]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/cpufreq/cpufreq_ondemand.c
Merge tag 'v4.10-rc1' into docs-next
[mirror_ubuntu-zesty-kernel.git] / drivers / cpufreq / cpufreq_ondemand.c
1 /*
2 * drivers/cpufreq/cpufreq_ondemand.c
3 *
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/cpu.h>
16 #include <linux/percpu-defs.h>
17 #include <linux/slab.h>
18 #include <linux/tick.h>
19
20 #include "cpufreq_ondemand.h"
21
22 /* On-demand governor macros */
23 #define DEF_FREQUENCY_UP_THRESHOLD (80)
24 #define DEF_SAMPLING_DOWN_FACTOR (1)
25 #define MAX_SAMPLING_DOWN_FACTOR (100000)
26 #define MICRO_FREQUENCY_UP_THRESHOLD (95)
27 #define MICRO_FREQUENCY_MIN_SAMPLE_RATE (10000)
28 #define MIN_FREQUENCY_UP_THRESHOLD (1)
29 #define MAX_FREQUENCY_UP_THRESHOLD (100)
30
31 static struct od_ops od_ops;
32
33 static unsigned int default_powersave_bias;
34
35 /*
36 * Not all CPUs want IO time to be accounted as busy; this depends on how
37 * efficient idling at a higher frequency/voltage is.
38 * Pavel Machek says this is not so for various generations of AMD and old
39 * Intel systems.
40 * Mike Chan (android.com) claims this is also not true for ARM.
41 * Because of this, whitelist specific known (series) of CPUs by default, and
42 * leave all others up to the user.
43 */
44 static int should_io_be_busy(void)
45 {
46 #if defined(CONFIG_X86)
47 /*
48 * For Intel, Core 2 (model 15) and later have an efficient idle.
49 */
50 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
51 boot_cpu_data.x86 == 6 &&
52 boot_cpu_data.x86_model >= 15)
53 return 1;
54 #endif
55 return 0;
56 }
57
58 /*
59 * Find right freq to be set now with powersave_bias on.
60 * Returns the freq_hi to be used right now and will set freq_hi_delay_us,
61 * freq_lo, and freq_lo_delay_us in percpu area for averaging freqs.
62 */
63 static unsigned int generic_powersave_bias_target(struct cpufreq_policy *policy,
64 unsigned int freq_next, unsigned int relation)
65 {
66 unsigned int freq_req, freq_reduc, freq_avg;
67 unsigned int freq_hi, freq_lo;
68 unsigned int index;
69 unsigned int delay_hi_us;
70 struct policy_dbs_info *policy_dbs = policy->governor_data;
71 struct od_policy_dbs_info *dbs_info = to_dbs_info(policy_dbs);
72 struct dbs_data *dbs_data = policy_dbs->dbs_data;
73 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
74 struct cpufreq_frequency_table *freq_table = policy->freq_table;
75
76 if (!freq_table) {
77 dbs_info->freq_lo = 0;
78 dbs_info->freq_lo_delay_us = 0;
79 return freq_next;
80 }
81
82 index = cpufreq_frequency_table_target(policy, freq_next, relation);
83 freq_req = freq_table[index].frequency;
84 freq_reduc = freq_req * od_tuners->powersave_bias / 1000;
85 freq_avg = freq_req - freq_reduc;
86
87 /* Find freq bounds for freq_avg in freq_table */
88 index = cpufreq_table_find_index_h(policy, freq_avg);
89 freq_lo = freq_table[index].frequency;
90 index = cpufreq_table_find_index_l(policy, freq_avg);
91 freq_hi = freq_table[index].frequency;
92
93 /* Find out how long we have to be in hi and lo freqs */
94 if (freq_hi == freq_lo) {
95 dbs_info->freq_lo = 0;
96 dbs_info->freq_lo_delay_us = 0;
97 return freq_lo;
98 }
99 delay_hi_us = (freq_avg - freq_lo) * dbs_data->sampling_rate;
100 delay_hi_us += (freq_hi - freq_lo) / 2;
101 delay_hi_us /= freq_hi - freq_lo;
102 dbs_info->freq_hi_delay_us = delay_hi_us;
103 dbs_info->freq_lo = freq_lo;
104 dbs_info->freq_lo_delay_us = dbs_data->sampling_rate - delay_hi_us;
105 return freq_hi;
106 }
107
108 static void ondemand_powersave_bias_init(struct cpufreq_policy *policy)
109 {
110 struct od_policy_dbs_info *dbs_info = to_dbs_info(policy->governor_data);
111
112 dbs_info->freq_lo = 0;
113 }
114
115 static void dbs_freq_increase(struct cpufreq_policy *policy, unsigned int freq)
116 {
117 struct policy_dbs_info *policy_dbs = policy->governor_data;
118 struct dbs_data *dbs_data = policy_dbs->dbs_data;
119 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
120
121 if (od_tuners->powersave_bias)
122 freq = od_ops.powersave_bias_target(policy, freq,
123 CPUFREQ_RELATION_H);
124 else if (policy->cur == policy->max)
125 return;
126
127 __cpufreq_driver_target(policy, freq, od_tuners->powersave_bias ?
