]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/cpufreq/intel_pstate.c
cpufreq: ACPI: Remove freq_table from acpi_cpufreq_data
[mirror_ubuntu-bionic-kernel.git] / drivers / cpufreq / intel_pstate.c
1 /*
2 * intel_pstate.c: Native P state management for Intel processors
3 *
4 * (C) Copyright 2012 Intel Corporation
5 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
10 * of the License.
11 */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/kernel.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/module.h>
18 #include <linux/ktime.h>
19 #include <linux/hrtimer.h>
20 #include <linux/tick.h>
21 #include <linux/slab.h>
22 #include <linux/sched.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25 #include <linux/cpufreq.h>
26 #include <linux/sysfs.h>
27 #include <linux/types.h>
28 #include <linux/fs.h>
29 #include <linux/debugfs.h>
30 #include <linux/acpi.h>
31 #include <linux/vmalloc.h>
32 #include <trace/events/power.h>
33
34 #include <asm/div64.h>
35 #include <asm/msr.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/cpufeature.h>
38
39 #define ATOM_RATIOS 0x66a
40 #define ATOM_VIDS 0x66b
41 #define ATOM_TURBO_RATIOS 0x66c
42 #define ATOM_TURBO_VIDS 0x66d
43
44 #define FRAC_BITS 8
45 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
46 #define fp_toint(X) ((X) >> FRAC_BITS)
47
48 static inline int32_t mul_fp(int32_t x, int32_t y)
49 {
50 return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
51 }
52
53 static inline int32_t div_fp(s64 x, s64 y)
54 {
55 return div64_s64((int64_t)x << FRAC_BITS, y);
56 }
57
58 static inline int ceiling_fp(int32_t x)
59 {
60 int mask, ret;
61
62 ret = fp_toint(x);
63 mask = (1 << FRAC_BITS) - 1;
64 if (x & mask)
65 ret += 1;
66 return ret;
67 }
68
69 /**
70 * struct sample - Store performance sample
71 * @core_pct_busy: Ratio of APERF/MPERF in percent, which is actual
72 * performance during last sample period
73 * @busy_scaled: Scaled busy value which is used to calculate next
74 * P state. This can be different than core_pct_busy
75 * to account for cpu idle period
76 * @aperf: Difference of actual performance frequency clock count
77 * read from APERF MSR between last and current sample
78 * @mperf: Difference of maximum performance frequency clock count
79 * read from MPERF MSR between last and current sample
80 * @tsc: Difference of time stamp counter between last and
81 * current sample
82 * @freq: Effective frequency calculated from APERF/MPERF
83 * @time: Current time from scheduler
84 *
85 * This structure is used in the cpudata structure to store performance sample
86 * data for choosing next P State.
87 */
88 struct sample {
89 int32_t core_pct_busy;
90 int32_t busy_scaled;
91 u64 aperf;
92 u64 mperf;
93 u64 tsc;
94 int freq;
95 u64 time;
96 };
97
98 /**
99 * struct pstate_data - Store P state data
100 * @current_pstate: Current requested P state
101 * @min_pstate: Min P state possible for this platform
102 * @max_pstate: Max P state possible for this platform
103 * @max_pstate_physical:This is physical Max P state for a processor
104 * This can be higher than the max_pstate which can
105 * be limited by platform thermal design power limits
106 * @scaling: Scaling factor to convert frequency to cpufreq
107 * frequency units
108 * @turbo_pstate: Max Turbo P state possible for this platform
109 *
110 * Stores the per cpu model P state limits and current P state.
111 */
112 struct pstate_data {
113 int current_pstate;
114 int min_pstate;
115 int max_pstate;
116 int max_pstate_physical;
117 int scaling;
118 int turbo_pstate;
119 };
120
121 /**
122 * struct vid_data - Stores voltage information data
123 * @min: VID data for this platform corresponding to
124 * the lowest P state
125 * @max: VID data corresponding to the highest P State.
126 * @turbo: VID data for turbo P state
127 * @ratio: Ratio of (vid max - vid min) /
128 * (max P state - Min P State)
129 *
130 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
131 * This data is used in Atom platforms, where in addition to target P state,
132 * the voltage data needs to be specified to select next P State.
133 */
134 struct vid_data {
135 int min;
136 int max;
137 int turbo;
138 int32_t ratio;
139 };
140
141 /**
142 * struct _pid - Stores PID data
143 * @setpoint: Target set point for busyness or performance
144 * @integral: Storage for accumulated error values
145 * @p_gain: PID proportional gain
146 * @i_gain: PID integral gain
147 * @d_gain: PID derivative gain
148 * @deadband: PID deadband
149 * @last_err: Last error storage for integral part of PID calculation
150 *
151 * Stores PID coefficients and last error for PID controller.
152 */
153 struct _pid {
154 int setpoint;
155 int32_t integral;
156 int32_t p_gain;
157 int32_t i_gain;
158 int32_t d_gain;
159 int deadband;
160 int32_t last_err;
161 };
162
163 /**
164 * struct cpudata - Per CPU instance data storage
165 * @cpu: CPU number for this instance data
166 * @update_util: CPUFreq utility callback information
167 * @pstate: Stores P state limits for this CPU
168 * @vid: Stores VID limits for this CPU
169 * @pid: Stores PID parameters for this CPU
170 * @last_sample_time: Last Sample time
171 * @prev_aperf: Last APERF value read from APERF MSR
172 * @prev_mperf: Last MPERF value read from MPERF MSR
173 * @prev_tsc: Last timestamp counter (TSC) value
174 * @prev_cummulative_iowait: IO Wait time difference from last and
175 * current sample
176 * @sample: Storage for storing last Sample data
177 *
178 * This structure stores per CPU instance data for all CPUs.
179 */
180 struct cpudata {
181 int cpu;
182
183 struct update_util_data update_util;
184
185 struct pstate_data pstate;
186 struct vid_data vid;
187 struct _pid pid;
188
189 u64 last_sample_time;
190 u64 prev_aperf;
191 u64 prev_mperf;
192 u64 prev_tsc;
193 u64 prev_cummulative_iowait;
194 struct sample sample;
195 };
196
197 static struct cpudata **all_cpu_data;
198
199 /**
200 * struct pid_adjust_policy - Stores static PID configuration data
201 * @sample_rate_ms: PID calculation sample rate in ms
202 * @sample_rate_ns: Sample rate calculation in ns
203 * @deadband: PID deadband
204 * @setpoint: PID Setpoint
205 * @p_gain_pct: PID proportional gain
206 * @i_gain_pct: PID integral gain
207 * @d_gain_pct: PID derivative gain
208 *
209 * Stores per CPU model static PID configuration data.
