]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/cpufreq/imx6q-cpufreq.c
Merge branch 'kconfig' of git://git.kernel.org/pub/scm/linux/kernel/git/mmarek/kbuild
[mirror_ubuntu-artful-kernel.git] / drivers / cpufreq / imx6q-cpufreq.c
1 /*
2 * Copyright (C) 2013 Freescale Semiconductor, Inc.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 */
8
9 #include <linux/clk.h>
10 #include <linux/cpufreq.h>
11 #include <linux/delay.h>
12 #include <linux/err.h>
13 #include <linux/module.h>
14 #include <linux/of.h>
15 #include <linux/opp.h>
16 #include <linux/platform_device.h>
17 #include <linux/regulator/consumer.h>
18
19 #define PU_SOC_VOLTAGE_NORMAL 1250000
20 #define PU_SOC_VOLTAGE_HIGH 1275000
21 #define FREQ_1P2_GHZ 1200000000
22
23 static struct regulator *arm_reg;
24 static struct regulator *pu_reg;
25 static struct regulator *soc_reg;
26
27 static struct clk *arm_clk;
28 static struct clk *pll1_sys_clk;
29 static struct clk *pll1_sw_clk;
30 static struct clk *step_clk;
31 static struct clk *pll2_pfd2_396m_clk;
32
33 static struct device *cpu_dev;
34 static struct cpufreq_frequency_table *freq_table;
35 static unsigned int transition_latency;
36
37 static int imx6q_verify_speed(struct cpufreq_policy *policy)
38 {
39 return cpufreq_frequency_table_verify(policy, freq_table);
40 }
41
42 static unsigned int imx6q_get_speed(unsigned int cpu)
43 {
44 return clk_get_rate(arm_clk) / 1000;
45 }
46
47 static int imx6q_set_target(struct cpufreq_policy *policy,
48 unsigned int target_freq, unsigned int relation)
49 {
50 struct cpufreq_freqs freqs;
51 struct opp *opp;
52 unsigned long freq_hz, volt, volt_old;
53 unsigned int index;
54 int ret;
55
56 ret = cpufreq_frequency_table_target(policy, freq_table, target_freq,
57 relation, &index);
58 if (ret) {
59 dev_err(cpu_dev, "failed to match target frequency %d: %d\n",
60 target_freq, ret);
61 return ret;
62 }
63
64 freqs.new = freq_table[index].frequency;
65 freq_hz = freqs.new * 1000;
66 freqs.old = clk_get_rate(arm_clk) / 1000;
67
68 if (freqs.old == freqs.new)
69 return 0;
70
71 rcu_read_lock();
72 opp = opp_find_freq_ceil(cpu_dev, &freq_hz);
73 if (IS_ERR(opp)) {
74 rcu_read_unlock();
75 dev_err(cpu_dev, "failed to find OPP for %ld\n", freq_hz);
76 return PTR_ERR(opp);
77 }
78
79 volt = opp_get_voltage(opp);
80 rcu_read_unlock();
81 volt_old = regulator_get_voltage(arm_reg);
82
83 dev_dbg(cpu_dev, "%u MHz, %ld mV --> %u MHz, %ld mV\n",
84 freqs.old / 1000, volt_old / 1000,
85 freqs.new / 1000, volt / 1000);
86
87 cpufreq_notify_transition(policy, &freqs, CPUFREQ_PRECHANGE);
88
89 /* scaling up? scale voltage before frequency */
90 if (freqs.new > freqs.old) {
91 ret = regulator_set_voltage_tol(arm_reg, volt, 0);
92 if (ret) {
93 dev_err(cpu_dev,
94 "failed to scale vddarm up: %d\n", ret);
95 freqs.new = freqs.old;
96 goto post_notify;
97 }
98
99 /*
100 * Need to increase vddpu and vddsoc for safety
101 * if we are about to run at 1.2 GHz.
102 */
103 if (freqs.new == FREQ_1P2_GHZ / 1000) {
104 regulator_set_voltage_tol(pu_reg,
105 PU_SOC_VOLTAGE_HIGH, 0);
106 regulator_set_voltage_tol(soc_reg,
107 PU_SOC_VOLTAGE_HIGH, 0);
108 }
109 }
110
111 /*
112 * The setpoints are selected per PLL/PDF frequencies, so we need to
113 * reprogram PLL for frequency scaling. The procedure of reprogramming
114 * PLL1 is as below.
