]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/cpufreq/intel_pstate.c
HID: input: ignore the battery in OKLICK Laser BTmouse
[mirror_ubuntu-bionic-kernel.git] / drivers / cpufreq / intel_pstate.c
1 /*
2 * intel_pstate.c: Native P state management for Intel processors
3 *
4 * (C) Copyright 2012 Intel Corporation
5 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
10 * of the License.
11 */
12
13 #include <linux/kernel.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/module.h>
16 #include <linux/ktime.h>
17 #include <linux/hrtimer.h>
18 #include <linux/tick.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/list.h>
22 #include <linux/cpu.h>
23 #include <linux/cpufreq.h>
24 #include <linux/sysfs.h>
25 #include <linux/types.h>
26 #include <linux/fs.h>
27 #include <linux/debugfs.h>
28 #include <linux/acpi.h>
29 #include <linux/vmalloc.h>
30 #include <trace/events/power.h>
31
32 #include <asm/div64.h>
33 #include <asm/msr.h>
34 #include <asm/cpu_device_id.h>
35 #include <asm/cpufeature.h>
36
37 #if IS_ENABLED(CONFIG_ACPI)
38 #include <acpi/processor.h>
39 #endif
40
41 #define BYT_RATIOS 0x66a
42 #define BYT_VIDS 0x66b
43 #define BYT_TURBO_RATIOS 0x66c
44 #define BYT_TURBO_VIDS 0x66d
45
46 #define FRAC_BITS 8
47 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
48 #define fp_toint(X) ((X) >> FRAC_BITS)
49
50 static inline int32_t mul_fp(int32_t x, int32_t y)
51 {
52 return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
53 }
54
55 static inline int32_t div_fp(s64 x, s64 y)
56 {
57 return div64_s64((int64_t)x << FRAC_BITS, y);
58 }
59
60 static inline int ceiling_fp(int32_t x)
61 {
62 int mask, ret;
63
64 ret = fp_toint(x);
65 mask = (1 << FRAC_BITS) - 1;
66 if (x & mask)
67 ret += 1;
68 return ret;
69 }
70
71 struct sample {
72 int32_t core_pct_busy;
73 u64 aperf;
74 u64 mperf;
75 u64 tsc;
76 int freq;
77 ktime_t time;
78 };
79
80 struct pstate_data {
81 int current_pstate;
82 int min_pstate;
83 int max_pstate;
84 int max_pstate_physical;
85 int scaling;
86 int turbo_pstate;
87 };
88
89 struct vid_data {
90 int min;
91 int max;
92 int turbo;
93 int32_t ratio;
94 };
95
96 struct _pid {
97 int setpoint;
98 int32_t integral;
99 int32_t p_gain;
100 int32_t i_gain;
101 int32_t d_gain;
102 int deadband;
103 int32_t last_err;
104 };
105
106 struct cpudata {
107 int cpu;
108
109 struct timer_list timer;
110
111 struct pstate_data pstate;
112 struct vid_data vid;
113 struct _pid pid;
114
115 ktime_t last_sample_time;
116 u64 prev_aperf;
117 u64 prev_mperf;
118 u64 prev_tsc;
119 struct sample sample;
120 #if IS_ENABLED(CONFIG_ACPI)
121 struct acpi_processor_performance acpi_perf_data;
122 #endif
123 };
124
125 static struct cpudata **all_cpu_data;
126 struct pstate_adjust_policy {
127 int sample_rate_ms;
128 int deadband;
129 int setpoint;
130 int p_gain_pct;
131 int d_gain_pct;
132 int i_gain_pct;
133 };
134
135 struct pstate_funcs {
136 int (*get_max)(void);
137 int (*get_max_physical)(void);
138 int (*get_min)(void);
139 int (*get_turbo)(void);
140 int (*get_scaling)(void);
141 void (*set)(struct cpudata*, int pstate);
142 void (*get_vid)(struct cpudata *);
143 };
144
145 struct cpu_defaults {
146 struct pstate_adjust_policy pid_policy;
147 struct pstate_funcs funcs;
148 };
149
150 static struct pstate_adjust_policy pid_params;
151 static struct pstate_funcs pstate_funcs;
152 static int hwp_active;
153 static int no_acpi_perf;
154
155 struct perf_limits {
156 int no_turbo;
157 int turbo_disabled;
158 int max_perf_pct;
159 int min_perf_pct;
160 int32_t max_perf;
161 int32_t min_perf;
162 int max_policy_pct;
163 int max_sysfs_pct;
164 int min_policy_pct;
165 int min_sysfs_pct;
166 int max_perf_ctl;
167 int min_perf_ctl;
168 };
169
170 static struct perf_limits performance_limits = {
171 .no_turbo = 0,
172 .turbo_disabled = 0,
173 .max_perf_pct = 100,
174 .max_perf = int_tofp(1),
175 .min_perf_pct = 100,
176 .min_perf = int_tofp(1),
177 .max_policy_pct = 100,
178 .max_sysfs_pct = 100,
179 .min_policy_pct = 0,
180 .min_sysfs_pct = 0,
181 };
182
183 static struct perf_limits powersave_limits = {
184 .no_turbo = 0,
185 .turbo_disabled = 0,
186 .max_perf_pct = 100,
187 .max_perf = int_tofp(1),
188 .min_perf_pct = 0,
189 .min_perf = 0,
190 .max_policy_pct = 100,
191 .max_sysfs_pct = 100,
192 .min_policy_pct = 0,
193 .min_sysfs_pct = 0,
194 .max_perf_ctl = 0,
195 .min_perf_ctl = 0,
196 };
197
198 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
199 static struct perf_limits *limits = &performance_limits;
200 #else
201 static struct perf_limits *limits = &powersave_limits;
202 #endif
203
204 #if IS_ENABLED(CONFIG_ACPI)
205 /*
206 * The max target pstate ratio is a 8 bit value in both PLATFORM_INFO MSR and
207 * in TURBO_RATIO_LIMIT MSR, which pstate driver stores in max_pstate and
208 * max_turbo_pstate fields. The PERF_CTL MSR contains 16 bit value for P state
209 * ratio, out of it only high 8 bits are used. For example 0x1700 is setting
210 * target ratio 0x17. The _PSS control value stores in a format which can be
211 * directly written to PERF_CTL MSR. But in intel_pstate driver this shift
212 * occurs during write to PERF_CTL (E.g. for cores core_set_pstate()).
213 * This function converts the _PSS control value to intel pstate driver format
214 * for comparison and assignment.