210 */
211 struct pstate_adjust_policy {
212 int sample_rate_ms;
213 s64 sample_rate_ns;
214 int deadband;
215 int setpoint;
216 int p_gain_pct;
217 int d_gain_pct;
218 int i_gain_pct;
219 };
220
221 /**
222 * struct pstate_funcs - Per CPU model specific callbacks
223 * @get_max: Callback to get maximum non turbo effective P state
224 * @get_max_physical: Callback to get maximum non turbo physical P state
225 * @get_min: Callback to get minimum P state
226 * @get_turbo: Callback to get turbo P state
227 * @get_scaling: Callback to get frequency scaling factor
228 * @get_val: Callback to convert P state to actual MSR write value
229 * @get_vid: Callback to get VID data for Atom platforms
230 * @get_target_pstate: Callback to a function to calculate next P state to use
231 *
232 * Core and Atom CPU models have different way to get P State limits. This
233 * structure is used to store those callbacks.
234 */
235 struct pstate_funcs {
236 int (*get_max)(void);
237 int (*get_max_physical)(void);
238 int (*get_min)(void);
239 int (*get_turbo)(void);
240 int (*get_scaling)(void);
241 u64 (*get_val)(struct cpudata*, int pstate);
242 void (*get_vid)(struct cpudata *);
243 int32_t (*get_target_pstate)(struct cpudata *);
244 };
245
246 /**
247 * struct cpu_defaults- Per CPU model default config data
248 * @pid_policy: PID config data
249 * @funcs: Callback function data
250 */
251 struct cpu_defaults {
252 struct pstate_adjust_policy pid_policy;
253 struct pstate_funcs funcs;
254 };
255
256 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
257 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
258
259 static struct pstate_adjust_policy pid_params;
260 static struct pstate_funcs pstate_funcs;
261 static int hwp_active;
262
263
264 /**
265 * struct perf_limits - Store user and policy limits
266 * @no_turbo: User requested turbo state from intel_pstate sysfs
267 * @turbo_disabled: Platform turbo status either from msr
268 * MSR_IA32_MISC_ENABLE or when maximum available pstate
269 * matches the maximum turbo pstate
270 * @max_perf_pct: Effective maximum performance limit in percentage, this
271 * is minimum of either limits enforced by cpufreq policy
272 * or limits from user set limits via intel_pstate sysfs
273 * @min_perf_pct: Effective minimum performance limit in percentage, this
274 * is maximum of either limits enforced by cpufreq policy
275 * or limits from user set limits via intel_pstate sysfs
276 * @max_perf: This is a scaled value between 0 to 255 for max_perf_pct
277 * This value is used to limit max pstate
278 * @min_perf: This is a scaled value between 0 to 255 for min_perf_pct
279 * This value is used to limit min pstate
280 * @max_policy_pct: The maximum performance in percentage enforced by
281 * cpufreq setpolicy interface
282 * @max_sysfs_pct: The maximum performance in percentage enforced by
283 * intel pstate sysfs interface
284 * @min_policy_pct: The minimum performance in percentage enforced by
285 * cpufreq setpolicy interface
286 * @min_sysfs_pct: The minimum performance in percentage enforced by
287 * intel pstate sysfs interface
288 *
289 * Storage for user and policy defined limits.
290 */
291 struct perf_limits {
292 int no_turbo;
293 int turbo_disabled;
294 int max_perf_pct;
295 int min_perf_pct;
296 int32_t max_perf;
297 int32_t min_perf;
298 int max_policy_pct;
299 int max_sysfs_pct;
300 int min_policy_pct;
301 int min_sysfs_pct;
302 };
303
304 static struct perf_limits performance_limits = {
305 .no_turbo = 0,
306 .turbo_disabled = 0,
307 .max_perf_pct = 100,
308 .max_perf = int_tofp(1),
309 .min_perf_pct = 100,
310 .min_perf = int_tofp(1),
311 .max_policy_pct = 100,
312 .max_sysfs_pct = 100,
313 .min_policy_pct = 0,
314 .min_sysfs_pct = 0,
315 };
316
317 static struct perf_limits powersave_limits = {
318 .no_turbo = 0,
319 .turbo_disabled = 0,
320 .max_perf_pct = 100,
321 .max_perf = int_tofp(1),
322 .min_perf_pct = 0,
323 .min_perf = 0,
324 .max_policy_pct = 100,
325 .max_sysfs_pct = 100,
326 .min_policy_pct = 0,
327 .min_sysfs_pct = 0,
328 };
329
330 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
331 static struct perf_limits *limits = &performance_limits;
332 #else
333 static struct perf_limits *limits = &powersave_limits;
334 #endif
335
336 static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
337 int deadband, int integral) {
338 pid->setpoint = int_tofp(setpoint);
339 pid->deadband = int_tofp(deadband);
340 pid->integral = int_tofp(integral);
341 pid->last_err = int_tofp(setpoint) - int_tofp(busy);
342 }
343
344 static inline void pid_p_gain_set(struct _pid *pid, int percent)
345 {
346 pid->p_gain = div_fp(percent, 100);
347 }
348
349 static inline void pid_i_gain_set(struct _pid *pid, int percent)
350 {
351 pid->i_gain = div_fp(percent, 100);
352 }
353
354 static inline void pid_d_gain_set(struct _pid *pid, int percent)
355 {
356 pid->d_gain = div_fp(percent, 100);
357 }
358
359 static signed int pid_calc(struct _pid *pid, int32_t busy)
360 {
361 signed int result;
362 int32_t pterm, dterm, fp_error;
363 int32_t integral_limit;
364
365 fp_error = pid->setpoint - busy;
366
367 if (abs(fp_error) <= pid->deadband)
368 return 0;
369
370 pterm = mul_fp(pid->p_gain, fp_error);
371
372 pid->integral += fp_error;
373
374 /*
375 * We limit the integral here so that it will never
376 * get higher than 30. This prevents it from becoming
377 * too large an input over long periods of time and allows
378 * it to get factored out sooner.
379 *
380 * The value of 30 was chosen through experimentation.
