]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/cpufreq/imx6q-cpufreq.c
block: Introduce BLK_MQ_REQ_PREEMPT
[mirror_ubuntu-bionic-kernel.git] / drivers / cpufreq / imx6q-cpufreq.c
1 /*
2 * Copyright (C) 2013 Freescale Semiconductor, Inc.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 */
8
9 #include <linux/clk.h>
10 #include <linux/cpu.h>
11 #include <linux/cpufreq.h>
12 #include <linux/err.h>
13 #include <linux/module.h>
14 #include <linux/of.h>
15 #include <linux/pm_opp.h>
16 #include <linux/platform_device.h>
17 #include <linux/regulator/consumer.h>
18
19 #define PU_SOC_VOLTAGE_NORMAL 1250000
20 #define PU_SOC_VOLTAGE_HIGH 1275000
21 #define FREQ_1P2_GHZ 1200000000
22
23 static struct regulator *arm_reg;
24 static struct regulator *pu_reg;
25 static struct regulator *soc_reg;
26
27 static struct clk *arm_clk;
28 static struct clk *pll1_sys_clk;
29 static struct clk *pll1_sw_clk;
30 static struct clk *step_clk;
31 static struct clk *pll2_pfd2_396m_clk;
32
33 /* clk used by i.MX6UL */
34 static struct clk *pll2_bus_clk;
35 static struct clk *secondary_sel_clk;
36
37 static struct device *cpu_dev;
38 static bool free_opp;
39 static struct cpufreq_frequency_table *freq_table;
40 static unsigned int transition_latency;
41
42 static u32 *imx6_soc_volt;
43 static u32 soc_opp_count;
44
45 static int imx6q_set_target(struct cpufreq_policy *policy, unsigned int index)
46 {
47 struct dev_pm_opp *opp;
48 unsigned long freq_hz, volt, volt_old;
49 unsigned int old_freq, new_freq;
50 bool pll1_sys_temp_enabled = false;
51 int ret;
52
53 new_freq = freq_table[index].frequency;
54 freq_hz = new_freq * 1000;
55 old_freq = clk_get_rate(arm_clk) / 1000;
56
57 opp = dev_pm_opp_find_freq_ceil(cpu_dev, &freq_hz);
58 if (IS_ERR(opp)) {
59 dev_err(cpu_dev, "failed to find OPP for %ld\n", freq_hz);
60 return PTR_ERR(opp);
61 }
62
63 volt = dev_pm_opp_get_voltage(opp);
64 dev_pm_opp_put(opp);
65
66 volt_old = regulator_get_voltage(arm_reg);
67
68 dev_dbg(cpu_dev, "%u MHz, %ld mV --> %u MHz, %ld mV\n",
69 old_freq / 1000, volt_old / 1000,
70 new_freq / 1000, volt / 1000);
71
72 /* scaling up? scale voltage before frequency */
73 if (new_freq > old_freq) {
74 if (!IS_ERR(pu_reg)) {
75 ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0);
76 if (ret) {
77 dev_err(cpu_dev, "failed to scale vddpu up: %d\n", ret);
78 return ret;
79 }
80 }
81 ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0);
82 if (ret) {
83 dev_err(cpu_dev, "failed to scale vddsoc up: %d\n", ret);
84 return ret;
85 }
86 ret = regulator_set_voltage_tol(arm_reg, volt, 0);
87 if (ret) {
88 dev_err(cpu_dev,
89 "failed to scale vddarm up: %d\n", ret);
90 return ret;
91 }
92 }
93
94 /*
95 * The setpoints are selected per PLL/PDF frequencies, so we need to
96 * reprogram PLL for frequency scaling. The procedure of reprogramming
97 * PLL1 is as below.
98 * For i.MX6UL, it has a secondary clk mux, the cpu frequency change
99 * flow is slightly different from other i.MX6 OSC.
100 * The cpu frequeny change flow for i.MX6(except i.MX6UL) is as below:
101 * - Enable pll2_pfd2_396m_clk and reparent pll1_sw_clk to it
102 * - Reprogram pll1_sys_clk and reparent pll1_sw_clk back to it
103 * - Disable pll2_pfd2_396m_clk
104 */
105 if (of_machine_is_compatible("fsl,imx6ul") ||
106 of_machine_is_compatible("fsl,imx6ull")) {
107 /*
108 * When changing pll1_sw_clk's parent to pll1_sys_clk,
109 * CPU may run at higher than 528MHz, this will lead to
110 * the system unstable if the voltage is lower than the
111 * voltage of 528MHz, so lower the CPU frequency to one
112 * half before changing CPU frequency.