128 CPUFREQ_RELATION_L : CPUFREQ_RELATION_H);
129 }
130
131 /*
132 * Every sampling_rate, we check, if current idle time is less than 20%
133 * (default), then we try to increase frequency. Else, we adjust the frequency
134 * proportional to load.
135 */
136 static void od_update(struct cpufreq_policy *policy)
137 {
138 struct policy_dbs_info *policy_dbs = policy->governor_data;
139 struct od_policy_dbs_info *dbs_info = to_dbs_info(policy_dbs);
140 struct dbs_data *dbs_data = policy_dbs->dbs_data;
141 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
142 unsigned int load = dbs_update(policy);
143
144 dbs_info->freq_lo = 0;
145
146 /* Check for frequency increase */
147 if (load > dbs_data->up_threshold) {
148 /* If switching to max speed, apply sampling_down_factor */
149 if (policy->cur < policy->max)
150 policy_dbs->rate_mult = dbs_data->sampling_down_factor;
151 dbs_freq_increase(policy, policy->max);
152 } else {
153 /* Calculate the next frequency proportional to load */
154 unsigned int freq_next, min_f, max_f;
155
156 min_f = policy->cpuinfo.min_freq;
157 max_f = policy->cpuinfo.max_freq;
158 freq_next = min_f + load * (max_f - min_f) / 100;
159
160 /* No longer fully busy, reset rate_mult */
161 policy_dbs->rate_mult = 1;
162
163 if (od_tuners->powersave_bias)
164 freq_next = od_ops.powersave_bias_target(policy,
165 freq_next,
166 CPUFREQ_RELATION_L);
167
168 __cpufreq_driver_target(policy, freq_next, CPUFREQ_RELATION_C);
169 }
170 }
171
172 static unsigned int od_dbs_update(struct cpufreq_policy *policy)
173 {
174 struct policy_dbs_info *policy_dbs = policy->governor_data;
175 struct dbs_data *dbs_data = policy_dbs->dbs_data;
176 struct od_policy_dbs_info *dbs_info = to_dbs_info(policy_dbs);
177 int sample_type = dbs_info->sample_type;
178
179 /* Common NORMAL_SAMPLE setup */
180 dbs_info->sample_type = OD_NORMAL_SAMPLE;
181 /*
182 * OD_SUB_SAMPLE doesn't make sense if sample_delay_ns is 0, so ignore
183 * it then.
184 */
185 if (sample_type == OD_SUB_SAMPLE && policy_dbs->sample_delay_ns > 0) {
186 __cpufreq_driver_target(policy, dbs_info->freq_lo,
187 CPUFREQ_RELATION_H);
188 return dbs_info->freq_lo_delay_us;
189 }
190
191 od_update(policy);
192
193 if (dbs_info->freq_lo) {
194 /* Setup SUB_SAMPLE */
195 dbs_info->sample_type = OD_SUB_SAMPLE;
196 return dbs_info->freq_hi_delay_us;
197 }
198
199 return dbs_data->sampling_rate * policy_dbs->rate_mult;
200 }
201
202 /************************** sysfs interface ************************/
203 static struct dbs_governor od_dbs_gov;
204
205 static ssize_t store_io_is_busy(struct gov_attr_set *attr_set, const char *buf,
206 size_t count)
207 {
208 struct dbs_data *dbs_data = to_dbs_data(attr_set);
209 unsigned int input;
210 int ret;
211
212 ret = sscanf(buf, "%u", &input);
213 if (ret != 1)
214 return -EINVAL;
215 dbs_data->io_is_busy = !!input;
216
217 /* we need to re-evaluate prev_cpu_idle */
218 gov_update_cpu_data(dbs_data);
219
220 return count;
221 }
222
223 static ssize_t store_up_threshold(struct gov_attr_set *attr_set,
224 const char *buf, size_t count)
225 {
226 struct dbs_data *dbs_data = to_dbs_data(attr_set);
227 unsigned int input;
228 int ret;
229 ret = sscanf(buf, "%u", &input);
230
231 if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
232 input < MIN_FREQUENCY_UP_THRESHOLD) {
233 return -EINVAL;
234 }
235
236 dbs_data->up_threshold = input;
237 return count;
238 }
239
240 static ssize_t store_sampling_down_factor(struct gov_attr_set *attr_set,
241 const char *buf, size_t count)
242 {
243 struct dbs_data *dbs_data = to_dbs_data(attr_set);
244 struct policy_dbs_info *policy_dbs;
245 unsigned int input;
246 int ret;
247 ret = sscanf(buf, "%u", &input);
248
249 if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
250 return -EINVAL;
251
252 dbs_data->sampling_down_factor = input;
253
254 /* Reset down sampling multiplier in case it was active */
255 list_for_each_entry(policy_dbs, &attr_set->policy_list, list) {
256 /*
257 * Doing this without locking might lead to using different
258 * rate_mult values in od_update() and od_dbs_update().
