]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/cpufreq/intel_pstate.c
Merge branch 'utilities' of git://git.kernel.org/pub/scm/linux/kernel/git/lenb/linux
[mirror_ubuntu-bionic-kernel.git] / drivers / cpufreq / intel_pstate.c
1 /*
2 * intel_pstate.c: Native P state management for Intel processors
3 *
4 * (C) Copyright 2012 Intel Corporation
5 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
10 * of the License.
11 */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/kernel.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/module.h>
18 #include <linux/ktime.h>
19 #include <linux/hrtimer.h>
20 #include <linux/tick.h>
21 #include <linux/slab.h>
22 #include <linux/sched/cpufreq.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25 #include <linux/cpufreq.h>
26 #include <linux/sysfs.h>
27 #include <linux/types.h>
28 #include <linux/fs.h>
29 #include <linux/debugfs.h>
30 #include <linux/acpi.h>
31 #include <linux/vmalloc.h>
32 #include <trace/events/power.h>
33
34 #include <asm/div64.h>
35 #include <asm/msr.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/cpufeature.h>
38 #include <asm/intel-family.h>
39
40 #define INTEL_PSTATE_DEFAULT_SAMPLING_INTERVAL (10 * NSEC_PER_MSEC)
41 #define INTEL_PSTATE_HWP_SAMPLING_INTERVAL (50 * NSEC_PER_MSEC)
42
43 #define INTEL_CPUFREQ_TRANSITION_LATENCY 20000
44 #define INTEL_CPUFREQ_TRANSITION_DELAY 500
45
46 #ifdef CONFIG_ACPI
47 #include <acpi/processor.h>
48 #include <acpi/cppc_acpi.h>
49 #endif
50
51 #define FRAC_BITS 8
52 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
53 #define fp_toint(X) ((X) >> FRAC_BITS)
54
55 #define EXT_BITS 6
56 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
57 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
58 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
59
60 static inline int32_t mul_fp(int32_t x, int32_t y)
61 {
62 return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
63 }
64
65 static inline int32_t div_fp(s64 x, s64 y)
66 {
67 return div64_s64((int64_t)x << FRAC_BITS, y);
68 }
69
70 static inline int ceiling_fp(int32_t x)
71 {
72 int mask, ret;
73
74 ret = fp_toint(x);
75 mask = (1 << FRAC_BITS) - 1;
76 if (x & mask)
77 ret += 1;
78 return ret;
79 }
80
81 static inline int32_t percent_fp(int percent)
82 {
83 return div_fp(percent, 100);
84 }
85
86 static inline u64 mul_ext_fp(u64 x, u64 y)
87 {
88 return (x * y) >> EXT_FRAC_BITS;
89 }
90
91 static inline u64 div_ext_fp(u64 x, u64 y)
92 {
93 return div64_u64(x << EXT_FRAC_BITS, y);
94 }
95
96 static inline int32_t percent_ext_fp(int percent)
97 {
98 return div_ext_fp(percent, 100);
99 }
100
101 /**
102 * struct sample - Store performance sample
103 * @core_avg_perf: Ratio of APERF/MPERF which is the actual average
104 * performance during last sample period
105 * @busy_scaled: Scaled busy value which is used to calculate next
106 * P state. This can be different than core_avg_perf
107 * to account for cpu idle period
108 * @aperf: Difference of actual performance frequency clock count
109 * read from APERF MSR between last and current sample
110 * @mperf: Difference of maximum performance frequency clock count
111 * read from MPERF MSR between last and current sample
112 * @tsc: Difference of time stamp counter between last and
113 * current sample
114 * @time: Current time from scheduler
115 *
116 * This structure is used in the cpudata structure to store performance sample
117 * data for choosing next P State.
118 */
119 struct sample {
120 int32_t core_avg_perf;
121 int32_t busy_scaled;
122 u64 aperf;
123 u64 mperf;
124 u64 tsc;
125 u64 time;
126 };
127
128 /**
129 * struct pstate_data - Store P state data
130 * @current_pstate: Current requested P state
131 * @min_pstate: Min P state possible for this platform
132 * @max_pstate: Max P state possible for this platform
133 * @max_pstate_physical:This is physical Max P state for a processor
134 * This can be higher than the max_pstate which can
135 * be limited by platform thermal design power limits
136 * @scaling: Scaling factor to convert frequency to cpufreq
137 * frequency units
138 * @turbo_pstate: Max Turbo P state possible for this platform
139 * @max_freq: @max_pstate frequency in cpufreq units
140 * @turbo_freq: @turbo_pstate frequency in cpufreq units
141 *
142 * Stores the per cpu model P state limits and current P state.
143 */
144 struct pstate_data {
145 int current_pstate;
146 int min_pstate;
147 int max_pstate;
148 int max_pstate_physical;
149 int scaling;
150 int turbo_pstate;
151 unsigned int max_freq;
152 unsigned int turbo_freq;
153 };
154
155 /**
156 * struct vid_data - Stores voltage information data
157 * @min: VID data for this platform corresponding to
158 * the lowest P state
159 * @max: VID data corresponding to the highest P State.
160 * @turbo: VID data for turbo P state
161 * @ratio: Ratio of (vid max - vid min) /
162 * (max P state - Min P State)
163 *
164 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
165 * This data is used in Atom platforms, where in addition to target P state,
166 * the voltage data needs to be specified to select next P State.
167 */
168 struct vid_data {
169 int min;
170 int max;
171 int turbo;
172 int32_t ratio;
173 };
174
175 /**
176 * struct _pid - Stores PID data
177 * @setpoint: Target set point for busyness or performance
178 * @integral: Storage for accumulated error values
179 * @p_gain: PID proportional gain
180 * @i_gain: PID integral gain
181 * @d_gain: PID derivative gain
182 * @deadband: PID deadband
183 * @last_err: Last error storage for integral part of PID calculation
184 *
185 * Stores PID coefficients and last error for PID controller.
186 */
187 struct _pid {
188 int setpoint;
189 int32_t integral;
190 int32_t p_gain;
191 int32_t i_gain;
192 int32_t d_gain;
193 int deadband;
194 int32_t last_err;
195 };
196
197 /**
198 * struct global_params - Global parameters, mostly tunable via sysfs.
199 * @no_turbo: Whether or not to use turbo P-states.
200 * @turbo_disabled: Whethet or not turbo P-states are available at all,
201 * based on the MSR_IA32_MISC_ENABLE value and whether or
202 * not the maximum reported turbo P-state is different from
203 * the maximum reported non-turbo one.
204 * @min_perf_pct: Minimum capacity limit in percent of the maximum turbo
205 * P-state capacity.
206 * @max_perf_pct: Maximum capacity limit in percent of the maximum turbo
207 * P-state capacity.
208 */
209 struct global_params {
210 bool no_turbo;
211 bool turbo_disabled;
212 int max_perf_pct;
213 int min_perf_pct;
214 };
215
216 /**
217 * struct cpudata - Per CPU instance data storage
218 * @cpu: CPU number for this instance data
219 * @policy: CPUFreq policy value
220 * @update_util: CPUFreq utility callback information
221 * @update_util_set: CPUFreq utility callback is set
222 * @iowait_boost: iowait-related boost fraction
223 * @last_update: Time of the last update.
224 * @pstate: Stores P state limits for this CPU
225 * @vid: Stores VID limits for this CPU
226 * @pid: Stores PID parameters for this CPU
227 * @last_sample_time: Last Sample time
228 * @prev_aperf: Last APERF value read from APERF MSR
229 * @prev_mperf: Last MPERF value read from MPERF MSR
230 * @prev_tsc: Last timestamp counter (TSC) value
231 * @prev_cummulative_iowait: IO Wait time difference from last and
232 * current sample
233 * @sample: Storage for storing last Sample data
234 * @min_perf: Minimum capacity limit as a fraction of the maximum
235 * turbo P-state capacity.
236 * @max_perf: Maximum capacity limit as a fraction of the maximum
237 * turbo P-state capacity.
238 * @acpi_perf_data: Stores ACPI perf information read from _PSS
239 * @valid_pss_table: Set to true for valid ACPI _PSS entries found
240 * @epp_powersave: Last saved HWP energy performance preference
241 * (EPP) or energy performance bias (EPB),
242 * when policy switched to performance
243 * @epp_policy: Last saved policy used to set EPP/EPB
244 * @epp_default: Power on default HWP energy performance
245 * preference/bias
246 * @epp_saved: Saved EPP/EPB during system suspend or CPU offline
247 * operation
248 *
249 * This structure stores per CPU instance data for all CPUs.
250 */
251 struct cpudata {
252 int cpu;
253
254 unsigned int policy;
255 struct update_util_data update_util;
256 bool update_util_set;
257
258 struct pstate_data pstate;
259 struct vid_data vid;
260 struct _pid pid;
261
262 u64 last_update;
263 u64 last_sample_time;
264 u64 prev_aperf;
265 u64 prev_mperf;
266 u64 prev_tsc;
267 u64 prev_cummulative_iowait;
268 struct sample sample;
269 int32_t min_perf;
270 int32_t max_perf;
271 #ifdef CONFIG_ACPI
272 struct acpi_processor_performance acpi_perf_data;
273 bool valid_pss_table;
274 #endif
275 unsigned int iowait_boost;
276 s16 epp_powersave;
277 s16 epp_policy;
278 s16 epp_default;
279 s16 epp_saved;
280 };
281
282 static struct cpudata **all_cpu_data;
283
284 /**
285 * struct pstate_adjust_policy - Stores static PID configuration data
286 * @sample_rate_ms: PID calculation sample rate in ms
287 * @sample_rate_ns: Sample rate calculation in ns
288 * @deadband: PID deadband
289 * @setpoint: PID Setpoint
290 * @p_gain_pct: PID proportional gain
291 * @i_gain_pct: PID integral gain
292 * @d_gain_pct: PID derivative gain
293 *
294 * Stores per CPU model static PID configuration data.