113 */
114 clk_set_rate(arm_clk, (old_freq >> 1) * 1000);
115 clk_set_parent(pll1_sw_clk, pll1_sys_clk);
116 if (freq_hz > clk_get_rate(pll2_pfd2_396m_clk))
117 clk_set_parent(secondary_sel_clk, pll2_bus_clk);
118 else
119 clk_set_parent(secondary_sel_clk, pll2_pfd2_396m_clk);
120 clk_set_parent(step_clk, secondary_sel_clk);
121 clk_set_parent(pll1_sw_clk, step_clk);
122 } else {
123 clk_set_parent(step_clk, pll2_pfd2_396m_clk);
124 clk_set_parent(pll1_sw_clk, step_clk);
125 if (freq_hz > clk_get_rate(pll2_pfd2_396m_clk)) {
126 clk_set_rate(pll1_sys_clk, new_freq * 1000);
127 clk_set_parent(pll1_sw_clk, pll1_sys_clk);
128 } else {
129 /* pll1_sys needs to be enabled for divider rate change to work. */
130 pll1_sys_temp_enabled = true;
131 clk_prepare_enable(pll1_sys_clk);
132 }
133 }
134
135 /* Ensure the arm clock divider is what we expect */
136 ret = clk_set_rate(arm_clk, new_freq * 1000);
137 if (ret) {
138 dev_err(cpu_dev, "failed to set clock rate: %d\n", ret);
139 regulator_set_voltage_tol(arm_reg, volt_old, 0);
140 return ret;
141 }
142
143 /* PLL1 is only needed until after ARM-PODF is set. */
144 if (pll1_sys_temp_enabled)
145 clk_disable_unprepare(pll1_sys_clk);
146
147 /* scaling down? scale voltage after frequency */
148 if (new_freq < old_freq) {
149 ret = regulator_set_voltage_tol(arm_reg, volt, 0);
150 if (ret) {
151 dev_warn(cpu_dev,
152 "failed to scale vddarm down: %d\n", ret);
153 ret = 0;
154 }
155 ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0);
156 if (ret) {
157 dev_warn(cpu_dev, "failed to scale vddsoc down: %d\n", ret);
158 ret = 0;
159 }
160 if (!IS_ERR(pu_reg)) {
161 ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0);
162 if (ret) {
163 dev_warn(cpu_dev, "failed to scale vddpu down: %d\n", ret);
164 ret = 0;
165 }
166 }
167 }
168
169 return 0;
170 }
171
172 static int imx6q_cpufreq_init(struct cpufreq_policy *policy)
173 {
174 int ret;
175
176 policy->clk = arm_clk;
177 ret = cpufreq_generic_init(policy, freq_table, transition_latency);
178 policy->suspend_freq = policy->max;
179
180 return ret;
181 }
182
183 static struct cpufreq_driver imx6q_cpufreq_driver = {
184 .flags = CPUFREQ_NEED_INITIAL_FREQ_CHECK,
185 .verify = cpufreq_generic_frequency_table_verify,
186 .target_index = imx6q_set_target,
187 .get = cpufreq_generic_get,
188 .init = imx6q_cpufreq_init,
189 .name = "imx6q-cpufreq",
190 .attr = cpufreq_generic_attr,
191 .suspend = cpufreq_generic_suspend,
192 };
193
194 static int imx6q_cpufreq_probe(struct platform_device *pdev)
195 {
196 struct device_node *np;
197 struct dev_pm_opp *opp;
198 unsigned long min_volt, max_volt;
199 int num, ret;
200 const struct property *prop;
201 const __be32 *val;
202 u32 nr, i, j;
203
204 cpu_dev = get_cpu_device(0);
205 if (!cpu_dev) {
206 pr_err("failed to get cpu0 device\n");
207 return -ENODEV;
208 }
209
210 np = of_node_get(cpu_dev->of_node);
211 if (!np) {
212 dev_err(cpu_dev, "failed to find cpu0 node\n");
213 return -ENOENT;
214 }
215
216 arm_clk = clk_get(cpu_dev, "arm");
217 pll1_sys_clk = clk_get(cpu_dev, "pll1_sys");
218 pll1_sw_clk = clk_get(cpu_dev, "pll1_sw");
219 step_clk = clk_get(cpu_dev, "step");
220 pll2_pfd2_396m_clk = clk_get(cpu_dev, "pll2_pfd2_396m");
221 if (IS_ERR(arm_clk) || IS_ERR(pll1_sys_clk) || IS_ERR(pll1_sw_clk) ||
222 IS_ERR(step_clk) || IS_ERR(pll2_pfd2_396m_clk)) {
