab.h>
18 #include <linux/tick.h>
19 #include "cpufreq_governor.h"
20
21 /* On-demand governor macros */
22 #define DEF_FREQUENCY_UP_THRESHOLD (80)
23 #define DEF_SAMPLING_DOWN_FACTOR (1)
24 #define MAX_SAMPLING_DOWN_FACTOR (100000)
25 #define MICRO_FREQUENCY_UP_THRESHOLD (95)
26 #define MICRO_FREQUENCY_MIN_SAMPLE_RATE (10000)
27 #define MIN_FREQUENCY_UP_THRESHOLD (11)
28 #define MAX_FREQUENCY_UP_THRESHOLD (100)
29
30 static DEFINE_PER_CPU(struct od_cpu_dbs_info_s, od_cpu_dbs_info);
31
32 static struct od_ops od_ops;
33
34 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
35 static struct cpufreq_governor cpufreq_gov_ondemand;
36 #endif
37
38 static unsigned int default_powersave_bias;
39
40 static void ondemand_powersave_bias_init_cpu(int cpu)
41 {
42 struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
43
44 dbs_info->freq_table = cpufreq_frequency_get_table(cpu);
45 dbs_info->freq_lo = 0;
46 }
47
48 /*
49 * Not all CPUs want IO time to be accounted as busy; this depends on how
50 * efficient idling at a higher frequency/voltage is.
51 * Pavel Machek says this is not so for various generations of AMD and old
52 * Intel systems.
53 * Mike Chan (android.com) claims this is also not true for ARM.
54 * Because of this, whitelist specific known (series) of CPUs by default, and
55 * leave all others up to the user.
56 */
57 static int should_io_be_busy(void)
58 {
59 #if defined(CONFIG_X86)
60 /*
61 * For Intel, Core 2 (model 15) and later have an efficient idle.
62 */
63 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
64 boot_cpu_data.x86 == 6 &&
65 boot_cpu_data.x86_model >= 15)
66 return 1;
67 #endif
68 return 0;
69 }
70
71 /*
72 * Find right freq to be set now with powersave_bias on.
73 * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
74 * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
75 */
76 static unsigned int generic_powersave_bias_target(struct cpufreq_policy *policy,
77 unsigned int freq_next, unsigned int relation)
78 {
79 unsigned int freq_req, freq_reduc, freq_avg;
80 unsigned int freq_hi, freq_lo;
81 unsigned int index = 0;
82 unsigned int jiffies_total, jiffies_hi, jiffies_lo;
83 struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
84 policy->cpu);
85 struct dbs_data *dbs_data = policy->governor_data;
86 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
87
88 if (!dbs_info->freq_table) {
89 dbs_info->freq_lo = 0;
90 dbs_info->freq_lo_jiffies = 0;
91 return freq_next;
92 }
93
94 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
95 relation, &index);
96 freq_req = dbs_info->freq_table[index].frequency;
97 freq_reduc = freq_req * od_tuners->powersave_bias / 1000;
98 freq_avg = freq_req - freq_reduc;
99
100 /* Find freq bounds for freq_avg in freq_table */
101 index = 0;
102 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
103 CPUFREQ_RELATION_H, &index);
104 freq_lo = dbs_info->freq_table[index].frequency;
105 index = 0;
106 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
107 CPUFREQ_RELATION_L, &index);
108 freq_hi = dbs_info->freq_table[index].frequency;
109
110 /* Find out how long we have to be in hi and lo freqs */
111 if (freq_hi == freq_lo) {
112 dbs_info->freq_lo = 0;
113 dbs_info->freq_lo_jiffies = 0;
114 return freq_lo;
115 }
116 jiffies_total = usecs_to_jiffies(od_tuners->sampling_rate);
117 jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
118 jiffies_hi += ((freq_hi - freq_lo) / 2);
119 jiffies_hi /= (freq_hi - freq_lo);
120 jiffies_lo = jiffies_total - jiffies_hi;
121 dbs_info->freq_lo = freq_lo;
122 dbs_info->freq_lo_jiffies = jiffies_lo;
123 dbs_info->freq_hi_jiffies = jiffies_hi;
124 return freq_hi;
125 }
126
127 static void ondemand_powersave_bias_init(void)
128 {
129 int i;
130 for_each_online_cpu(i) {
131 ondemand_powersave_bias_init_cpu(i);
132 }
133 }
134
135 static void dbs_freq_increase(struct cpufreq_policy *policy, unsigned int freq)
136 {
137 struct dbs_data *dbs_data = policy->governor_data;
138 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
139
140 if (od_tuners->powersave_bias)
141 freq = od_ops.powersave_bias_target(policy, freq,
142 CPUFREQ_RELATION_H);
143 else if (policy->cur == policy->max)
144 return;
145
146 __cpufreq_driver_target(policy, freq, od_tuners->powersave_bias ?
