]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/cpufreq/intel_pstate.c
93a0e88bef76f4a69a4abc60310e30d6f0549eee
[mirror_ubuntu-bionic-kernel.git] / drivers / cpufreq / intel_pstate.c
1 /*
2 * intel_pstate.c: Native P state management for Intel processors
3 *
4 * (C) Copyright 2012 Intel Corporation
5 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
10 * of the License.
11 */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/kernel.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/module.h>
18 #include <linux/ktime.h>
19 #include <linux/hrtimer.h>
20 #include <linux/tick.h>
21 #include <linux/slab.h>
22 #include <linux/sched/cpufreq.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25 #include <linux/cpufreq.h>
26 #include <linux/sysfs.h>
27 #include <linux/types.h>
28 #include <linux/fs.h>
29 #include <linux/debugfs.h>
30 #include <linux/acpi.h>
31 #include <linux/vmalloc.h>
32 #include <trace/events/power.h>
33
34 #include <asm/div64.h>
35 #include <asm/msr.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/cpufeature.h>
38 #include <asm/intel-family.h>
39
40 #define INTEL_PSTATE_SAMPLING_INTERVAL (10 * NSEC_PER_MSEC)
41
42 #define INTEL_CPUFREQ_TRANSITION_LATENCY 20000
43 #define INTEL_CPUFREQ_TRANSITION_DELAY 500
44
45 #ifdef CONFIG_ACPI
46 #include <acpi/processor.h>
47 #include <acpi/cppc_acpi.h>
48 #endif
49
50 #define FRAC_BITS 8
51 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
52 #define fp_toint(X) ((X) >> FRAC_BITS)
53
54 #define EXT_BITS 6
55 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
56 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
57 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
58
59 static inline int32_t mul_fp(int32_t x, int32_t y)
60 {
61 return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
62 }
63
64 static inline int32_t div_fp(s64 x, s64 y)
65 {
66 return div64_s64((int64_t)x << FRAC_BITS, y);
67 }
68
69 static inline int ceiling_fp(int32_t x)
70 {
71 int mask, ret;
72
73 ret = fp_toint(x);
74 mask = (1 << FRAC_BITS) - 1;
75 if (x & mask)
76 ret += 1;
77 return ret;
78 }
79
80 static inline int32_t percent_fp(int percent)
81 {
82 return div_fp(percent, 100);
83 }
84
85 static inline u64 mul_ext_fp(u64 x, u64 y)
86 {
87 return (x * y) >> EXT_FRAC_BITS;
88 }
89
90 static inline u64 div_ext_fp(u64 x, u64 y)
91 {
92 return div64_u64(x << EXT_FRAC_BITS, y);
93 }
94
95 static inline int32_t percent_ext_fp(int percent)
96 {
97 return div_ext_fp(percent, 100);
98 }
99
100 /**
101 * struct sample - Store performance sample
102 * @core_avg_perf: Ratio of APERF/MPERF which is the actual average
103 * performance during last sample period
104 * @busy_scaled: Scaled busy value which is used to calculate next
105 * P state. This can be different than core_avg_perf
106 * to account for cpu idle period
107 * @aperf: Difference of actual performance frequency clock count
108 * read from APERF MSR between last and current sample
109 * @mperf: Difference of maximum performance frequency clock count
110 * read from MPERF MSR between last and current sample
111 * @tsc: Difference of time stamp counter between last and
112 * current sample
113 * @time: Current time from scheduler
114 *
115 * This structure is used in the cpudata structure to store performance sample
116 * data for choosing next P State.
117 */
118 struct sample {
119 int32_t core_avg_perf;
120 int32_t busy_scaled;
121 u64 aperf;
122 u64 mperf;
123 u64 tsc;
124 u64 time;
125 };
126
127 /**
128 * struct pstate_data - Store P state data
129 * @current_pstate: Current requested P state
130 * @min_pstate: Min P state possible for this platform
131 * @max_pstate: Max P state possible for this platform
132 * @max_pstate_physical:This is physical Max P state for a processor
133 * This can be higher than the max_pstate which can
134 * be limited by platform thermal design power limits
135 * @scaling: Scaling factor to convert frequency to cpufreq
136 * frequency units
137 * @turbo_pstate: Max Turbo P state possible for this platform
138 * @max_freq: @max_pstate frequency in cpufreq units
139 * @turbo_freq: @turbo_pstate frequency in cpufreq units
140 *
141 * Stores the per cpu model P state limits and current P state.
142 */
143 struct pstate_data {
144 int current_pstate;
145 int min_pstate;
146 int max_pstate;
147 int max_pstate_physical;
148 int scaling;
149 int turbo_pstate;
150 unsigned int max_freq;
151 unsigned int turbo_freq;
152 };
153
154 /**
155 * struct vid_data - Stores voltage information data
156 * @min: VID data for this platform corresponding to
157 * the lowest P state
158 * @max: VID data corresponding to the highest P State.