381 */
382 integral_limit = int_tofp(30);
383 if (pid->integral > integral_limit)
384 pid->integral = integral_limit;
385 if (pid->integral < -integral_limit)
386 pid->integral = -integral_limit;
387
388 dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
389 pid->last_err = fp_error;
390
391 result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
392 result = result + (1 << (FRAC_BITS-1));
393 return (signed int)fp_toint(result);
394 }
395
396 static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
397 {
398 pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
399 pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
400 pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
401
402 pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
403 }
404
405 static inline void intel_pstate_reset_all_pid(void)
406 {
407 unsigned int cpu;
408
409 for_each_online_cpu(cpu) {
410 if (all_cpu_data[cpu])
411 intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
412 }
413 }
414
415 static inline void update_turbo_state(void)
416 {
417 u64 misc_en;
418 struct cpudata *cpu;
419
420 cpu = all_cpu_data[0];
421 rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
422 limits->turbo_disabled =
423 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
424 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
425 }
426
427 static void intel_pstate_hwp_set(const struct cpumask *cpumask)
428 {
429 int min, hw_min, max, hw_max, cpu, range, adj_range;
430 u64 value, cap;
431
432 rdmsrl(MSR_HWP_CAPABILITIES, cap);
433 hw_min = HWP_LOWEST_PERF(cap);
434 hw_max = HWP_HIGHEST_PERF(cap);
435 range = hw_max - hw_min;
436
437 for_each_cpu(cpu, cpumask) {
438 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
439 adj_range = limits->min_perf_pct * range / 100;
440 min = hw_min + adj_range;
441 value &= ~HWP_MIN_PERF(~0L);
442 value |= HWP_MIN_PERF(min);
443
444 adj_range = limits->max_perf_pct * range / 100;
445 max = hw_min + adj_range;
446 if (limits->no_turbo) {
447 hw_max = HWP_GUARANTEED_PERF(cap);
448 if (hw_max < max)
449 max = hw_max;
450 }
451
452 value &= ~HWP_MAX_PERF(~0L);
453 value |= HWP_MAX_PERF(max);
454 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
455 }
456 }
457
458 static void intel_pstate_hwp_set_online_cpus(void)
459 {
460 get_online_cpus();
461 intel_pstate_hwp_set(cpu_online_mask);
462 put_online_cpus();
463 }
464
465 /************************** debugfs begin ************************/
466 static int pid_param_set(void *data, u64 val)
467 {
468 *(u32 *)data = val;
469 intel_pstate_reset_all_pid();
470 return 0;
471 }
472
473 static int pid_param_get(void *data, u64 *val)
474 {
475 *val = *(u32 *)data;
476 return 0;
477 }
478 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
479
480 struct pid_param {
481 char *name;
482 void *value;
483 };
484
485 static struct pid_param pid_files[] = {
486 {"sample_rate_ms", &pid_params.sample_rate_ms},
487 {"d_gain_pct", &pid_params.d_gain_pct},
488 {"i_gain_pct", &pid_params.i_gain_pct},
489 {"deadband", &pid_params.deadband},
490 {"setpoint", &pid_params.setpoint},
491 {"p_gain_pct", &pid_params.p_gain_pct},
492 {NULL, NULL}
493 };
494
495 static void __init intel_pstate_debug_expose_params(void)
496 {
497 struct dentry *debugfs_parent;
498 int i = 0;
499
500 if (hwp_active)
501 return;
502 debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
503 if (IS_ERR_OR_NULL(debugfs_parent))
504 return;
505 while (pid_files[i].name) {
506 debugfs_create_file(pid_files[i].name, 0660,
507 debugfs_parent, pid_files[i].value,
508 &fops_pid_param);
509 i++;
510 }
511 }
512
513 /************************** debugfs end ************************/
514
515 /************************** sysfs begin ************************/
516 #define show_one(file_name, object) \
517 static ssize_t show_##file_name \
518 (struct kobject *kobj, struct attribute *attr, char *buf) \
519 { \
520 return sprintf(buf, "%u\n", limits->object); \
521 }
522
523 static ssize_t show_turbo_pct(struct kobject *kobj,
524 struct attribute *attr, char *buf)
525 {
526 struct cpudata *cpu;
527 int total, no_turbo, turbo_pct;
528 uint32_t turbo_fp;
529
530 cpu = all_cpu_data[0];
531
532 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
533 no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
534 turbo_fp = div_fp(no_turbo, total);
535 turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
536 return sprintf(buf, "%u\n", turbo_pct);
537 }
538
539 static ssize_t show_num_pstates(struct kobject *kobj,
540 struct attribute *attr, char *buf)
541 {
542 struct cpudata *cpu;
543 int total;
544
545 cpu = all_cpu_data[0];
546 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
547 return sprintf(buf, "%u\n", total);
548 }
549
550 static ssize_t show_no_turbo(struct kobject *kobj,
551 struct attribute *attr, char *buf)
552 {
553 ssize_t ret;
554
555 update_turbo_state();
556 if (limits->turbo_disabled)
557 ret = sprintf(buf, "%u\n", limits->turbo_disabled);
558 else
559 ret = sprintf(buf, "%u\n", limits->no_turbo);
560
561 return ret;
562 }
563
564 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
565 const char *buf, size_t count)
566 {
567 unsigned int input;
568 int ret;
569
570 ret = sscanf(buf, "%u", &input);
571 if (ret != 1)
572 return -EINVAL;
573
574 update_turbo_state();
575 if (limits->turbo_disabled) {
576 pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
577 return -EPERM;
578 }
579
580 limits->no_turbo = clamp_t(int, input, 0, 1);
581
582 if (hwp_active)
583 intel_pstate_hwp_set_online_cpus();
584
585 return count;
586 }
587
588 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
589 const char *buf, size_t count)
590 {
591 unsigned int input;
592 int ret;
593
594 ret = sscanf(buf, "%u", &input);
595 if (ret != 1)
596 return -EINVAL;
597
598 limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
599 limits->max_perf_pct = min(limits->max_policy_pct,
600 limits->max_sysfs_pct);
601 limits->max_perf_pct = max(limits->min_policy_pct,
602 limits->max_perf_pct);
603 limits->max_perf_pct = max(limits->min_perf_pct,
604 limits->max_perf_pct);
605 limits->max_perf = div_fp(limits->max_perf_pct, 100);