295 */
296 struct pstate_adjust_policy {
297 int sample_rate_ms;
298 s64 sample_rate_ns;
299 int deadband;
300 int setpoint;
301 int p_gain_pct;
302 int d_gain_pct;
303 int i_gain_pct;
304 };
305
306 /**
307 * struct pstate_funcs - Per CPU model specific callbacks
308 * @get_max: Callback to get maximum non turbo effective P state
309 * @get_max_physical: Callback to get maximum non turbo physical P state
310 * @get_min: Callback to get minimum P state
311 * @get_turbo: Callback to get turbo P state
312 * @get_scaling: Callback to get frequency scaling factor
313 * @get_val: Callback to convert P state to actual MSR write value
314 * @get_vid: Callback to get VID data for Atom platforms
315 * @update_util: Active mode utilization update callback.
316 *
317 * Core and Atom CPU models have different way to get P State limits. This
318 * structure is used to store those callbacks.
319 */
320 struct pstate_funcs {
321 int (*get_max)(void);
322 int (*get_max_physical)(void);
323 int (*get_min)(void);
324 int (*get_turbo)(void);
325 int (*get_scaling)(void);
326 u64 (*get_val)(struct cpudata*, int pstate);
327 void (*get_vid)(struct cpudata *);
328 void (*update_util)(struct update_util_data *data, u64 time,
329 unsigned int flags);
330 };
331
332 static struct pstate_funcs pstate_funcs __read_mostly;
333 static struct pstate_adjust_policy pid_params __read_mostly = {
334 .sample_rate_ms = 10,
335 .sample_rate_ns = 10 * NSEC_PER_MSEC,
336 .deadband = 0,
337 .setpoint = 97,
338 .p_gain_pct = 20,
339 .d_gain_pct = 0,
340 .i_gain_pct = 0,
341 };
342
343 static int hwp_active __read_mostly;
344 static bool per_cpu_limits __read_mostly;
345
346 static struct cpufreq_driver *intel_pstate_driver __read_mostly;
347
348 #ifdef CONFIG_ACPI
349 static bool acpi_ppc;
350 #endif
351
352 static struct global_params global;
353
354 static DEFINE_MUTEX(intel_pstate_driver_lock);
355 static DEFINE_MUTEX(intel_pstate_limits_lock);
356
357 #ifdef CONFIG_ACPI
358
359 static bool intel_pstate_get_ppc_enable_status(void)
360 {
361 if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
362 acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
363 return true;
364
365 return acpi_ppc;
366 }
367
368 #ifdef CONFIG_ACPI_CPPC_LIB
369
370 /* The work item is needed to avoid CPU hotplug locking issues */
371 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
372 {
373 sched_set_itmt_support();
374 }
375
376 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
377
378 static void intel_pstate_set_itmt_prio(int cpu)
379 {
380 struct cppc_perf_caps cppc_perf;
381 static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
382 int ret;
383
384 ret = cppc_get_perf_caps(cpu, &cppc_perf);
385 if (ret)
386 return;
387
388 /*
389 * The priorities can be set regardless of whether or not
390 * sched_set_itmt_support(true) has been called and it is valid to
391 * update them at any time after it has been called.
392 */
393 sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
394
395 if (max_highest_perf <= min_highest_perf) {
396 if (cppc_perf.highest_perf > max_highest_perf)
397 max_highest_perf = cppc_perf.highest_perf;
398
399 if (cppc_perf.highest_perf < min_highest_perf)
400 min_highest_perf = cppc_perf.highest_perf;
401
402 if (max_highest_perf > min_highest_perf) {
403 /*
404 * This code can be run during CPU online under the
405 * CPU hotplug locks, so sched_set_itmt_support()
406 * cannot be called from here. Queue up a work item
407 * to invoke it.
408 */
409 schedule_work(&sched_itmt_work);
410 }
411 }
412 }
413 #else
414 static void intel_pstate_set_itmt_prio(int cpu)
415 {
416 }
417 #endif
418
419 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
420 {
421 struct cpudata *cpu;
422 int ret;
423 int i;
424
425 if (hwp_active) {
426 intel_pstate_set_itmt_prio(policy->cpu);
427 return;
428 }
429
430 if (!intel_pstate_get_ppc_enable_status())
431 return;
432
433 cpu = all_cpu_data[policy->cpu];
434
435 ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
436 policy->cpu);
437 if (ret)
438 return;
439
440 /*
441 * Check if the control value in _PSS is for PERF_CTL MSR, which should
442 * guarantee that the states returned by it map to the states in our
443 * list directly.
444 */
445 if (cpu->acpi_perf_data.control_register.space_id !=
446 ACPI_ADR_SPACE_FIXED_HARDWARE)
447 goto err;
448
449 /*
450 * If there is only one entry _PSS, simply ignore _PSS and continue as
451 * usual without taking _PSS into account
452 */
453 if (cpu->acpi_perf_data.state_count < 2)
454 goto err;
455
456 pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
457 for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
458 pr_debug(" %cP%d: %u MHz, %u mW, 0x%x\n",
459 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
460 (u32) cpu->acpi_perf_data.states[i].core_frequency,
461 (u32) cpu->acpi_perf_data.states[i].power,
462 (u32) cpu->acpi_perf_data.states[i].control);
463 }
464
465 /*
466 * The _PSS table doesn't contain whole turbo frequency range.
467 * This just contains +1 MHZ above the max non turbo frequency,
468 * with control value corresponding to max turbo ratio. But
469 * when cpufreq set policy is called, it will call with this
470 * max frequency, which will cause a reduced performance as
471 * this driver uses real max turbo frequency as the max
472 * frequency. So correct this frequency in _PSS table to
473 * correct max turbo frequency based on the turbo state.
474 * Also need to convert to MHz as _PSS freq is in MHz.
475 */
476 if (!global.turbo_disabled)
477 cpu->acpi_perf_data.states[0].core_frequency =
478 policy->cpuinfo.max_freq / 1000;
479 cpu->valid_pss_table = true;
480 pr_debug("_PPC limits will be enforced\n");
481
482 return;
483
484 err:
485 cpu->valid_pss_table = false;
486 acpi_processor_unregister_performance(policy->cpu);
487 }
488
489 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
490 {
491 struct cpudata *cpu;
492
493 cpu = all_cpu_data[policy->cpu];
494 if (!cpu->valid_pss_table)
495 return;
496
497 acpi_processor_unregister_performance(policy->cpu);
498 }
499 #else
500 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
501 {
502 }
503
504 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
505 {
506 }
507 #endif
508
509 static signed int pid_calc(struct _pid *pid, int32_t busy)
510 {
511 signed int result;
512 int32_t pterm, dterm, fp_error;
513 int32_t integral_limit;
514
515 fp_error = pid->setpoint - busy;
516
517 if (abs(fp_error) <= pid->deadband)
518 return 0;
519
520 pterm = mul_fp(pid->p_gain, fp_error);
521
522 pid->integral += fp_error;
523
524 /*
525 * We limit the integral here so that it will never
526 * get higher than 30. This prevents it from becoming
527 * too large an input over long periods of time and allows
528 * it to get factored out sooner.
529 *
530 * The value of 30 was chosen through experimentation.
531 */
532 integral_limit = int_tofp(30);
533 if (pid->integral > integral_limit)
534 pid->integral = integral_limit;
535 if (pid->integral < -integral_limit)
536 pid->integral = -integral_limit;
537
538 dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
539 pid->last_err = fp_error;
540
541 result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
542 result = result + (1 << (FRAC_BITS-1));
543 return (signed int)fp_toint(result);
544 }
545
546 static inline void intel_pstate_pid_reset(struct cpudata *cpu)
547 {
548 struct _pid *pid = &cpu->pid;
549
550 pid->p_gain = percent_fp(pid_params.p_gain_pct);
551 pid->d_gain = percent_fp(pid_params.d_gain_pct);
552 pid->i_gain = percent_fp(pid_params.i_gain_pct);
553 pid->setpoint = int_tofp(pid_params.setpoint);
554 pid->last_err = pid->setpoint - int_tofp(100);
555 pid->deadband = int_tofp(pid_params.deadband);
556 pid->integral = 0;
557 }
558
559 static inline void update_turbo_state(void)
560 {
561 u64 misc_en;
562 struct cpudata *cpu;
563
564 cpu = all_cpu_data[0];
565 rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
566 global.turbo_disabled =
567 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
568 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
569 }
570
571 static int min_perf_pct_min(void)
572 {
573 struct cpudata *cpu = all_cpu_data[0];
574
575 return DIV_ROUND_UP(cpu->pstate.min_pstate * 100,
576 cpu->pstate.turbo_pstate);
577 }
578
579 static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
580 {
581 u64 epb;
582 int ret;
583
584 if (!static_cpu_has(X86_FEATURE_EPB))
585 return -ENXIO;
586
587 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
588 if (ret)
589 return (s16)ret;
590
591 return (s16)(epb & 0x0f);
592 }
593
594 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
595 {
596 s16 epp;
597
598 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
599 /*
600 * When hwp_req_data is 0, means that caller didn't read
601 * MSR_HWP_REQUEST, so need to read and get EPP.
602 */
603 if (!hwp_req_data) {
604 epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
605 &hwp_req_data);
606 if (epp)
607 return epp;
608 }
609 epp = (hwp_req_data >> 24) & 0xff;
610 } else {
611 /* When there is no EPP present, HWP uses EPB settings */
612 epp = intel_pstate_get_epb(cpu_data);
613 }
614
615 return epp;
616 }
617
618 static int intel_pstate_set_epb(int cpu, s16 pref)
619 {
620 u64 epb;
621 int ret;
622
623 if (!static_cpu_has(X86_FEATURE_EPB))
624 return -ENXIO;
625
626 ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
627 if (ret)
628 return ret;
629
630 epb = (epb & ~0x0f) | pref;
631 wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
632
633 return 0;
634 }
635
636 /*
637 * EPP/EPB display strings corresponding to EPP index in the
638 * energy_perf_strings[]
639 * index String
640 *-------------------------------------
641 * 0 default
642 * 1 performance
643 * 2 balance_performance
644 * 3 balance_power
645 * 4 power
646 */
647 static const char * const energy_perf_strings[] = {
648 "default",
649 "performance",
650 "balance_performance",
651 "balance_power",
652 "power",
653 NULL
654 };
655 static const unsigned int epp_values[] = {
656 HWP_EPP_PERFORMANCE,
657 HWP_EPP_BALANCE_PERFORMANCE,
658 HWP_EPP_BALANCE_POWERSAVE,
659 HWP_EPP_POWERSAVE
660 };
661
662 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
663 {
664 s16 epp;
665 int index = -EINVAL;
666
667 epp = intel_pstate_get_epp(cpu_data, 0);
668 if (epp < 0)
669 return epp;
670
671 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
672 if (epp == HWP_EPP_PERFORMANCE)
673 return 1;
674 if (epp <= HWP_EPP_BALANCE_PERFORMANCE)
675 return 2;
676 if (epp <= HWP_EPP_BALANCE_POWERSAVE)
677 return 3;
678 else
679 return 4;
680 } else if (static_cpu_has(X86_FEATURE_EPB)) {
681 /*
682 * Range:
683 * 0x00-0x03 : Performance
684 * 0x04-0x07 : Balance performance
685 * 0x08-0x0B : Balance power
686 * 0x0C-0x0F : Power
687 * The EPB is a 4 bit value, but our ranges restrict the
688 * value which can be set. Here only using top two bits
689 * effectively.