159 * @turbo: VID data for turbo P state
160 * @ratio: Ratio of (vid max - vid min) /
161 * (max P state - Min P State)
162 *
163 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
164 * This data is used in Atom platforms, where in addition to target P state,
165 * the voltage data needs to be specified to select next P State.
166 */
167 struct vid_data {
168 int min;
169 int max;
170 int turbo;
171 int32_t ratio;
172 };
173
174 /**
175 * struct global_params - Global parameters, mostly tunable via sysfs.
176 * @no_turbo: Whether or not to use turbo P-states.
177 * @turbo_disabled: Whethet or not turbo P-states are available at all,
178 * based on the MSR_IA32_MISC_ENABLE value and whether or
179 * not the maximum reported turbo P-state is different from
180 * the maximum reported non-turbo one.
181 * @min_perf_pct: Minimum capacity limit in percent of the maximum turbo
182 * P-state capacity.
183 * @max_perf_pct: Maximum capacity limit in percent of the maximum turbo
184 * P-state capacity.
185 */
186 struct global_params {
187 bool no_turbo;
188 bool turbo_disabled;
189 int max_perf_pct;
190 int min_perf_pct;
191 };
192
193 /**
194 * struct cpudata - Per CPU instance data storage
195 * @cpu: CPU number for this instance data
196 * @policy: CPUFreq policy value
197 * @update_util: CPUFreq utility callback information
198 * @update_util_set: CPUFreq utility callback is set
199 * @iowait_boost: iowait-related boost fraction
200 * @last_update: Time of the last update.
201 * @pstate: Stores P state limits for this CPU
202 * @vid: Stores VID limits for this CPU
203 * @last_sample_time: Last Sample time
204 * @aperf_mperf_shift: Number of clock cycles after aperf, merf is incremented
205 * This shift is a multiplier to mperf delta to
206 * calculate CPU busy.
207 * @prev_aperf: Last APERF value read from APERF MSR
208 * @prev_mperf: Last MPERF value read from MPERF MSR
209 * @prev_tsc: Last timestamp counter (TSC) value
210 * @prev_cummulative_iowait: IO Wait time difference from last and
211 * current sample
212 * @sample: Storage for storing last Sample data
213 * @min_perf_ratio: Minimum capacity in terms of PERF or HWP ratios
214 * @max_perf_ratio: Maximum capacity in terms of PERF or HWP ratios
215 * @acpi_perf_data: Stores ACPI perf information read from _PSS
216 * @valid_pss_table: Set to true for valid ACPI _PSS entries found
217 * @epp_powersave: Last saved HWP energy performance preference
218 * (EPP) or energy performance bias (EPB),
219 * when policy switched to performance
220 * @epp_policy: Last saved policy used to set EPP/EPB
221 * @epp_default: Power on default HWP energy performance
222 * preference/bias
223 * @epp_saved: Saved EPP/EPB during system suspend or CPU offline
224 * operation
225 *
226 * This structure stores per CPU instance data for all CPUs.
227 */
228 struct cpudata {
229 int cpu;
230
231 unsigned int policy;
232 struct update_util_data update_util;
233 bool update_util_set;
234
235 struct pstate_data pstate;
236 struct vid_data vid;
237
238 u64 last_update;
239 u64 last_sample_time;
240 u64 aperf_mperf_shift;
241 u64 prev_aperf;
242 u64 prev_mperf;
243 u64 prev_tsc;
244 u64 prev_cummulative_iowait;
245 struct sample sample;
246 int32_t min_perf_ratio;
247 int32_t max_perf_ratio;
248 #ifdef CONFIG_ACPI
249 struct acpi_processor_performance acpi_perf_data;
250 bool valid_pss_table;
251 #endif
252 unsigned int iowait_boost;
253 s16 epp_powersave;
254 s16 epp_policy;
255 s16 epp_default;
256 s16 epp_saved;
257 };
258
259 static struct cpudata **all_cpu_data;
260
261 /**
262 * struct pstate_funcs - Per CPU model specific callbacks
263 * @get_max: Callback to get maximum non turbo effective P state
264 * @get_max_physical: Callback to get maximum non turbo physical P state
265 * @get_min: Callback to get minimum P state
266 * @get_turbo: Callback to get turbo P state
267 * @get_scaling: Callback to get frequency scaling factor
268 * @get_val: Callback to convert P state to actual MSR write value
269 * @get_vid: Callback to get VID data for Atom platforms
270 *
271 * Core and Atom CPU models have different way to get P State limits. This
272 * structure is used to store those callbacks.