147 CPUFREQ_RELATION_L : CPUFREQ_RELATION_H);
148 }
149
150 /*
151 * Every sampling_rate, we check, if current idle time is less than 20%
152 * (default), then we try to increase frequency. Else, we adjust the frequency
153 * proportional to load.
154 */
155 static void od_check_cpu(int cpu, unsigned int load)
156 {
157 struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
158 struct cpufreq_policy *policy = dbs_info->cdbs.cur_policy;
159 struct dbs_data *dbs_data = policy->governor_data;
160 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
161
162 dbs_info->freq_lo = 0;
163
164 /* Check for frequency increase */
165 if (load > od_tuners->up_threshold) {
166 /* If switching to max speed, apply sampling_down_factor */
167 if (policy->cur < policy->max)
168 dbs_info->rate_mult =
169 od_tuners->sampling_down_factor;
170 dbs_freq_increase(policy, policy->max);
171 return;
172 } else {
173 /* Calculate the next frequency proportional to load */
174 unsigned int freq_next;
175 freq_next = load * policy->cpuinfo.max_freq / 100;
176
177 /* No longer fully busy, reset rate_mult */
178 dbs_info->rate_mult = 1;
179
180 if (freq_next < policy->min)
181 freq_next = policy->min;
182
183 if (!od_tuners->powersave_bias) {
184 __cpufreq_driver_target(policy, freq_next,
185 CPUFREQ_RELATION_L);
186 return;
187 }
188
189 freq_next = od_ops.powersave_bias_target(policy, freq_next,
190 CPUFREQ_RELATION_L);
191 __cpufreq_driver_target(policy, freq_next, CPUFREQ_RELATION_L);
192 }
193 }
194
195 static void od_dbs_timer(struct work_struct *work)
196 {
197 struct od_cpu_dbs_info_s *dbs_info =
198 container_of(work, struct od_cpu_dbs_info_s, cdbs.work.work);
199 unsigned int cpu = dbs_info->cdbs.cur_policy->cpu;
200 struct od_cpu_dbs_info_s *core_dbs_info = &per_cpu(od_cpu_dbs_info,
201 cpu);
202 struct dbs_data *dbs_data = dbs_info->cdbs.cur_policy->governor_data;
203 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
204 int delay = 0, sample_type = core_dbs_info->sample_type;
205 bool modify_all = true;
206
207 mutex_lock(&core_dbs_info->cdbs.timer_mutex);
208 if (!need_load_eval(&core_dbs_info->cdbs, od_tuners->sampling_rate)) {
209 modify_all = false;
210 goto max_delay;
211 }
212
213 /* Common NORMAL_SAMPLE setup */
214 core_dbs_info->sample_type = OD_NORMAL_SAMPLE;
215 if (sample_type == OD_SUB_SAMPLE) {
216 delay = core_dbs_info->freq_lo_jiffies;
217 __cpufreq_driver_target(core_dbs_info->cdbs.cur_policy,
218 core_dbs_info->freq_lo, CPUFREQ_RELATION_H);
219 } else {
220 dbs_check_cpu(dbs_data, cpu);
221 if (core_dbs_info->freq_lo) {
222 /* Setup timer for SUB_SAMPLE */
223 core_dbs_info->sample_type = OD_SUB_SAMPLE;
224 delay = core_dbs_info->freq_hi_jiffies;
225 }
226 }
227
228 max_delay:
229 if (!delay)
230 delay = delay_for_sampling_rate(od_tuners->sampling_rate
231 * core_dbs_info->rate_mult);
232
233 gov_queue_work(dbs_data, dbs_info->cdbs.cur_policy, delay, modify_all);
234 mutex_unlock(&core_dbs_info->cdbs.timer_mutex);
235 }
236
237 /************************** sysfs interface ************************/
238 static struct common_dbs_data od_dbs_cdata;
239
240 /**
241 * update_sampling_rate - update sampling rate effective immediately if needed.