215 */
216 static int convert_to_native_pstate_format(struct cpudata *cpu, int index)
217 {
218 return cpu->acpi_perf_data.states[index].control >> 8;
219 }
220
221 static int intel_pstate_init_perf_limits(struct cpufreq_policy *policy)
222 {
223 struct cpudata *cpu;
224 int ret;
225 bool turbo_absent = false;
226 int max_pstate_index;
227 int min_pss_ctl, max_pss_ctl, turbo_pss_ctl;
228 int i;
229
230 cpu = all_cpu_data[policy->cpu];
231
232 pr_debug("intel_pstate: default limits 0x%x 0x%x 0x%x\n",
233 cpu->pstate.min_pstate, cpu->pstate.max_pstate,
234 cpu->pstate.turbo_pstate);
235
236 if (!cpu->acpi_perf_data.shared_cpu_map &&
237 zalloc_cpumask_var_node(&cpu->acpi_perf_data.shared_cpu_map,
238 GFP_KERNEL, cpu_to_node(policy->cpu))) {
239 return -ENOMEM;
240 }
241
242 ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
243 policy->cpu);
244 if (ret)
245 return ret;
246
247 /*
248 * Check if the control value in _PSS is for PERF_CTL MSR, which should
249 * guarantee that the states returned by it map to the states in our
250 * list directly.
251 */
252 if (cpu->acpi_perf_data.control_register.space_id !=
253 ACPI_ADR_SPACE_FIXED_HARDWARE)
254 return -EIO;
255
256 pr_debug("intel_pstate: CPU%u - ACPI _PSS perf data\n", policy->cpu);
257 for (i = 0; i < cpu->acpi_perf_data.state_count; i++)
258 pr_debug(" %cP%d: %u MHz, %u mW, 0x%x\n",
259 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
260 (u32) cpu->acpi_perf_data.states[i].core_frequency,
261 (u32) cpu->acpi_perf_data.states[i].power,
262 (u32) cpu->acpi_perf_data.states[i].control);
263
264 /*
265 * If there is only one entry _PSS, simply ignore _PSS and continue as
266 * usual without taking _PSS into account
267 */
268 if (cpu->acpi_perf_data.state_count < 2)
269 return 0;
270
271 turbo_pss_ctl = convert_to_native_pstate_format(cpu, 0);
272 min_pss_ctl = convert_to_native_pstate_format(cpu,
273 cpu->acpi_perf_data.state_count - 1);
274 /* Check if there is a turbo freq in _PSS */
275 if (turbo_pss_ctl <= cpu->pstate.max_pstate &&
276 turbo_pss_ctl > cpu->pstate.min_pstate) {
277 pr_debug("intel_pstate: no turbo range exists in _PSS\n");
278 limits->no_turbo = limits->turbo_disabled = 1;
279 cpu->pstate.turbo_pstate = cpu->pstate.max_pstate;
280 turbo_absent = true;
281 }
282
283 /* Check if the max non turbo p state < Intel P state max */
284 max_pstate_index = turbo_absent ? 0 : 1;
285 max_pss_ctl = convert_to_native_pstate_format(cpu, max_pstate_index);
286 if (max_pss_ctl < cpu->pstate.max_pstate &&
287 max_pss_ctl > cpu->pstate.min_pstate)
288 cpu->pstate.max_pstate = max_pss_ctl;
289
290 /* check If min perf > Intel P State min */
291 if (min_pss_ctl > cpu->pstate.min_pstate &&
292 min_pss_ctl < cpu->pstate.max_pstate) {
293 cpu->pstate.min_pstate = min_pss_ctl;
294 policy->cpuinfo.min_freq = min_pss_ctl * cpu->pstate.scaling;
295 }
296
297 if (turbo_absent)
298 policy->cpuinfo.max_freq = cpu->pstate.max_pstate *
299 cpu->pstate.scaling;
300 else {
301 policy->cpuinfo.max_freq = cpu->pstate.turbo_pstate *
302 cpu->pstate.scaling;
303 /*
304 * The _PSS table doesn't contain whole turbo frequency range.
305 * This just contains +1 MHZ above the max non turbo frequency,
306 * with control value corresponding to max turbo ratio. But
307 * when cpufreq set policy is called, it will call with this
308 * max frequency, which will cause a reduced performance as
309 * this driver uses real max turbo frequency as the max
310 * frequeny. So correct this frequency in _PSS table to
311 * correct max turbo frequency based on the turbo ratio.
312 * Also need to convert to MHz as _PSS freq is in MHz.
313 */
314 cpu->acpi_perf_data.states[0].core_frequency =
315 turbo_pss_ctl * 100;
316 }
317
318 pr_debug("intel_pstate: Updated limits using _PSS 0x%x 0x%x 0x%x\n",
319 cpu->pstate.min_pstate, cpu->pstate.max_pstate,
320 cpu->pstate.turbo_pstate);
321 pr_debug("intel_pstate: policy max_freq=%d Khz min_freq = %d KHz\n",
322 policy->cpuinfo.max_freq, policy->cpuinfo.min_freq);
323
324 return 0;
325 }
326
327 static int intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
328 {
329 struct cpudata *cpu;
330
331 if (!no_acpi_perf)
332 return 0;
333
334 cpu = all_cpu_data[policy->cpu];
335 acpi_processor_unregister_performance(policy->cpu);
336 return 0;
337 }
338
339 #else
340 static int intel_pstate_init_perf_limits(struct cpufreq_policy *policy)
341 {
342 return 0;
343 }
344
345 static int intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
346 {
347 return 0;
348 }
349 #endif
350
351 static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
352 int deadband, int integral) {
353 pid->setpoint = setpoint;
354 pid->deadband = deadband;
355 pid->integral = int_tofp(integral);
356 pid->last_err = int_tofp(setpoint) - int_tofp(busy);
357 }
358
359 static inline void pid_p_gain_set(struct _pid *pid, int percent)
360 {
361 pid->p_gain = div_fp(int_tofp(percent), int_tofp(100));
362 }
363
364 static inline void pid_i_gain_set(struct _pid *pid, int percent)
365 {
366 pid->i_gain = div_fp(int_tofp(percent), int_tofp(100));
367 }
368
369 static inline void pid_d_gain_set(struct _pid *pid, int percent)
370 {
371 pid->d_gain = div_fp(int_tofp(percent), int_tofp(100));
372 }
373
374 static signed int pid_calc(struct _pid *pid, int32_t busy)
375 {
376 signed int result;
377 int32_t pterm, dterm, fp_error;
378 int32_t integral_limit;
379
380 fp_error = int_tofp(pid->setpoint) - busy;
381
382 if (abs(fp_error) <= int_tofp(pid->deadband))
383 return 0;
384
385 pterm = mul_fp(pid->p_gain, fp_error);
386
387 pid->integral += fp_error;
388
389 /*
390 * We limit the integral here so that it will never
391 * get higher than 30. This prevents it from becoming
392 * too large an input over long periods of time and allows
393 * it to get factored out sooner.