273 */
274 struct pstate_funcs {
275 int (*get_max)(void);
276 int (*get_max_physical)(void);
277 int (*get_min)(void);
278 int (*get_turbo)(void);
279 int (*get_scaling)(void);
280 int (*get_aperf_mperf_shift)(void);
281 u64 (*get_val)(struct cpudata*, int pstate);
282 void (*get_vid)(struct cpudata *);
283 };
284
285 static struct pstate_funcs pstate_funcs __read_mostly;
286
287 static int hwp_active __read_mostly;
288 static bool per_cpu_limits __read_mostly;
289
290 static struct cpufreq_driver *intel_pstate_driver __read_mostly;
291
292 #ifdef CONFIG_ACPI
293 static bool acpi_ppc;
294 #endif
295
296 static struct global_params global;
297
298 static DEFINE_MUTEX(intel_pstate_driver_lock);
299 static DEFINE_MUTEX(intel_pstate_limits_lock);
300
301 #ifdef CONFIG_ACPI
302
303 static bool intel_pstate_get_ppc_enable_status(void)
304 {
305 if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
306 acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
307 return true;
308
309 return acpi_ppc;
310 }
311
312 #ifdef CONFIG_ACPI_CPPC_LIB
313
314 /* The work item is needed to avoid CPU hotplug locking issues */
315 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
316 {
317 sched_set_itmt_support();
318 }
319
320 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
321
322 static void intel_pstate_set_itmt_prio(int cpu)
323 {
324 struct cppc_perf_caps cppc_perf;
325 static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
326 int ret;
327
328 ret = cppc_get_perf_caps(cpu, &cppc_perf);
329 if (ret)
330 return;
331
332 /*
333 * The priorities can be set regardless of whether or not
334 * sched_set_itmt_support(true) has been called and it is valid to
335 * update them at any time after it has been called.
336 */
337 sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
338
339 if (max_highest_perf <= min_highest_perf) {
340 if (cppc_perf.highest_perf > max_highest_perf)
341 max_highest_perf = cppc_perf.highest_perf;
342
343 if (cppc_perf.highest_perf < min_highest_perf)
344 min_highest_perf = cppc_perf.highest_perf;
345
346 if (max_highest_perf > min_highest_perf) {
347 /*
348 * This code can be run during CPU online under the
349 * CPU hotplug locks, so sched_set_itmt_support()
350 * cannot be called from here. Queue up a work item
351 * to invoke it.
352 */
353 schedule_work(&sched_itmt_work);
354 }
355 }
356 }
357 #else
358 static void intel_pstate_set_itmt_prio(int cpu)
359 {
360 }
361 #endif
362
363 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
364 {
365 struct cpudata *cpu;
366 int ret;
367 int i;
368
369 if (hwp_active) {
370 intel_pstate_set_itmt_prio(policy->cpu);
371 return;
372 }
373
374 if (!intel_pstate_get_ppc_enable_status())
375 return;
376
377 cpu = all_cpu_data[policy->cpu];
378
379 ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
380 policy->cpu);
381 if (ret)
382 return;
383
384 /*
385 * Check if the control value in _PSS is for PERF_CTL MSR, which should
386 * guarantee that the states returned by it map to the states in our
387 * list directly.
388 */
389 if (cpu->acpi_perf_data.control_register.space_id !=
390 ACPI_ADR_SPACE_FIXED_HARDWARE)
391 goto err;
392
393 /*
394 * If there is only one entry _PSS, simply ignore _PSS and continue as
395 * usual without taking _PSS into account
396 */
397 if (cpu->acpi_perf_data.state_count < 2)
398 goto err;
399
400 pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
401 for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
402 pr_debug(" %cP%d: %u MHz, %u mW, 0x%x\n",
403 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
404 (u32) cpu->acpi_perf_data.states[i].core_frequency,
405 (u32) cpu->acpi_perf_data.states[i].power,
406 (u32) cpu->acpi_perf_data.states[i].control);
407 }
408
409 /*
410 * The _PSS table doesn't contain whole turbo frequency range.
411 * This just contains +1 MHZ above the max non turbo frequency,
412 * with control value corresponding to max turbo ratio. But
413 * when cpufreq set policy is called, it will call with this
414 * max frequency, which will cause a reduced performance as
415 * this driver uses real max turbo frequency as the max
416 * frequency. So correct this frequency in _PSS table to
417 * correct max turbo frequency based on the turbo state.
418 * Also need to convert to MHz as _PSS freq is in MHz.