606
607 if (hwp_active)
608 intel_pstate_hwp_set_online_cpus();
609 return count;
610 }
611
612 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
613 const char *buf, size_t count)
614 {
615 unsigned int input;
616 int ret;
617
618 ret = sscanf(buf, "%u", &input);
619 if (ret != 1)
620 return -EINVAL;
621
622 limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
623 limits->min_perf_pct = max(limits->min_policy_pct,
624 limits->min_sysfs_pct);
625 limits->min_perf_pct = min(limits->max_policy_pct,
626 limits->min_perf_pct);
627 limits->min_perf_pct = min(limits->max_perf_pct,
628 limits->min_perf_pct);
629 limits->min_perf = div_fp(limits->min_perf_pct, 100);
630
631 if (hwp_active)
632 intel_pstate_hwp_set_online_cpus();
633 return count;
634 }
635
636 show_one(max_perf_pct, max_perf_pct);
637 show_one(min_perf_pct, min_perf_pct);
638
639 define_one_global_rw(no_turbo);
640 define_one_global_rw(max_perf_pct);
641 define_one_global_rw(min_perf_pct);
642 define_one_global_ro(turbo_pct);
643 define_one_global_ro(num_pstates);
644
645 static struct attribute *intel_pstate_attributes[] = {
646 &no_turbo.attr,
647 &max_perf_pct.attr,
648 &min_perf_pct.attr,
649 &turbo_pct.attr,
650 &num_pstates.attr,
651 NULL
652 };
653
654 static struct attribute_group intel_pstate_attr_group = {
655 .attrs = intel_pstate_attributes,
656 };
657
658 static void __init intel_pstate_sysfs_expose_params(void)
659 {
660 struct kobject *intel_pstate_kobject;
661 int rc;
662
663 intel_pstate_kobject = kobject_create_and_add("intel_pstate",
664 &cpu_subsys.dev_root->kobj);
665 BUG_ON(!intel_pstate_kobject);
666 rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
667 BUG_ON(rc);
668 }
669 /************************** sysfs end ************************/
670
671 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
672 {
673 /* First disable HWP notification interrupt as we don't process them */
674 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
675
676 wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
677 }
678
679 static int atom_get_min_pstate(void)
680 {
681 u64 value;
682
683 rdmsrl(ATOM_RATIOS, value);
684 return (value >> 8) & 0x7F;
685 }
686
687 static int atom_get_max_pstate(void)
688 {
689 u64 value;
690
691 rdmsrl(ATOM_RATIOS, value);
692 return (value >> 16) & 0x7F;
693 }
694
695 static int atom_get_turbo_pstate(void)
696 {
697 u64 value;
698
699 rdmsrl(ATOM_TURBO_RATIOS, value);
700 return value & 0x7F;
701 }
702
703 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
704 {
705 u64 val;
706 int32_t vid_fp;
707 u32 vid;
708
709 val = (u64)pstate << 8;
710 if (limits->no_turbo && !limits->turbo_disabled)
711 val |= (u64)1 << 32;
712
713 vid_fp = cpudata->vid.min + mul_fp(
714 int_tofp(pstate - cpudata->pstate.min_pstate),
715 cpudata->vid.ratio);
716
717 vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
718 vid = ceiling_fp(vid_fp);
719
720 if (pstate > cpudata->pstate.max_pstate)
721 vid = cpudata->vid.turbo;
722
723 return val | vid;
724 }
725
726 static int silvermont_get_scaling(void)
727 {
728 u64 value;
729 int i;
730 /* Defined in Table 35-6 from SDM (Sept 2015) */
731 static int silvermont_freq_table[] = {
732 83300, 100000, 133300, 116700, 80000};
733
734 rdmsrl(MSR_FSB_FREQ, value);
735 i = value & 0x7;
736 WARN_ON(i > 4);
737
738 return silvermont_freq_table[i];
739 }
740
741 static int airmont_get_scaling(void)
742 {
743 u64 value;
744 int i;
745 /* Defined in Table 35-10 from SDM (Sept 2015) */
746 static int airmont_freq_table[] = {
747 83300, 100000, 133300, 116700, 80000,
748 93300, 90000, 88900, 87500};
749
750 rdmsrl(MSR_FSB_FREQ, value);
751 i = value & 0xF;
752 WARN_ON(i > 8);
753
754 return airmont_freq_table[i];
755 }
756
757 static void atom_get_vid(struct cpudata *cpudata)
758 {
759 u64 value;
760
761 rdmsrl(ATOM_VIDS, value);
762 cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
763 cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
764 cpudata->vid.ratio = div_fp(
765 cpudata->vid.max - cpudata->vid.min,
766 int_tofp(cpudata->pstate.max_pstate -
767 cpudata->pstate.min_pstate));
768
769 rdmsrl(ATOM_TURBO_VIDS, value);
770 cpudata->vid.turbo = value & 0x7f;
771 }
772
773 static int core_get_min_pstate(void)
774 {
775 u64 value;
776
777 rdmsrl(MSR_PLATFORM_INFO, value);
778 return (value >> 40) & 0xFF;
779 }
780
781 static int core_get_max_pstate_physical(void)
782 {
783 u64 value;
784
785 rdmsrl(MSR_PLATFORM_INFO, value);
786 return (value >> 8) & 0xFF;
787 }
788
789 static int core_get_max_pstate(void)
790 {
791 u64 tar;
792 u64 plat_info;
793 int max_pstate;
794 int err;
795
796 rdmsrl(MSR_PLATFORM_INFO, plat_info);
797 max_pstate = (plat_info >> 8) & 0xFF;
798
799 err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
800 if (!err) {
801 /* Do some sanity checking for safety */
802 if (plat_info & 0x600000000) {
803 u64 tdp_ctrl;
804 u64 tdp_ratio;
805 int tdp_msr;
806
807 err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
808 if (err)
809 goto skip_tar;
810
811 tdp_msr = MSR_CONFIG_TDP_NOMINAL + tdp_ctrl;
812 err = rdmsrl_safe(tdp_msr, &tdp_ratio);
813 if (err)
814 goto skip_tar;
815
816 if (tdp_ratio - 1 == tar) {
817 max_pstate = tar;
818 pr_debug("max_pstate=TAC %x\n", max_pstate);
819 } else {
820 goto skip_tar;
821 }
822 }
823 }
824
825 skip_tar:
826 return max_pstate;
827 }
828
829 static int core_get_turbo_pstate(void)
830 {
831 u64 value;
832 int nont, ret;
833
834 rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
835 nont = core_get_max_pstate();
836 ret = (value) & 255;
837 if (ret <= nont)
838 ret = nont;
839 return ret;
840 }
841
842 static inline int core_get_scaling(void)
843 {
844 return 100000;
845 }
846
847 static u64 core_get_val(struct cpudata *cpudata, int pstate)
848 {
849 u64 val;
850
851 val = (u64)pstate << 8;
852 if (limits->no_turbo && !limits->turbo_disabled)
853 val |= (u64)1 << 32;
854
855 return val;
856 }
857
858 static int knl_get_turbo_pstate(void)
859 {
860 u64 value;
861 int nont, ret;
862
863 rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
864 nont = core_get_max_pstate();
865 ret = (((value) >> 8) & 0xFF);
866 if (ret <= nont)