394 *
395 * The value of 30 was chosen through experimentation.
396 */
397 integral_limit = int_tofp(30);
398 if (pid->integral > integral_limit)
399 pid->integral = integral_limit;
400 if (pid->integral < -integral_limit)
401 pid->integral = -integral_limit;
402
403 dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
404 pid->last_err = fp_error;
405
406 result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
407 result = result + (1 << (FRAC_BITS-1));
408 return (signed int)fp_toint(result);
409 }
410
411 static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
412 {
413 pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
414 pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
415 pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
416
417 pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
418 }
419
420 static inline void intel_pstate_reset_all_pid(void)
421 {
422 unsigned int cpu;
423
424 for_each_online_cpu(cpu) {
425 if (all_cpu_data[cpu])
426 intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
427 }
428 }
429
430 static inline void update_turbo_state(void)
431 {
432 u64 misc_en;
433 struct cpudata *cpu;
434
435 cpu = all_cpu_data[0];
436 rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
437 limits->turbo_disabled =
438 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
439 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
440 }
441
442 static void intel_pstate_hwp_set(void)
443 {
444 int min, hw_min, max, hw_max, cpu, range, adj_range;
445 u64 value, cap;
446
447 rdmsrl(MSR_HWP_CAPABILITIES, cap);
448 hw_min = HWP_LOWEST_PERF(cap);
449 hw_max = HWP_HIGHEST_PERF(cap);
450 range = hw_max - hw_min;
451
452 get_online_cpus();
453
454 for_each_online_cpu(cpu) {
455 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
456 adj_range = limits->min_perf_pct * range / 100;
457 min = hw_min + adj_range;
458 value &= ~HWP_MIN_PERF(~0L);
459 value |= HWP_MIN_PERF(min);
460
461 adj_range = limits->max_perf_pct * range / 100;
462 max = hw_min + adj_range;
463 if (limits->no_turbo) {
464 hw_max = HWP_GUARANTEED_PERF(cap);
465 if (hw_max < max)
466 max = hw_max;
467 }
468
469 value &= ~HWP_MAX_PERF(~0L);
470 value |= HWP_MAX_PERF(max);
471 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
472 }
473
474 put_online_cpus();
475 }
476
477 /************************** debugfs begin ************************/
478 static int pid_param_set(void *data, u64 val)
479 {
480 *(u32 *)data = val;
481 intel_pstate_reset_all_pid();
482 return 0;
483 }
484
485 static int pid_param_get(void *data, u64 *val)
486 {
487 *val = *(u32 *)data;
488 return 0;
489 }
490 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
491
492 struct pid_param {
493 char *name;
494 void *value;
495 };
496
497 static struct pid_param pid_files[] = {
498 {"sample_rate_ms", &pid_params.sample_rate_ms},
499 {"d_gain_pct", &pid_params.d_gain_pct},
500 {"i_gain_pct", &pid_params.i_gain_pct},
501 {"deadband", &pid_params.deadband},
502 {"setpoint", &pid_params.setpoint},
503 {"p_gain_pct", &pid_params.p_gain_pct},
504 {NULL, NULL}
505 };
506
507 static void __init intel_pstate_debug_expose_params(void)
508 {
509 struct dentry *debugfs_parent;
510 int i = 0;
511
512 if (hwp_active)
513 return;
514 debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
515 if (IS_ERR_OR_NULL(debugfs_parent))
516 return;
517 while (pid_files[i].name) {
518 debugfs_create_file(pid_files[i].name, 0660,
519 debugfs_parent, pid_files[i].value,
520 &fops_pid_param);
521 i++;
522 }
523 }
524
525 /************************** debugfs end ************************/
526
527 /************************** sysfs begin ************************/
528 #define show_one(file_name, object) \
529 static ssize_t show_##file_name \
530 (struct kobject *kobj, struct attribute *attr, char *buf) \
531 { \
532 return sprintf(buf, "%u\n", limits->object); \
533 }
534
535 static ssize_t show_turbo_pct(struct kobject *kobj,
536 struct attribute *attr, char *buf)
537 {
538 struct cpudata *cpu;
539 int total, no_turbo, turbo_pct;
540 uint32_t turbo_fp;
541
542 cpu = all_cpu_data[0];
543
544 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
545 no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
546 turbo_fp = div_fp(int_tofp(no_turbo), int_tofp(total));
547 turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
548 return sprintf(buf, "%u\n", turbo_pct);
549 }
550
551 static ssize_t show_num_pstates(struct kobject *kobj,
552 struct attribute *attr, char *buf)
553 {
554 struct cpudata *cpu;
555 int total;
556
557 cpu = all_cpu_data[0];
558 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
559 return sprintf(buf, "%u\n", total);
560 }
561
562 static ssize_t show_no_turbo(struct kobject *kobj,
563 struct attribute *attr, char *buf)
564 {
565 ssize_t ret;
566
567 update_turbo_state();
568 if (limits->turbo_disabled)
569 ret = sprintf(buf, "%u\n", limits->turbo_disabled);
570 else
571 ret = sprintf(buf, "%u\n", limits->no_turbo);
572
573 return ret;
574 }
575
576 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
577 const char *buf, size_t count)
578 {
579 unsigned int input;
580 int ret;
581
582 ret = sscanf(buf, "%u", &input);
583 if (ret != 1)
584 return -EINVAL;
585
586 update_turbo_state();
587 if (limits->turbo_disabled) {
588 pr_warn("intel_pstate: Turbo disabled by BIOS or unavailable on processor\n");
589 return -EPERM;
590 }
591
592 limits->no_turbo = clamp_t(int, input, 0, 1);
593
594 if (hwp_active)
595 intel_pstate_hwp_set();
596
597 return count;
598 }
599
600 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
601 const char *buf, size_t count)
602 {
603 unsigned int input;
604 int ret;
605
606 ret = sscanf(buf, "%u", &input);
607 if (ret != 1)
608 return -EINVAL;
609
610 limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
