]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/cpufreq/imx6q-cpufreq.c
KVM: SVM: Move spec control call after restore of GS
[mirror_ubuntu-artful-kernel.git] / drivers / cpufreq / imx6q-cpufreq.c
1 /*
2 * Copyright (C) 2013 Freescale Semiconductor, Inc.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 */
8
9 #include <linux/clk.h>
10 #include <linux/cpu.h>
11 #include <linux/cpufreq.h>
12 #include <linux/err.h>
13 #include <linux/module.h>
14 #include <linux/of.h>
15 #include <linux/pm_opp.h>
16 #include <linux/platform_device.h>
17 #include <linux/regulator/consumer.h>
18
19 #define PU_SOC_VOLTAGE_NORMAL 1250000
20 #define PU_SOC_VOLTAGE_HIGH 1275000
21 #define FREQ_1P2_GHZ 1200000000
22
23 static struct regulator *arm_reg;
24 static struct regulator *pu_reg;
25 static struct regulator *soc_reg;
26
27 static struct clk *arm_clk;
28 static struct clk *pll1_sys_clk;
29 static struct clk *pll1_sw_clk;
30 static struct clk *step_clk;
31 static struct clk *pll2_pfd2_396m_clk;
32
33 /* clk used by i.MX6UL */
34 static struct clk *pll2_bus_clk;
35 static struct clk *secondary_sel_clk;
36
37 static struct device *cpu_dev;
38 static bool free_opp;
39 static struct cpufreq_frequency_table *freq_table;
40 static unsigned int transition_latency;
41
42 static u32 *imx6_soc_volt;
43 static u32 soc_opp_count;
44
45 static int imx6q_set_target(struct cpufreq_policy *policy, unsigned int index)
46 {
47 struct dev_pm_opp *opp;
48 unsigned long freq_hz, volt, volt_old;
49 unsigned int old_freq, new_freq;
50 int ret;
51
52 new_freq = freq_table[index].frequency;
53 freq_hz = new_freq * 1000;
54 old_freq = clk_get_rate(arm_clk) / 1000;
55
56 opp = dev_pm_opp_find_freq_ceil(cpu_dev, &freq_hz);
57 if (IS_ERR(opp)) {
58 dev_err(cpu_dev, "failed to find OPP for %ld\n", freq_hz);
59 return PTR_ERR(opp);
60 }
61
62 volt = dev_pm_opp_get_voltage(opp);
63 dev_pm_opp_put(opp);
64
65 volt_old = regulator_get_voltage(arm_reg);
66
67 dev_dbg(cpu_dev, "%u MHz, %ld mV --> %u MHz, %ld mV\n",
68 old_freq / 1000, volt_old / 1000,
69 new_freq / 1000, volt / 1000);
70
71 /* scaling up? scale voltage before frequency */
72 if (new_freq > old_freq) {
73 if (!IS_ERR(pu_reg)) {
74 ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0);
75 if (ret) {
76 dev_err(cpu_dev, "failed to scale vddpu up: %d\n", ret);
77 return ret;
78 }
79 }
80 ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0);
81 if (ret) {
82 dev_err(cpu_dev, "failed to scale vddsoc up: %d\n", ret);
83 return ret;
84 }
85 ret = regulator_set_voltage_tol(arm_reg, volt, 0);
86 if (ret) {
87 dev_err(cpu_dev,
88 "failed to scale vddarm up: %d\n", ret);
89 return ret;
90 }
91 }
92
93 /*
94 * The setpoints are selected per PLL/PDF frequencies, so we need to
95 * reprogram PLL for frequency scaling. The procedure of reprogramming
96 * PLL1 is as below.
97 * For i.MX6UL, it has a secondary clk mux, the cpu frequency change
98 * flow is slightly different from other i.MX6 OSC.
99 * The cpu frequeny change flow for i.MX6(except i.MX6UL) is as below:
100 * - Enable pll2_pfd2_396m_clk and reparent pll1_sw_clk to it
101 * - Reprogram pll1_sys_clk and reparent pll1_sw_clk back to it
102 * - Disable pll2_pfd2_396m_clk
103 */
104 if (of_machine_is_compatible("fsl,imx6ul") ||
105 of_machine_is_compatible("fsl,imx6ull")) {
106 /*
107 * When changing pll1_sw_clk's parent to pll1_sys_clk,
108 * CPU may run at higher than 528MHz, this will lead to
109 * the system unstable if the voltage is lower than the
110 * voltage of 528MHz, so lower the CPU frequency to one
111 * half before changing CPU frequency.