419 */
420 if (!global.turbo_disabled)
421 cpu->acpi_perf_data.states[0].core_frequency =
422 policy->cpuinfo.max_freq / 1000;
423 cpu->valid_pss_table = true;
424 pr_debug("_PPC limits will be enforced\n");
425
426 return;
427
428 err:
429 cpu->valid_pss_table = false;
430 acpi_processor_unregister_performance(policy->cpu);
431 }
432
433 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
434 {
435 struct cpudata *cpu;
436
437 cpu = all_cpu_data[policy->cpu];
438 if (!cpu->valid_pss_table)
439 return;
440
441 acpi_processor_unregister_performance(policy->cpu);
442 }
443 #else
444 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
445 {
446 }
447
448 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
449 {
450 }
451 #endif
452
453 static inline void update_turbo_state(void)
454 {
455 u64 misc_en;
456 struct cpudata *cpu;
457
458 cpu = all_cpu_data[0];
459 rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
460 global.turbo_disabled =
461 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
462 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
463 }
464
465 static int min_perf_pct_min(void)
466 {
467 struct cpudata *cpu = all_cpu_data[0];
468 int turbo_pstate = cpu->pstate.turbo_pstate;
469
470 return turbo_pstate ?
471 (cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
472 }
473
474 static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
475 {
476 u64 epb;
477 int ret;
478
479 if (!static_cpu_has(X86_FEATURE_EPB))
480 return -ENXIO;
481
482 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
483 if (ret)
484 return (s16)ret;
485
486 return (s16)(epb & 0x0f);
487 }
488
489 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
490 {
491 s16 epp;
492
493 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
494 /*
495 * When hwp_req_data is 0, means that caller didn't read
496 * MSR_HWP_REQUEST, so need to read and get EPP.
497 */
498 if (!hwp_req_data) {
499 epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
500 &hwp_req_data);
501 if (epp)
502 return epp;
503 }
504 epp = (hwp_req_data >> 24) & 0xff;
505 } else {
506 /* When there is no EPP present, HWP uses EPB settings */
507 epp = intel_pstate_get_epb(cpu_data);
508 }
509
510 return epp;
511 }
512
513 static int intel_pstate_set_epb(int cpu, s16 pref)
514 {
515 u64 epb;
516 int ret;
517
518 if (!static_cpu_has(X86_FEATURE_EPB))
519 return -ENXIO;
520
521 ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
522 if (ret)
523 return ret;
524
525 epb = (epb & ~0x0f) | pref;
526 wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
527
528 return 0;
529 }
530
531 /*
532 * EPP/EPB display strings corresponding to EPP index in the
533 * energy_perf_strings[]
534 * index String
535 *-------------------------------------
536 * 0 default
537 * 1 performance
538 * 2 balance_performance
539 * 3 balance_power
540 * 4 power
541 */
542 static const char * const energy_perf_strings[] = {
543 "default",
544 "performance",
545 "balance_performance",
546 "balance_power",
547 "power",
548 NULL
549 };
550 static const unsigned int epp_values[] = {
551 HWP_EPP_PERFORMANCE,
552 HWP_EPP_BALANCE_PERFORMANCE,
553 HWP_EPP_BALANCE_POWERSAVE,
554 HWP_EPP_POWERSAVE
555 };
556
557 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
558 {
559 s16 epp;
560 int index = -EINVAL;
561
562 epp = intel_pstate_get_epp(cpu_data, 0);
563 if (epp < 0)
564 return epp;
565
566 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
567 if (epp == HWP_EPP_PERFORMANCE)
568 return 1;
569 if (epp <= HWP_EPP_BALANCE_PERFORMANCE)
570 return 2;
571 if (epp <= HWP_EPP_BALANCE_POWERSAVE)
572 return 3;
573 else
574 return 4;
575 } else if (static_cpu_has(X86_FEATURE_EPB)) {
576 /*
577 * Range:
578 * 0x00-0x03 : Performance
579 * 0x04-0x07 : Balance performance
580 * 0x08-0x0B : Balance power
581 * 0x0C-0x0F : Power
582 * The EPB is a 4 bit value, but our ranges restrict the
583 * value which can be set. Here only using top two bits
584 * effectively.