259 */
260 mutex_lock(&policy_dbs->update_mutex);
261 policy_dbs->rate_mult = 1;
262 mutex_unlock(&policy_dbs->update_mutex);
263 }
264
265 return count;
266 }
267
268 static ssize_t store_ignore_nice_load(struct gov_attr_set *attr_set,
269 const char *buf, size_t count)
270 {
271 struct dbs_data *dbs_data = to_dbs_data(attr_set);
272 unsigned int input;
273 int ret;
274
275 ret = sscanf(buf, "%u", &input);
276 if (ret != 1)
277 return -EINVAL;
278
279 if (input > 1)
280 input = 1;
281
282 if (input == dbs_data->ignore_nice_load) { /* nothing to do */
283 return count;
284 }
285 dbs_data->ignore_nice_load = input;
286
287 /* we need to re-evaluate prev_cpu_idle */
288 gov_update_cpu_data(dbs_data);
289
290 return count;
291 }
292
293 static ssize_t store_powersave_bias(struct gov_attr_set *attr_set,
294 const char *buf, size_t count)
295 {
296 struct dbs_data *dbs_data = to_dbs_data(attr_set);
297 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
298 struct policy_dbs_info *policy_dbs;
299 unsigned int input;
300 int ret;
301 ret = sscanf(buf, "%u", &input);
302
303 if (ret != 1)
304 return -EINVAL;
305
306 if (input > 1000)
307 input = 1000;
308
309 od_tuners->powersave_bias = input;
310
311 list_for_each_entry(policy_dbs, &attr_set->policy_list, list)
312 ondemand_powersave_bias_init(policy_dbs->policy);
313
314 return count;
315 }
316
317 gov_show_one_common(sampling_rate);
318 gov_show_one_common(up_threshold);
319 gov_show_one_common(sampling_down_factor);
320 gov_show_one_common(ignore_nice_load);
321 gov_show_one_common(min_sampling_rate);
322 gov_show_one_common(io_is_busy);
323 gov_show_one(od, powersave_bias);
324
325 gov_attr_rw(sampling_rate);
326 gov_attr_rw(io_is_busy);
327 gov_attr_rw(up_threshold);
328 gov_attr_rw(sampling_down_factor);
329 gov_attr_rw(ignore_nice_load);
330 gov_attr_rw(powersave_bias);
331 gov_attr_ro(min_sampling_rate);
332
333 static struct attribute *od_attributes[] = {
334 &min_sampling_rate.attr,
335 &sampling_rate.attr,
336 &up_threshold.attr,
337 &sampling_down_factor.attr,
338 &ignore_nice_load.attr,
339 &powersave_bias.attr,
340 &io_is_busy.attr,
341 NULL
342 };
343
344 /************************** sysfs end ************************/
345
346 static struct policy_dbs_info *od_alloc(void)
347 {
348 struct od_policy_dbs_info *dbs_info;
349
350 dbs_info = kzalloc(sizeof(*dbs_info), GFP_KERNEL);
351 return dbs_info ? &dbs_info->policy_dbs : NULL;
352 }
353
354 static void od_free(struct policy_dbs_info *policy_dbs)
355 {
356 kfree(to_dbs_info(policy_dbs));
357 }
358
359 static int od_init(struct dbs_data *dbs_data)
360 {
361 struct od_dbs_tuners *tuners;
362 u64 idle_time;
363 int cpu;
364
365 tuners = kzalloc(sizeof(*tuners), GFP_KERNEL);
366 if (!tuners)
367 return -ENOMEM;
368
369 cpu = get_cpu();
370 idle_time = get_cpu_idle_time_us(cpu, NULL);
371 put_cpu();
372 if (idle_time != -1ULL) {
373 /* Idle micro accounting is supported. Use finer thresholds */
374 dbs_data->up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
375 /*
376 * In nohz/micro accounting case we set the minimum frequency
377 * not depending on HZ, but fixed (very low).