112 */
113 clk_set_rate(arm_clk, (old_freq >> 1) * 1000);
114 clk_set_parent(pll1_sw_clk, pll1_sys_clk);
115 if (freq_hz > clk_get_rate(pll2_pfd2_396m_clk))
116 clk_set_parent(secondary_sel_clk, pll2_bus_clk);
117 else
118 clk_set_parent(secondary_sel_clk, pll2_pfd2_396m_clk);
119 clk_set_parent(step_clk, secondary_sel_clk);
120 clk_set_parent(pll1_sw_clk, step_clk);
121 } else {
122 clk_set_parent(step_clk, pll2_pfd2_396m_clk);
123 clk_set_parent(pll1_sw_clk, step_clk);
124 if (freq_hz > clk_get_rate(pll2_pfd2_396m_clk)) {
125 clk_set_rate(pll1_sys_clk, new_freq * 1000);
126 clk_set_parent(pll1_sw_clk, pll1_sys_clk);
127 }
128 }
129
130 /* Ensure the arm clock divider is what we expect */
131 ret = clk_set_rate(arm_clk, new_freq * 1000);
132 if (ret) {
133 dev_err(cpu_dev, "failed to set clock rate: %d\n", ret);
134 regulator_set_voltage_tol(arm_reg, volt_old, 0);
135 return ret;
136 }
137
138 /* scaling down? scale voltage after frequency */
139 if (new_freq < old_freq) {
140 ret = regulator_set_voltage_tol(arm_reg, volt, 0);
141 if (ret) {
142 dev_warn(cpu_dev,
143 "failed to scale vddarm down: %d\n", ret);
144 ret = 0;
145 }
146 ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0);
147 if (ret) {
148 dev_warn(cpu_dev, "failed to scale vddsoc down: %d\n", ret);
149 ret = 0;
150 }
151 if (!IS_ERR(pu_reg)) {
152 ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0);
153 if (ret) {
154 dev_warn(cpu_dev, "failed to scale vddpu down: %d\n", ret);
155 ret = 0;
156 }
157 }
158 }
159
160 return 0;
161 }
162
163 static int imx6q_cpufreq_init(struct cpufreq_policy *policy)
164 {
165 int ret;
166
167 policy->clk = arm_clk;
168 ret = cpufreq_generic_init(policy, freq_table, transition_latency);
169 policy->suspend_freq = policy->max;
170
171 return ret;
172 }
173
174 static struct cpufreq_driver imx6q_cpufreq_driver = {
175 .flags = CPUFREQ_NEED_INITIAL_FREQ_CHECK,
176 .verify = cpufreq_generic_frequency_table_verify,
177 .target_index = imx6q_set_target,
178 .get = cpufreq_generic_get,
179 .init = imx6q_cpufreq_init,
180 .name = "imx6q-cpufreq",
181 .attr = cpufreq_generic_attr,
182 .suspend = cpufreq_generic_suspend,
183 };
184
185 static int imx6q_cpufreq_probe(struct platform_device *pdev)
186 {
187 struct device_node *np;
188 struct dev_pm_opp *opp;
189 unsigned long min_volt, max_volt;
190 int num, ret;
191 const struct property *prop;
192 const __be32 *val;
193 u32 nr, i, j;
194
195 cpu_dev = get_cpu_device(0);
196 if (!cpu_dev) {
197 pr_err("failed to get cpu0 device\n");
198 return -ENODEV;
199 }
200
201 np = of_node_get(cpu_dev->of_node);
202 if (!np) {
203 dev_err(cpu_dev, "failed to find cpu0 node\n");
204 return -ENOENT;
205 }
206
207 arm_clk = clk_get(cpu_dev, "arm");
208 pll1_sys_clk = clk_get(cpu_dev, "pll1_sys");
209 pll1_sw_clk = clk_get(cpu_dev, "pll1_sw");
210 step_clk = clk_get(cpu_dev, "step");
211 pll2_pfd2_396m_clk = clk_get(cpu_dev, "pll2_pfd2_396m");
212 if (IS_ERR(arm_clk) || IS_ERR(pll1_sys_clk) || IS_ERR(pll1_sw_clk) ||
213 IS_ERR(step_clk) || IS_ERR(pll2_pfd2_396m_clk)) {
214 dev_err(cpu_dev, "failed to get clocks\n");
215 ret = -ENOENT;
216 goto put_clk;
217 }
218
219 if (of_machine_is_compatible("fsl,imx6ul") ||
