]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/cpufreq/cpufreq_ondemand.c
Merge remote-tracking branch 'asoc/topic/davinci' into asoc-next
[mirror_ubuntu-artful-kernel.git] / drivers / cpufreq / cpufreq_ondemand.c
1 /*
2 * drivers/cpufreq/cpufreq_ondemand.c
3 *
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/cpu.h>
16 #include <linux/percpu-defs.h>
17 #include <linux/slab.h>
18 #include <linux/tick.h>
19 #include "cpufreq_governor.h"
20
21 /* On-demand governor macros */
22 #define DEF_FREQUENCY_UP_THRESHOLD (80)
23 #define DEF_SAMPLING_DOWN_FACTOR (1)
24 #define MAX_SAMPLING_DOWN_FACTOR (100000)
25 #define MICRO_FREQUENCY_UP_THRESHOLD (95)
26 #define MICRO_FREQUENCY_MIN_SAMPLE_RATE (10000)
27 #define MIN_FREQUENCY_UP_THRESHOLD (11)
28 #define MAX_FREQUENCY_UP_THRESHOLD (100)
29
30 static DEFINE_PER_CPU(struct od_cpu_dbs_info_s, od_cpu_dbs_info);
31
32 static struct od_ops od_ops;
33
34 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
35 static struct cpufreq_governor cpufreq_gov_ondemand;
36 #endif
37
38 static unsigned int default_powersave_bias;
39
40 static void ondemand_powersave_bias_init_cpu(int cpu)
41 {
42 struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
43
44 dbs_info->freq_table = cpufreq_frequency_get_table(cpu);
45 dbs_info->freq_lo = 0;
46 }
47
48 /*
49 * Not all CPUs want IO time to be accounted as busy; this depends on how
50 * efficient idling at a higher frequency/voltage is.
51 * Pavel Machek says this is not so for various generations of AMD and old
52 * Intel systems.
53 * Mike Chan (android.com) claims this is also not true for ARM.
54 * Because of this, whitelist specific known (series) of CPUs by default, and
55 * leave all others up to the user.
56 */
57 static int should_io_be_busy(void)
58 {
59 #if defined(CONFIG_X86)
60 /*
61 * For Intel, Core 2 (model 15) and later have an efficient idle.
62 */
63 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
64 boot_cpu_data.x86 == 6 &&
65 boot_cpu_data.x86_model >= 15)
66 return 1;
67 #endif
68 return 0;
69 }
70
71 /*
72 * Find right freq to be set now with powersave_bias on.
73 * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
74 * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
75 */
76 static unsigned int generic_powersave_bias_target(struct cpufreq_policy *policy,
77 unsigned int freq_next, unsigned int relation)
78 {
79 unsigned int freq_req, freq_reduc, freq_avg;
80 unsigned int freq_hi, freq_lo;
81 unsigned int index = 0;
82 unsigned int jiffies_total, jiffies_hi, jiffies_lo;
83 struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
84 policy->cpu);
85 struct dbs_data *dbs_data = policy->governor_data;
86 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
87
88 if (!dbs_info->freq_table) {
89 dbs_info->freq_lo = 0;
90 dbs_info->freq_lo_jiffies = 0;
91 return freq_next;
92 }
93
94 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
95 relation, &index);
96 freq_req = dbs_info->freq_table[index].frequency;
97 freq_reduc = freq_req * od_tuners->powersave_bias / 1000;
98 freq_avg = freq_req - freq_reduc;
99
100 /* Find freq bounds for freq_avg in freq_table */
101 index = 0;
102 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
103 CPUFREQ_RELATION_H, &index);
104 freq_lo = dbs_info->freq_table[index].frequency;
105 index = 0;
106 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
107 CPUFREQ_RELATION_L, &index);
108 freq_hi = dbs_info->freq_table[index].frequency;
109
110 /* Find out how long we have to be in hi and lo freqs */
111 if (freq_hi == freq_lo) {
112 dbs_info->freq_lo = 0;
113 dbs_info->freq_lo_jiffies = 0;
114 return freq_lo;
115 }
116 jiffies_total = usecs_to_jiffies(od_tuners->sampling_rate);
117 jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
118 jiffies_hi += ((freq_hi - freq_lo) / 2);
119 jiffies_hi /= (freq_hi - freq_lo);
120 jiffies_lo = jiffies_total - jiffies_hi;
121 dbs_info->freq_lo = freq_lo;
122 dbs_info->freq_lo_jiffies = jiffies_lo;
123 dbs_info->freq_hi_jiffies = jiffies_hi;
124 return freq_hi;
125 }
126
127 static void ondemand_powersave_bias_init(void)
128 {
129 int i;
130 for_each_online_cpu(i) {
131 ondemand_powersave_bias_init_cpu(i);
132 }
133 }
134
135 static void dbs_freq_increase(struct cpufreq_policy *policy, unsigned int freq)
136 {
137 struct dbs_data *dbs_data = policy->governor_data;
138 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
139
140 if (od_tuners->powersave_bias)
141 freq = od_ops.powersave_bias_target(policy, freq,
142 CPUFREQ_RELATION_H);
143 else if (policy->cur == policy->max)
144 return;
145
146 __cpufreq_driver_target(policy, freq, od_tuners->powersave_bias ?
