]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/cpufreq/cpufreq_ondemand.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mszeredi...
[mirror_ubuntu-artful-kernel.git] / drivers / cpufreq / cpufreq_ondemand.c
1 /*
2 * drivers/cpufreq/cpufreq_ondemand.c
3 *
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/cpu.h>
16 #include <linux/percpu-defs.h>
17 #include <linux/slab.h>
18 #include <linux/tick.h>
19 #include <linux/sched/cpufreq.h>
20
21 #include "cpufreq_ondemand.h"
22
23 /* On-demand governor macros */
24 #define DEF_FREQUENCY_UP_THRESHOLD (80)
25 #define DEF_SAMPLING_DOWN_FACTOR (1)
26 #define MAX_SAMPLING_DOWN_FACTOR (100000)
27 #define MICRO_FREQUENCY_UP_THRESHOLD (95)
28 #define MICRO_FREQUENCY_MIN_SAMPLE_RATE (10000)
29 #define MIN_FREQUENCY_UP_THRESHOLD (1)
30 #define MAX_FREQUENCY_UP_THRESHOLD (100)
31
32 static struct od_ops od_ops;
33
34 static unsigned int default_powersave_bias;
35
36 /*
37 * Not all CPUs want IO time to be accounted as busy; this depends on how
38 * efficient idling at a higher frequency/voltage is.
39 * Pavel Machek says this is not so for various generations of AMD and old
40 * Intel systems.
41 * Mike Chan (android.com) claims this is also not true for ARM.
42 * Because of this, whitelist specific known (series) of CPUs by default, and
43 * leave all others up to the user.
44 */
45 static int should_io_be_busy(void)
46 {
47 #if defined(CONFIG_X86)
48 /*
49 * For Intel, Core 2 (model 15) and later have an efficient idle.
50 */
51 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
52 boot_cpu_data.x86 == 6 &&
53 boot_cpu_data.x86_model >= 15)
54 return 1;
55 #endif
56 return 0;
57 }
58
59 /*
60 * Find right freq to be set now with powersave_bias on.
61 * Returns the freq_hi to be used right now and will set freq_hi_delay_us,
62 * freq_lo, and freq_lo_delay_us in percpu area for averaging freqs.
63 */
64 static unsigned int generic_powersave_bias_target(struct cpufreq_policy *policy,
65 unsigned int freq_next, unsigned int relation)
66 {
67 unsigned int freq_req, freq_reduc, freq_avg;
68 unsigned int freq_hi, freq_lo;
69 unsigned int index;
70 unsigned int delay_hi_us;
71 struct policy_dbs_info *policy_dbs = policy->governor_data;
72 struct od_policy_dbs_info *dbs_info = to_dbs_info(policy_dbs);
73 struct dbs_data *dbs_data = policy_dbs->dbs_data;
74 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
75 struct cpufreq_frequency_table *freq_table = policy->freq_table;
76
77 if (!freq_table) {
78 dbs_info->freq_lo = 0;
79 dbs_info->freq_lo_delay_us = 0;
80 return freq_next;
81 }
82
83 index = cpufreq_frequency_table_target(policy, freq_next, relation);
84 freq_req = freq_table[index].frequency;
85 freq_reduc = freq_req * od_tuners->powersave_bias / 1000;
86 freq_avg = freq_req - freq_reduc;
87
88 /* Find freq bounds for freq_avg in freq_table */
89 index = cpufreq_table_find_index_h(policy, freq_avg);
90 freq_lo = freq_table[index].frequency;
91 index = cpufreq_table_find_index_l(policy, freq_avg);
92 freq_hi = freq_table[index].frequency;
93
94 /* Find out how long we have to be in hi and lo freqs */
95 if (freq_hi == freq_lo) {
96 dbs_info->freq_lo = 0;
97 dbs_info->freq_lo_delay_us = 0;
98 return freq_lo;
99 }
100 delay_hi_us = (freq_avg - freq_lo) * dbs_data->sampling_rate;
101 delay_hi_us += (freq_hi - freq_lo) / 2;
102 delay_hi_us /= freq_hi - freq_lo;
103 dbs_info->freq_hi_delay_us = delay_hi_us;
104 dbs_info->freq_lo = freq_lo;
105 dbs_info->freq_lo_delay_us = dbs_data->sampling_rate - delay_hi_us;
106 return freq_hi;
107 }
108
109 static void ondemand_powersave_bias_init(struct cpufreq_policy *policy)
110 {
111 struct od_policy_dbs_info *dbs_info = to_dbs_info(policy->governor_data);
112
113 dbs_info->freq_lo = 0;
114 }
115
116 static void dbs_freq_increase(struct cpufreq_policy *policy, unsigned int freq)
117 {
118 struct policy_dbs_info *policy_dbs = policy->governor_data;
119 struct dbs_data *dbs_data = policy_dbs->dbs_data;
120 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
121
122 if (od_tuners->powersave_bias)
123 freq = od_ops.powersave_bias_target(policy, freq,
124 CPUFREQ_RELATION_H);
125 else if (policy->cur == policy->max)
126 return;
127
128 __cpufreq_driver_target(policy, freq, od_tuners->powersave_bias ?