690 */
691 index = (epp >> 2) + 1;
692 }
693
694 return index;
695 }
696
697 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
698 int pref_index)
699 {
700 int epp = -EINVAL;
701 int ret;
702
703 if (!pref_index)
704 epp = cpu_data->epp_default;
705
706 mutex_lock(&intel_pstate_limits_lock);
707
708 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
709 u64 value;
710
711 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
712 if (ret)
713 goto return_pref;
714
715 value &= ~GENMASK_ULL(31, 24);
716
717 if (epp == -EINVAL)
718 epp = epp_values[pref_index - 1];
719
720 value |= (u64)epp << 24;
721 ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
722 } else {
723 if (epp == -EINVAL)
724 epp = (pref_index - 1) << 2;
725 ret = intel_pstate_set_epb(cpu_data->cpu, epp);
726 }
727 return_pref:
728 mutex_unlock(&intel_pstate_limits_lock);
729
730 return ret;
731 }
732
733 static ssize_t show_energy_performance_available_preferences(
734 struct cpufreq_policy *policy, char *buf)
735 {
736 int i = 0;
737 int ret = 0;
738
739 while (energy_perf_strings[i] != NULL)
740 ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
741
742 ret += sprintf(&buf[ret], "\n");
743
744 return ret;
745 }
746
747 cpufreq_freq_attr_ro(energy_performance_available_preferences);
748
749 static ssize_t store_energy_performance_preference(
750 struct cpufreq_policy *policy, const char *buf, size_t count)
751 {
752 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
753 char str_preference[21];
754 int ret, i = 0;
755
756 ret = sscanf(buf, "%20s", str_preference);
757 if (ret != 1)
758 return -EINVAL;
759
760 while (energy_perf_strings[i] != NULL) {
761 if (!strcmp(str_preference, energy_perf_strings[i])) {
762 intel_pstate_set_energy_pref_index(cpu_data, i);
763 return count;
764 }
765 ++i;
766 }
767
768 return -EINVAL;
769 }
770
771 static ssize_t show_energy_performance_preference(
772 struct cpufreq_policy *policy, char *buf)
773 {
774 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
775 int preference;
776
777 preference = intel_pstate_get_energy_pref_index(cpu_data);
778 if (preference < 0)
779 return preference;
780
781 return sprintf(buf, "%s\n", energy_perf_strings[preference]);
782 }
783
784 cpufreq_freq_attr_rw(energy_performance_preference);
785
786 static struct freq_attr *hwp_cpufreq_attrs[] = {
787 &energy_performance_preference,
788 &energy_performance_available_preferences,
789 NULL,
790 };
791
792 static void intel_pstate_hwp_set(unsigned int cpu)
793 {
794 struct cpudata *cpu_data = all_cpu_data[cpu];
795 int min, hw_min, max, hw_max;
796 u64 value, cap;
797 s16 epp;
798
799 rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
800 hw_min = HWP_LOWEST_PERF(cap);
801 if (global.no_turbo)
802 hw_max = HWP_GUARANTEED_PERF(cap);
803 else
804 hw_max = HWP_HIGHEST_PERF(cap);
805
806 max = fp_ext_toint(hw_max * cpu_data->max_perf);
807 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
808 min = max;
809 else
810 min = fp_ext_toint(hw_max * cpu_data->min_perf);
811
812 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
813
814 value &= ~HWP_MIN_PERF(~0L);
815 value |= HWP_MIN_PERF(min);
816
817 value &= ~HWP_MAX_PERF(~0L);
818 value |= HWP_MAX_PERF(max);
819
820 if (cpu_data->epp_policy == cpu_data->policy)
821 goto skip_epp;
822
823 cpu_data->epp_policy = cpu_data->policy;
824
825 if (cpu_data->epp_saved >= 0) {
826 epp = cpu_data->epp_saved;
827 cpu_data->epp_saved = -EINVAL;
828 goto update_epp;
829 }
830
831 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
832 epp = intel_pstate_get_epp(cpu_data, value);
833 cpu_data->epp_powersave = epp;
834 /* If EPP read was failed, then don't try to write */
835 if (epp < 0)
836 goto skip_epp;
837
838 epp = 0;
839 } else {
840 /* skip setting EPP, when saved value is invalid */
841 if (cpu_data->epp_powersave < 0)
842 goto skip_epp;
843
844 /*
845 * No need to restore EPP when it is not zero. This
846 * means:
847 * - Policy is not changed
848 * - user has manually changed
849 * - Error reading EPB
850 */
851 epp = intel_pstate_get_epp(cpu_data, value);
852 if (epp)
853 goto skip_epp;
854
855 epp = cpu_data->epp_powersave;
856 }
857 update_epp:
858 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
859 value &= ~GENMASK_ULL(31, 24);
860 value |= (u64)epp << 24;
861 } else {
862 intel_pstate_set_epb(cpu, epp);
863 }
864 skip_epp:
865 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
866 }
867
868 static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
869 {
870 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
871
872 if (!hwp_active)
873 return 0;
874
875 cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);
876
877 return 0;
878 }
879
880 static int intel_pstate_resume(struct cpufreq_policy *policy)
881 {
882 if (!hwp_active)
883 return 0;
884
885 mutex_lock(&intel_pstate_limits_lock);
886
887 all_cpu_data[policy->cpu]->epp_policy = 0;
888 intel_pstate_hwp_set(policy->cpu);
889
890 mutex_unlock(&intel_pstate_limits_lock);
891
892 return 0;
893 }
894
895 static void intel_pstate_update_policies(void)
896 {
897 int cpu;
898
899 for_each_possible_cpu(cpu)
900 cpufreq_update_policy(cpu);
901 }
902
903 /************************** debugfs begin ************************/
904 static int pid_param_set(void *data, u64 val)
905 {
906 unsigned int cpu;
907
908 *(u32 *)data = val;
909 pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
910 for_each_possible_cpu(cpu)
911 if (all_cpu_data[cpu])
912 intel_pstate_pid_reset(all_cpu_data[cpu]);
913
914 return 0;
915 }
916
917 static int pid_param_get(void *data, u64 *val)
918 {
919 *val = *(u32 *)data;
920 return 0;
921 }
922 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
923
924 static struct dentry *debugfs_parent;
925
926 struct pid_param {
927 char *name;
928 void *value;
929 struct dentry *dentry;
930 };
931
932 static struct pid_param pid_files[] = {
933 {"sample_rate_ms", &pid_params.sample_rate_ms, },
934 {"d_gain_pct", &pid_params.d_gain_pct, },
935 {"i_gain_pct", &pid_params.i_gain_pct, },
936 {"deadband", &pid_params.deadband, },
937 {"setpoint", &pid_params.setpoint, },
938 {"p_gain_pct", &pid_params.p_gain_pct, },
939 {NULL, NULL, }
940 };
941
942 static void intel_pstate_debug_expose_params(void)
943 {
944 int i;
945
946 debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
947 if (IS_ERR_OR_NULL(debugfs_parent))
948 return;
949
950 for (i = 0; pid_files[i].name; i++) {
951 struct dentry *dentry;
952
953 dentry = debugfs_create_file(pid_files[i].name, 0660,
954 debugfs_parent, pid_files[i].value,
955 &fops_pid_param);
956 if (!IS_ERR(dentry))
957 pid_files[i].dentry = dentry;
958 }
959 }
960
961 static void intel_pstate_debug_hide_params(void)
962 {
963 int i;
964
965 if (IS_ERR_OR_NULL(debugfs_parent))
966 return;
967
968 for (i = 0; pid_files[i].name; i++) {
969 debugfs_remove(pid_files[i].dentry);
970 pid_files[i].dentry = NULL;
971 }
972
973 debugfs_remove(debugfs_parent);
974 debugfs_parent = NULL;
975 }
976
977 /************************** debugfs end ************************/
978
979 /************************** sysfs begin ************************/
980 #define show_one(file_name, object) \
981 static ssize_t show_##file_name \
982 (struct kobject *kobj, struct attribute *attr, char *buf) \
983 { \
984 return sprintf(buf, "%u\n", global.object); \
985 }
986
987 static ssize_t intel_pstate_show_status(char *buf);
988 static int intel_pstate_update_status(const char *buf, size_t size);
989
990 static ssize_t show_status(struct kobject *kobj,
991 struct attribute *attr, char *buf)
992 {
993 ssize_t ret;
994
995 mutex_lock(&intel_pstate_driver_lock);
996 ret = intel_pstate_show_status(buf);
997 mutex_unlock(&intel_pstate_driver_lock);
998
999 return ret;
1000 }
1001
1002 static ssize_t store_status(struct kobject *a, struct attribute *b,
1003 const char *buf, size_t count)
1004 {
1005 char *p = memchr(buf, '\n', count);
1006 int ret;
1007
1008 mutex_lock(&intel_pstate_driver_lock);
1009 ret = intel_pstate_update_status(buf, p ? p - buf : count);
1010 mutex_unlock(&intel_pstate_driver_lock);
1011
1012 return ret < 0 ? ret : count;
1013 }
1014
1015 static ssize_t show_turbo_pct(struct kobject *kobj,
1016 struct attribute *attr, char *buf)
1017 {
1018 struct cpudata *cpu;
1019 int total, no_turbo, turbo_pct;
1020 uint32_t turbo_fp;
1021
1022 mutex_lock(&intel_pstate_driver_lock);
1023
1024 if (!intel_pstate_driver) {
1025 mutex_unlock(&intel_pstate_driver_lock);
1026 return -EAGAIN;
1027 }
1028
1029 cpu = all_cpu_data[0];
1030
1031 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1032 no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1033 turbo_fp = div_fp(no_turbo, total);