242 * @new_rate: new sampling rate
243 *
244 * If new rate is smaller than the old, simply updating
245 * dbs_tuners_int.sampling_rate might not be appropriate. For example, if the
246 * original sampling_rate was 1 second and the requested new sampling rate is 10
247 * ms because the user needs immediate reaction from ondemand governor, but not
248 * sure if higher frequency will be required or not, then, the governor may
249 * change the sampling rate too late; up to 1 second later. Thus, if we are
250 * reducing the sampling rate, we need to make the new value effective
251 * immediately.
252 */
253 static void update_sampling_rate(struct dbs_data *dbs_data,
254 unsigned int new_rate)
255 {
256 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
257 int cpu;
258
259 od_tuners->sampling_rate = new_rate = max(new_rate,
260 dbs_data->min_sampling_rate);
261
262 for_each_online_cpu(cpu) {
263 struct cpufreq_policy *policy;
264 struct od_cpu_dbs_info_s *dbs_info;
265 unsigned long next_sampling, appointed_at;
266
267 policy = cpufreq_cpu_get(cpu);
268 if (!policy)
269 continue;
270 if (policy->governor != &cpufreq_gov_ondemand) {
271 cpufreq_cpu_put(policy);
272 continue;
273 }
274 dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
275 cpufreq_cpu_put(policy);
276
277 mutex_lock(&dbs_info->cdbs.timer_mutex);
278
279 if (!delayed_work_pending(&dbs_info->cdbs.work)) {
280 mutex_unlock(&dbs_info->cdbs.timer_mutex);
281 continue;
282 }
283
284 next_sampling = jiffies + usecs_to_jiffies(new_rate);
285 appointed_at = dbs_info->cdbs.work.timer.expires;
286
287 if (time_before(next_sampling, appointed_at)) {
288
289 mutex_unlock(&dbs_info->cdbs.timer_mutex);
290 cancel_delayed_work_sync(&dbs_info->cdbs.work);
291 mutex_lock(&dbs_info->cdbs.timer_mutex);
292
293 gov_queue_work(dbs_data, dbs_info->cdbs.cur_policy,
294 usecs_to_jiffies(new_rate), true);
295
296 }
297 mutex_unlock(&dbs_info->cdbs.timer_mutex);
298 }
299 }
300
301 static ssize_t store_sampling_rate(struct dbs_data *dbs_data, const char *buf,
302 size_t count)
303 {
304 unsigned int input;
305 int ret;
306 ret = sscanf(buf, "%u", &input);
307 if (ret != 1)
308 return -EINVAL;
309
310 update_sampling_rate(dbs_data, input);
311 return count;
312 }
313
314 static ssize_t store_io_is_busy(struct dbs_data *dbs_data, const char *buf,
315 size_t count)
316 {
317 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
318 unsigned int input;
319 int ret;
320 unsigned int j;
321
322 ret = sscanf(buf, "%u", &input);
323 if (ret != 1)
324 return -EINVAL;
325 od_tuners->io_is_busy = !!input;
326
327 /* we need to re-evaluate prev_cpu_idle */
328 for_each_online_cpu(j) {
329 struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
330 j);
331 dbs_info->cdbs.prev_cpu_idle = get_cpu_idle_time(j,
332 &dbs_info->cdbs.prev_cpu_wall, od_tuners->io_is_busy);
333 }
334 return count;
335 }
336
337 static ssize_t store_up_threshold(struct dbs_data *dbs_data, const char *buf,
338 size_t count)
339 {
340 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
341 unsigned int input;
342 int ret;
343 ret = sscanf(buf, "%u", &input);
344
345 if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
346 input < MIN_FREQUENCY_UP_THRESHOLD) {
347 return -EINVAL;
348 }
349
350 od_tuners->up_threshold = input;
351 return count;
352 }
353
354 static ssize_t store_sampling_down_factor(struct dbs_data *dbs_data,
355 const char *buf, size_t count)
356 {
357 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
358 unsigned int input, j;
359 int ret;
360 ret = sscanf(buf, "%u", &input);
361
362 if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
363 return -EINVAL;
364 od_tuners->sampling_down_factor = input;
365
366 /* Reset down sampling multiplier in case it was active */