611 limits->max_perf_pct = min(limits->max_policy_pct,
612 limits->max_sysfs_pct);
613 limits->max_perf_pct = max(limits->min_policy_pct,
614 limits->max_perf_pct);
615 limits->max_perf_pct = max(limits->min_perf_pct,
616 limits->max_perf_pct);
617 limits->max_perf = div_fp(int_tofp(limits->max_perf_pct),
618 int_tofp(100));
619
620 if (hwp_active)
621 intel_pstate_hwp_set();
622 return count;
623 }
624
625 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
626 const char *buf, size_t count)
627 {
628 unsigned int input;
629 int ret;
630
631 ret = sscanf(buf, "%u", &input);
632 if (ret != 1)
633 return -EINVAL;
634
635 limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
636 limits->min_perf_pct = max(limits->min_policy_pct,
637 limits->min_sysfs_pct);
638 limits->min_perf_pct = min(limits->max_policy_pct,
639 limits->min_perf_pct);
640 limits->min_perf_pct = min(limits->max_perf_pct,
641 limits->min_perf_pct);
642 limits->min_perf = div_fp(int_tofp(limits->min_perf_pct),
643 int_tofp(100));
644
645 if (hwp_active)
646 intel_pstate_hwp_set();
647 return count;
648 }
649
650 show_one(max_perf_pct, max_perf_pct);
651 show_one(min_perf_pct, min_perf_pct);
652
653 define_one_global_rw(no_turbo);
654 define_one_global_rw(max_perf_pct);
655 define_one_global_rw(min_perf_pct);
656 define_one_global_ro(turbo_pct);
657 define_one_global_ro(num_pstates);
658
659 static struct attribute *intel_pstate_attributes[] = {
660 &no_turbo.attr,
661 &max_perf_pct.attr,
662 &min_perf_pct.attr,
663 &turbo_pct.attr,
664 &num_pstates.attr,
665 NULL
666 };
667
668 static struct attribute_group intel_pstate_attr_group = {
669 .attrs = intel_pstate_attributes,
670 };
671
672 static void __init intel_pstate_sysfs_expose_params(void)
673 {
674 struct kobject *intel_pstate_kobject;
675 int rc;
676
677 intel_pstate_kobject = kobject_create_and_add("intel_pstate",
678 &cpu_subsys.dev_root->kobj);
679 BUG_ON(!intel_pstate_kobject);
680 rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
681 BUG_ON(rc);
682 }
683 /************************** sysfs end ************************/
684
685 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
686 {
687 wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
688 }
689
690 static int byt_get_min_pstate(void)
691 {
692 u64 value;
693
694 rdmsrl(BYT_RATIOS, value);
695 return (value >> 8) & 0x7F;
696 }
697
698 static int byt_get_max_pstate(void)
699 {
700 u64 value;
701
702 rdmsrl(BYT_RATIOS, value);
703 return (value >> 16) & 0x7F;
704 }
705
706 static int byt_get_turbo_pstate(void)
707 {
708 u64 value;
709
710 rdmsrl(BYT_TURBO_RATIOS, value);
711 return value & 0x7F;
712 }
713
714 static void byt_set_pstate(struct cpudata *cpudata, int pstate)
715 {
716 u64 val;
717 int32_t vid_fp;
718 u32 vid;
719
720 val = (u64)pstate << 8;
721 if (limits->no_turbo && !limits->turbo_disabled)
722 val |= (u64)1 << 32;
723
724 vid_fp = cpudata->vid.min + mul_fp(
725 int_tofp(pstate - cpudata->pstate.min_pstate),
726 cpudata->vid.ratio);
727
728 vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
729 vid = ceiling_fp(vid_fp);
730
731 if (pstate > cpudata->pstate.max_pstate)
732 vid = cpudata->vid.turbo;
733
734 val |= vid;
735
736 wrmsrl_on_cpu(cpudata->cpu, MSR_IA32_PERF_CTL, val);
737 }
738
739 #define BYT_BCLK_FREQS 5
740 static int byt_freq_table[BYT_BCLK_FREQS] = { 833, 1000, 1333, 1167, 800};
741
742 static int byt_get_scaling(void)
743 {
744 u64 value;
745 int i;
746
747 rdmsrl(MSR_FSB_FREQ, value);
748 i = value & 0x3;
749
750 BUG_ON(i > BYT_BCLK_FREQS);
751
752 return byt_freq_table[i] * 100;
753 }
754
755 static void byt_get_vid(struct cpudata *cpudata)
756 {
757 u64 value;
758
759 rdmsrl(BYT_VIDS, value);
760 cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
761 cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
762 cpudata->vid.ratio = div_fp(
763 cpudata->vid.max - cpudata->vid.min,
764 int_tofp(cpudata->pstate.max_pstate -
765 cpudata->pstate.min_pstate));
766
767 rdmsrl(BYT_TURBO_VIDS, value);
768 cpudata->vid.turbo = value & 0x7f;
769 }
770
771 static int core_get_min_pstate(void)
772 {
773 u64 value;
774
775 rdmsrl(MSR_PLATFORM_INFO, value);
776 return (value >> 40) & 0xFF;
777 }
778
779 static int core_get_max_pstate_physical(void)
780 {
781 u64 value;
782
783 rdmsrl(MSR_PLATFORM_INFO, value);
784 return (value >> 8) & 0xFF;
785 }
786
787 static int core_get_max_pstate(void)
788 {
789 u64 tar;
790 u64 plat_info;
791 int max_pstate;
792 int err;
793
794 rdmsrl(MSR_PLATFORM_INFO, plat_info);
795 max_pstate = (plat_info >> 8) & 0xFF;
796
797 err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
798 if (!err) {
799 /* Do some sanity checking for safety */
800 if (plat_info & 0x600000000) {
801 u64 tdp_ctrl;
802 u64 tdp_ratio;
803 int tdp_msr;
804
805 err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
806 if (err)
807 goto skip_tar;
808
809 tdp_msr = MSR_CONFIG_TDP_NOMINAL + tdp_ctrl;
810 err = rdmsrl_safe(tdp_msr, &tdp_ratio);
811 if (err)
812 goto skip_tar;
813
814 if (tdp_ratio - 1 == tar) {
815 max_pstate = tar;
816 pr_debug("max_pstate=TAC %x\n", max_pstate);
817 } else {
818 goto skip_tar;
819 }
820 }
821 }
822
823 skip_tar:
824 return max_pstate;
825 }
826
827 static int core_get_turbo_pstate(void)
828 {
829 u64 value;
830 int nont, ret;
831
832 rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
833 nont = core_get_max_pstate();
834 ret = (value) & 255;
835 if (ret <= nont)
836 ret = nont;
837 return ret;
838 }
839
840 static inline int core_get_scaling(void)
841 {
842 return 100000;
843 }
844
845 static void core_set_pstate(struct cpudata *cpudata, int pstate)
846 {
847 u64 val;
848
849 val = (u64)pstate << 8;
850 if (limits->no_turbo && !limits->turbo_disabled)
851 val |= (u64)1 << 32;
852
853 wrmsrl_on_cpu(cpudata->cpu, MSR_IA32_PERF_CTL, val);