1034 turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1035
1036 mutex_unlock(&intel_pstate_driver_lock);
1037
1038 return sprintf(buf, "%u\n", turbo_pct);
1039 }
1040
1041 static ssize_t show_num_pstates(struct kobject *kobj,
1042 struct attribute *attr, char *buf)
1043 {
1044 struct cpudata *cpu;
1045 int total;
1046
1047 mutex_lock(&intel_pstate_driver_lock);
1048
1049 if (!intel_pstate_driver) {
1050 mutex_unlock(&intel_pstate_driver_lock);
1051 return -EAGAIN;
1052 }
1053
1054 cpu = all_cpu_data[0];
1055 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1056
1057 mutex_unlock(&intel_pstate_driver_lock);
1058
1059 return sprintf(buf, "%u\n", total);
1060 }
1061
1062 static ssize_t show_no_turbo(struct kobject *kobj,
1063 struct attribute *attr, char *buf)
1064 {
1065 ssize_t ret;
1066
1067 mutex_lock(&intel_pstate_driver_lock);
1068
1069 if (!intel_pstate_driver) {
1070 mutex_unlock(&intel_pstate_driver_lock);
1071 return -EAGAIN;
1072 }
1073
1074 update_turbo_state();
1075 if (global.turbo_disabled)
1076 ret = sprintf(buf, "%u\n", global.turbo_disabled);
1077 else
1078 ret = sprintf(buf, "%u\n", global.no_turbo);
1079
1080 mutex_unlock(&intel_pstate_driver_lock);
1081
1082 return ret;
1083 }
1084
1085 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
1086 const char *buf, size_t count)
1087 {
1088 unsigned int input;
1089 int ret;
1090
1091 ret = sscanf(buf, "%u", &input);
1092 if (ret != 1)
1093 return -EINVAL;
1094
1095 mutex_lock(&intel_pstate_driver_lock);
1096
1097 if (!intel_pstate_driver) {
1098 mutex_unlock(&intel_pstate_driver_lock);
1099 return -EAGAIN;
1100 }
1101
1102 mutex_lock(&intel_pstate_limits_lock);
1103
1104 update_turbo_state();
1105 if (global.turbo_disabled) {
1106 pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
1107 mutex_unlock(&intel_pstate_limits_lock);
1108 mutex_unlock(&intel_pstate_driver_lock);
1109 return -EPERM;
1110 }
1111
1112 global.no_turbo = clamp_t(int, input, 0, 1);
1113
1114 if (global.no_turbo) {
1115 struct cpudata *cpu = all_cpu_data[0];
1116 int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
1117
1118 /* Squash the global minimum into the permitted range. */
1119 if (global.min_perf_pct > pct)
1120 global.min_perf_pct = pct;
1121 }
1122
1123 mutex_unlock(&intel_pstate_limits_lock);
1124
1125 intel_pstate_update_policies();
1126
1127 mutex_unlock(&intel_pstate_driver_lock);
1128
1129 return count;
1130 }
1131
1132 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
1133 const char *buf, size_t count)
1134 {
1135 unsigned int input;
1136 int ret;
1137
1138 ret = sscanf(buf, "%u", &input);
1139 if (ret != 1)
1140 return -EINVAL;
1141
1142 mutex_lock(&intel_pstate_driver_lock);
1143
1144 if (!intel_pstate_driver) {
1145 mutex_unlock(&intel_pstate_driver_lock);
1146 return -EAGAIN;
1147 }
1148
1149 mutex_lock(&intel_pstate_limits_lock);
1150
1151 global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1152
1153 mutex_unlock(&intel_pstate_limits_lock);
1154
1155 intel_pstate_update_policies();
1156
1157 mutex_unlock(&intel_pstate_driver_lock);
1158
1159 return count;
1160 }
1161
1162 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
1163 const char *buf, size_t count)
1164 {
1165 unsigned int input;
1166 int ret;
1167
1168 ret = sscanf(buf, "%u", &input);
1169 if (ret != 1)
1170 return -EINVAL;
1171
1172 mutex_lock(&intel_pstate_driver_lock);
1173
1174 if (!intel_pstate_driver) {
1175 mutex_unlock(&intel_pstate_driver_lock);
1176 return -EAGAIN;
1177 }
1178
1179 mutex_lock(&intel_pstate_limits_lock);
1180
1181 global.min_perf_pct = clamp_t(int, input,
1182 min_perf_pct_min(), global.max_perf_pct);
1183
1184 mutex_unlock(&intel_pstate_limits_lock);
1185
1186 intel_pstate_update_policies();
1187
1188 mutex_unlock(&intel_pstate_driver_lock);
1189
1190 return count;
1191 }
1192
1193 show_one(max_perf_pct, max_perf_pct);
1194 show_one(min_perf_pct, min_perf_pct);
1195
1196 define_one_global_rw(status);
1197 define_one_global_rw(no_turbo);
1198 define_one_global_rw(max_perf_pct);
1199 define_one_global_rw(min_perf_pct);
1200 define_one_global_ro(turbo_pct);
1201 define_one_global_ro(num_pstates);
1202
1203 static struct attribute *intel_pstate_attributes[] = {
1204 &status.attr,
1205 &no_turbo.attr,
1206 &turbo_pct.attr,
1207 &num_pstates.attr,
1208 NULL
1209 };
1210
1211 static struct attribute_group intel_pstate_attr_group = {
1212 .attrs = intel_pstate_attributes,
1213 };
1214
1215 static void __init intel_pstate_sysfs_expose_params(void)
1216 {
1217 struct kobject *intel_pstate_kobject;
1218 int rc;
1219
1220 intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1221 &cpu_subsys.dev_root->kobj);
1222 if (WARN_ON(!intel_pstate_kobject))
1223 return;
1224
1225 rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1226 if (WARN_ON(rc))
1227 return;
1228
1229 /*
1230 * If per cpu limits are enforced there are no global limits, so
1231 * return without creating max/min_perf_pct attributes
1232 */
1233 if (per_cpu_limits)
1234 return;
1235
1236 rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1237 WARN_ON(rc);
1238
1239 rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1240 WARN_ON(rc);
1241
1242 }
1243 /************************** sysfs end ************************/
1244
1245 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1246 {
1247 /* First disable HWP notification interrupt as we don't process them */
1248 if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
1249 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1250
1251 wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1252 cpudata->epp_policy = 0;
1253 if (cpudata->epp_default == -EINVAL)
1254 cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1255 }
1256
1257 #define MSR_IA32_POWER_CTL_BIT_EE 19
1258
1259 /* Disable energy efficiency optimization */
1260 static void intel_pstate_disable_ee(int cpu)
1261 {
1262 u64 power_ctl;
1263 int ret;
1264
1265 ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
1266 if (ret)
1267 return;
1268
1269 if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
1270 pr_info("Disabling energy efficiency optimization\n");
1271 power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1272 wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
1273 }
1274 }
1275
1276 static int atom_get_min_pstate(void)
1277 {
1278 u64 value;
1279
1280 rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1281 return (value >> 8) & 0x7F;
1282 }
1283
1284 static int atom_get_max_pstate(void)
1285 {
1286 u64 value;
1287
1288 rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1289 return (value >> 16) & 0x7F;
1290 }
1291
1292 static int atom_get_turbo_pstate(void)
1293 {
1294 u64 value;
1295
1296 rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
1297 return value & 0x7F;
1298 }
1299
1300 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1301 {
1302 u64 val;
1303 int32_t vid_fp;
1304 u32 vid;
1305
1306 val = (u64)pstate << 8;
1307 if (global.no_turbo && !global.turbo_disabled)
1308 val |= (u64)1 << 32;
1309
1310 vid_fp = cpudata->vid.min + mul_fp(
1311 int_tofp(pstate - cpudata->pstate.min_pstate),
1312 cpudata->vid.ratio);
1313
1314 vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1315 vid = ceiling_fp(vid_fp);
1316
1317 if (pstate > cpudata->pstate.max_pstate)
1318 vid = cpudata->vid.turbo;
1319
1320 return val | vid;
1321 }
1322
1323 static int silvermont_get_scaling(void)
1324 {
1325 u64 value;
1326 int i;
1327 /* Defined in Table 35-6 from SDM (Sept 2015) */
1328 static int silvermont_freq_table[] = {
1329 83300, 100000, 133300, 116700, 80000};
1330
1331 rdmsrl(MSR_FSB_FREQ, value);
1332 i = value & 0x7;
1333 WARN_ON(i > 4);
1334
1335 return silvermont_freq_table[i];
1336 }
1337
1338 static int airmont_get_scaling(void)
1339 {
1340 u64 value;
1341 int i;
1342 /* Defined in Table 35-10 from SDM (Sept 2015) */
1343 static int airmont_freq_table[] = {
1344 83300, 100000, 133300, 116700, 80000,
1345 93300, 90000, 88900, 87500};
1346
1347 rdmsrl(MSR_FSB_FREQ, value);
1348 i = value & 0xF;
1349 WARN_ON(i > 8);
1350
1351 return airmont_freq_table[i];
1352 }
1353
1354 static void atom_get_vid(struct cpudata *cpudata)
1355 {
1356 u64 value;
1357
1358 rdmsrl(MSR_ATOM_CORE_VIDS, value);
1359 cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1360 cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1361 cpudata->vid.ratio = div_fp(
1362 cpudata->vid.max - cpudata->vid.min,
1363 int_tofp(cpudata->pstate.max_pstate -
1364 cpudata->pstate.min_pstate));
1365
1366 rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1367 cpudata->vid.turbo = value & 0x7f;
1368 }
1369
1370 static int core_get_min_pstate(void)
1371 {