147 CPUFREQ_RELATION_L : CPUFREQ_RELATION_H);
148 }
149
150 /*
151 * Every sampling_rate, we check, if current idle time is less than 20%
152 * (default), then we try to increase frequency. Else, we adjust the frequency
153 * proportional to load.
154 */
155 static void od_check_cpu(int cpu, unsigned int load)
156 {
157 struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
158 struct cpufreq_policy *policy = dbs_info->cdbs.cur_policy;
159 struct dbs_data *dbs_data = policy->governor_data;
160 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
161
162 dbs_info->freq_lo = 0;
163
164 /* Check for frequency increase */
165 if (load > od_tuners->up_threshold) {
166 /* If switching to max speed, apply sampling_down_factor */
167 if (policy->cur < policy->max)
168 dbs_info->rate_mult =
169 od_tuners->sampling_down_factor;
170 dbs_freq_increase(policy, policy->max);
171 } else {
172 /* Calculate the next frequency proportional to load */
173 unsigned int freq_next;
174 freq_next = load * policy->cpuinfo.max_freq / 100;
175
176 /* No longer fully busy, reset rate_mult */
177 dbs_info->rate_mult = 1;
178
179 if (!od_tuners->powersave_bias) {
180 __cpufreq_driver_target(policy, freq_next,
181 CPUFREQ_RELATION_L);
182 return;
183 }
184
185 freq_next = od_ops.powersave_bias_target(policy, freq_next,
186 CPUFREQ_RELATION_L);
187 __cpufreq_driver_target(policy, freq_next, CPUFREQ_RELATION_L);
188 }
189 }
190
191 static void od_dbs_timer(struct work_struct *work)
192 {
193 struct od_cpu_dbs_info_s *dbs_info =
194 container_of(work, struct od_cpu_dbs_info_s, cdbs.work.work);
195 unsigned int cpu = dbs_info->cdbs.cur_policy->cpu;
196 struct od_cpu_dbs_info_s *core_dbs_info = &per_cpu(od_cpu_dbs_info,
197 cpu);
198 struct dbs_data *dbs_data = dbs_info->cdbs.cur_policy->governor_data;
199 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
200 int delay = 0, sample_type = core_dbs_info->sample_type;
201 bool modify_all = true;
202
203 mutex_lock(&core_dbs_info->cdbs.timer_mutex);
204 if (!need_load_eval(&core_dbs_info->cdbs, od_tuners->sampling_rate)) {
205 modify_all = false;
206 goto max_delay;
207 }
208
209 /* Common NORMAL_SAMPLE setup */
210 core_dbs_info->sample_type = OD_NORMAL_SAMPLE;
211 if (sample_type == OD_SUB_SAMPLE) {
212 delay = core_dbs_info->freq_lo_jiffies;
213 __cpufreq_driver_target(core_dbs_info->cdbs.cur_policy,
214 core_dbs_info->freq_lo, CPUFREQ_RELATION_H);
215 } else {
216 dbs_check_cpu(dbs_data, cpu);
217 if (core_dbs_info->freq_lo) {
218 /* Setup timer for SUB_SAMPLE */
219 core_dbs_info->sample_type = OD_SUB_SAMPLE;
220 delay = core_dbs_info->freq_hi_jiffies;
221 }
222 }
223
224 max_delay:
225 if (!delay)
226 delay = delay_for_sampling_rate(od_tuners->sampling_rate
227 * core_dbs_info->rate_mult);
228
229 gov_queue_work(dbs_data, dbs_info->cdbs.cur_policy, delay, modify_all);
230 mutex_unlock(&core_dbs_info->cdbs.timer_mutex);
231 }
232
233 /************************** sysfs interface ************************/
234 static struct common_dbs_data od_dbs_cdata;
235
236 /**
237 * update_sampling_rate - update sampling rate effective immediately if needed.