220 of_machine_is_compatible("fsl,imx6ull")) {
221 pll2_bus_clk = clk_get(cpu_dev, "pll2_bus");
222 secondary_sel_clk = clk_get(cpu_dev, "secondary_sel");
223 if (IS_ERR(pll2_bus_clk) || IS_ERR(secondary_sel_clk)) {
224 dev_err(cpu_dev, "failed to get clocks specific to imx6ul\n");
225 ret = -ENOENT;
226 goto put_clk;
227 }
228 }
229
230 arm_reg = regulator_get(cpu_dev, "arm");
231 pu_reg = regulator_get_optional(cpu_dev, "pu");
232 soc_reg = regulator_get(cpu_dev, "soc");
233 if (PTR_ERR(arm_reg) == -EPROBE_DEFER ||
234 PTR_ERR(soc_reg) == -EPROBE_DEFER ||
235 PTR_ERR(pu_reg) == -EPROBE_DEFER) {
236 ret = -EPROBE_DEFER;
237 dev_dbg(cpu_dev, "regulators not ready, defer\n");
238 goto put_reg;
239 }
240 if (IS_ERR(arm_reg) || IS_ERR(soc_reg)) {
241 dev_err(cpu_dev, "failed to get regulators\n");
242 ret = -ENOENT;
243 goto put_reg;
244 }
245
246 /*
247 * We expect an OPP table supplied by platform.
248 * Just, incase the platform did not supply the OPP
249 * table, it will try to get it.
250 */
251 num = dev_pm_opp_get_opp_count(cpu_dev);
252 if (num < 0) {
253 ret = dev_pm_opp_of_add_table(cpu_dev);
254 if (ret < 0) {
255 dev_err(cpu_dev, "failed to init OPP table: %d\n", ret);
256 goto put_reg;
257 }
258
259 /* Because we have added the OPPs here, we must free them */
260 free_opp = true;
261
262 num = dev_pm_opp_get_opp_count(cpu_dev);
263 if (num < 0) {
264 ret = num;
265 dev_err(cpu_dev, "no OPP table is found: %d\n", ret);
266 goto out_free_opp;
267 }
268 }
269
270 ret = dev_pm_opp_init_cpufreq_table(cpu_dev, &freq_table);
271 if (ret) {
272 dev_err(cpu_dev, "failed to init cpufreq table: %d\n", ret);
273 goto out_free_opp;
274 }
275
276 /* Make imx6_soc_volt array's size same as arm opp number */
277 imx6_soc_volt = devm_kzalloc(cpu_dev, sizeof(*imx6_soc_volt) * num, GFP_KERNEL);
278 if (imx6_soc_volt == NULL) {
279 ret = -ENOMEM;
280 goto free_freq_table;
281 }
282
283 prop = of_find_property(np, "fsl,soc-operating-points", NULL);
284 if (!prop || !prop->value)
285 goto soc_opp_out;
286
287 /*
288 * Each OPP is a set of tuples consisting of frequency and
289 * voltage like <freq-kHz vol-uV>.
290 */
291 nr = prop->length / sizeof(u32);
292 if (nr % 2 || (nr / 2) < num)
293 goto soc_opp_out;
294
295 for (j = 0; j < num; j++) {
296 val = prop->value;
297 for (i = 0; i < nr / 2; i++) {
298 unsigned long freq = be32_to_cpup(val++);
299 unsigned long volt = be32_to_cpup(val++);
300 if (freq_table[j].frequency == freq) {
301 imx6_soc_volt[soc_opp_count++] = volt;
302 break;
303 }
304 }
305 }
306
307 soc_opp_out:
308 /* use fixed soc opp volt if no valid soc opp info found in dtb */
309 if (soc_opp_count != num) {
310 dev_warn(cpu_dev, "can NOT find valid fsl,soc-operating-points property in dtb, use default value!\n");
311 for (j = 0; j < num; j++)
312 imx6_soc_volt[j] = PU_SOC_VOLTAGE_NORMAL;
313 if (freq_table[num - 1].frequency * 1000 == FREQ_1P2_GHZ)
314 imx6_soc_volt[num - 1] = PU_SOC_VOLTAGE_HIGH;
315 }
316
317 if (of_property_read_u32(np, "clock-latency", &transition_latency))
318 transition_latency = CPUFREQ_ETERNAL;
319
320 /*
321 * Calculate the ramp time for max voltage change in the
322 * VDDSOC and VDDPU regulators.