1372 u64 value;
1373
1374 rdmsrl(MSR_PLATFORM_INFO, value);
1375 return (value >> 40) & 0xFF;
1376 }
1377
1378 static int core_get_max_pstate_physical(void)
1379 {
1380 u64 value;
1381
1382 rdmsrl(MSR_PLATFORM_INFO, value);
1383 return (value >> 8) & 0xFF;
1384 }
1385
1386 static int core_get_tdp_ratio(u64 plat_info)
1387 {
1388 /* Check how many TDP levels present */
1389 if (plat_info & 0x600000000) {
1390 u64 tdp_ctrl;
1391 u64 tdp_ratio;
1392 int tdp_msr;
1393 int err;
1394
1395 /* Get the TDP level (0, 1, 2) to get ratios */
1396 err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1397 if (err)
1398 return err;
1399
1400 /* TDP MSR are continuous starting at 0x648 */
1401 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1402 err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1403 if (err)
1404 return err;
1405
1406 /* For level 1 and 2, bits[23:16] contain the ratio */
1407 if (tdp_ctrl & 0x03)
1408 tdp_ratio >>= 16;
1409
1410 tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1411 pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1412
1413 return (int)tdp_ratio;
1414 }
1415
1416 return -ENXIO;
1417 }
1418
1419 static int core_get_max_pstate(void)
1420 {
1421 u64 tar;
1422 u64 plat_info;
1423 int max_pstate;
1424 int tdp_ratio;
1425 int err;
1426
1427 rdmsrl(MSR_PLATFORM_INFO, plat_info);
1428 max_pstate = (plat_info >> 8) & 0xFF;
1429
1430 tdp_ratio = core_get_tdp_ratio(plat_info);
1431 if (tdp_ratio <= 0)
1432 return max_pstate;
1433
1434 if (hwp_active) {
1435 /* Turbo activation ratio is not used on HWP platforms */
1436 return tdp_ratio;
1437 }
1438
1439 err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1440 if (!err) {
1441 int tar_levels;
1442
1443 /* Do some sanity checking for safety */
1444 tar_levels = tar & 0xff;
1445 if (tdp_ratio - 1 == tar_levels) {
1446 max_pstate = tar_levels;
1447 pr_debug("max_pstate=TAC %x\n", max_pstate);
1448 }
1449 }
1450
1451 return max_pstate;
1452 }
1453
1454 static int core_get_turbo_pstate(void)
1455 {
1456 u64 value;
1457 int nont, ret;
1458
1459 rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1460 nont = core_get_max_pstate();
1461 ret = (value) & 255;
1462 if (ret <= nont)
1463 ret = nont;
1464 return ret;
1465 }
1466
1467 static inline int core_get_scaling(void)
1468 {
1469 return 100000;
1470 }
1471
1472 static u64 core_get_val(struct cpudata *cpudata, int pstate)
1473 {
1474 u64 val;
1475
1476 val = (u64)pstate << 8;
1477 if (global.no_turbo && !global.turbo_disabled)
1478 val |= (u64)1 << 32;
1479
1480 return val;
1481 }
1482
1483 static int knl_get_turbo_pstate(void)
1484 {
1485 u64 value;
1486 int nont, ret;
1487
1488 rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1489 nont = core_get_max_pstate();
1490 ret = (((value) >> 8) & 0xFF);
1491 if (ret <= nont)
1492 ret = nont;
1493 return ret;
1494 }
1495
1496 static int intel_pstate_get_base_pstate(struct cpudata *cpu)
1497 {
1498 return global.no_turbo || global.turbo_disabled ?
1499 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1500 }
1501
1502 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1503 {
1504 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1505 cpu->pstate.current_pstate = pstate;
1506 /*
1507 * Generally, there is no guarantee that this code will always run on
1508 * the CPU being updated, so force the register update to run on the
1509 * right CPU.
1510 */
1511 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1512 pstate_funcs.get_val(cpu, pstate));
1513 }
1514
1515 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1516 {
1517 intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1518 }
1519
1520 static void intel_pstate_max_within_limits(struct cpudata *cpu)
1521 {
1522 int pstate;
1523
1524 update_turbo_state();
1525 pstate = intel_pstate_get_base_pstate(cpu);
1526 pstate = max(cpu->pstate.min_pstate,
1527 fp_ext_toint(pstate * cpu->max_perf));
1528 intel_pstate_set_pstate(cpu, pstate);
1529 }
1530
1531 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1532 {
1533 cpu->pstate.min_pstate = pstate_funcs.get_min();
1534 cpu->pstate.max_pstate = pstate_funcs.get_max();
1535 cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1536 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1537 cpu->pstate.scaling = pstate_funcs.get_scaling();
1538 cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1539 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1540
1541 if (pstate_funcs.get_vid)
1542 pstate_funcs.get_vid(cpu);
1543
1544 intel_pstate_set_min_pstate(cpu);
1545 }
1546
1547 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1548 {
1549 struct sample *sample = &cpu->sample;
1550
1551 sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1552 }
1553
1554 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1555 {
1556 u64 aperf, mperf;
1557 unsigned long flags;
1558 u64 tsc;
1559
1560 local_irq_save(flags);
1561 rdmsrl(MSR_IA32_APERF, aperf);
1562 rdmsrl(MSR_IA32_MPERF, mperf);
1563 tsc = rdtsc();
1564 if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1565 local_irq_restore(flags);
1566 return false;
1567 }
1568 local_irq_restore(flags);
1569
1570 cpu->last_sample_time = cpu->sample.time;
1571 cpu->sample.time = time;
1572 cpu->sample.aperf = aperf;
1573 cpu->sample.mperf = mperf;
1574 cpu->sample.tsc = tsc;
1575 cpu->sample.aperf -= cpu->prev_aperf;
1576 cpu->sample.mperf -= cpu->prev_mperf;
1577 cpu->sample.tsc -= cpu->prev_tsc;
1578
1579 cpu->prev_aperf = aperf;
1580 cpu->prev_mperf = mperf;
1581 cpu->prev_tsc = tsc;
1582 /*
1583 * First time this function is invoked in a given cycle, all of the
1584 * previous sample data fields are equal to zero or stale and they must
1585 * be populated with meaningful numbers for things to work, so assume
1586 * that sample.time will always be reset before setting the utilization
1587 * update hook and make the caller skip the sample then.
1588 */
1589 if (cpu->last_sample_time) {
1590 intel_pstate_calc_avg_perf(cpu);
1591 return true;
1592 }
1593 return false;
1594 }
1595
1596 static inline int32_t get_avg_frequency(struct cpudata *cpu)
1597 {
1598 return mul_ext_fp(cpu->sample.core_avg_perf,
1599 cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
1600 }
1601
1602 static inline int32_t get_avg_pstate(struct cpudata *cpu)
1603 {
1604 return mul_ext_fp(cpu->pstate.max_pstate_physical,
1605 cpu->sample.core_avg_perf);
1606 }
1607
1608 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
1609 {
1610 struct sample *sample = &cpu->sample;
1611 int32_t busy_frac, boost;
1612 int target, avg_pstate;
1613
1614 if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE)
1615 return cpu->pstate.turbo_pstate;
1616
1617 busy_frac = div_fp(sample->mperf, sample->tsc);
1618
1619 boost = cpu->iowait_boost;
1620 cpu->iowait_boost >>= 1;
1621
1622 if (busy_frac < boost)
1623 busy_frac = boost;
1624
1625 sample->busy_scaled = busy_frac * 100;
1626
1627 target = global.no_turbo || global.turbo_disabled ?
1628 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1629 target += target >> 2;
1630 target = mul_fp(target, busy_frac);
1631 if (target < cpu->pstate.min_pstate)
1632 target = cpu->pstate.min_pstate;
1633
1634 /*
1635 * If the average P-state during the previous cycle was higher than the
1636 * current target, add 50% of the difference to the target to reduce
1637 * possible performance oscillations and offset possible performance
1638 * loss related to moving the workload from one CPU to another within
1639 * a package/module.
1640 */
1641 avg_pstate = get_avg_pstate(cpu);
1642 if (avg_pstate > target)
1643 target += (avg_pstate - target) >> 1;
1644
1645 return target;
1646 }
1647
1648 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
1649 {
1650 int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
1651 u64 duration_ns;
1652
1653 if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE)
1654 return cpu->pstate.turbo_pstate;
1655
1656 /*
1657 * perf_scaled is the ratio of the average P-state during the last
1658 * sampling period to the P-state requested last time (in percent).
1659 *
1660 * That measures the system's response to the previous P-state
1661 * selection.
1662 */
1663 max_pstate = cpu->pstate.max_pstate_physical;
1664 current_pstate = cpu->pstate.current_pstate;
1665 perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
1666 div_fp(100 * max_pstate, current_pstate));
1667
1668 /*
1669 * Since our utilization update callback will not run unless we are
1670 * in C0, check if the actual elapsed time is significantly greater (3x)
1671 * than our sample interval. If it is, then we were idle for a long
1672 * enough period of time to adjust our performance metric.