129 CPUFREQ_RELATION_L : CPUFREQ_RELATION_H);
130 }
131
132 /*
133 * Every sampling_rate, we check, if current idle time is less than 20%
134 * (default), then we try to increase frequency. Else, we adjust the frequency
135 * proportional to load.
136 */
137 static void od_update(struct cpufreq_policy *policy)
138 {
139 struct policy_dbs_info *policy_dbs = policy->governor_data;
140 struct od_policy_dbs_info *dbs_info = to_dbs_info(policy_dbs);
141 struct dbs_data *dbs_data = policy_dbs->dbs_data;
142 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
143 unsigned int load = dbs_update(policy);
144
145 dbs_info->freq_lo = 0;
146
147 /* Check for frequency increase */
148 if (load > dbs_data->up_threshold) {
149 /* If switching to max speed, apply sampling_down_factor */
150 if (policy->cur < policy->max)
151 policy_dbs->rate_mult = dbs_data->sampling_down_factor;
152 dbs_freq_increase(policy, policy->max);
153 } else {
154 /* Calculate the next frequency proportional to load */
155 unsigned int freq_next, min_f, max_f;
156
157 min_f = policy->cpuinfo.min_freq;
158 max_f = policy->cpuinfo.max_freq;
159 freq_next = min_f + load * (max_f - min_f) / 100;
160
161 /* No longer fully busy, reset rate_mult */
162 policy_dbs->rate_mult = 1;
163
164 if (od_tuners->powersave_bias)
165 freq_next = od_ops.powersave_bias_target(policy,
166 freq_next,
167 CPUFREQ_RELATION_L);
168
169 __cpufreq_driver_target(policy, freq_next, CPUFREQ_RELATION_C);
170 }
171 }
172
173 static unsigned int od_dbs_update(struct cpufreq_policy *policy)
174 {
175 struct policy_dbs_info *policy_dbs = policy->governor_data;
176 struct dbs_data *dbs_data = policy_dbs->dbs_data;
177 struct od_policy_dbs_info *dbs_info = to_dbs_info(policy_dbs);
178 int sample_type = dbs_info->sample_type;
179
180 /* Common NORMAL_SAMPLE setup */
181 dbs_info->sample_type = OD_NORMAL_SAMPLE;
182 /*
183 * OD_SUB_SAMPLE doesn't make sense if sample_delay_ns is 0, so ignore
184 * it then.
185 */
186 if (sample_type == OD_SUB_SAMPLE && policy_dbs->sample_delay_ns > 0) {
187 __cpufreq_driver_target(policy, dbs_info->freq_lo,
188 CPUFREQ_RELATION_H);
189 return dbs_info->freq_lo_delay_us;
190 }
191
192 od_update(policy);
193
194 if (dbs_info->freq_lo) {
195 /* Setup SUB_SAMPLE */
196 dbs_info->sample_type = OD_SUB_SAMPLE;
197 return dbs_info->freq_hi_delay_us;
198 }
199
200 return dbs_data->sampling_rate * policy_dbs->rate_mult;
201 }
202
203 /************************** sysfs interface ************************/
204 static struct dbs_governor od_dbs_gov;
205
206 static ssize_t store_io_is_busy(struct gov_attr_set *attr_set, const char *buf,
207 size_t count)
208 {
209 struct dbs_data *dbs_data = to_dbs_data(attr_set);
210 unsigned int input;
211 int ret;
212
213 ret = sscanf(buf, "%u", &input);
214 if (ret != 1)
215 return -EINVAL;
216 dbs_data->io_is_busy = !!input;
217
218 /* we need to re-evaluate prev_cpu_idle */
219 gov_update_cpu_data(dbs_data);
220
221 return count;
222 }
223
224 static ssize_t store_up_threshold(struct gov_attr_set *attr_set,
225 const char *buf, size_t count)
226 {
227 struct dbs_data *dbs_data = to_dbs_data(attr_set);
228 unsigned int input;
229 int ret;
230 ret = sscanf(buf, "%u", &input);
231
232 if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
233 input < MIN_FREQUENCY_UP_THRESHOLD) {
234 return -EINVAL;
235 }
236
237 dbs_data->up_threshold = input;
238 return count;
239 }
240
241 static ssize_t store_sampling_down_factor(struct gov_attr_set *attr_set,
242 const char *buf, size_t count)
243 {
244 struct dbs_data *dbs_data = to_dbs_data(attr_set);
245 struct policy_dbs_info *policy_dbs;
246 unsigned int input;
247 int ret;
248 ret = sscanf(buf, "%u", &input);
249
250 if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
251 return -EINVAL;
252
253 dbs_data->sampling_down_factor = input;
254
255 /* Reset down sampling multiplier in case it was active */
256 list_for_each_entry(policy_dbs, &attr_set->policy_list, list) {
257 /*
258 * Doing this without locking might lead to using different
259 * rate_mult values in od_update() and od_dbs_update().