867 ret = nont;
868 return ret;
869 }
870
871 static struct cpu_defaults core_params = {
872 .pid_policy = {
873 .sample_rate_ms = 10,
874 .deadband = 0,
875 .setpoint = 97,
876 .p_gain_pct = 20,
877 .d_gain_pct = 0,
878 .i_gain_pct = 0,
879 },
880 .funcs = {
881 .get_max = core_get_max_pstate,
882 .get_max_physical = core_get_max_pstate_physical,
883 .get_min = core_get_min_pstate,
884 .get_turbo = core_get_turbo_pstate,
885 .get_scaling = core_get_scaling,
886 .get_val = core_get_val,
887 .get_target_pstate = get_target_pstate_use_performance,
888 },
889 };
890
891 static struct cpu_defaults silvermont_params = {
892 .pid_policy = {
893 .sample_rate_ms = 10,
894 .deadband = 0,
895 .setpoint = 60,
896 .p_gain_pct = 14,
897 .d_gain_pct = 0,
898 .i_gain_pct = 4,
899 },
900 .funcs = {
901 .get_max = atom_get_max_pstate,
902 .get_max_physical = atom_get_max_pstate,
903 .get_min = atom_get_min_pstate,
904 .get_turbo = atom_get_turbo_pstate,
905 .get_val = atom_get_val,
906 .get_scaling = silvermont_get_scaling,
907 .get_vid = atom_get_vid,
908 .get_target_pstate = get_target_pstate_use_cpu_load,
909 },
910 };
911
912 static struct cpu_defaults airmont_params = {
913 .pid_policy = {
914 .sample_rate_ms = 10,
915 .deadband = 0,
916 .setpoint = 60,
917 .p_gain_pct = 14,
918 .d_gain_pct = 0,
919 .i_gain_pct = 4,
920 },
921 .funcs = {
922 .get_max = atom_get_max_pstate,
923 .get_max_physical = atom_get_max_pstate,
924 .get_min = atom_get_min_pstate,
925 .get_turbo = atom_get_turbo_pstate,
926 .get_val = atom_get_val,
927 .get_scaling = airmont_get_scaling,
928 .get_vid = atom_get_vid,
929 .get_target_pstate = get_target_pstate_use_cpu_load,
930 },
931 };
932
933 static struct cpu_defaults knl_params = {
934 .pid_policy = {
935 .sample_rate_ms = 10,
936 .deadband = 0,
937 .setpoint = 97,
938 .p_gain_pct = 20,
939 .d_gain_pct = 0,
940 .i_gain_pct = 0,
941 },
942 .funcs = {
943 .get_max = core_get_max_pstate,
944 .get_max_physical = core_get_max_pstate_physical,
945 .get_min = core_get_min_pstate,
946 .get_turbo = knl_get_turbo_pstate,
947 .get_scaling = core_get_scaling,
948 .get_val = core_get_val,
949 .get_target_pstate = get_target_pstate_use_performance,
950 },
951 };
952
953 static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
954 {
955 int max_perf = cpu->pstate.turbo_pstate;
956 int max_perf_adj;
957 int min_perf;
958
959 if (limits->no_turbo || limits->turbo_disabled)
960 max_perf = cpu->pstate.max_pstate;
961
962 /*
963 * performance can be limited by user through sysfs, by cpufreq
964 * policy, or by cpu specific default values determined through
965 * experimentation.
966 */
967 max_perf_adj = fp_toint(max_perf * limits->max_perf);
968 *max = clamp_t(int, max_perf_adj,
969 cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
970
971 min_perf = fp_toint(max_perf * limits->min_perf);
972 *min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
973 }
974
975 static inline void intel_pstate_record_pstate(struct cpudata *cpu, int pstate)
976 {
977 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
978 cpu->pstate.current_pstate = pstate;
979 }
980
981 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
982 {
983 int pstate = cpu->pstate.min_pstate;
984
985 intel_pstate_record_pstate(cpu, pstate);
986 /*
987 * Generally, there is no guarantee that this code will always run on
988 * the CPU being updated, so force the register update to run on the
989 * right CPU.
990 */
991 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
992 pstate_funcs.get_val(cpu, pstate));
993 }
994
995 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
996 {
997 cpu->pstate.min_pstate = pstate_funcs.get_min();
998 cpu->pstate.max_pstate = pstate_funcs.get_max();
999 cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1000 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1001 cpu->pstate.scaling = pstate_funcs.get_scaling();
1002
1003 if (pstate_funcs.get_vid)
1004 pstate_funcs.get_vid(cpu);
1005
1006 intel_pstate_set_min_pstate(cpu);
1007 }
1008
1009 static inline void intel_pstate_calc_busy(struct cpudata *cpu)
1010 {
1011 struct sample *sample = &cpu->sample;
1012 int64_t core_pct;
1013
1014 core_pct = sample->aperf * int_tofp(100);
1015 core_pct = div64_u64(core_pct, sample->mperf);
1016
1017 sample->core_pct_busy = (int32_t)core_pct;
1018 }
1019
1020 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1021 {
1022 u64 aperf, mperf;
1023 unsigned long flags;
1024 u64 tsc;
1025
1026 local_irq_save(flags);
1027 rdmsrl(MSR_IA32_APERF, aperf);
1028 rdmsrl(MSR_IA32_MPERF, mperf);
1029 tsc = rdtsc();
1030 if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1031 local_irq_restore(flags);
1032 return false;
1033 }
1034 local_irq_restore(flags);
1035
1036 cpu->last_sample_time = cpu->sample.time;
1037 cpu->sample.time = time;
1038 cpu->sample.aperf = aperf;
1039 cpu->sample.mperf = mperf;
1040 cpu->sample.tsc = tsc;
1041 cpu->sample.aperf -= cpu->prev_aperf;
1042 cpu->sample.mperf -= cpu->prev_mperf;
1043 cpu->sample.tsc -= cpu->prev_tsc;
1044
1045 cpu->prev_aperf = aperf;
1046 cpu->prev_mperf = mperf;
1047 cpu->prev_tsc = tsc;
1048 /*
1049 * First time this function is invoked in a given cycle, all of the
1050 * previous sample data fields are equal to zero or stale and they must
1051 * be populated with meaningful numbers for things to work, so assume
1052 * that sample.time will always be reset before setting the utilization
1053 * update hook and make the caller skip the sample then.
1054 */
1055 return !!cpu->last_sample_time;
1056 }
1057
1058 static inline int32_t get_avg_frequency(struct cpudata *cpu)
1059 {
1060 return div64_u64(cpu->pstate.max_pstate_physical * cpu->sample.aperf *
1061 cpu->pstate.scaling, cpu->sample.mperf);
1062 }
1063
1064 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
1065 {
1066 struct sample *sample = &cpu->sample;
1067 u64 cummulative_iowait, delta_iowait_us;
1068 u64 delta_iowait_mperf;
1069 u64 mperf, now;
1070 int32_t cpu_load;
1071
1072 cummulative_iowait = get_cpu_iowait_time_us(cpu->cpu, &now);
1073
1074 /*
1075 * Convert iowait time into number of IO cycles spent at max_freq.