1673 */
1674 duration_ns = cpu->sample.time - cpu->last_sample_time;
1675 if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
1676 sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1677 perf_scaled = mul_fp(perf_scaled, sample_ratio);
1678 } else {
1679 sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
1680 if (sample_ratio < int_tofp(1))
1681 perf_scaled = 0;
1682 }
1683
1684 cpu->sample.busy_scaled = perf_scaled;
1685 return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
1686 }
1687
1688 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1689 {
1690 int max_pstate = intel_pstate_get_base_pstate(cpu);
1691 int min_pstate;
1692
1693 min_pstate = max(cpu->pstate.min_pstate,
1694 fp_ext_toint(max_pstate * cpu->min_perf));
1695 max_pstate = max(min_pstate, fp_ext_toint(max_pstate * cpu->max_perf));
1696 return clamp_t(int, pstate, min_pstate, max_pstate);
1697 }
1698
1699 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1700 {
1701 if (pstate == cpu->pstate.current_pstate)
1702 return;
1703
1704 cpu->pstate.current_pstate = pstate;
1705 wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1706 }
1707
1708 static void intel_pstate_adjust_pstate(struct cpudata *cpu, int target_pstate)
1709 {
1710 int from = cpu->pstate.current_pstate;
1711 struct sample *sample;
1712
1713 update_turbo_state();
1714
1715 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
1716 trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1717 intel_pstate_update_pstate(cpu, target_pstate);
1718
1719 sample = &cpu->sample;
1720 trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1721 fp_toint(sample->busy_scaled),
1722 from,
1723 cpu->pstate.current_pstate,
1724 sample->mperf,
1725 sample->aperf,
1726 sample->tsc,
1727 get_avg_frequency(cpu),
1728 fp_toint(cpu->iowait_boost * 100));
1729 }
1730
1731 static void intel_pstate_update_util_hwp(struct update_util_data *data,
1732 u64 time, unsigned int flags)
1733 {
1734 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1735 u64 delta_ns = time - cpu->sample.time;
1736
1737 if ((s64)delta_ns >= INTEL_PSTATE_HWP_SAMPLING_INTERVAL)
1738 intel_pstate_sample(cpu, time);
1739 }
1740
1741 static void intel_pstate_update_util_pid(struct update_util_data *data,
1742 u64 time, unsigned int flags)
1743 {
1744 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1745 u64 delta_ns = time - cpu->sample.time;
1746
1747 if ((s64)delta_ns < pid_params.sample_rate_ns)
1748 return;
1749
1750 if (intel_pstate_sample(cpu, time)) {
1751 int target_pstate;
1752
1753 target_pstate = get_target_pstate_use_performance(cpu);
1754 intel_pstate_adjust_pstate(cpu, target_pstate);
1755 }
1756 }
1757
1758 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1759 unsigned int flags)
1760 {
1761 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1762 u64 delta_ns;
1763
1764 if (flags & SCHED_CPUFREQ_IOWAIT) {
1765 cpu->iowait_boost = int_tofp(1);
1766 } else if (cpu->iowait_boost) {
1767 /* Clear iowait_boost if the CPU may have been idle. */
1768 delta_ns = time - cpu->last_update;
1769 if (delta_ns > TICK_NSEC)
1770 cpu->iowait_boost = 0;
1771 }
1772 cpu->last_update = time;
1773 delta_ns = time - cpu->sample.time;
1774 if ((s64)delta_ns < INTEL_PSTATE_DEFAULT_SAMPLING_INTERVAL)
1775 return;
1776
1777 if (intel_pstate_sample(cpu, time)) {
1778 int target_pstate;
1779
1780 target_pstate = get_target_pstate_use_cpu_load(cpu);
1781 intel_pstate_adjust_pstate(cpu, target_pstate);
1782 }
1783 }
1784
1785 static struct pstate_funcs core_funcs = {
1786 .get_max = core_get_max_pstate,
1787 .get_max_physical = core_get_max_pstate_physical,
1788 .get_min = core_get_min_pstate,
1789 .get_turbo = core_get_turbo_pstate,
1790 .get_scaling = core_get_scaling,
1791 .get_val = core_get_val,
1792 .update_util = intel_pstate_update_util_pid,
1793 };
1794
1795 static const struct pstate_funcs silvermont_funcs = {
1796 .get_max = atom_get_max_pstate,
1797 .get_max_physical = atom_get_max_pstate,
1798 .get_min = atom_get_min_pstate,
1799 .get_turbo = atom_get_turbo_pstate,
1800 .get_val = atom_get_val,
1801 .get_scaling = silvermont_get_scaling,
1802 .get_vid = atom_get_vid,
1803 .update_util = intel_pstate_update_util,
1804 };
1805
1806 static const struct pstate_funcs airmont_funcs = {
1807 .get_max = atom_get_max_pstate,
1808 .get_max_physical = atom_get_max_pstate,
1809 .get_min = atom_get_min_pstate,
1810 .get_turbo = atom_get_turbo_pstate,
1811 .get_val = atom_get_val,
1812 .get_scaling = airmont_get_scaling,
1813 .get_vid = atom_get_vid,
1814 .update_util = intel_pstate_update_util,
1815 };
1816
1817 static const struct pstate_funcs knl_funcs = {
1818 .get_max = core_get_max_pstate,
1819 .get_max_physical = core_get_max_pstate_physical,
1820 .get_min = core_get_min_pstate,
1821 .get_turbo = knl_get_turbo_pstate,
1822 .get_scaling = core_get_scaling,
1823 .get_val = core_get_val,
1824 .update_util = intel_pstate_update_util_pid,
1825 };
1826
1827 static const struct pstate_funcs bxt_funcs = {
1828 .get_max = core_get_max_pstate,
1829 .get_max_physical = core_get_max_pstate_physical,
1830 .get_min = core_get_min_pstate,
1831 .get_turbo = core_get_turbo_pstate,
1832 .get_scaling = core_get_scaling,
1833 .get_val = core_get_val,
1834 .update_util = intel_pstate_update_util,
1835 };
1836
1837 #define ICPU(model, policy) \
1838 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1839 (unsigned long)&policy }
1840
1841 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1842 ICPU(INTEL_FAM6_SANDYBRIDGE, core_funcs),
1843 ICPU(INTEL_FAM6_SANDYBRIDGE_X, core_funcs),
1844 ICPU(INTEL_FAM6_ATOM_SILVERMONT1, silvermont_funcs),
1845 ICPU(INTEL_FAM6_IVYBRIDGE, core_funcs),
1846 ICPU(INTEL_FAM6_HASWELL_CORE, core_funcs),
1847 ICPU(INTEL_FAM6_BROADWELL_CORE, core_funcs),
1848 ICPU(INTEL_FAM6_IVYBRIDGE_X, core_funcs),
1849 ICPU(INTEL_FAM6_HASWELL_X, core_funcs),
1850 ICPU(INTEL_FAM6_HASWELL_ULT, core_funcs),
1851 ICPU(INTEL_FAM6_HASWELL_GT3E, core_funcs),
1852 ICPU(INTEL_FAM6_BROADWELL_GT3E, core_funcs),
1853 ICPU(INTEL_FAM6_ATOM_AIRMONT, airmont_funcs),
1854 ICPU(INTEL_FAM6_SKYLAKE_MOBILE, core_funcs),
1855 ICPU(INTEL_FAM6_BROADWELL_X, core_funcs),
1856 ICPU(INTEL_FAM6_SKYLAKE_DESKTOP, core_funcs),
1857 ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_funcs),
1858 ICPU(INTEL_FAM6_XEON_PHI_KNL, knl_funcs),
1859 ICPU(INTEL_FAM6_XEON_PHI_KNM, knl_funcs),
1860 ICPU(INTEL_FAM6_ATOM_GOLDMONT, bxt_funcs),
1861 ICPU(INTEL_FAM6_ATOM_GEMINI_LAKE, bxt_funcs),
1862 {}
1863 };
1864 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1865
1866 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1867 ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_funcs),
1868 ICPU(INTEL_FAM6_BROADWELL_X, core_funcs),
1869 ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
1870 {}
1871 };
1872
1873 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
1874 ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_funcs),
1875 {}
1876 };
1877
1878 static bool pid_in_use(void);
1879
1880 static int intel_pstate_init_cpu(unsigned int cpunum)
1881 {
1882 struct cpudata *cpu;
1883
1884 cpu = all_cpu_data[cpunum];
1885
1886 if (!cpu) {
1887 cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
1888 if (!cpu)
1889 return -ENOMEM;
1890
1891 all_cpu_data[cpunum] = cpu;
1892
1893 cpu->epp_default = -EINVAL;
1894 cpu->epp_powersave = -EINVAL;
1895 cpu->epp_saved = -EINVAL;
1896 }
1897
1898 cpu = all_cpu_data[cpunum];
1899
1900 cpu->cpu = cpunum;
1901
1902 if (hwp_active) {
1903 const struct x86_cpu_id *id;
1904
1905 id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
1906 if (id)
1907 intel_pstate_disable_ee(cpunum);
1908
1909 intel_pstate_hwp_enable(cpu);
1910 } else if (pid_in_use()) {
1911 intel_pstate_pid_reset(cpu);
1912 }
1913
1914 intel_pstate_get_cpu_pstates(cpu);
1915
1916 pr_debug("controlling: cpu %d\n", cpunum);
1917
1918 return 0;
1919 }
1920
1921 static unsigned int intel_pstate_get(unsigned int cpu_num)
1922 {
1923 struct cpudata *cpu = all_cpu_data[cpu_num];
1924
1925 return cpu ? get_avg_frequency(cpu) : 0;
1926 }
1927
1928 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1929 {
1930 struct cpudata *cpu = all_cpu_data[cpu_num];
1931
1932 if (cpu->update_util_set)
1933 return;
1934
1935 /* Prevent intel_pstate_update_util() from using stale data. */
1936 cpu->sample.time = 0;
1937 cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1938 pstate_funcs.update_util);
1939 cpu->update_util_set = true;
1940 }
1941
1942 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1943 {
1944 struct cpudata *cpu_data = all_cpu_data[cpu];
1945
1946 if (!cpu_data->update_util_set)
1947 return;
1948
1949 cpufreq_remove_update_util_hook(cpu);
1950 cpu_data->update_util_set = false;
1951 synchronize_sched();
1952 }
1953
1954 static int intel_pstate_get_max_freq(struct cpudata *cpu)
1955 {
1956 return global.turbo_disabled || global.no_turbo ?