115 *
116 * - Enable pll2_pfd2_396m_clk and reparent pll1_sw_clk to it
117 * - Reprogram pll1_sys_clk and reparent pll1_sw_clk back to it
118 * - Disable pll2_pfd2_396m_clk
119 */
120 clk_set_parent(step_clk, pll2_pfd2_396m_clk);
121 clk_set_parent(pll1_sw_clk, step_clk);
122 if (freq_hz > clk_get_rate(pll2_pfd2_396m_clk)) {
123 clk_set_rate(pll1_sys_clk, freqs.new * 1000);
124 clk_set_parent(pll1_sw_clk, pll1_sys_clk);
125 }
126
127 /* Ensure the arm clock divider is what we expect */
128 ret = clk_set_rate(arm_clk, freqs.new * 1000);
129 if (ret) {
130 dev_err(cpu_dev, "failed to set clock rate: %d\n", ret);
131 regulator_set_voltage_tol(arm_reg, volt_old, 0);
132 freqs.new = freqs.old;
133 goto post_notify;
134 }
135
136 /* scaling down? scale voltage after frequency */
137 if (freqs.new < freqs.old) {
138 ret = regulator_set_voltage_tol(arm_reg, volt, 0);
139 if (ret) {
140 dev_warn(cpu_dev,
141 "failed to scale vddarm down: %d\n", ret);
142 ret = 0;
143 }
144
145 if (freqs.old == FREQ_1P2_GHZ / 1000) {
146 regulator_set_voltage_tol(pu_reg,
147 PU_SOC_VOLTAGE_NORMAL, 0);
148 regulator_set_voltage_tol(soc_reg,
149 PU_SOC_VOLTAGE_NORMAL, 0);
150 }
151 }
152
153 post_notify:
154 cpufreq_notify_transition(policy, &freqs, CPUFREQ_POSTCHANGE);
155
156 return ret;
157 }
158
159 static int imx6q_cpufreq_init(struct cpufreq_policy *policy)
160 {
161 int ret;
162
163 ret = cpufreq_frequency_table_cpuinfo(policy, freq_table);
164 if (ret) {
165 dev_err(cpu_dev, "invalid frequency table: %d\n", ret);
166 return ret;
167 }
168
169 policy->cpuinfo.transition_latency = transition_latency;
170 policy->cur = clk_get_rate(arm_clk) / 1000;
171 cpumask_setall(policy->cpus);
172 cpufreq_frequency_table_get_attr(freq_table, policy->cpu);
173
174 return 0;
175 }
176
177 static int imx6q_cpufreq_exit(struct cpufreq_policy *policy)
178 {
179 cpufreq_frequency_table_put_attr(policy->cpu);
180 return 0;
181 }
182
183 static struct freq_attr *imx6q_cpufreq_attr[] = {
184 &cpufreq_freq_attr_scaling_available_freqs,
185 NULL,
186 };
187
188 static struct cpufreq_driver imx6q_cpufreq_driver = {
189 .verify = imx6q_verify_speed,
190 .target = imx6q_set_target,
191 .get = imx6q_get_speed,
192 .init = imx6q_cpufreq_init,
193 .exit = imx6q_cpufreq_exit,
194 .name = "imx6q-cpufreq",
195 .attr = imx6q_cpufreq_attr,
196 };
197
198 static int imx6q_cpufreq_probe(struct platform_device *pdev)
199 {
200 struct device_node *np;
201 struct opp *opp;
202 unsigned long min_volt, max_volt;
203 int num, ret;
204
205 cpu_dev = &pdev->dev;
206
207 np = of_node_get(cpu_dev->of_node);
208 if (!np) {
209 dev_err(cpu_dev, "failed to find cpu0 node\n");
210 return -ENOENT;
211 }
212
213 arm_clk = devm_clk_get(cpu_dev, "arm");
214 pll1_sys_clk = devm_clk_get(cpu_dev, "pll1_sys");
215 pll1_sw_clk = devm_clk_get(cpu_dev, "pll1_sw");
216 step_clk = devm_clk_get(cpu_dev, "step");
217 pll2_pfd2_396m_clk = devm_clk_get(cpu_dev, "pll2_pfd2_396m");