585 */
586 index = (epp >> 2) + 1;
587 }
588
589 return index;
590 }
591
592 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
593 int pref_index)
594 {
595 int epp = -EINVAL;
596 int ret;
597
598 if (!pref_index)
599 epp = cpu_data->epp_default;
600
601 mutex_lock(&intel_pstate_limits_lock);
602
603 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
604 u64 value;
605
606 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
607 if (ret)
608 goto return_pref;
609
610 value &= ~GENMASK_ULL(31, 24);
611
612 if (epp == -EINVAL)
613 epp = epp_values[pref_index - 1];
614
615 value |= (u64)epp << 24;
616 ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
617 } else {
618 if (epp == -EINVAL)
619 epp = (pref_index - 1) << 2;
620 ret = intel_pstate_set_epb(cpu_data->cpu, epp);
621 }
622 return_pref:
623 mutex_unlock(&intel_pstate_limits_lock);
624
625 return ret;
626 }
627
628 static ssize_t show_energy_performance_available_preferences(
629 struct cpufreq_policy *policy, char *buf)
630 {
631 int i = 0;
632 int ret = 0;
633
634 while (energy_perf_strings[i] != NULL)
635 ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
636
637 ret += sprintf(&buf[ret], "\n");
638
639 return ret;
640 }
641
642 cpufreq_freq_attr_ro(energy_performance_available_preferences);
643
644 static ssize_t store_energy_performance_preference(
645 struct cpufreq_policy *policy, const char *buf, size_t count)
646 {
647 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
648 char str_preference[21];
649 int ret, i = 0;
650
651 ret = sscanf(buf, "%20s", str_preference);
652 if (ret != 1)
653 return -EINVAL;
654
655 while (energy_perf_strings[i] != NULL) {
656 if (!strcmp(str_preference, energy_perf_strings[i])) {
657 intel_pstate_set_energy_pref_index(cpu_data, i);
658 return count;
659 }
660 ++i;
661 }
662
663 return -EINVAL;
664 }
665
666 static ssize_t show_energy_performance_preference(
667 struct cpufreq_policy *policy, char *buf)
668 {
669 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
670 int preference;
671
672 preference = intel_pstate_get_energy_pref_index(cpu_data);
673 if (preference < 0)
674 return preference;
675
676 return sprintf(buf, "%s\n", energy_perf_strings[preference]);
677 }
678
679 cpufreq_freq_attr_rw(energy_performance_preference);
680
681 static struct freq_attr *hwp_cpufreq_attrs[] = {
682 &energy_performance_preference,
683 &energy_performance_available_preferences,
684 NULL,
685 };
686
687 static void intel_pstate_get_hwp_max(unsigned int cpu, int *phy_max,
688 int *current_max)
689 {
690 u64 cap;
691
692 rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
693 if (global.no_turbo)
694 *current_max = HWP_GUARANTEED_PERF(cap);
695 else
696 *current_max = HWP_HIGHEST_PERF(cap);
697
698 *phy_max = HWP_HIGHEST_PERF(cap);
699 }
700
701 static void intel_pstate_hwp_set(unsigned int cpu)
702 {
703 struct cpudata *cpu_data = all_cpu_data[cpu];
704 int max, min;
705 u64 value;
706 s16 epp;
707
708 max = cpu_data->max_perf_ratio;
709 min = cpu_data->min_perf_ratio;
710
711 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
712 min = max;
713
714 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
715
716 value &= ~HWP_MIN_PERF(~0L);
717 value |= HWP_MIN_PERF(min);
718
719 value &= ~HWP_MAX_PERF(~0L);
720 value |= HWP_MAX_PERF(max);
721
722 if (cpu_data->epp_policy == cpu_data->policy)
723 goto skip_epp;
724
725 cpu_data->epp_policy = cpu_data->policy;
726
727 if (cpu_data->epp_saved >= 0) {
728 epp = cpu_data->epp_saved;
729 cpu_data->epp_saved = -EINVAL;
730 goto update_epp;
731 }
732
733 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
734 epp = intel_pstate_get_epp(cpu_data, value);
735 cpu_data->epp_powersave = epp;
736 /* If EPP read was failed, then don't try to write */
737 if (epp < 0)
738 goto skip_epp;
739
740 epp = 0;
741 } else {
742 /* skip setting EPP, when saved value is invalid */
743 if (cpu_data->epp_powersave < 0)
744 goto skip_epp;
745
746 /*
747 * No need to restore EPP when it is not zero. This
748 * means:
749 * - Policy is not changed
750 * - user has manually changed
751 * - Error reading EPB
752 */
753 epp = intel_pstate_get_epp(cpu_data, value);
754 if (epp)
755 goto skip_epp;
756
757 epp = cpu_data->epp_powersave;
758 }
759 update_epp:
760 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
761 value &= ~GENMASK_ULL(31, 24);
762 value |= (u64)epp << 24;
763 } else {
764 intel_pstate_set_epb(cpu, epp);
765 }
766 skip_epp:
767 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
768 }
769
770 static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