854 }
855
856 static int knl_get_turbo_pstate(void)
857 {
858 u64 value;
859 int nont, ret;
860
861 rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
862 nont = core_get_max_pstate();
863 ret = (((value) >> 8) & 0xFF);
864 if (ret <= nont)
865 ret = nont;
866 return ret;
867 }
868
869 static struct cpu_defaults core_params = {
870 .pid_policy = {
871 .sample_rate_ms = 10,
872 .deadband = 0,
873 .setpoint = 97,
874 .p_gain_pct = 20,
875 .d_gain_pct = 0,
876 .i_gain_pct = 0,
877 },
878 .funcs = {
879 .get_max = core_get_max_pstate,
880 .get_max_physical = core_get_max_pstate_physical,
881 .get_min = core_get_min_pstate,
882 .get_turbo = core_get_turbo_pstate,
883 .get_scaling = core_get_scaling,
884 .set = core_set_pstate,
885 },
886 };
887
888 static struct cpu_defaults byt_params = {
889 .pid_policy = {
890 .sample_rate_ms = 10,
891 .deadband = 0,
892 .setpoint = 60,
893 .p_gain_pct = 14,
894 .d_gain_pct = 0,
895 .i_gain_pct = 4,
896 },
897 .funcs = {
898 .get_max = byt_get_max_pstate,
899 .get_max_physical = byt_get_max_pstate,
900 .get_min = byt_get_min_pstate,
901 .get_turbo = byt_get_turbo_pstate,
902 .set = byt_set_pstate,
903 .get_scaling = byt_get_scaling,
904 .get_vid = byt_get_vid,
905 },
906 };
907
908 static struct cpu_defaults knl_params = {
909 .pid_policy = {
910 .sample_rate_ms = 10,
911 .deadband = 0,
912 .setpoint = 97,
913 .p_gain_pct = 20,
914 .d_gain_pct = 0,
915 .i_gain_pct = 0,
916 },
917 .funcs = {
918 .get_max = core_get_max_pstate,
919 .get_max_physical = core_get_max_pstate_physical,
920 .get_min = core_get_min_pstate,
921 .get_turbo = knl_get_turbo_pstate,
922 .get_scaling = core_get_scaling,
923 .set = core_set_pstate,
924 },
925 };
926
927 static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
928 {
929 int max_perf = cpu->pstate.turbo_pstate;
930 int max_perf_adj;
931 int min_perf;
932
933 if (limits->no_turbo || limits->turbo_disabled)
934 max_perf = cpu->pstate.max_pstate;
935
936 /*
937 * performance can be limited by user through sysfs, by cpufreq
938 * policy, or by cpu specific default values determined through
939 * experimentation.
940 */
941 if (limits->max_perf_ctl && limits->max_sysfs_pct >=
942 limits->max_policy_pct) {
943 *max = limits->max_perf_ctl;
944 } else {
945 max_perf_adj = fp_toint(mul_fp(int_tofp(max_perf),
946 limits->max_perf));
947 *max = clamp_t(int, max_perf_adj, cpu->pstate.min_pstate,
948 cpu->pstate.turbo_pstate);
949 }
950
951 if (limits->min_perf_ctl) {
952 *min = limits->min_perf_ctl;
953 } else {
954 min_perf = fp_toint(mul_fp(int_tofp(max_perf),
955 limits->min_perf));
956 *min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
957 }
958 }
959
960 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate, bool force)
961 {
962 int max_perf, min_perf;
963
964 if (force) {
965 update_turbo_state();
966
967 intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
968
969 pstate = clamp_t(int, pstate, min_perf, max_perf);
970
971 if (pstate == cpu->pstate.current_pstate)
972 return;
973 }
974 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
975
976 cpu->pstate.current_pstate = pstate;
977
978 pstate_funcs.set(cpu, pstate);
979 }
980
981 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
982 {
983 cpu->pstate.min_pstate = pstate_funcs.get_min();
984 cpu->pstate.max_pstate = pstate_funcs.get_max();
985 cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
986 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
987 cpu->pstate.scaling = pstate_funcs.get_scaling();
988
989 if (pstate_funcs.get_vid)
990 pstate_funcs.get_vid(cpu);
991 intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate, false);
992 }
993
994 static inline void intel_pstate_calc_busy(struct cpudata *cpu)
995 {
996 struct sample *sample = &cpu->sample;
997 int64_t core_pct;
998
999 core_pct = int_tofp(sample->aperf) * int_tofp(100);
1000 core_pct = div64_u64(core_pct, int_tofp(sample->mperf));
1001
1002 sample->freq = fp_toint(
1003 mul_fp(int_tofp(
1004 cpu->pstate.max_pstate_physical *
1005 cpu->pstate.scaling / 100),
1006 core_pct));
1007
1008 sample->core_pct_busy = (int32_t)core_pct;
1009 }
1010
1011 static inline void intel_pstate_sample(struct cpudata *cpu)
1012 {
1013 u64 aperf, mperf;
1014 unsigned long flags;
1015 u64 tsc;
1016
1017 local_irq_save(flags);
1018 rdmsrl(MSR_IA32_APERF, aperf);
1019 rdmsrl(MSR_IA32_MPERF, mperf);
1020 if (cpu->prev_mperf == mperf) {
1021 local_irq_restore(flags);
1022 return;
1023 }
1024
1025 tsc = rdtsc();
1026 local_irq_restore(flags);
1027
1028 cpu->last_sample_time = cpu->sample.time;
1029 cpu->sample.time = ktime_get();
1030 cpu->sample.aperf = aperf;
1031 cpu->sample.mperf = mperf;
1032 cpu->sample.tsc = tsc;
1033 cpu->sample.aperf -= cpu->prev_aperf;
1034 cpu->sample.mperf -= cpu->prev_mperf;
1035 cpu->sample.tsc -= cpu->prev_tsc;
1036
1037 intel_pstate_calc_busy(cpu);
1038
1039 cpu->prev_aperf = aperf;
1040 cpu->prev_mperf = mperf;
1041 cpu->prev_tsc = tsc;
1042 }
1043
1044 static inline void intel_hwp_set_sample_time(struct cpudata *cpu)
1045 {
1046 int delay;
1047
1048 delay = msecs_to_jiffies(50);
1049 mod_timer_pinned(&cpu->timer, jiffies + delay);
1050 }
1051
1052 static inline void intel_pstate_set_sample_time(struct cpudata *cpu)
1053 {
1054 int delay;
1055
1056 delay = msecs_to_jiffies(pid_params.sample_rate_ms);
1057 mod_timer_pinned(&cpu->timer, jiffies + delay);
1058 }
1059
1060 static inline int32_t intel_pstate_get_scaled_busy(struct cpudata *cpu)
1061 {
1062 int32_t core_busy, max_pstate, current_pstate, sample_ratio;
1063 s64 duration_us;
1064 u32 sample_time;
1065
1066 /*
1067 * core_busy is the ratio of actual performance to max
1068 * max_pstate is the max non turbo pstate available
1069 * current_pstate was the pstate that was requested during
1070 * the last sample period.