218 if (IS_ERR(arm_clk) || IS_ERR(pll1_sys_clk) || IS_ERR(pll1_sw_clk) ||
219 IS_ERR(step_clk) || IS_ERR(pll2_pfd2_396m_clk)) {
220 dev_err(cpu_dev, "failed to get clocks\n");
221 ret = -ENOENT;
222 goto put_node;
223 }
224
225 arm_reg = devm_regulator_get(cpu_dev, "arm");
226 pu_reg = devm_regulator_get(cpu_dev, "pu");
227 soc_reg = devm_regulator_get(cpu_dev, "soc");
228 if (IS_ERR(arm_reg) || IS_ERR(pu_reg) || IS_ERR(soc_reg)) {
229 dev_err(cpu_dev, "failed to get regulators\n");
230 ret = -ENOENT;
231 goto put_node;
232 }
233
234 /* We expect an OPP table supplied by platform */
235 num = opp_get_opp_count(cpu_dev);
236 if (num < 0) {
237 ret = num;
238 dev_err(cpu_dev, "no OPP table is found: %d\n", ret);
239 goto put_node;
240 }
241
242 ret = opp_init_cpufreq_table(cpu_dev, &freq_table);
243 if (ret) {
244 dev_err(cpu_dev, "failed to init cpufreq table: %d\n", ret);
245 goto put_node;
246 }
247
248 if (of_property_read_u32(np, "clock-latency", &transition_latency))
249 transition_latency = CPUFREQ_ETERNAL;
250
251 /*
252 * OPP is maintained in order of increasing frequency, and
253 * freq_table initialised from OPP is therefore sorted in the
254 * same order.
255 */
256 rcu_read_lock();
257 opp = opp_find_freq_exact(cpu_dev,
258 freq_table[0].frequency * 1000, true);
259 min_volt = opp_get_voltage(opp);
260 opp = opp_find_freq_exact(cpu_dev,
261 freq_table[--num].frequency * 1000, true);
262 max_volt = opp_get_voltage(opp);
263 rcu_read_unlock();
264 ret = regulator_set_voltage_time(arm_reg, min_volt, max_volt);
265 if (ret > 0)
266 transition_latency += ret * 1000;
267
268 /* Count vddpu and vddsoc latency in for 1.2 GHz support */
269 if (freq_table[num].frequency == FREQ_1P2_GHZ / 1000) {
270 ret = regulator_set_voltage_time(pu_reg, PU_SOC_VOLTAGE_NORMAL,
271 PU_SOC_VOLTAGE_HIGH);
272 if (ret > 0)
273 transition_latency += ret * 1000;
274 ret = regulator_set_voltage_time(soc_reg, PU_SOC_VOLTAGE_NORMAL,
275 PU_SOC_VOLTAGE_HIGH);
276 if (ret > 0)
277 transition_latency += ret * 1000;
278 }
279
280 ret = cpufreq_register_driver(&imx6q_cpufreq_driver);
281 if (ret) {
282 dev_err(cpu_dev, "failed register driver: %d\n", ret);
283 goto free_freq_table;
284 }
285
286 of_node_put(np);
287 return 0;
288
289 free_freq_table:
290 opp_free_cpufreq_table(cpu_dev, &freq_table);
291 put_node:
292 of_node_put(np);
293 return ret;
294 }
295
296 static int imx6q_cpufreq_remove(struct platform_device *pdev)
297 {
298 cpufreq_unregister_driver(&imx6q_cpufreq_driver);
299 opp_free_cpufreq_table(cpu_dev, &freq_table);
300
301 return 0;
302 }
303
304 static struct platform_driver imx6q_cpufreq_platdrv = {
305 .driver = {
306 .name = "imx6q-cpufreq",
307 .owner = THIS_MODULE,
308 },
309 .probe = imx6q_cpufreq_probe,
310 .remove = imx6q_cpufreq_remove,
311 };
312 module_platform_driver(imx6q_cpufreq_platdrv);
313
314 MODULE_AUTHOR("Shawn Guo <shawn.guo@linaro.org>");
315 MODULE_DESCRIPTION("Freescale i.MX6Q cpufreq driver");
316 MODULE_LICENSE("GPL");