1076 * IO is considered as busy only for the cpu_load algorithm. For
1077 * performance this is not needed since we always try to reach the
1078 * maximum P-State, so we are already boosting the IOs.
1079 */
1080 delta_iowait_us = cummulative_iowait - cpu->prev_cummulative_iowait;
1081 delta_iowait_mperf = div64_u64(delta_iowait_us * cpu->pstate.scaling *
1082 cpu->pstate.max_pstate, MSEC_PER_SEC);
1083
1084 mperf = cpu->sample.mperf + delta_iowait_mperf;
1085 cpu->prev_cummulative_iowait = cummulative_iowait;
1086
1087 /*
1088 * The load can be estimated as the ratio of the mperf counter
1089 * running at a constant frequency during active periods
1090 * (C0) and the time stamp counter running at the same frequency
1091 * also during C-states.
1092 */
1093 cpu_load = div64_u64(int_tofp(100) * mperf, sample->tsc);
1094 cpu->sample.busy_scaled = cpu_load;
1095
1096 return cpu->pstate.current_pstate - pid_calc(&cpu->pid, cpu_load);
1097 }
1098
1099 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
1100 {
1101 int32_t core_busy, max_pstate, current_pstate, sample_ratio;
1102 u64 duration_ns;
1103
1104 intel_pstate_calc_busy(cpu);
1105
1106 /*
1107 * core_busy is the ratio of actual performance to max
1108 * max_pstate is the max non turbo pstate available
1109 * current_pstate was the pstate that was requested during
1110 * the last sample period.
1111 *
1112 * We normalize core_busy, which was our actual percent
1113 * performance to what we requested during the last sample
1114 * period. The result will be a percentage of busy at a
1115 * specified pstate.
1116 */
1117 core_busy = cpu->sample.core_pct_busy;
1118 max_pstate = cpu->pstate.max_pstate_physical;
1119 current_pstate = cpu->pstate.current_pstate;
1120 core_busy = mul_fp(core_busy, div_fp(max_pstate, current_pstate));
1121
1122 /*
1123 * Since our utilization update callback will not run unless we are
1124 * in C0, check if the actual elapsed time is significantly greater (3x)
1125 * than our sample interval. If it is, then we were idle for a long
1126 * enough period of time to adjust our busyness.
1127 */
1128 duration_ns = cpu->sample.time - cpu->last_sample_time;
1129 if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
1130 sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1131 core_busy = mul_fp(core_busy, sample_ratio);
1132 }
1133
1134 cpu->sample.busy_scaled = core_busy;
1135 return cpu->pstate.current_pstate - pid_calc(&cpu->pid, core_busy);
1136 }
1137
1138 static inline void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1139 {
1140 int max_perf, min_perf;
1141
1142 update_turbo_state();
1143
1144 intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
1145 pstate = clamp_t(int, pstate, min_perf, max_perf);
1146 if (pstate == cpu->pstate.current_pstate)
1147 return;
1148
1149 intel_pstate_record_pstate(cpu, pstate);
1150 wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1151 }
1152
1153 static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
1154 {
1155 int from, target_pstate;
1156 struct sample *sample;
1157
1158 from = cpu->pstate.current_pstate;
1159
1160 target_pstate = pstate_funcs.get_target_pstate(cpu);
1161
1162 intel_pstate_update_pstate(cpu, target_pstate);
1163
1164 sample = &cpu->sample;
1165 trace_pstate_sample(fp_toint(sample->core_pct_busy),
1166 fp_toint(sample->busy_scaled),
1167 from,
1168 cpu->pstate.current_pstate,
1169 sample->mperf,
1170 sample->aperf,
1171 sample->tsc,
1172 get_avg_frequency(cpu));
1173 }
1174
1175 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1176 unsigned long util, unsigned long max)
1177 {
1178 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1179 u64 delta_ns = time - cpu->sample.time;
1180
1181 if ((s64)delta_ns >= pid_params.sample_rate_ns) {
1182 bool sample_taken = intel_pstate_sample(cpu, time);
1183
1184 if (sample_taken && !hwp_active)
1185 intel_pstate_adjust_busy_pstate(cpu);
1186 }
1187 }
1188
1189 #define ICPU(model, policy) \
1190 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1191 (unsigned long)&policy }
1192
1193 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1194 ICPU(0x2a, core_params),
1195 ICPU(0x2d, core_params),
1196 ICPU(0x37, silvermont_params),
1197 ICPU(0x3a, core_params),
1198 ICPU(0x3c, core_params),
1199 ICPU(0x3d, core_params),
1200 ICPU(0x3e, core_params),
1201 ICPU(0x3f, core_params),
1202 ICPU(0x45, core_params),
1203 ICPU(0x46, core_params),
1204 ICPU(0x47, core_params),
1205 ICPU(0x4c, airmont_params),
1206 ICPU(0x4e, core_params),
1207 ICPU(0x4f, core_params),
1208 ICPU(0x5e, core_params),
1209 ICPU(0x56, core_params),
1210 ICPU(0x57, knl_params),
1211 {}
1212 };
1213 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1214
1215 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] = {
1216 ICPU(0x56, core_params),
1217 {}
1218 };
1219
1220 static int intel_pstate_init_cpu(unsigned int cpunum)
1221 {
1222 struct cpudata *cpu;
1223
1224 if (!all_cpu_data[cpunum])
1225 all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata),
1226 GFP_KERNEL);
1227 if (!all_cpu_data[cpunum])
1228 return -ENOMEM;
1229
1230 cpu = all_cpu_data[cpunum];
1231
1232 cpu->cpu = cpunum;
1233
1234 if (hwp_active) {
1235 intel_pstate_hwp_enable(cpu);
1236 pid_params.sample_rate_ms = 50;
1237 pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
1238 }
1239
1240 intel_pstate_get_cpu_pstates(cpu);
1241
1242 intel_pstate_busy_pid_reset(cpu);
1243
1244 pr_debug("controlling: cpu %d\n", cpunum);
1245
1246 return 0;
1247 }
1248
1249 static unsigned int intel_pstate_get(unsigned int cpu_num)
1250 {
1251 struct sample *sample;
1252 struct cpudata *cpu;
1253
1254 cpu = all_cpu_data[cpu_num];