771 {
772 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
773
774 if (!hwp_active)
775 return 0;
776
777 cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);
778
779 return 0;
780 }
781
782 static int intel_pstate_resume(struct cpufreq_policy *policy)
783 {
784 if (!hwp_active)
785 return 0;
786
787 mutex_lock(&intel_pstate_limits_lock);
788
789 all_cpu_data[policy->cpu]->epp_policy = 0;
790 intel_pstate_hwp_set(policy->cpu);
791
792 mutex_unlock(&intel_pstate_limits_lock);
793
794 return 0;
795 }
796
797 static void intel_pstate_update_policies(void)
798 {
799 int cpu;
800
801 for_each_possible_cpu(cpu)
802 cpufreq_update_policy(cpu);
803 }
804
805 /************************** sysfs begin ************************/
806 #define show_one(file_name, object) \
807 static ssize_t show_##file_name \
808 (struct kobject *kobj, struct attribute *attr, char *buf) \
809 { \
810 return sprintf(buf, "%u\n", global.object); \
811 }
812
813 static ssize_t intel_pstate_show_status(char *buf);
814 static int intel_pstate_update_status(const char *buf, size_t size);
815
816 static ssize_t show_status(struct kobject *kobj,
817 struct attribute *attr, char *buf)
818 {
819 ssize_t ret;
820
821 mutex_lock(&intel_pstate_driver_lock);
822 ret = intel_pstate_show_status(buf);
823 mutex_unlock(&intel_pstate_driver_lock);
824
825 return ret;
826 }
827
828 static ssize_t store_status(struct kobject *a, struct attribute *b,
829 const char *buf, size_t count)
830 {
831 char *p = memchr(buf, '\n', count);
832 int ret;
833
834 mutex_lock(&intel_pstate_driver_lock);
835 ret = intel_pstate_update_status(buf, p ? p - buf : count);
836 mutex_unlock(&intel_pstate_driver_lock);
837
838 return ret < 0 ? ret : count;
839 }
840
841 static ssize_t show_turbo_pct(struct kobject *kobj,
842 struct attribute *attr, char *buf)
843 {
844 struct cpudata *cpu;
845 int total, no_turbo, turbo_pct;
846 uint32_t turbo_fp;
847
848 mutex_lock(&intel_pstate_driver_lock);
849
850 if (!intel_pstate_driver) {
851 mutex_unlock(&intel_pstate_driver_lock);
852 return -EAGAIN;
853 }
854
855 cpu = all_cpu_data[0];
856
857 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
858 no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
859 turbo_fp = div_fp(no_turbo, total);
860 turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
861
862 mutex_unlock(&intel_pstate_driver_lock);
863
864 return sprintf(buf, "%u\n", turbo_pct);
865 }
866
867 static ssize_t show_num_pstates(struct kobject *kobj,
868 struct attribute *attr, char *buf)
869 {
870 struct cpudata *cpu;
871 int total;
872
873 mutex_lock(&intel_pstate_driver_lock);
874
875 if (!intel_pstate_driver) {
876 mutex_unlock(&intel_pstate_driver_lock);
877 return -EAGAIN;
878 }
879
880 cpu = all_cpu_data[0];
881 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
882
883 mutex_unlock(&intel_pstate_driver_lock);
884
885 return sprintf(buf, "%u\n", total);
886 }
887
888 static ssize_t show_no_turbo(struct kobject *kobj,
889 struct attribute *attr, char *buf)
890 {
891 ssize_t ret;
892
893 mutex_lock(&intel_pstate_driver_lock);
894
895 if (!intel_pstate_driver) {
896 mutex_unlock(&intel_pstate_driver_lock);
897 return -EAGAIN;
898 }
899
900 update_turbo_state();
901 if (global.turbo_disabled)
902 ret = sprintf(buf, "%u\n", global.turbo_disabled);
903 else
904 ret = sprintf(buf, "%u\n", global.no_turbo);
905
906 mutex_unlock(&intel_pstate_driver_lock);
907
908 return ret;
909 }
910
911 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
912 const char *buf, size_t count)
913 {
914 unsigned int input;
915 int ret;
916
917 ret = sscanf(buf, "%u", &input);
918 if (ret != 1)
919 return -EINVAL;
920
921 mutex_lock(&intel_pstate_driver_lock);
922
923 if (!intel_pstate_driver) {
924 mutex_unlock(&intel_pstate_driver_lock);
925 return -EAGAIN;
926 }
927
928 mutex_lock(&intel_pstate_limits_lock);
929
930 update_turbo_state();
931 if (global.turbo_disabled) {
932 pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
933 mutex_unlock(&intel_pstate_limits_lock);
934 mutex_unlock(&intel_pstate_driver_lock);
935 return -EPERM;
936 }
937
938 global.no_turbo = clamp_t(int, input, 0, 1);
939
940 if (global.no_turbo) {
941 struct cpudata *cpu = all_cpu_data[0];
942 int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
943
944 /* Squash the global minimum into the permitted range. */
945 if (global.min_perf_pct > pct)
946 global.min_perf_pct = pct;
947 }
948
949 mutex_unlock(&intel_pstate_limits_lock);
950
951 intel_pstate_update_policies();
952
953 mutex_unlock(&intel_pstate_driver_lock);
954
955 return count;