1071 *
1072 * We normalize core_busy, which was our actual percent
1073 * performance to what we requested during the last sample
1074 * period. The result will be a percentage of busy at a
1075 * specified pstate.
1076 */
1077 core_busy = cpu->sample.core_pct_busy;
1078 max_pstate = int_tofp(cpu->pstate.max_pstate_physical);
1079 current_pstate = int_tofp(cpu->pstate.current_pstate);
1080 core_busy = mul_fp(core_busy, div_fp(max_pstate, current_pstate));
1081
1082 /*
1083 * Since we have a deferred timer, it will not fire unless
1084 * we are in C0. So, determine if the actual elapsed time
1085 * is significantly greater (3x) than our sample interval. If it
1086 * is, then we were idle for a long enough period of time
1087 * to adjust our busyness.
1088 */
1089 sample_time = pid_params.sample_rate_ms * USEC_PER_MSEC;
1090 duration_us = ktime_us_delta(cpu->sample.time,
1091 cpu->last_sample_time);
1092 if (duration_us > sample_time * 3) {
1093 sample_ratio = div_fp(int_tofp(sample_time),
1094 int_tofp(duration_us));
1095 core_busy = mul_fp(core_busy, sample_ratio);
1096 }
1097
1098 return core_busy;
1099 }
1100
1101 static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
1102 {
1103 int32_t busy_scaled;
1104 struct _pid *pid;
1105 signed int ctl;
1106 int from;
1107 struct sample *sample;
1108
1109 from = cpu->pstate.current_pstate;
1110
1111 pid = &cpu->pid;
1112 busy_scaled = intel_pstate_get_scaled_busy(cpu);
1113
1114 ctl = pid_calc(pid, busy_scaled);
1115
1116 /* Negative values of ctl increase the pstate and vice versa */
1117 intel_pstate_set_pstate(cpu, cpu->pstate.current_pstate - ctl, true);
1118
1119 sample = &cpu->sample;
1120 trace_pstate_sample(fp_toint(sample->core_pct_busy),
1121 fp_toint(busy_scaled),
1122 from,
1123 cpu->pstate.current_pstate,
1124 sample->mperf,
1125 sample->aperf,
1126 sample->tsc,
1127 sample->freq);
1128 }
1129
1130 static void intel_hwp_timer_func(unsigned long __data)
1131 {
1132 struct cpudata *cpu = (struct cpudata *) __data;
1133
1134 intel_pstate_sample(cpu);
1135 intel_hwp_set_sample_time(cpu);
1136 }
1137
1138 static void intel_pstate_timer_func(unsigned long __data)
1139 {
1140 struct cpudata *cpu = (struct cpudata *) __data;
1141
1142 intel_pstate_sample(cpu);
1143
1144 intel_pstate_adjust_busy_pstate(cpu);
1145
1146 intel_pstate_set_sample_time(cpu);
1147 }
1148
1149 #define ICPU(model, policy) \
1150 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1151 (unsigned long)&policy }
1152
1153 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1154 ICPU(0x2a, core_params),
1155 ICPU(0x2d, core_params),
1156 ICPU(0x37, byt_params),
1157 ICPU(0x3a, core_params),
1158 ICPU(0x3c, core_params),
1159 ICPU(0x3d, core_params),
1160 ICPU(0x3e, core_params),
1161 ICPU(0x3f, core_params),
1162 ICPU(0x45, core_params),
1163 ICPU(0x46, core_params),
1164 ICPU(0x47, core_params),
1165 ICPU(0x4c, byt_params),
1166 ICPU(0x4e, core_params),
1167 ICPU(0x4f, core_params),
1168 ICPU(0x5e, core_params),
1169 ICPU(0x56, core_params),
1170 ICPU(0x57, knl_params),
1171 {}
1172 };
1173 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1174
1175 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] = {
1176 ICPU(0x56, core_params),
1177 {}
1178 };
1179
1180 static int intel_pstate_init_cpu(unsigned int cpunum)
1181 {
1182 struct cpudata *cpu;
1183
1184 if (!all_cpu_data[cpunum])
1185 all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata),
1186 GFP_KERNEL);
1187 if (!all_cpu_data[cpunum])
1188 return -ENOMEM;
1189
1190 cpu = all_cpu_data[cpunum];
1191
1192 cpu->cpu = cpunum;
1193
1194 if (hwp_active)
1195 intel_pstate_hwp_enable(cpu);
1196
1197 intel_pstate_get_cpu_pstates(cpu);
1198
1199 init_timer_deferrable(&cpu->timer);
1200 cpu->timer.data = (unsigned long)cpu;
1201 cpu->timer.expires = jiffies + HZ/100;
1202
1203 if (!hwp_active)
1204 cpu->timer.function = intel_pstate_timer_func;
1205 else
1206 cpu->timer.function = intel_hwp_timer_func;
1207
1208 intel_pstate_busy_pid_reset(cpu);
1209 intel_pstate_sample(cpu);
1210
1211 add_timer_on(&cpu->timer, cpunum);
1212
1213 pr_debug("intel_pstate: controlling: cpu %d\n", cpunum);
1214
1215 return 0;
1216 }
1217
1218 static unsigned int intel_pstate_get(unsigned int cpu_num)
1219 {
1220 struct sample *sample;
1221 struct cpudata *cpu;
1222
1223 cpu = all_cpu_data[cpu_num];
1224 if (!cpu)
1225 return 0;
1226 sample = &cpu->sample;
1227 return sample->freq;
1228 }
1229
1230 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
1231 {
1232 #if IS_ENABLED(CONFIG_ACPI)
1233 struct cpudata *cpu;
1234 int i;
1235 #endif
1236 pr_debug("intel_pstate: %s max %u policy->max %u\n", __func__,
1237 policy->cpuinfo.max_freq, policy->max);
1238 if (!policy->cpuinfo.max_freq)
1239 return -ENODEV;
1240
1241 if (policy->policy == CPUFREQ_POLICY_PERFORMANCE &&
1242 policy->max >= policy->cpuinfo.max_freq) {
1243 pr_debug("intel_pstate: set performance\n");
1244 limits = &performance_limits;
1245 return 0;
1246 }
1247
1248 pr_debug("intel_pstate: set powersave\n");
1249 limits = &powersave_limits;
1250 limits->min_policy_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