1255 if (!cpu)
1256 return 0;
1257 sample = &cpu->sample;
1258 return get_avg_frequency(cpu);
1259 }
1260
1261 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1262 {
1263 struct cpudata *cpu = all_cpu_data[cpu_num];
1264
1265 /* Prevent intel_pstate_update_util() from using stale data. */
1266 cpu->sample.time = 0;
1267 cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1268 intel_pstate_update_util);
1269 }
1270
1271 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1272 {
1273 cpufreq_remove_update_util_hook(cpu);
1274 synchronize_sched();
1275 }
1276
1277 static void intel_pstate_set_performance_limits(struct perf_limits *limits)
1278 {
1279 limits->no_turbo = 0;
1280 limits->turbo_disabled = 0;
1281 limits->max_perf_pct = 100;
1282 limits->max_perf = int_tofp(1);
1283 limits->min_perf_pct = 100;
1284 limits->min_perf = int_tofp(1);
1285 limits->max_policy_pct = 100;
1286 limits->max_sysfs_pct = 100;
1287 limits->min_policy_pct = 0;
1288 limits->min_sysfs_pct = 0;
1289 }
1290
1291 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
1292 {
1293 if (!policy->cpuinfo.max_freq)
1294 return -ENODEV;
1295
1296 intel_pstate_clear_update_util_hook(policy->cpu);
1297
1298 if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
1299 limits = &performance_limits;
1300 if (policy->max >= policy->cpuinfo.max_freq) {
1301 pr_debug("set performance\n");
1302 intel_pstate_set_performance_limits(limits);
1303 goto out;
1304 }
1305 } else {
1306 pr_debug("set powersave\n");
1307 limits = &powersave_limits;
1308 }
1309
1310 limits->min_policy_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
1311 limits->min_policy_pct = clamp_t(int, limits->min_policy_pct, 0 , 100);
1312 limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100,
1313 policy->cpuinfo.max_freq);
1314 limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0 , 100);
1315
1316 /* Normalize user input to [min_policy_pct, max_policy_pct] */
1317 limits->min_perf_pct = max(limits->min_policy_pct,
1318 limits->min_sysfs_pct);
1319 limits->min_perf_pct = min(limits->max_policy_pct,
1320 limits->min_perf_pct);
1321 limits->max_perf_pct = min(limits->max_policy_pct,
1322 limits->max_sysfs_pct);
1323 limits->max_perf_pct = max(limits->min_policy_pct,
1324 limits->max_perf_pct);
1325 limits->max_perf = round_up(limits->max_perf, FRAC_BITS);
1326
1327 /* Make sure min_perf_pct <= max_perf_pct */
1328 limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct);
1329
1330 limits->min_perf = div_fp(limits->min_perf_pct, 100);
1331 limits->max_perf = div_fp(limits->max_perf_pct, 100);
1332
1333 out:
1334 intel_pstate_set_update_util_hook(policy->cpu);
1335
1336 if (hwp_active)
1337 intel_pstate_hwp_set(policy->cpus);
1338
1339 return 0;
1340 }
1341
1342 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
1343 {
1344 cpufreq_verify_within_cpu_limits(policy);
1345
1346 if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
1347 policy->policy != CPUFREQ_POLICY_PERFORMANCE)
1348 return -EINVAL;
1349
1350 return 0;
1351 }
1352
1353 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
1354 {
1355 int cpu_num = policy->cpu;
1356 struct cpudata *cpu = all_cpu_data[cpu_num];
1357
1358 pr_debug("CPU %d exiting\n", cpu_num);
1359
1360 intel_pstate_clear_update_util_hook(cpu_num);
1361
1362 if (hwp_active)
1363 return;
1364
1365 intel_pstate_set_min_pstate(cpu);
1366 }
1367
1368 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
1369 {
1370 struct cpudata *cpu;
1371 int rc;
1372
1373 rc = intel_pstate_init_cpu(policy->cpu);
1374 if (rc)
1375 return rc;
1376
1377 cpu = all_cpu_data[policy->cpu];
1378
1379 if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
1380 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
1381 else
1382 policy->policy = CPUFREQ_POLICY_POWERSAVE;
1383
1384 policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
1385 policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1386
1387 /* cpuinfo and default policy values */
1388 policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
1389 policy->cpuinfo.max_freq =
1390 cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1391 policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
1392 cpumask_set_cpu(policy->cpu, policy->cpus);
1393
1394 return 0;
1395 }
1396
1397 static struct cpufreq_driver intel_pstate_driver = {
1398 .flags = CPUFREQ_CONST_LOOPS,
1399 .verify = intel_pstate_verify_policy,
1400 .setpolicy = intel_pstate_set_policy,
1401 .get = intel_pstate_get,
1402 .init = intel_pstate_cpu_init,
1403 .stop_cpu = intel_pstate_stop_cpu,
1404 .name = "intel_pstate",
1405 };
1406
1407 static int __initdata no_load;
1408 static int __initdata no_hwp;
1409 static int __initdata hwp_only;
1410 static unsigned int force_load;
1411
1412 static int intel_pstate_msrs_not_valid(void)
1413 {
1414 if (!pstate_funcs.get_max() ||
1415 !pstate_funcs.get_min() ||
1416 !pstate_funcs.get_turbo())
1417 return -ENODEV;
1418
1419 return 0;
1420 }
1421
1422 static void copy_pid_params(struct pstate_adjust_policy *policy)
1423 {
1424 pid_params.sample_rate_ms = policy->sample_rate_ms;
1425 pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
1426 pid_params.p_gain_pct = policy->p_gain_pct;
1427 pid_params.i_gain_pct = policy->i_gain_pct;
1428 pid_params.d_gain_pct = policy->d_gain_pct;
1429 pid_params.deadband = policy->deadband;
1430 pid_params.setpoint = policy->setpoint;
1431 }
1432
1433 static void copy_cpu_funcs(struct pstate_funcs *funcs)
1434 {
1435 pstate_funcs.get_max = funcs->get_max;
1436 pstate_funcs.get_max_physical = funcs->get_max_physical;
1437 pstate_funcs.get_min = funcs->get_min;