378 */
379 dbs_data->min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE;
380 } else {
381 dbs_data->up_threshold = DEF_FREQUENCY_UP_THRESHOLD;
382
383 /* For correct statistics, we need 10 ticks for each measure */
384 dbs_data->min_sampling_rate = MIN_SAMPLING_RATE_RATIO *
385 jiffies_to_usecs(10);
386 }
387
388 dbs_data->sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR;
389 dbs_data->ignore_nice_load = 0;
390 tuners->powersave_bias = default_powersave_bias;
391 dbs_data->io_is_busy = should_io_be_busy();
392
393 dbs_data->tuners = tuners;
394 return 0;
395 }
396
397 static void od_exit(struct dbs_data *dbs_data)
398 {
399 kfree(dbs_data->tuners);
400 }
401
402 static void od_start(struct cpufreq_policy *policy)
403 {
404 struct od_policy_dbs_info *dbs_info = to_dbs_info(policy->governor_data);
405
406 dbs_info->sample_type = OD_NORMAL_SAMPLE;
407 ondemand_powersave_bias_init(policy);
408 }
409
410 static struct od_ops od_ops = {
411 .powersave_bias_target = generic_powersave_bias_target,
412 };
413
414 static struct dbs_governor od_dbs_gov = {
415 .gov = CPUFREQ_DBS_GOVERNOR_INITIALIZER("ondemand"),
416 .kobj_type = { .default_attrs = od_attributes },
417 .gov_dbs_update = od_dbs_update,
418 .alloc = od_alloc,
419 .free = od_free,
420 .init = od_init,
421 .exit = od_exit,
422 .start = od_start,
423 };
424
425 #define CPU_FREQ_GOV_ONDEMAND (&od_dbs_gov.gov)
426
427 static void od_set_powersave_bias(unsigned int powersave_bias)
428 {
429 unsigned int cpu;
430 cpumask_t done;
431
432 default_powersave_bias = powersave_bias;
433 cpumask_clear(&done);
434
435 get_online_cpus();
436 for_each_online_cpu(cpu) {
437 struct cpufreq_policy *policy;
438 struct policy_dbs_info *policy_dbs;
439 struct dbs_data *dbs_data;
440 struct od_dbs_tuners *od_tuners;
441
442 if (cpumask_test_cpu(cpu, &done))
443 continue;
444
445 policy = cpufreq_cpu_get_raw(cpu);
446 if (!policy || policy->governor != CPU_FREQ_GOV_ONDEMAND)
447 continue;
448
449 policy_dbs = policy->governor_data;
450 if (!policy_dbs)
451 continue;
452
453 cpumask_or(&done, &done, policy->cpus);
454
455 dbs_data = policy_dbs->dbs_data;
456 od_tuners = dbs_data->tuners;
457 od_tuners->powersave_bias = default_powersave_bias;
458 }
459 put_online_cpus();
460 }
461
462 void od_register_powersave_bias_handler(unsigned int (*f)
463 (struct cpufreq_policy *, unsigned int, unsigned int),
464 unsigned int powersave_bias)
465 {
466 od_ops.powersave_bias_target = f;
467 od_set_powersave_bias(powersave_bias);
468 }
469 EXPORT_SYMBOL_GPL(od_register_powersave_bias_handler);
470
471 void od_unregister_powersave_bias_handler(void)
472 {
473 od_ops.powersave_bias_target = generic_powersave_bias_target;
474 od_set_powersave_bias(0);
475 }
476 EXPORT_SYMBOL_GPL(od_unregister_powersave_bias_handler);
477
478 static int __init cpufreq_gov_dbs_init(void)
479 {
480 return cpufreq_register_governor(CPU_FREQ_GOV_ONDEMAND);
481 }
482
483 static void __exit cpufreq_gov_dbs_exit(void)
484 {
485 cpufreq_unregister_governor(CPU_FREQ_GOV_ONDEMAND);
486 }
487
488 MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
489 MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
490 MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
491 "Low Latency Frequency Transition capable processors");
492 MODULE_LICENSE("GPL");
493
494 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
495 struct cpufreq_governor *cpufreq_default_governor(void)
496 {
497 return CPU_FREQ_GOV_ONDEMAND;
498 }
499
500 fs_initcall(cpufreq_gov_dbs_init);
501 #else
502 module_init(cpufreq_gov_dbs_init);
503 #endif
504 module_exit(cpufreq_gov_dbs_exit);