367 for_each_online_cpu(j) {
368 struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
369 j);
370 dbs_info->rate_mult = 1;
371 }
372 return count;
373 }
374
375 static ssize_t store_ignore_nice(struct dbs_data *dbs_data, const char *buf,
376 size_t count)
377 {
378 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
379 unsigned int input;
380 int ret;
381
382 unsigned int j;
383
384 ret = sscanf(buf, "%u", &input);
385 if (ret != 1)
386 return -EINVAL;
387
388 if (input > 1)
389 input = 1;
390
391 if (input == od_tuners->ignore_nice) { /* nothing to do */
392 return count;
393 }
394 od_tuners->ignore_nice = input;
395
396 /* we need to re-evaluate prev_cpu_idle */
397 for_each_online_cpu(j) {
398 struct od_cpu_dbs_info_s *dbs_info;
399 dbs_info = &per_cpu(od_cpu_dbs_info, j);
400 dbs_info->cdbs.prev_cpu_idle = get_cpu_idle_time(j,
401 &dbs_info->cdbs.prev_cpu_wall, od_tuners->io_is_busy);
402 if (od_tuners->ignore_nice)
403 dbs_info->cdbs.prev_cpu_nice =
404 kcpustat_cpu(j).cpustat[CPUTIME_NICE];
405
406 }
407 return count;
408 }
409
410 static ssize_t store_powersave_bias(struct dbs_data *dbs_data, const char *buf,
411 size_t count)
412 {
413 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
414 unsigned int input;
415 int ret;
416 ret = sscanf(buf, "%u", &input);
417
418 if (ret != 1)
419 return -EINVAL;
420
421 if (input > 1000)
422 input = 1000;
423
424 od_tuners->powersave_bias = input;
425 ondemand_powersave_bias_init();
426 return count;
427 }
428
429 show_store_one(od, sampling_rate);
430 show_store_one(od, io_is_busy);
431 show_store_one(od, up_threshold);
432 show_store_one(od, sampling_down_factor);
433 show_store_one(od, ignore_nice);
434 show_store_one(od, powersave_bias);
435 declare_show_sampling_rate_min(od);
436
437 gov_sys_pol_attr_rw(sampling_rate);
438 gov_sys_pol_attr_rw(io_is_busy);
439 gov_sys_pol_attr_rw(up_threshold);
440 gov_sys_pol_attr_rw(sampling_down_factor);
441 gov_sys_pol_attr_rw(ignore_nice);
442 gov_sys_pol_attr_rw(powersave_bias);
443 gov_sys_pol_attr_ro(sampling_rate_min);
444
445 static struct attribute *dbs_attributes_gov_sys[] = {
446 &sampling_rate_min_gov_sys.attr,
447 &sampling_rate_gov_sys.attr,
448 &up_threshold_gov_sys.attr,
449 &sampling_down_factor_gov_sys.attr,
450 &ignore_nice_gov_sys.attr,
451 &powersave_bias_gov_sys.attr,
452 &io_is_busy_gov_sys.attr,
453 NULL
454 };
455
456 static struct attribute_group od_attr_group_gov_sys = {
457 .attrs = dbs_attributes_gov_sys,
458 .name = "ondemand",
459 };
460
461 static struct attribute *dbs_attributes_gov_pol[] = {
462 &sampling_rate_min_gov_pol.attr,
463 &sampling_rate_gov_pol.attr,
464 &up_threshold_gov_pol.attr,
465 &sampling_down_factor_gov_pol.attr,
466 &ignore_nice_gov_pol.attr,
467 &powersave_bias_gov_pol.attr,
468 &io_is_busy_gov_pol.attr,
469 NULL
470 };
471
472 static struct attribute_group od_attr_group_gov_pol = {
473 .attrs = dbs_attributes_gov_pol,
474 .name = "ondemand",
475 };
476
477 /************************** sysfs end ************************/
478
479 static int od_init(struct dbs_data *dbs_data)
480 {
481 struct od_dbs_tuners *tuners;
482 u64 idle_time;
483 int cpu;
484
485 tuners = kzalloc(sizeof(*tuners), GFP_KERNEL);
486 if (!tuners) {
487 pr_err("%s: kzalloc failed\n", __func__);
488 return -ENOMEM;
489 }
490
491 cpu = get_cpu();
492 idle_time = get_cpu_idle_time_us(cpu, NULL);
493 put_cpu();
494 if (idle_time != -1ULL) {
495 /* Idle micro accounting is supported. Use finer thresholds */
496 tuners->up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
497 /*
498 * In nohz/micro accounting case we set the minimum frequency
499 * not depending on HZ, but fixed (very low). The deferred
500 * timer might skip some samples if idle/sleeping as needed.