956 }
957
958 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
959 const char *buf, size_t count)
960 {
961 unsigned int input;
962 int ret;
963
964 ret = sscanf(buf, "%u", &input);
965 if (ret != 1)
966 return -EINVAL;
967
968 mutex_lock(&intel_pstate_driver_lock);
969
970 if (!intel_pstate_driver) {
971 mutex_unlock(&intel_pstate_driver_lock);
972 return -EAGAIN;
973 }
974
975 mutex_lock(&intel_pstate_limits_lock);
976
977 global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
978
979 mutex_unlock(&intel_pstate_limits_lock);
980
981 intel_pstate_update_policies();
982
983 mutex_unlock(&intel_pstate_driver_lock);
984
985 return count;
986 }
987
988 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
989 const char *buf, size_t count)
990 {
991 unsigned int input;
992 int ret;
993
994 ret = sscanf(buf, "%u", &input);
995 if (ret != 1)
996 return -EINVAL;
997
998 mutex_lock(&intel_pstate_driver_lock);
999
1000 if (!intel_pstate_driver) {
1001 mutex_unlock(&intel_pstate_driver_lock);
1002 return -EAGAIN;
1003 }
1004
1005 mutex_lock(&intel_pstate_limits_lock);
1006
1007 global.min_perf_pct = clamp_t(int, input,
1008 min_perf_pct_min(), global.max_perf_pct);
1009
1010 mutex_unlock(&intel_pstate_limits_lock);
1011
1012 intel_pstate_update_policies();
1013
1014 mutex_unlock(&intel_pstate_driver_lock);
1015
1016 return count;
1017 }
1018
1019 show_one(max_perf_pct, max_perf_pct);
1020 show_one(min_perf_pct, min_perf_pct);
1021
1022 define_one_global_rw(status);
1023 define_one_global_rw(no_turbo);
1024 define_one_global_rw(max_perf_pct);
1025 define_one_global_rw(min_perf_pct);
1026 define_one_global_ro(turbo_pct);
1027 define_one_global_ro(num_pstates);
1028
1029 static struct attribute *intel_pstate_attributes[] = {
1030 &status.attr,
1031 &no_turbo.attr,
1032 &turbo_pct.attr,
1033 &num_pstates.attr,
1034 NULL
1035 };
1036
1037 static const struct attribute_group intel_pstate_attr_group = {
1038 .attrs = intel_pstate_attributes,
1039 };
1040
1041 static void __init intel_pstate_sysfs_expose_params(void)
1042 {
1043 struct kobject *intel_pstate_kobject;
1044 int rc;
1045
1046 intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1047 &cpu_subsys.dev_root->kobj);
1048 if (WARN_ON(!intel_pstate_kobject))
1049 return;
1050
1051 rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1052 if (WARN_ON(rc))
1053 return;
1054
1055 /*
1056 * If per cpu limits are enforced there are no global limits, so
1057 * return without creating max/min_perf_pct attributes
1058 */
1059 if (per_cpu_limits)
1060 return;
1061
1062 rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1063 WARN_ON(rc);
1064
1065 rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1066 WARN_ON(rc);
1067
1068 }
1069 /************************** sysfs end ************************/
1070
1071 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1072 {
1073 /* First disable HWP notification interrupt as we don't process them */
1074 if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
1075 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1076
1077 wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1078 cpudata->epp_policy = 0;
1079 if (cpudata->epp_default == -EINVAL)
1080 cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1081 }
1082
1083 #define MSR_IA32_POWER_CTL_BIT_EE 19
1084
1085 /* Disable energy efficiency optimization */
1086 static void intel_pstate_disable_ee(int cpu)
1087 {
1088 u64 power_ctl;
1089 int ret;
1090
1091 ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
1092 if (ret)
1093 return;
1094
1095 if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
1096 pr_info("Disabling energy efficiency optimization\n");
1097 power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1098 wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
1099 }
1100 }
1101
1102 static int atom_get_min_pstate(void)
1103 {
1104 u64 value;
1105
1106 rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1107 return (value >> 8) & 0x7F;
1108 }
1109
1110 static int atom_get_max_pstate(void)
1111 {
1112 u64 value;
1113
1114 rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1115 return (value >> 16) & 0x7F;
1116 }
1117
1118 static int atom_get_turbo_pstate(void)
1119 {
1120 u64 value;
1121
1122 rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
1123 return value & 0x7F;
1124 }
1125
1126 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1127 {
1128 u64 val;
1129 int32_t vid_fp;
1130 u32 vid;
1131
1132 val = (u64)pstate << 8;
1133 if (global.no_turbo && !global.turbo_disabled)
1134 val |= (u64)1 << 32;
1135