1957 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
1958 }
1959
1960 static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
1961 struct cpudata *cpu)
1962 {
1963 int max_freq = intel_pstate_get_max_freq(cpu);
1964 int32_t max_policy_perf, min_policy_perf;
1965
1966 max_policy_perf = div_ext_fp(policy->max, max_freq);
1967 max_policy_perf = clamp_t(int32_t, max_policy_perf, 0, int_ext_tofp(1));
1968 if (policy->max == policy->min) {
1969 min_policy_perf = max_policy_perf;
1970 } else {
1971 min_policy_perf = div_ext_fp(policy->min, max_freq);
1972 min_policy_perf = clamp_t(int32_t, min_policy_perf,
1973 0, max_policy_perf);
1974 }
1975
1976 /* Normalize user input to [min_perf, max_perf] */
1977 if (per_cpu_limits) {
1978 cpu->min_perf = min_policy_perf;
1979 cpu->max_perf = max_policy_perf;
1980 } else {
1981 int32_t global_min, global_max;
1982
1983 /* Global limits are in percent of the maximum turbo P-state. */
1984 global_max = percent_ext_fp(global.max_perf_pct);
1985 global_min = percent_ext_fp(global.min_perf_pct);
1986 if (max_freq != cpu->pstate.turbo_freq) {
1987 int32_t turbo_factor;
1988
1989 turbo_factor = div_ext_fp(cpu->pstate.turbo_pstate,
1990 cpu->pstate.max_pstate);
1991 global_min = mul_ext_fp(global_min, turbo_factor);
1992 global_max = mul_ext_fp(global_max, turbo_factor);
1993 }
1994 global_min = clamp_t(int32_t, global_min, 0, global_max);
1995
1996 cpu->min_perf = max(min_policy_perf, global_min);
1997 cpu->min_perf = min(cpu->min_perf, max_policy_perf);
1998 cpu->max_perf = min(max_policy_perf, global_max);
1999 cpu->max_perf = max(min_policy_perf, cpu->max_perf);
2000
2001 /* Make sure min_perf <= max_perf */
2002 cpu->min_perf = min(cpu->min_perf, cpu->max_perf);
2003 }
2004
2005 cpu->max_perf = round_up(cpu->max_perf, EXT_FRAC_BITS);
2006 cpu->min_perf = round_up(cpu->min_perf, EXT_FRAC_BITS);
2007
2008 pr_debug("cpu:%d max_perf_pct:%d min_perf_pct:%d\n", policy->cpu,
2009 fp_ext_toint(cpu->max_perf * 100),
2010 fp_ext_toint(cpu->min_perf * 100));
2011 }
2012
2013 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2014 {
2015 struct cpudata *cpu;
2016
2017 if (!policy->cpuinfo.max_freq)
2018 return -ENODEV;
2019
2020 pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2021 policy->cpuinfo.max_freq, policy->max);
2022
2023 cpu = all_cpu_data[policy->cpu];
2024 cpu->policy = policy->policy;
2025
2026 mutex_lock(&intel_pstate_limits_lock);
2027
2028 intel_pstate_update_perf_limits(policy, cpu);
2029
2030 if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2031 /*
2032 * NOHZ_FULL CPUs need this as the governor callback may not
2033 * be invoked on them.
2034 */
2035 intel_pstate_clear_update_util_hook(policy->cpu);
2036 intel_pstate_max_within_limits(cpu);
2037 }
2038
2039 intel_pstate_set_update_util_hook(policy->cpu);
2040
2041 if (hwp_active)
2042 intel_pstate_hwp_set(policy->cpu);
2043
2044 mutex_unlock(&intel_pstate_limits_lock);
2045
2046 return 0;
2047 }
2048
2049 static void intel_pstate_adjust_policy_max(struct cpufreq_policy *policy,
2050 struct cpudata *cpu)
2051 {
2052 if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2053 policy->max < policy->cpuinfo.max_freq &&
2054 policy->max > cpu->pstate.max_freq) {
2055 pr_debug("policy->max > max non turbo frequency\n");
2056 policy->max = policy->cpuinfo.max_freq;
2057 }
2058 }
2059
2060 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
2061 {
2062 struct cpudata *cpu = all_cpu_data[policy->cpu];
2063
2064 update_turbo_state();
2065 cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2066 intel_pstate_get_max_freq(cpu));
2067
2068 if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
2069 policy->policy != CPUFREQ_POLICY_PERFORMANCE)
2070 return -EINVAL;
2071
2072 intel_pstate_adjust_policy_max(policy, cpu);
2073
2074 return 0;
2075 }
2076
2077 static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
2078 {
2079 intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
2080 }
2081
2082 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2083 {
2084 pr_debug("CPU %d exiting\n", policy->cpu);
2085
2086 intel_pstate_clear_update_util_hook(policy->cpu);
2087 if (hwp_active)
2088 intel_pstate_hwp_save_state(policy);
2089 else
2090 intel_cpufreq_stop_cpu(policy);
2091 }
2092
2093 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2094 {
2095 intel_pstate_exit_perf_limits(policy);
2096
2097 policy->fast_switch_possible = false;
2098
2099 return 0;
2100 }
2101
2102 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2103 {
2104 struct cpudata *cpu;
2105 int rc;
2106
2107 rc = intel_pstate_init_cpu(policy->cpu);
2108 if (rc)
2109 return rc;
2110
2111 cpu = all_cpu_data[policy->cpu];
2112
2113 cpu->max_perf = int_ext_tofp(1);
2114 cpu->min_perf = 0;
2115
2116 policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
2117 policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2118
2119 /* cpuinfo and default policy values */
2120 policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2121 update_turbo_state();
2122 policy->cpuinfo.max_freq = global.turbo_disabled ?
2123 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2124 policy->cpuinfo.max_freq *= cpu->pstate.scaling;
2125
2126 intel_pstate_init_acpi_perf_limits(policy);
2127 cpumask_set_cpu(policy->cpu, policy->cpus);
2128
2129 policy->fast_switch_possible = true;
2130
2131 return 0;
2132 }
2133
2134 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2135 {
2136 int ret = __intel_pstate_cpu_init(policy);
2137
2138 if (ret)
2139 return ret;
2140
2141 policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
2142 if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE))
2143 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
2144 else
2145 policy->policy = CPUFREQ_POLICY_POWERSAVE;
2146
2147 return 0;
2148 }
2149
2150 static struct cpufreq_driver intel_pstate = {
2151 .flags = CPUFREQ_CONST_LOOPS,
2152 .verify = intel_pstate_verify_policy,
2153 .setpolicy = intel_pstate_set_policy,
2154 .suspend = intel_pstate_hwp_save_state,
2155 .resume = intel_pstate_resume,
2156 .get = intel_pstate_get,
2157 .init = intel_pstate_cpu_init,
2158 .exit = intel_pstate_cpu_exit,
2159 .stop_cpu = intel_pstate_stop_cpu,
2160 .name = "intel_pstate",
2161 };
2162
2163 static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
2164 {
2165 struct cpudata *cpu = all_cpu_data[policy->cpu];
2166
2167 update_turbo_state();
2168 cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2169 intel_pstate_get_max_freq(cpu));
2170
2171 intel_pstate_adjust_policy_max(policy, cpu);
2172
2173 intel_pstate_update_perf_limits(policy, cpu);
2174
2175 return 0;
2176 }
2177
2178 static int intel_cpufreq_target(struct cpufreq_policy *policy,
2179 unsigned int target_freq,
2180 unsigned int relation)
2181 {
2182 struct cpudata *cpu = all_cpu_data[policy->cpu];
2183 struct cpufreq_freqs freqs;
2184 int target_pstate;
2185
2186 update_turbo_state();
2187
2188 freqs.old = policy->cur;
2189 freqs.new = target_freq;
2190
2191 cpufreq_freq_transition_begin(policy, &freqs);
2192 switch (relation) {
2193 case CPUFREQ_RELATION_L:
2194 target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2195 break;
2196 case CPUFREQ_RELATION_H:
2197 target_pstate = freqs.new / cpu->pstate.scaling;
2198 break;
2199 default:
2200 target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2201 break;
2202 }
2203 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2204 if (target_pstate != cpu->pstate.current_pstate) {
2205 cpu->pstate.current_pstate = target_pstate;
2206 wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
2207 pstate_funcs.get_val(cpu, target_pstate));
2208 }
2209 freqs.new = target_pstate * cpu->pstate.scaling;
2210 cpufreq_freq_transition_end(policy, &freqs, false);
2211
2212 return 0;
2213 }
2214
2215 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2216 unsigned int target_freq)
2217 {
2218 struct cpudata *cpu = all_cpu_data[policy->cpu];
2219 int target_pstate;
2220
2221 update_turbo_state();
2222
2223 target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2224 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2225 intel_pstate_update_pstate(cpu, target_pstate);
2226 return target_pstate * cpu->pstate.scaling;
2227 }
2228
2229 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2230 {
2231 int ret = __intel_pstate_cpu_init(policy);
2232
2233 if (ret)
2234 return ret;
2235
2236 policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2237 policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
2238 /* This reflects the intel_pstate_get_cpu_pstates() setting. */
2239 policy->cur = policy->cpuinfo.min_freq;
2240
2241 return 0;
2242 }
2243
2244 static struct cpufreq_driver intel_cpufreq = {
2245 .flags = CPUFREQ_CONST_LOOPS,
2246 .verify = intel_cpufreq_verify_policy,
2247 .target = intel_cpufreq_target,
2248 .fast_switch = intel_cpufreq_fast_switch,
2249 .init = intel_cpufreq_cpu_init,
2250 .exit = intel_pstate_cpu_exit,
2251 .stop_cpu = intel_cpufreq_stop_cpu,
2252 .name = "intel_cpufreq",
2253 };
2254
2255 static struct cpufreq_driver *default_driver = &intel_pstate;
2256
2257 static bool pid_in_use(void)
2258 {
2259 return intel_pstate_driver == &intel_pstate &&
2260 pstate_funcs.update_util == intel_pstate_update_util_pid;
2261 }
2262
2263 static void intel_pstate_driver_cleanup(void)
2264 {
2265 unsigned int cpu;
2266
2267 get_online_cpus();
2268 for_each_online_cpu(cpu) {
2269 if (all_cpu_data[cpu]) {
2270 if (intel_pstate_driver == &intel_pstate)
2271 intel_pstate_clear_update_util_hook(cpu);
2272
2273 kfree(all_cpu_data[cpu]);
2274 all_cpu_data[cpu] = NULL;
2275 }
2276 }
2277 put_online_cpus();
2278 intel_pstate_driver = NULL;
2279 }
2280
2281 static int intel_pstate_register_driver(struct cpufreq_driver *driver)
2282 {
2283 int ret;
2284
2285 memset(&global, 0, sizeof(global));
2286 global.max_perf_pct = 100;
2287
2288 intel_pstate_driver = driver;
2289 ret = cpufreq_register_driver(intel_pstate_driver);
2290 if (ret) {
2291 intel_pstate_driver_cleanup();
2292 return ret;
2293 }
2294
2295 global.min_perf_pct = min_perf_pct_min();
2296
2297 if (pid_in_use())
2298 intel_pstate_debug_expose_params();
2299
2300 return 0;
2301 }
2302
2303 static int intel_pstate_unregister_driver(void)
2304 {
2305 if (hwp_active)
2306 return -EBUSY;
2307
2308 if (pid_in_use())
2309 intel_pstate_debug_hide_params();
2310
2311 cpufreq_unregister_driver(intel_pstate_driver);
2312 intel_pstate_driver_cleanup();
2313
2314 return 0;
2315 }
2316
2317 static ssize_t intel_pstate_show_status(char *buf)
2318 {
2319 if (!intel_pstate_driver)
2320 return sprintf(buf, "off\n");
2321
2322 return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
2323 "active" : "passive");
2324 }
2325
2326 static int intel_pstate_update_status(const char *buf, size_t size)
2327 {
2328 int ret;
2329
2330 if (size == 3 && !strncmp(buf, "off", size))
2331 return intel_pstate_driver ?