238 * @new_rate: new sampling rate
239 *
240 * If new rate is smaller than the old, simply updating
241 * dbs_tuners_int.sampling_rate might not be appropriate. For example, if the
242 * original sampling_rate was 1 second and the requested new sampling rate is 10
243 * ms because the user needs immediate reaction from ondemand governor, but not
244 * sure if higher frequency will be required or not, then, the governor may
245 * change the sampling rate too late; up to 1 second later. Thus, if we are
246 * reducing the sampling rate, we need to make the new value effective
247 * immediately.
248 */
249 static void update_sampling_rate(struct dbs_data *dbs_data,
250 unsigned int new_rate)
251 {
252 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
253 int cpu;
254
255 od_tuners->sampling_rate = new_rate = max(new_rate,
256 dbs_data->min_sampling_rate);
257
258 for_each_online_cpu(cpu) {
259 struct cpufreq_policy *policy;
260 struct od_cpu_dbs_info_s *dbs_info;
261 unsigned long next_sampling, appointed_at;
262
263 policy = cpufreq_cpu_get(cpu);
264 if (!policy)
265 continue;
266 if (policy->governor != &cpufreq_gov_ondemand) {
267 cpufreq_cpu_put(policy);
268 continue;
269 }
270 dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
271 cpufreq_cpu_put(policy);
272
273 mutex_lock(&dbs_info->cdbs.timer_mutex);
274
275 if (!delayed_work_pending(&dbs_info->cdbs.work)) {
276 mutex_unlock(&dbs_info->cdbs.timer_mutex);
277 continue;
278 }
279
280 next_sampling = jiffies + usecs_to_jiffies(new_rate);
281 appointed_at = dbs_info->cdbs.work.timer.expires;
282
283 if (time_before(next_sampling, appointed_at)) {
284
285 mutex_unlock(&dbs_info->cdbs.timer_mutex);
286 cancel_delayed_work_sync(&dbs_info->cdbs.work);
287 mutex_lock(&dbs_info->cdbs.timer_mutex);
288
289 gov_queue_work(dbs_data, dbs_info->cdbs.cur_policy,
290 usecs_to_jiffies(new_rate), true);
291
292 }
293 mutex_unlock(&dbs_info->cdbs.timer_mutex);
294 }
295 }
296
297 static ssize_t store_sampling_rate(struct dbs_data *dbs_data, const char *buf,
298 size_t count)
299 {
300 unsigned int input;
301 int ret;
302 ret = sscanf(buf, "%u", &input);
303 if (ret != 1)
304 return -EINVAL;
305
306 update_sampling_rate(dbs_data, input);
307 return count;
308 }
309
310 static ssize_t store_io_is_busy(struct dbs_data *dbs_data, const char *buf,
311 size_t count)
312 {
313 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
314 unsigned int input;
315 int ret;
316 unsigned int j;
317
318 ret = sscanf(buf, "%u", &input);
319 if (ret != 1)
320 return -EINVAL;
321 od_tuners->io_is_busy = !!input;
322
323 /* we need to re-evaluate prev_cpu_idle */
324 for_each_online_cpu(j) {
325 struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
326 j);
327 dbs_info->cdbs.prev_cpu_idle = get_cpu_idle_time(j,
328 &dbs_info->cdbs.prev_cpu_wall, od_tuners->io_is_busy);
329 }
330 return count;
331 }
332
333 static ssize_t store_up_threshold(struct dbs_data *dbs_data, const char *buf,
334 size_t count)
335 {
336 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
337 unsigned int input;
338 int ret;
339 ret = sscanf(buf, "%u", &input);
340
341 if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
342 input < MIN_FREQUENCY_UP_THRESHOLD) {
343 return -EINVAL;
344 }
345
346 od_tuners->up_threshold = input;
347 return count;
348 }
349
350 static ssize_t store_sampling_down_factor(struct dbs_data *dbs_data,
351 const char *buf, size_t count)
352 {
353 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
354 unsigned int input, j;
355 int ret;
356 ret = sscanf(buf, "%u", &input);
357
358 if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
359 return -EINVAL;
360 od_tuners->sampling_down_factor = input;
361
362 /* Reset down sampling multiplier in case it was active */