501 */
502 dbs_data->min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE;
503 } else {
504 tuners->up_threshold = DEF_FREQUENCY_UP_THRESHOLD;
505
506 /* For correct statistics, we need 10 ticks for each measure */
507 dbs_data->min_sampling_rate = MIN_SAMPLING_RATE_RATIO *
508 jiffies_to_usecs(10);
509 }
510
511 tuners->sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR;
512 tuners->ignore_nice = 0;
513 tuners->powersave_bias = default_powersave_bias;
514 tuners->io_is_busy = should_io_be_busy();
515
516 dbs_data->tuners = tuners;
517 mutex_init(&dbs_data->mutex);
518 return 0;
519 }
520
521 static void od_exit(struct dbs_data *dbs_data)
522 {
523 kfree(dbs_data->tuners);
524 }
525
526 define_get_cpu_dbs_routines(od_cpu_dbs_info);
527
528 static struct od_ops od_ops = {
529 .powersave_bias_init_cpu = ondemand_powersave_bias_init_cpu,
530 .powersave_bias_target = generic_powersave_bias_target,
531 .freq_increase = dbs_freq_increase,
532 };
533
534 static struct common_dbs_data od_dbs_cdata = {
535 .governor = GOV_ONDEMAND,
536 .attr_group_gov_sys = &od_attr_group_gov_sys,
537 .attr_group_gov_pol = &od_attr_group_gov_pol,
538 .get_cpu_cdbs = get_cpu_cdbs,
539 .get_cpu_dbs_info_s = get_cpu_dbs_info_s,
540 .gov_dbs_timer = od_dbs_timer,
541 .gov_check_cpu = od_check_cpu,
542 .gov_ops = &od_ops,
543 .init = od_init,
544 .exit = od_exit,
545 };
546
547 static void od_set_powersave_bias(unsigned int powersave_bias)
548 {
549 struct cpufreq_policy *policy;
550 struct dbs_data *dbs_data;
551 struct od_dbs_tuners *od_tuners;
552 unsigned int cpu;
553 cpumask_t done;
554
555 default_powersave_bias = powersave_bias;
556 cpumask_clear(&done);
557
558 get_online_cpus();
559 for_each_online_cpu(cpu) {
560 if (cpumask_test_cpu(cpu, &done))
561 continue;
562
563 policy = per_cpu(od_cpu_dbs_info, cpu).cdbs.cur_policy;
564 if (!policy)
565 continue;
566
567 cpumask_or(&done, &done, policy->cpus);
568
569 if (policy->governor != &cpufreq_gov_ondemand)
570 continue;
571
572 dbs_data = policy->governor_data;
573 od_tuners = dbs_data->tuners;
574 od_tuners->powersave_bias = default_powersave_bias;
575 }
576 put_online_cpus();
577 }
578
579 void od_register_powersave_bias_handler(unsigned int (*f)
580 (struct cpufreq_policy *, unsigned int, unsigned int),
581 unsigned int powersave_bias)
582 {
583 od_ops.powersave_bias_target = f;
584 od_set_powersave_bias(powersave_bias);
585 }
586 EXPORT_SYMBOL_GPL(od_register_powersave_bias_handler);
587
588 void od_unregister_powersave_bias_handler(void)
589 {
590 od_ops.powersave_bias_target = generic_powersave_bias_target;
591 od_set_powersave_bias(0);
592 }
593 EXPORT_SYMBOL_GPL(od_unregister_powersave_bias_handler);
594
595 static int od_cpufreq_governor_dbs(struct cpufreq_policy *policy,
596 unsigned int event)
597 {
598 return cpufreq_governor_dbs(policy, &od_dbs_cdata, event);
599 }
600
601 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
602 static
603 #endif
604 struct cpufreq_governor cpufreq_gov_ondemand = {
605 .name = "ondemand",
606 .governor = od_cpufreq_governor_dbs,
607 .max_transition_latency = TRANSITION_LATENCY_LIMIT,
608 .owner = THIS_MODULE,
609 };
610
611 static int __init cpufreq_gov_dbs_init(void)
612 {
613 return cpufreq_register_governor(&cpufreq_gov_ondemand);
614 }
615
616 static void __exit cpufreq_gov_dbs_exit(void)
617 {
618 cpufreq_unregister_governor(&cpufreq_gov_ondemand);
619 }
620
621 MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
622 MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
623 MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
624 "Low Latency Frequency Transition capable processors");
625 MODULE_LICENSE("GPL");
626
627 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
628 fs_initcall(cpufreq_gov_dbs_init);
629 #else
630 module_init(cpufreq_gov_dbs_init);
631 #endif
632 module_exit(cpufreq_gov_dbs_exit);