323 */
324 ret = regulator_set_voltage_time(soc_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]);
325 if (ret > 0)
326 transition_latency += ret * 1000;
327 if (!IS_ERR(pu_reg)) {
328 ret = regulator_set_voltage_time(pu_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]);
329 if (ret > 0)
330 transition_latency += ret * 1000;
331 }
332
333 /*
334 * OPP is maintained in order of increasing frequency, and
335 * freq_table initialised from OPP is therefore sorted in the
336 * same order.
337 */
338 opp = dev_pm_opp_find_freq_exact(cpu_dev,
339 freq_table[0].frequency * 1000, true);
340 min_volt = dev_pm_opp_get_voltage(opp);
341 dev_pm_opp_put(opp);
342 opp = dev_pm_opp_find_freq_exact(cpu_dev,
343 freq_table[--num].frequency * 1000, true);
344 max_volt = dev_pm_opp_get_voltage(opp);
345 dev_pm_opp_put(opp);
346
347 ret = regulator_set_voltage_time(arm_reg, min_volt, max_volt);
348 if (ret > 0)
349 transition_latency += ret * 1000;
350
351 ret = cpufreq_register_driver(&imx6q_cpufreq_driver);
352 if (ret) {
353 dev_err(cpu_dev, "failed register driver: %d\n", ret);
354 goto free_freq_table;
355 }
356
357 of_node_put(np);
358 return 0;
359
360 free_freq_table:
361 dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
362 out_free_opp:
363 if (free_opp)
364 dev_pm_opp_of_remove_table(cpu_dev);
365 put_reg:
366 if (!IS_ERR(arm_reg))
367 regulator_put(arm_reg);
368 if (!IS_ERR(pu_reg))
369 regulator_put(pu_reg);
370 if (!IS_ERR(soc_reg))
371 regulator_put(soc_reg);
372 put_clk:
373 if (!IS_ERR(arm_clk))
374 clk_put(arm_clk);
375 if (!IS_ERR(pll1_sys_clk))
376 clk_put(pll1_sys_clk);
377 if (!IS_ERR(pll1_sw_clk))
378 clk_put(pll1_sw_clk);
379 if (!IS_ERR(step_clk))
380 clk_put(step_clk);
381 if (!IS_ERR(pll2_pfd2_396m_clk))
382 clk_put(pll2_pfd2_396m_clk);
383 if (!IS_ERR(pll2_bus_clk))
384 clk_put(pll2_bus_clk);
385 if (!IS_ERR(secondary_sel_clk))
386 clk_put(secondary_sel_clk);
387 of_node_put(np);
388 return ret;
389 }
390
391 static int imx6q_cpufreq_remove(struct platform_device *pdev)
392 {
393 cpufreq_unregister_driver(&imx6q_cpufreq_driver);
394 dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
395 if (free_opp)
396 dev_pm_opp_of_remove_table(cpu_dev);
397 regulator_put(arm_reg);
398 if (!IS_ERR(pu_reg))
399 regulator_put(pu_reg);
400 regulator_put(soc_reg);
401 clk_put(arm_clk);
402 clk_put(pll1_sys_clk);
403 clk_put(pll1_sw_clk);
404 clk_put(step_clk);
405 clk_put(pll2_pfd2_396m_clk);
406 clk_put(pll2_bus_clk);
407 clk_put(secondary_sel_clk);
408
409 return 0;
410 }
411
412 static struct platform_driver imx6q_cpufreq_platdrv = {
413 .driver = {
414 .name = "imx6q-cpufreq",
415 },
416 .probe = imx6q_cpufreq_probe,
417 .remove = imx6q_cpufreq_remove,
418 };
419 module_platform_driver(imx6q_cpufreq_platdrv);
420
421 MODULE_AUTHOR("Shawn Guo <shawn.guo@linaro.org>");
422 MODULE_DESCRIPTION("Freescale i.MX6Q cpufreq driver");
423 MODULE_LICENSE("GPL");