363 for_each_online_cpu(j) {
364 struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
365 j);
366 dbs_info->rate_mult = 1;
367 }
368 return count;
369 }
370
371 static ssize_t store_ignore_nice_load(struct dbs_data *dbs_data,
372 const char *buf, size_t count)
373 {
374 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
375 unsigned int input;
376 int ret;
377
378 unsigned int j;
379
380 ret = sscanf(buf, "%u", &input);
381 if (ret != 1)
382 return -EINVAL;
383
384 if (input > 1)
385 input = 1;
386
387 if (input == od_tuners->ignore_nice_load) { /* nothing to do */
388 return count;
389 }
390 od_tuners->ignore_nice_load = input;
391
392 /* we need to re-evaluate prev_cpu_idle */
393 for_each_online_cpu(j) {
394 struct od_cpu_dbs_info_s *dbs_info;
395 dbs_info = &per_cpu(od_cpu_dbs_info, j);
396 dbs_info->cdbs.prev_cpu_idle = get_cpu_idle_time(j,
397 &dbs_info->cdbs.prev_cpu_wall, od_tuners->io_is_busy);
398 if (od_tuners->ignore_nice_load)
399 dbs_info->cdbs.prev_cpu_nice =
400 kcpustat_cpu(j).cpustat[CPUTIME_NICE];
401
402 }
403 return count;
404 }
405
406 static ssize_t store_powersave_bias(struct dbs_data *dbs_data, const char *buf,
407 size_t count)
408 {
409 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
410 unsigned int input;
411 int ret;
412 ret = sscanf(buf, "%u", &input);
413
414 if (ret != 1)
415 return -EINVAL;
416
417 if (input > 1000)
418 input = 1000;
419
420 od_tuners->powersave_bias = input;
421 ondemand_powersave_bias_init();
422 return count;
423 }
424
425 show_store_one(od, sampling_rate);
426 show_store_one(od, io_is_busy);
427 show_store_one(od, up_threshold);
428 show_store_one(od, sampling_down_factor);
429 show_store_one(od, ignore_nice_load);
430 show_store_one(od, powersave_bias);
431 declare_show_sampling_rate_min(od);
432
433 gov_sys_pol_attr_rw(sampling_rate);
434 gov_sys_pol_attr_rw(io_is_busy);
435 gov_sys_pol_attr_rw(up_threshold);
436 gov_sys_pol_attr_rw(sampling_down_factor);
437 gov_sys_pol_attr_rw(ignore_nice_load);
438 gov_sys_pol_attr_rw(powersave_bias);
439 gov_sys_pol_attr_ro(sampling_rate_min);
440
441 static struct attribute *dbs_attributes_gov_sys[] = {
442 &sampling_rate_min_gov_sys.attr,
443 &sampling_rate_gov_sys.attr,
444 &up_threshold_gov_sys.attr,
445 &sampling_down_factor_gov_sys.attr,
446 &ignore_nice_load_gov_sys.attr,
447 &powersave_bias_gov_sys.attr,
448 &io_is_busy_gov_sys.attr,
449 NULL
450 };
451
452 static struct attribute_group od_attr_group_gov_sys = {
453 .attrs = dbs_attributes_gov_sys,
454 .name = "ondemand",
455 };
456
457 static struct attribute *dbs_attributes_gov_pol[] = {
458 &sampling_rate_min_gov_pol.attr,
459 &sampling_rate_gov_pol.attr,
460 &up_threshold_gov_pol.attr,
461 &sampling_down_factor_gov_pol.attr,
462 &ignore_nice_load_gov_pol.attr,
463 &powersave_bias_gov_pol.attr,
464 &io_is_busy_gov_pol.attr,
465 NULL
466 };
467
468 static struct attribute_group od_attr_group_gov_pol = {
469 .attrs = dbs_attributes_gov_pol,
470 .name = "ondemand",
471 };
472
473 /************************** sysfs end ************************/
474
475 static int od_init(struct dbs_data *dbs_data)
476 {
477 struct od_dbs_tuners *tuners;
478 u64 idle_time;
479 int cpu;
480
481 tuners = kzalloc(sizeof(*tuners), GFP_KERNEL);
482 if (!tuners) {
483 pr_err("%s: kzalloc failed\n", __func__);
484 return -ENOMEM;
485 }
486
487 cpu = get_cpu();
488 idle_time = get_cpu_idle_time_us(cpu, NULL);
489 put_cpu();
490 if (idle_time != -1ULL) {
491 /* Idle micro accounting is supported. Use finer thresholds */
492 tuners->up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
493 /*
494 * In nohz/micro accounting case we set the minimum frequency
495 * not depending on HZ, but fixed (very low). The deferred
496 * timer might skip some samples if idle/sleeping as needed.