260 */
261 mutex_lock(&policy_dbs->update_mutex);
262 policy_dbs->rate_mult = 1;
263 mutex_unlock(&policy_dbs->update_mutex);
264 }
265
266 return count;
267 }
268
269 static ssize_t store_ignore_nice_load(struct gov_attr_set *attr_set,
270 const char *buf, size_t count)
271 {
272 struct dbs_data *dbs_data = to_dbs_data(attr_set);
273 unsigned int input;
274 int ret;
275
276 ret = sscanf(buf, "%u", &input);
277 if (ret != 1)
278 return -EINVAL;
279
280 if (input > 1)
281 input = 1;
282
283 if (input == dbs_data->ignore_nice_load) { /* nothing to do */
284 return count;
285 }
286 dbs_data->ignore_nice_load = input;
287
288 /* we need to re-evaluate prev_cpu_idle */
289 gov_update_cpu_data(dbs_data);
290
291 return count;
292 }
293
294 static ssize_t store_powersave_bias(struct gov_attr_set *attr_set,
295 const char *buf, size_t count)
296 {
297 struct dbs_data *dbs_data = to_dbs_data(attr_set);
298 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
299 struct policy_dbs_info *policy_dbs;
300 unsigned int input;
301 int ret;
302 ret = sscanf(buf, "%u", &input);
303
304 if (ret != 1)
305 return -EINVAL;
306
307 if (input > 1000)
308 input = 1000;
309
310 od_tuners->powersave_bias = input;
311
312 list_for_each_entry(policy_dbs, &attr_set->policy_list, list)
313 ondemand_powersave_bias_init(policy_dbs->policy);
314
315 return count;
316 }
317
318 gov_show_one_common(sampling_rate);
319 gov_show_one_common(up_threshold);
320 gov_show_one_common(sampling_down_factor);
321 gov_show_one_common(ignore_nice_load);
322 gov_show_one_common(min_sampling_rate);
323 gov_show_one_common(io_is_busy);
324 gov_show_one(od, powersave_bias);
325
326 gov_attr_rw(sampling_rate);
327 gov_attr_rw(io_is_busy);
328 gov_attr_rw(up_threshold);
329 gov_attr_rw(sampling_down_factor);
330 gov_attr_rw(ignore_nice_load);
331 gov_attr_rw(powersave_bias);
332 gov_attr_ro(min_sampling_rate);
333
334 static struct attribute *od_attributes[] = {
335 &min_sampling_rate.attr,
336 &sampling_rate.attr,
337 &up_threshold.attr,
338 &sampling_down_factor.attr,
339 &ignore_nice_load.attr,
340 &powersave_bias.attr,
341 &io_is_busy.attr,
342 NULL
343 };
344
345 /************************** sysfs end ************************/
346
347 static struct policy_dbs_info *od_alloc(void)
348 {
349 struct od_policy_dbs_info *dbs_info;
350
351 dbs_info = kzalloc(sizeof(*dbs_info), GFP_KERNEL);
352 return dbs_info ? &dbs_info->policy_dbs : NULL;
353 }
354
355 static void od_free(struct policy_dbs_info *policy_dbs)
356 {
357 kfree(to_dbs_info(policy_dbs));
358 }
359
360 static int od_init(struct dbs_data *dbs_data)
361 {
362 struct od_dbs_tuners *tuners;
363 u64 idle_time;
364 int cpu;
365
366 tuners = kzalloc(sizeof(*tuners), GFP_KERNEL);
367 if (!tuners)
368 return -ENOMEM;
369
370 cpu = get_cpu();
371 idle_time = get_cpu_idle_time_us(cpu, NULL);
372 put_cpu();
373 if (idle_time != -1ULL) {
374 /* Idle micro accounting is supported. Use finer thresholds */
375 dbs_data->up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
376 /*
377 * In nohz/micro accounting case we set the minimum frequency
378 * not depending on HZ, but fixed (very low).