1251 limits->min_policy_pct = clamp_t(int, limits->min_policy_pct, 0 , 100);
1252 limits->max_policy_pct = (policy->max * 100) / policy->cpuinfo.max_freq;
1253 limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0 , 100);
1254
1255 /* Normalize user input to [min_policy_pct, max_policy_pct] */
1256 limits->min_perf_pct = max(limits->min_policy_pct,
1257 limits->min_sysfs_pct);
1258 limits->min_perf_pct = min(limits->max_policy_pct,
1259 limits->min_perf_pct);
1260 limits->max_perf_pct = min(limits->max_policy_pct,
1261 limits->max_sysfs_pct);
1262 limits->max_perf_pct = max(limits->min_policy_pct,
1263 limits->max_perf_pct);
1264
1265 /* Make sure min_perf_pct <= max_perf_pct */
1266 limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct);
1267
1268 limits->min_perf = div_fp(int_tofp(limits->min_perf_pct),
1269 int_tofp(100));
1270 limits->max_perf = div_fp(int_tofp(limits->max_perf_pct),
1271 int_tofp(100));
1272
1273 #if IS_ENABLED(CONFIG_ACPI)
1274 cpu = all_cpu_data[policy->cpu];
1275 for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
1276 int control;
1277
1278 control = convert_to_native_pstate_format(cpu, i);
1279 if (control * cpu->pstate.scaling == policy->max)
1280 limits->max_perf_ctl = control;
1281 if (control * cpu->pstate.scaling == policy->min)
1282 limits->min_perf_ctl = control;
1283 }
1284
1285 pr_debug("intel_pstate: max %u policy_max %u perf_ctl [0x%x-0x%x]\n",
1286 policy->cpuinfo.max_freq, policy->max, limits->min_perf_ctl,
1287 limits->max_perf_ctl);
1288 #endif
1289
1290 if (hwp_active)
1291 intel_pstate_hwp_set();
1292
1293 return 0;
1294 }
1295
1296 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
1297 {
1298 cpufreq_verify_within_cpu_limits(policy);
1299
1300 if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
1301 policy->policy != CPUFREQ_POLICY_PERFORMANCE)
1302 return -EINVAL;
1303
1304 return 0;
1305 }
1306
1307 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
1308 {
1309 int cpu_num = policy->cpu;
1310 struct cpudata *cpu = all_cpu_data[cpu_num];
1311
1312 pr_debug("intel_pstate: CPU %d exiting\n", cpu_num);
1313
1314 del_timer_sync(&all_cpu_data[cpu_num]->timer);
1315 if (hwp_active)
1316 return;
1317
1318 intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate, false);
1319 }
1320
1321 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
1322 {
1323 struct cpudata *cpu;
1324 int rc;
1325
1326 rc = intel_pstate_init_cpu(policy->cpu);
1327 if (rc)
1328 return rc;
1329
1330 cpu = all_cpu_data[policy->cpu];
1331
1332 if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
1333 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
1334 else
1335 policy->policy = CPUFREQ_POLICY_POWERSAVE;
1336
1337 policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
1338 policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1339
1340 /* cpuinfo and default policy values */
1341 policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
1342 policy->cpuinfo.max_freq =
1343 cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1344 if (!no_acpi_perf)
1345 intel_pstate_init_perf_limits(policy);
1346 /*
1347 * If there is no acpi perf data or error, we ignore and use Intel P
1348 * state calculated limits, So this is not fatal error.
1349 */
1350 policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
1351 cpumask_set_cpu(policy->cpu, policy->cpus);
1352
1353 return 0;
1354 }
1355
1356 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
1357 {
1358 return intel_pstate_exit_perf_limits(policy);
1359 }
1360
1361 static struct cpufreq_driver intel_pstate_driver = {
1362 .flags = CPUFREQ_CONST_LOOPS,
1363 .verify = intel_pstate_verify_policy,
1364 .setpolicy = intel_pstate_set_policy,
1365 .get = intel_pstate_get,
1366 .init = intel_pstate_cpu_init,
1367 .exit = intel_pstate_cpu_exit,
1368 .stop_cpu = intel_pstate_stop_cpu,
1369 .name = "intel_pstate",
1370 };
1371
1372 static int __initdata no_load;
1373 static int __initdata no_hwp;
1374 static int __initdata hwp_only;
1375 static unsigned int force_load;
1376
1377 static int intel_pstate_msrs_not_valid(void)
1378 {
1379 if (!pstate_funcs.get_max() ||
1380 !pstate_funcs.get_min() ||
1381 !pstate_funcs.get_turbo())
1382 return -ENODEV;
1383
1384 return 0;
1385 }
1386
1387 static void copy_pid_params(struct pstate_adjust_policy *policy)
1388 {
1389 pid_params.sample_rate_ms = policy->sample_rate_ms;
1390 pid_params.p_gain_pct = policy->p_gain_pct;
1391 pid_params.i_gain_pct = policy->i_gain_pct;
1392 pid_params.d_gain_pct = policy->d_gain_pct;
1393 pid_params.deadband = policy->deadband;
1394 pid_params.setpoint = policy->setpoint;
1395 }
1396
1397 static void copy_cpu_funcs(struct pstate_funcs *funcs)
1398 {
1399 pstate_funcs.get_max = funcs->get_max;
1400 pstate_funcs.get_max_physical = funcs->get_max_physical;
1401 pstate_funcs.get_min = funcs->get_min;
1402 pstate_funcs.get_turbo = funcs->get_turbo;
1403 pstate_funcs.get_scaling = funcs->get_scaling;
1404 pstate_funcs.set = funcs->set;
1405 pstate_funcs.get_vid = funcs->get_vid;
1406 }
1407
1408 #if IS_ENABLED(CONFIG_ACPI)
1409
1410 static bool intel_pstate_no_acpi_pss(void)