223 dev_err(cpu_dev, "failed to get clocks\n");
224 ret = -ENOENT;
225 goto put_clk;
226 }
227
228 if (of_machine_is_compatible("fsl,imx6ul") ||
229 of_machine_is_compatible("fsl,imx6ull")) {
230 pll2_bus_clk = clk_get(cpu_dev, "pll2_bus");
231 secondary_sel_clk = clk_get(cpu_dev, "secondary_sel");
232 if (IS_ERR(pll2_bus_clk) || IS_ERR(secondary_sel_clk)) {
233 dev_err(cpu_dev, "failed to get clocks specific to imx6ul\n");
234 ret = -ENOENT;
235 goto put_clk;
236 }
237 }
238
239 arm_reg = regulator_get(cpu_dev, "arm");
240 pu_reg = regulator_get_optional(cpu_dev, "pu");
241 soc_reg = regulator_get(cpu_dev, "soc");
242 if (PTR_ERR(arm_reg) == -EPROBE_DEFER ||
243 PTR_ERR(soc_reg) == -EPROBE_DEFER ||
244 PTR_ERR(pu_reg) == -EPROBE_DEFER) {
245 ret = -EPROBE_DEFER;
246 dev_dbg(cpu_dev, "regulators not ready, defer\n");
247 goto put_reg;
248 }
249 if (IS_ERR(arm_reg) || IS_ERR(soc_reg)) {
250 dev_err(cpu_dev, "failed to get regulators\n");
251 ret = -ENOENT;
252 goto put_reg;
253 }
254
255 /*
256 * We expect an OPP table supplied by platform.
257 * Just, incase the platform did not supply the OPP
258 * table, it will try to get it.
259 */
260 num = dev_pm_opp_get_opp_count(cpu_dev);
261 if (num < 0) {
262 ret = dev_pm_opp_of_add_table(cpu_dev);
263 if (ret < 0) {
264 dev_err(cpu_dev, "failed to init OPP table: %d\n", ret);
265 goto put_reg;
266 }
267
268 /* Because we have added the OPPs here, we must free them */
269 free_opp = true;
270
271 num = dev_pm_opp_get_opp_count(cpu_dev);
272 if (num < 0) {
273 ret = num;
274 dev_err(cpu_dev, "no OPP table is found: %d\n", ret);
275 goto out_free_opp;
276 }
277 }
278
279 ret = dev_pm_opp_init_cpufreq_table(cpu_dev, &freq_table);
280 if (ret) {
281 dev_err(cpu_dev, "failed to init cpufreq table: %d\n", ret);
282 goto out_free_opp;
283 }
284
285 /* Make imx6_soc_volt array's size same as arm opp number */
286 imx6_soc_volt = devm_kzalloc(cpu_dev, sizeof(*imx6_soc_volt) * num, GFP_KERNEL);
287 if (imx6_soc_volt == NULL) {
288 ret = -ENOMEM;
289 goto free_freq_table;
290 }
291
292 prop = of_find_property(np, "fsl,soc-operating-points", NULL);
293 if (!prop || !prop->value)
294 goto soc_opp_out;
295
296 /*
297 * Each OPP is a set of tuples consisting of frequency and
298 * voltage like <freq-kHz vol-uV>.
299 */
300 nr = prop->length / sizeof(u32);
301 if (nr % 2 || (nr / 2) < num)
302 goto soc_opp_out;
303
304 for (j = 0; j < num; j++) {
305 val = prop->value;
306 for (i = 0; i < nr / 2; i++) {
307 unsigned long freq = be32_to_cpup(val++);
308 unsigned long volt = be32_to_cpup(val++);
309 if (freq_table[j].frequency == freq) {
310 imx6_soc_volt[soc_opp_count++] = volt;
311 break;
312 }
313 }
314 }
315
316 soc_opp_out:
317 /* use fixed soc opp volt if no valid soc opp info found in dtb */
318 if (soc_opp_count != num) {
319 dev_warn(cpu_dev, "can NOT find valid fsl,soc-operating-points property in dtb, use default value!\n");
320 for (j = 0; j < num; j++)
321 imx6_soc_volt[j] = PU_SOC_VOLTAGE_NORMAL;
322 if (freq_table[num - 1].frequency * 1000 == FREQ_1P2_GHZ)
323 imx6_soc_volt[num - 1] = PU_SOC_VOLTAGE_HIGH;
324 }
325
326 if (of_property_read_u32(np, "clock-latency", &transition_latency))
327 transition_latency = CPUFREQ_ETERNAL;
328
329 /*
330 * Calculate the ramp time for max voltage change in the
331 * VDDSOC and VDDPU regulators.