2332 intel_pstate_unregister_driver() : -EINVAL;
2333
2334 if (size == 6 && !strncmp(buf, "active", size)) {
2335 if (intel_pstate_driver) {
2336 if (intel_pstate_driver == &intel_pstate)
2337 return 0;
2338
2339 ret = intel_pstate_unregister_driver();
2340 if (ret)
2341 return ret;
2342 }
2343
2344 return intel_pstate_register_driver(&intel_pstate);
2345 }
2346
2347 if (size == 7 && !strncmp(buf, "passive", size)) {
2348 if (intel_pstate_driver) {
2349 if (intel_pstate_driver == &intel_cpufreq)
2350 return 0;
2351
2352 ret = intel_pstate_unregister_driver();
2353 if (ret)
2354 return ret;
2355 }
2356
2357 return intel_pstate_register_driver(&intel_cpufreq);
2358 }
2359
2360 return -EINVAL;
2361 }
2362
2363 static int no_load __initdata;
2364 static int no_hwp __initdata;
2365 static int hwp_only __initdata;
2366 static unsigned int force_load __initdata;
2367
2368 static int __init intel_pstate_msrs_not_valid(void)
2369 {
2370 if (!pstate_funcs.get_max() ||
2371 !pstate_funcs.get_min() ||
2372 !pstate_funcs.get_turbo())
2373 return -ENODEV;
2374
2375 return 0;
2376 }
2377
2378 #ifdef CONFIG_ACPI
2379 static void intel_pstate_use_acpi_profile(void)
2380 {
2381 switch (acpi_gbl_FADT.preferred_profile) {
2382 case PM_MOBILE:
2383 case PM_TABLET:
2384 case PM_APPLIANCE_PC:
2385 case PM_DESKTOP:
2386 case PM_WORKSTATION:
2387 pstate_funcs.update_util = intel_pstate_update_util;
2388 }
2389 }
2390 #else
2391 static void intel_pstate_use_acpi_profile(void)
2392 {
2393 }
2394 #endif
2395
2396 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2397 {
2398 pstate_funcs.get_max = funcs->get_max;
2399 pstate_funcs.get_max_physical = funcs->get_max_physical;
2400 pstate_funcs.get_min = funcs->get_min;
2401 pstate_funcs.get_turbo = funcs->get_turbo;
2402 pstate_funcs.get_scaling = funcs->get_scaling;
2403 pstate_funcs.get_val = funcs->get_val;
2404 pstate_funcs.get_vid = funcs->get_vid;
2405 pstate_funcs.update_util = funcs->update_util;
2406
2407 intel_pstate_use_acpi_profile();
2408 }
2409
2410 #ifdef CONFIG_ACPI
2411
2412 static bool __init intel_pstate_no_acpi_pss(void)
2413 {
2414 int i;
2415
2416 for_each_possible_cpu(i) {
2417 acpi_status status;
2418 union acpi_object *pss;
2419 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
2420 struct acpi_processor *pr = per_cpu(processors, i);
2421
2422 if (!pr)
2423 continue;
2424
2425 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
2426 if (ACPI_FAILURE(status))
2427 continue;
2428
2429 pss = buffer.pointer;
2430 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
2431 kfree(pss);
2432 return false;
2433 }
2434
2435 kfree(pss);
2436 }
2437
2438 return true;
2439 }
2440
2441 static bool __init intel_pstate_has_acpi_ppc(void)
2442 {
2443 int i;
2444
2445 for_each_possible_cpu(i) {
2446 struct acpi_processor *pr = per_cpu(processors, i);
2447
2448 if (!pr)
2449 continue;
2450 if (acpi_has_method(pr->handle, "_PPC"))
2451 return true;
2452 }
2453 return false;
2454 }
2455
2456 enum {
2457 PSS,
2458 PPC,
2459 };
2460
2461 struct hw_vendor_info {
2462 u16 valid;
2463 char oem_id[ACPI_OEM_ID_SIZE];
2464 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
2465 int oem_pwr_table;
2466 };
2467
2468 /* Hardware vendor-specific info that has its own power management modes */
2469 static struct hw_vendor_info vendor_info[] __initdata = {
2470 {1, "HP ", "ProLiant", PSS},
2471 {1, "ORACLE", "X4-2 ", PPC},
2472 {1, "ORACLE", "X4-2L ", PPC},
2473 {1, "ORACLE", "X4-2B ", PPC},
2474 {1, "ORACLE", "X3-2 ", PPC},
2475 {1, "ORACLE", "X3-2L ", PPC},
2476 {1, "ORACLE", "X3-2B ", PPC},
2477 {1, "ORACLE", "X4470M2 ", PPC},
2478 {1, "ORACLE", "X4270M3 ", PPC},
2479 {1, "ORACLE", "X4270M2 ", PPC},
2480 {1, "ORACLE", "X4170M2 ", PPC},
2481 {1, "ORACLE", "X4170 M3", PPC},
2482 {1, "ORACLE", "X4275 M3", PPC},
2483 {1, "ORACLE", "X6-2 ", PPC},
2484 {1, "ORACLE", "Sudbury ", PPC},
2485 {0, "", ""},
2486 };
2487
2488 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2489 {
2490 struct acpi_table_header hdr;
2491 struct hw_vendor_info *v_info;
2492 const struct x86_cpu_id *id;
2493 u64 misc_pwr;
2494
2495 id = x86_match_cpu(intel_pstate_cpu_oob_ids);
2496 if (id) {
2497 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2498 if ( misc_pwr & (1 << 8))
2499 return true;
2500 }
2501
2502 if (acpi_disabled ||
2503 ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
2504 return false;
2505
2506 for (v_info = vendor_info; v_info->valid; v_info++) {
2507 if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
2508 !strncmp(hdr.oem_table_id, v_info->oem_table_id,
2509 ACPI_OEM_TABLE_ID_SIZE))
2510 switch (v_info->oem_pwr_table) {
2511 case PSS:
2512 return intel_pstate_no_acpi_pss();
2513 case PPC:
2514 return intel_pstate_has_acpi_ppc() &&
2515 (!force_load);
2516 }
2517 }
2518
2519 return false;
2520 }
2521
2522 static void intel_pstate_request_control_from_smm(void)
2523 {
2524 /*
2525 * It may be unsafe to request P-states control from SMM if _PPC support
2526 * has not been enabled.
2527 */
2528 if (acpi_ppc)
2529 acpi_processor_pstate_control();
2530 }
2531 #else /* CONFIG_ACPI not enabled */
2532 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2533 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2534 static inline void intel_pstate_request_control_from_smm(void) {}
2535 #endif /* CONFIG_ACPI */
2536
2537 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2538 { X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
2539 {}
2540 };
2541
2542 static int __init intel_pstate_init(void)
2543 {
2544 int rc;
2545
2546 if (no_load)
2547 return -ENODEV;
2548
2549 if (x86_match_cpu(hwp_support_ids)) {
2550 copy_cpu_funcs(&core_funcs);
2551 if (no_hwp) {
2552 pstate_funcs.update_util = intel_pstate_update_util;
2553 } else {
2554 hwp_active++;
2555 intel_pstate.attr = hwp_cpufreq_attrs;
2556 pstate_funcs.update_util = intel_pstate_update_util_hwp;
2557 goto hwp_cpu_matched;
2558 }
2559 } else {
2560 const struct x86_cpu_id *id;
2561
2562 id = x86_match_cpu(intel_pstate_cpu_ids);
2563 if (!id)
2564 return -ENODEV;
2565
2566 copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
2567 }
2568
2569 if (intel_pstate_msrs_not_valid())
2570 return -ENODEV;
2571
2572 hwp_cpu_matched:
2573 /*
2574 * The Intel pstate driver will be ignored if the platform
2575 * firmware has its own power management modes.
2576 */
2577 if (intel_pstate_platform_pwr_mgmt_exists())
2578 return -ENODEV;
2579
2580 if (!hwp_active && hwp_only)
2581 return -ENOTSUPP;
2582
2583 pr_info("Intel P-state driver initializing\n");
2584
2585 all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
2586 if (!all_cpu_data)
2587 return -ENOMEM;
2588
2589 intel_pstate_request_control_from_smm();
2590
2591 intel_pstate_sysfs_expose_params();
2592
2593 mutex_lock(&intel_pstate_driver_lock);
2594 rc = intel_pstate_register_driver(default_driver);
2595 mutex_unlock(&intel_pstate_driver_lock);
2596 if (rc)
2597 return rc;
2598
2599 if (hwp_active)
2600 pr_info("HWP enabled\n");
2601
2602 return 0;
2603 }
2604 device_initcall(intel_pstate_init);
2605
2606 static int __init intel_pstate_setup(char *str)
2607 {
2608 if (!str)
2609 return -EINVAL;
2610
2611 if (!strcmp(str, "disable")) {
2612 no_load = 1;
2613 } else if (!strcmp(str, "passive")) {
2614 pr_info("Passive mode enabled\n");
2615 default_driver = &intel_cpufreq;
2616 no_hwp = 1;
2617 }
2618 if (!strcmp(str, "no_hwp")) {
2619 pr_info("HWP disabled\n");
2620 no_hwp = 1;
2621 }
2622 if (!strcmp(str, "force"))
2623 force_load = 1;
2624 if (!strcmp(str, "hwp_only"))
2625 hwp_only = 1;
2626 if (!strcmp(str, "per_cpu_perf_limits"))
2627 per_cpu_limits = true;
2628
2629 #ifdef CONFIG_ACPI
2630 if (!strcmp(str, "support_acpi_ppc"))
2631 acpi_ppc = true;
2632 #endif
2633
2634 return 0;
2635 }
2636 early_param("intel_pstate", intel_pstate_setup);
2637
2638 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
2639 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
2640 MODULE_LICENSE("GPL");