379 */
380 dbs_data->min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE;
381 } else {
382 dbs_data->up_threshold = DEF_FREQUENCY_UP_THRESHOLD;
383
384 /* For correct statistics, we need 10 ticks for each measure */
385 dbs_data->min_sampling_rate = MIN_SAMPLING_RATE_RATIO *
386 jiffies_to_usecs(10);
387 }
388
389 dbs_data->sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR;
390 dbs_data->ignore_nice_load = 0;
391 tuners->powersave_bias = default_powersave_bias;
392 dbs_data->io_is_busy = should_io_be_busy();
393
394 dbs_data->tuners = tuners;
395 return 0;
396 }
397
398 static void od_exit(struct dbs_data *dbs_data)
399 {
400 kfree(dbs_data->tuners);
401 }
402
403 static void od_start(struct cpufreq_policy *policy)
404 {
405 struct od_policy_dbs_info *dbs_info = to_dbs_info(policy->governor_data);
406
407 dbs_info->sample_type = OD_NORMAL_SAMPLE;
408 ondemand_powersave_bias_init(policy);
409 }
410
411 static struct od_ops od_ops = {
412 .powersave_bias_target = generic_powersave_bias_target,
413 };
414
415 static struct dbs_governor od_dbs_gov = {
416 .gov = CPUFREQ_DBS_GOVERNOR_INITIALIZER("ondemand"),
417 .kobj_type = { .default_attrs = od_attributes },
418 .gov_dbs_update = od_dbs_update,
419 .alloc = od_alloc,
420 .free = od_free,
421 .init = od_init,
422 .exit = od_exit,
423 .start = od_start,
424 };
425
426 #define CPU_FREQ_GOV_ONDEMAND (&od_dbs_gov.gov)
427
428 static void od_set_powersave_bias(unsigned int powersave_bias)
429 {
430 unsigned int cpu;
431 cpumask_t done;
432
433 default_powersave_bias = powersave_bias;
434 cpumask_clear(&done);
435
436 get_online_cpus();
437 for_each_online_cpu(cpu) {
438 struct cpufreq_policy *policy;
439 struct policy_dbs_info *policy_dbs;
440 struct dbs_data *dbs_data;
441 struct od_dbs_tuners *od_tuners;
442
443 if (cpumask_test_cpu(cpu, &done))
444 continue;
445
446 policy = cpufreq_cpu_get_raw(cpu);
447 if (!policy || policy->governor != CPU_FREQ_GOV_ONDEMAND)
448 continue;
449
450 policy_dbs = policy->governor_data;
451 if (!policy_dbs)
452 continue;
453
454 cpumask_or(&done, &done, policy->cpus);
455
456 dbs_data = policy_dbs->dbs_data;
457 od_tuners = dbs_data->tuners;
458 od_tuners->powersave_bias = default_powersave_bias;
459 }
460 put_online_cpus();
461 }
462
463 void od_register_powersave_bias_handler(unsigned int (*f)
464 (struct cpufreq_policy *, unsigned int, unsigned int),
465 unsigned int powersave_bias)
466 {
467 od_ops.powersave_bias_target = f;
468 od_set_powersave_bias(powersave_bias);
469 }
470 EXPORT_SYMBOL_GPL(od_register_powersave_bias_handler);
471
472 void od_unregister_powersave_bias_handler(void)
473 {
474 od_ops.powersave_bias_target = generic_powersave_bias_target;
475 od_set_powersave_bias(0);
476 }
477 EXPORT_SYMBOL_GPL(od_unregister_powersave_bias_handler);
478
479 static int __init cpufreq_gov_dbs_init(void)
480 {
481 return cpufreq_register_governor(CPU_FREQ_GOV_ONDEMAND);
482 }
483
484 static void __exit cpufreq_gov_dbs_exit(void)
485 {
486 cpufreq_unregister_governor(CPU_FREQ_GOV_ONDEMAND);
487 }
488
489 MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
490 MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
491 MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
492 "Low Latency Frequency Transition capable processors");
493 MODULE_LICENSE("GPL");
494
495 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
496 struct cpufreq_governor *cpufreq_default_governor(void)
497 {
498 return CPU_FREQ_GOV_ONDEMAND;
499 }
500
501 fs_initcall(cpufreq_gov_dbs_init);
502 #else
503 module_init(cpufreq_gov_dbs_init);
504 #endif
505 module_exit(cpufreq_gov_dbs_exit);