332 */
333 ret = regulator_set_voltage_time(soc_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]);
334 if (ret > 0)
335 transition_latency += ret * 1000;
336 if (!IS_ERR(pu_reg)) {
337 ret = regulator_set_voltage_time(pu_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]);
338 if (ret > 0)
339 transition_latency += ret * 1000;
340 }
341
342 /*
343 * OPP is maintained in order of increasing frequency, and
344 * freq_table initialised from OPP is therefore sorted in the
345 * same order.
346 */
347 opp = dev_pm_opp_find_freq_exact(cpu_dev,
348 freq_table[0].frequency * 1000, true);
349 min_volt = dev_pm_opp_get_voltage(opp);
350 dev_pm_opp_put(opp);
351 opp = dev_pm_opp_find_freq_exact(cpu_dev,
352 freq_table[--num].frequency * 1000, true);
353 max_volt = dev_pm_opp_get_voltage(opp);
354 dev_pm_opp_put(opp);
355
356 ret = regulator_set_voltage_time(arm_reg, min_volt, max_volt);
357 if (ret > 0)
358 transition_latency += ret * 1000;
359
360 ret = cpufreq_register_driver(&imx6q_cpufreq_driver);
361 if (ret) {
362 dev_err(cpu_dev, "failed register driver: %d\n", ret);
363 goto free_freq_table;
364 }
365
366 of_node_put(np);
367 return 0;
368
369 free_freq_table:
370 dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
371 out_free_opp:
372 if (free_opp)
373 dev_pm_opp_of_remove_table(cpu_dev);
374 put_reg:
375 if (!IS_ERR(arm_reg))
376 regulator_put(arm_reg);
377 if (!IS_ERR(pu_reg))
378 regulator_put(pu_reg);
379 if (!IS_ERR(soc_reg))
380 regulator_put(soc_reg);
381 put_clk:
382 if (!IS_ERR(arm_clk))
383 clk_put(arm_clk);
384 if (!IS_ERR(pll1_sys_clk))
385 clk_put(pll1_sys_clk);
386 if (!IS_ERR(pll1_sw_clk))
387 clk_put(pll1_sw_clk);
388 if (!IS_ERR(step_clk))
389 clk_put(step_clk);
390 if (!IS_ERR(pll2_pfd2_396m_clk))
391 clk_put(pll2_pfd2_396m_clk);
392 if (!IS_ERR(pll2_bus_clk))
393 clk_put(pll2_bus_clk);
394 if (!IS_ERR(secondary_sel_clk))
395 clk_put(secondary_sel_clk);
396 of_node_put(np);
397 return ret;
398 }
399
400 static int imx6q_cpufreq_remove(struct platform_device *pdev)
401 {
402 cpufreq_unregister_driver(&imx6q_cpufreq_driver);
403 dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
404 if (free_opp)
405 dev_pm_opp_of_remove_table(cpu_dev);
406 regulator_put(arm_reg);
407 if (!IS_ERR(pu_reg))
408 regulator_put(pu_reg);
409 regulator_put(soc_reg);
410 clk_put(arm_clk);
411 clk_put(pll1_sys_clk);
412 clk_put(pll1_sw_clk);
413 clk_put(step_clk);
414 clk_put(pll2_pfd2_396m_clk);
415 clk_put(pll2_bus_clk);
416 clk_put(secondary_sel_clk);
417
418 return 0;
419 }
420
421 static struct platform_driver imx6q_cpufreq_platdrv = {
422 .driver = {
423 .name = "imx6q-cpufreq",
424 },
425 .probe = imx6q_cpufreq_probe,
426 .remove = imx6q_cpufreq_remove,
427 };
428 module_platform_driver(imx6q_cpufreq_platdrv);
429
430 MODULE_AUTHOR("Shawn Guo <shawn.guo@linaro.org>");
431 MODULE_DESCRIPTION("Freescale i.MX6Q cpufreq driver");
432 MODULE_LICENSE("GPL");