1438 pstate_funcs.get_turbo = funcs->get_turbo;
1439 pstate_funcs.get_scaling = funcs->get_scaling;
1440 pstate_funcs.get_val = funcs->get_val;
1441 pstate_funcs.get_vid = funcs->get_vid;
1442 pstate_funcs.get_target_pstate = funcs->get_target_pstate;
1443
1444 }
1445
1446 #if IS_ENABLED(CONFIG_ACPI)
1447 #include <acpi/processor.h>
1448
1449 static bool intel_pstate_no_acpi_pss(void)
1450 {
1451 int i;
1452
1453 for_each_possible_cpu(i) {
1454 acpi_status status;
1455 union acpi_object *pss;
1456 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1457 struct acpi_processor *pr = per_cpu(processors, i);
1458
1459 if (!pr)
1460 continue;
1461
1462 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
1463 if (ACPI_FAILURE(status))
1464 continue;
1465
1466 pss = buffer.pointer;
1467 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
1468 kfree(pss);
1469 return false;
1470 }
1471
1472 kfree(pss);
1473 }
1474
1475 return true;
1476 }
1477
1478 static bool intel_pstate_has_acpi_ppc(void)
1479 {
1480 int i;
1481
1482 for_each_possible_cpu(i) {
1483 struct acpi_processor *pr = per_cpu(processors, i);
1484
1485 if (!pr)
1486 continue;
1487 if (acpi_has_method(pr->handle, "_PPC"))
1488 return true;
1489 }
1490 return false;
1491 }
1492
1493 enum {
1494 PSS,
1495 PPC,
1496 };
1497
1498 struct hw_vendor_info {
1499 u16 valid;
1500 char oem_id[ACPI_OEM_ID_SIZE];
1501 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
1502 int oem_pwr_table;
1503 };
1504
1505 /* Hardware vendor-specific info that has its own power management modes */
1506 static struct hw_vendor_info vendor_info[] = {
1507 {1, "HP ", "ProLiant", PSS},
1508 {1, "ORACLE", "X4-2 ", PPC},
1509 {1, "ORACLE", "X4-2L ", PPC},
1510 {1, "ORACLE", "X4-2B ", PPC},
1511 {1, "ORACLE", "X3-2 ", PPC},
1512 {1, "ORACLE", "X3-2L ", PPC},
1513 {1, "ORACLE", "X3-2B ", PPC},
1514 {1, "ORACLE", "X4470M2 ", PPC},
1515 {1, "ORACLE", "X4270M3 ", PPC},
1516 {1, "ORACLE", "X4270M2 ", PPC},
1517 {1, "ORACLE", "X4170M2 ", PPC},
1518 {1, "ORACLE", "X4170 M3", PPC},
1519 {1, "ORACLE", "X4275 M3", PPC},
1520 {1, "ORACLE", "X6-2 ", PPC},
1521 {1, "ORACLE", "Sudbury ", PPC},
1522 {0, "", ""},
1523 };
1524
1525 static bool intel_pstate_platform_pwr_mgmt_exists(void)
1526 {
1527 struct acpi_table_header hdr;
1528 struct hw_vendor_info *v_info;
1529 const struct x86_cpu_id *id;
1530 u64 misc_pwr;
1531
1532 id = x86_match_cpu(intel_pstate_cpu_oob_ids);
1533 if (id) {
1534 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
1535 if ( misc_pwr & (1 << 8))
1536 return true;
1537 }
1538
1539 if (acpi_disabled ||
1540 ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
1541 return false;
1542
1543 for (v_info = vendor_info; v_info->valid; v_info++) {
1544 if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
1545 !strncmp(hdr.oem_table_id, v_info->oem_table_id,
1546 ACPI_OEM_TABLE_ID_SIZE))
1547 switch (v_info->oem_pwr_table) {
1548 case PSS:
1549 return intel_pstate_no_acpi_pss();
1550 case PPC:
1551 return intel_pstate_has_acpi_ppc() &&
1552 (!force_load);
1553 }
1554 }
1555
1556 return false;
1557 }
1558 #else /* CONFIG_ACPI not enabled */
1559 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
1560 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
1561 #endif /* CONFIG_ACPI */
1562
1563 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
1564 { X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
1565 {}
1566 };
1567
1568 static int __init intel_pstate_init(void)
1569 {
1570 int cpu, rc = 0;
1571 const struct x86_cpu_id *id;
1572 struct cpu_defaults *cpu_def;
1573
1574 if (no_load)
1575 return -ENODEV;
1576
1577 if (x86_match_cpu(hwp_support_ids) && !no_hwp) {
1578 copy_cpu_funcs(&core_params.funcs);
1579 hwp_active++;
1580 goto hwp_cpu_matched;
1581 }
1582
1583 id = x86_match_cpu(intel_pstate_cpu_ids);
1584 if (!id)
1585 return -ENODEV;
1586
1587 cpu_def = (struct cpu_defaults *)id->driver_data;
1588
1589 copy_pid_params(&cpu_def->pid_policy);
1590 copy_cpu_funcs(&cpu_def->funcs);
1591
1592 if (intel_pstate_msrs_not_valid())
1593 return -ENODEV;
1594
1595 hwp_cpu_matched:
1596 /*
1597 * The Intel pstate driver will be ignored if the platform
1598 * firmware has its own power management modes.
1599 */
1600 if (intel_pstate_platform_pwr_mgmt_exists())
1601 return -ENODEV;
1602
1603 pr_info("Intel P-state driver initializing\n");
1604
1605 all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
1606 if (!all_cpu_data)
1607 return -ENOMEM;
1608
1609 if (!hwp_active && hwp_only)
1610 goto out;
1611
1612 rc = cpufreq_register_driver(&intel_pstate_driver);
1613 if (rc)
1614 goto out;
1615
1616 intel_pstate_debug_expose_params();
1617 intel_pstate_sysfs_expose_params();
1618
1619 if (hwp_active)
1620 pr_info("HWP enabled\n");
1621
1622 return rc;
1623 out:
1624 get_online_cpus();
1625 for_each_online_cpu(cpu) {
1626 if (all_cpu_data[cpu]) {
1627 intel_pstate_clear_update_util_hook(cpu);
1628 kfree(all_cpu_data[cpu]);
1629 }
1630 }
1631
1632 put_online_cpus();
1633 vfree(all_cpu_data);
1634 return -ENODEV;
1635 }
1636 device_initcall(intel_pstate_init);
1637
1638 static int __init intel_pstate_setup(char *str)
1639 {
1640 if (!str)
1641 return -EINVAL;
1642
1643 if (!strcmp(str, "disable"))
1644 no_load = 1;
1645 if (!strcmp(str, "no_hwp")) {
1646 pr_info("HWP disabled\n");
1647 no_hwp = 1;
1648 }
1649 if (!strcmp(str, "force"))
1650 force_load = 1;
1651 if (!strcmp(str, "hwp_only"))
1652 hwp_only = 1;
1653 return 0;
1654 }
1655 early_param("intel_pstate", intel_pstate_setup);
1656
1657 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
1658 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
1659 MODULE_LICENSE("GPL");