497 */
498 dbs_data->min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE;
499 } else {
500 tuners->up_threshold = DEF_FREQUENCY_UP_THRESHOLD;
501
502 /* For correct statistics, we need 10 ticks for each measure */
503 dbs_data->min_sampling_rate = MIN_SAMPLING_RATE_RATIO *
504 jiffies_to_usecs(10);
505 }
506
507 tuners->sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR;
508 tuners->ignore_nice_load = 0;
509 tuners->powersave_bias = default_powersave_bias;
510 tuners->io_is_busy = should_io_be_busy();
511
512 dbs_data->tuners = tuners;
513 mutex_init(&dbs_data->mutex);
514 return 0;
515 }
516
517 static void od_exit(struct dbs_data *dbs_data)
518 {
519 kfree(dbs_data->tuners);
520 }
521
522 define_get_cpu_dbs_routines(od_cpu_dbs_info);
523
524 static struct od_ops od_ops = {
525 .powersave_bias_init_cpu = ondemand_powersave_bias_init_cpu,
526 .powersave_bias_target = generic_powersave_bias_target,
527 .freq_increase = dbs_freq_increase,
528 };
529
530 static struct common_dbs_data od_dbs_cdata = {
531 .governor = GOV_ONDEMAND,
532 .attr_group_gov_sys = &od_attr_group_gov_sys,
533 .attr_group_gov_pol = &od_attr_group_gov_pol,
534 .get_cpu_cdbs = get_cpu_cdbs,
535 .get_cpu_dbs_info_s = get_cpu_dbs_info_s,
536 .gov_dbs_timer = od_dbs_timer,
537 .gov_check_cpu = od_check_cpu,
538 .gov_ops = &od_ops,
539 .init = od_init,
540 .exit = od_exit,
541 };
542
543 static void od_set_powersave_bias(unsigned int powersave_bias)
544 {
545 struct cpufreq_policy *policy;
546 struct dbs_data *dbs_data;
547 struct od_dbs_tuners *od_tuners;
548 unsigned int cpu;
549 cpumask_t done;
550
551 default_powersave_bias = powersave_bias;
552 cpumask_clear(&done);
553
554 get_online_cpus();
555 for_each_online_cpu(cpu) {
556 if (cpumask_test_cpu(cpu, &done))
557 continue;
558
559 policy = per_cpu(od_cpu_dbs_info, cpu).cdbs.cur_policy;
560 if (!policy)
561 continue;
562
563 cpumask_or(&done, &done, policy->cpus);
564
565 if (policy->governor != &cpufreq_gov_ondemand)
566 continue;
567
568 dbs_data = policy->governor_data;
569 od_tuners = dbs_data->tuners;
570 od_tuners->powersave_bias = default_powersave_bias;
571 }
572 put_online_cpus();
573 }
574
575 void od_register_powersave_bias_handler(unsigned int (*f)
576 (struct cpufreq_policy *, unsigned int, unsigned int),
577 unsigned int powersave_bias)
578 {
579 od_ops.powersave_bias_target = f;
580 od_set_powersave_bias(powersave_bias);
581 }
582 EXPORT_SYMBOL_GPL(od_register_powersave_bias_handler);
583
584 void od_unregister_powersave_bias_handler(void)
585 {
586 od_ops.powersave_bias_target = generic_powersave_bias_target;
587 od_set_powersave_bias(0);
588 }
589 EXPORT_SYMBOL_GPL(od_unregister_powersave_bias_handler);
590
591 static int od_cpufreq_governor_dbs(struct cpufreq_policy *policy,
592 unsigned int event)
593 {
594 return cpufreq_governor_dbs(policy, &od_dbs_cdata, event);
595 }
596
597 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
598 static
599 #endif
600 struct cpufreq_governor cpufreq_gov_ondemand = {
601 .name = "ondemand",
602 .governor = od_cpufreq_governor_dbs,
603 .max_transition_latency = TRANSITION_LATENCY_LIMIT,
604 .owner = THIS_MODULE,
605 };
606
607 static int __init cpufreq_gov_dbs_init(void)
608 {
609 return cpufreq_register_governor(&cpufreq_gov_ondemand);
610 }
611
612 static void __exit cpufreq_gov_dbs_exit(void)
613 {
614 cpufreq_unregister_governor(&cpufreq_gov_ondemand);
615 }
616
617 MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
618 MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
619 MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
620 "Low Latency Frequency Transition capable processors");
621 MODULE_LICENSE("GPL");
622
623 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
624 fs_initcall(cpufreq_gov_dbs_init);
625 #else
626 module_init(cpufreq_gov_dbs_init);
627 #endif
628 module_exit(cpufreq_gov_dbs_exit);