1411 {
1412 int i;
1413
1414 for_each_possible_cpu(i) {
1415 acpi_status status;
1416 union acpi_object *pss;
1417 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1418 struct acpi_processor *pr = per_cpu(processors, i);
1419
1420 if (!pr)
1421 continue;
1422
1423 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
1424 if (ACPI_FAILURE(status))
1425 continue;
1426
1427 pss = buffer.pointer;
1428 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
1429 kfree(pss);
1430 return false;
1431 }
1432
1433 kfree(pss);
1434 }
1435
1436 return true;
1437 }
1438
1439 static bool intel_pstate_has_acpi_ppc(void)
1440 {
1441 int i;
1442
1443 for_each_possible_cpu(i) {
1444 struct acpi_processor *pr = per_cpu(processors, i);
1445
1446 if (!pr)
1447 continue;
1448 if (acpi_has_method(pr->handle, "_PPC"))
1449 return true;
1450 }
1451 return false;
1452 }
1453
1454 enum {
1455 PSS,
1456 PPC,
1457 };
1458
1459 struct hw_vendor_info {
1460 u16 valid;
1461 char oem_id[ACPI_OEM_ID_SIZE];
1462 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
1463 int oem_pwr_table;
1464 };
1465
1466 /* Hardware vendor-specific info that has its own power management modes */
1467 static struct hw_vendor_info vendor_info[] = {
1468 {1, "HP ", "ProLiant", PSS},
1469 {1, "ORACLE", "X4-2 ", PPC},
1470 {1, "ORACLE", "X4-2L ", PPC},
1471 {1, "ORACLE", "X4-2B ", PPC},
1472 {1, "ORACLE", "X3-2 ", PPC},
1473 {1, "ORACLE", "X3-2L ", PPC},
1474 {1, "ORACLE", "X3-2B ", PPC},
1475 {1, "ORACLE", "X4470M2 ", PPC},
1476 {1, "ORACLE", "X4270M3 ", PPC},
1477 {1, "ORACLE", "X4270M2 ", PPC},
1478 {1, "ORACLE", "X4170M2 ", PPC},
1479 {1, "ORACLE", "X4170 M3", PPC},
1480 {1, "ORACLE", "X4275 M3", PPC},
1481 {1, "ORACLE", "X6-2 ", PPC},
1482 {1, "ORACLE", "Sudbury ", PPC},
1483 {0, "", ""},
1484 };
1485
1486 static bool intel_pstate_platform_pwr_mgmt_exists(void)
1487 {
1488 struct acpi_table_header hdr;
1489 struct hw_vendor_info *v_info;
1490 const struct x86_cpu_id *id;
1491 u64 misc_pwr;
1492
1493 id = x86_match_cpu(intel_pstate_cpu_oob_ids);
1494 if (id) {
1495 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
1496 if ( misc_pwr & (1 << 8))
1497 return true;
1498 }
1499
1500 if (acpi_disabled ||
1501 ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
1502 return false;
1503
1504 for (v_info = vendor_info; v_info->valid; v_info++) {
1505 if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
1506 !strncmp(hdr.oem_table_id, v_info->oem_table_id,
1507 ACPI_OEM_TABLE_ID_SIZE))
1508 switch (v_info->oem_pwr_table) {
1509 case PSS:
1510 return intel_pstate_no_acpi_pss();
1511 case PPC:
1512 return intel_pstate_has_acpi_ppc() &&
1513 (!force_load);
1514 }
1515 }
1516
1517 return false;
1518 }
1519 #else /* CONFIG_ACPI not enabled */
1520 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
1521 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
1522 #endif /* CONFIG_ACPI */
1523
1524 static int __init intel_pstate_init(void)
1525 {
1526 int cpu, rc = 0;
1527 const struct x86_cpu_id *id;
1528 struct cpu_defaults *cpu_def;
1529
1530 if (no_load)
1531 return -ENODEV;
1532
1533 id = x86_match_cpu(intel_pstate_cpu_ids);
1534 if (!id)
1535 return -ENODEV;
1536
1537 /*
1538 * The Intel pstate driver will be ignored if the platform
1539 * firmware has its own power management modes.
1540 */
1541 if (intel_pstate_platform_pwr_mgmt_exists())
1542 return -ENODEV;
1543
1544 cpu_def = (struct cpu_defaults *)id->driver_data;
1545
1546 copy_pid_params(&cpu_def->pid_policy);
1547 copy_cpu_funcs(&cpu_def->funcs);
1548
1549 if (intel_pstate_msrs_not_valid())
1550 return -ENODEV;
1551
1552 pr_info("Intel P-state driver initializing.\n");
1553
1554 all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
1555 if (!all_cpu_data)
1556 return -ENOMEM;
1557
1558 if (static_cpu_has_safe(X86_FEATURE_HWP) && !no_hwp) {
1559 pr_info("intel_pstate: HWP enabled\n");
1560 hwp_active++;
1561 }
1562
1563 if (!hwp_active && hwp_only)
1564 goto out;
1565
1566 rc = cpufreq_register_driver(&intel_pstate_driver);
1567 if (rc)
1568 goto out;
1569
1570 intel_pstate_debug_expose_params();
1571 intel_pstate_sysfs_expose_params();
1572
1573 return rc;
1574 out:
1575 get_online_cpus();
1576 for_each_online_cpu(cpu) {
1577 if (all_cpu_data[cpu]) {
1578 del_timer_sync(&all_cpu_data[cpu]->timer);
1579 kfree(all_cpu_data[cpu]);
1580 }
1581 }
1582
1583 put_online_cpus();
1584 vfree(all_cpu_data);
1585 return -ENODEV;
1586 }
1587 device_initcall(intel_pstate_init);
1588
1589 static int __init intel_pstate_setup(char *str)
1590 {
1591 if (!str)
1592 return -EINVAL;
1593
1594 if (!strcmp(str, "disable"))
1595 no_load = 1;
1596 if (!strcmp(str, "no_hwp")) {
1597 pr_info("intel_pstate: HWP disabled\n");
1598 no_hwp = 1;
1599 }
1600 if (!strcmp(str, "force"))
1601 force_load = 1;
1602 if (!strcmp(str, "hwp_only"))
1603 hwp_only = 1;
1604 if (!strcmp(str, "no_acpi"))
1605 no_acpi_perf = 1;
1606
1607 return 0;
1608 }
1609 early_param("intel_pstate", intel_pstate_setup);
1610
1611 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
1612 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
1613 MODULE_LICENSE("GPL");