1136 vid_fp = cpudata->vid.min + mul_fp(
1137 int_tofp(pstate - cpudata->pstate.min_pstate),
1138 cpudata->vid.ratio);
1139
1140 vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1141 vid = ceiling_fp(vid_fp);
1142
1143 if (pstate > cpudata->pstate.max_pstate)
1144 vid = cpudata->vid.turbo;
1145
1146 return val | vid;
1147 }
1148
1149 static int silvermont_get_scaling(void)
1150 {
1151 u64 value;
1152 int i;
1153 /* Defined in Table 35-6 from SDM (Sept 2015) */
1154 static int silvermont_freq_table[] = {
1155 83300, 100000, 133300, 116700, 80000};
1156
1157 rdmsrl(MSR_FSB_FREQ, value);
1158 i = value & 0x7;
1159 WARN_ON(i > 4);
1160
1161 return silvermont_freq_table[i];
1162 }
1163
1164 static int airmont_get_scaling(void)
1165 {
1166 u64 value;
1167 int i;
1168 /* Defined in Table 35-10 from SDM (Sept 2015) */
1169 static int airmont_freq_table[] = {
1170 83300, 100000, 133300, 116700, 80000,
1171 93300, 90000, 88900, 87500};
1172
1173 rdmsrl(MSR_FSB_FREQ, value);
1174 i = value & 0xF;
1175 WARN_ON(i > 8);
1176
1177 return airmont_freq_table[i];
1178 }
1179
1180 static void atom_get_vid(struct cpudata *cpudata)
1181 {
1182 u64 value;
1183
1184 rdmsrl(MSR_ATOM_CORE_VIDS, value);
1185 cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1186 cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1187 cpudata->vid.ratio = div_fp(
1188 cpudata->vid.max - cpudata->vid.min,
1189 int_tofp(cpudata->pstate.max_pstate -
1190 cpudata->pstate.min_pstate));
1191
1192 rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1193 cpudata->vid.turbo = value & 0x7f;
1194 }
1195
1196 static int core_get_min_pstate(void)
1197 {
1198 u64 value;
1199
1200 rdmsrl(MSR_PLATFORM_INFO, value);
1201 return (value >> 40) & 0xFF;
1202 }
1203
1204 static int core_get_max_pstate_physical(void)
1205 {
1206 u64 value;
1207
1208 rdmsrl(MSR_PLATFORM_INFO, value);
1209 return (value >> 8) & 0xFF;
1210 }
1211
1212 static int core_get_tdp_ratio(u64 plat_info)
1213 {
1214 /* Check how many TDP levels present */
1215 if (plat_info & 0x600000000) {
1216 u64 tdp_ctrl;
1217 u64 tdp_ratio;
1218 int tdp_msr;
1219 int err;
1220
1221 /* Get the TDP level (0, 1, 2) to get ratios */
1222 err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1223 if (err)
1224 return err;
1225
1226 /* TDP MSR are continuous starting at 0x648 */
1227 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1228 err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1229 if (err)
1230 return err;
1231
1232 /* For level 1 and 2, bits[23:16] contain the ratio */
1233 if (tdp_ctrl & 0x03)
1234 tdp_ratio >>= 16;
1235
1236 tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1237 pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1238
1239 return (int)tdp_ratio;
1240 }
1241
1242 return -ENXIO;
1243 }
1244
1245 static int core_get_max_pstate(void)
1246 {
1247 u64 tar;
1248 u64 plat_info;
1249 int max_pstate;
1250 int tdp_ratio;
1251 int err;
1252
1253 rdmsrl(MSR_PLATFORM_INFO, plat_info);
1254 max_pstate = (plat_info >> 8) & 0xFF;
1255
1256 tdp_ratio = core_get_tdp_ratio(plat_info);
1257 if (tdp_ratio <= 0)
1258 return max_pstate;
1259
1260 if (hwp_active) {
1261 /* Turbo activation ratio is not used on HWP platforms */
1262 return tdp_ratio;
1263 }
1264
1265 err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1266 if (!err) {
1267 int tar_levels;
1268
1269 /* Do some sanity checking for safety */
1270 tar_levels = tar & 0xff;
1271 if (tdp_ratio - 1 == tar_levels) {
1272 max_pstate = tar_levels;
1273 pr_debug("max_pstate=TAC %x\n", max_pstate);
1274 }
1275 }
1276
1277 return max_pstate;
1278 }
1279
1280 static int core_get_turbo_pstate(void)
1281 {
1282 u64 value;
1283 int nont, ret;
1284
1285 rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1286 nont = core_get_max_pstate();
1287 ret = (value) & 255;
1288 if (ret <= nont)
1289 ret = nont;
1290 return ret;
1291 }
1292
1293 static inline int core_get_scaling(void)
1294 {
1295 return 100000;
1296 }
1297
1298 static u64 core_get_val(struct cpudata *cpudata, int pstate)
1299 {
1300 u64 val;
1301
1302 val = (u64)pstate << 8;
1303 if (global.no_turbo && !global.turbo_disabled)
1304 val |= (u64)1 << 32;
1305
1306 return val;
1307 }
1308
1309 static int knl_get_aperf_mperf_shift(void)
1310 {
1311 return 10;
1312 }
1313
1314 static int knl_get_turbo_pstate(void)
1315 {
1316 u64 value;
1317 int nont, ret;
1318
1319 rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1320 nont = core_get_max_pstate();
1321 ret = (((value) >> 8) & 0xFF);
1322 if (ret <= nont)
1323 ret = nont;
1324 return ret;
1325 }
1326
1327 static int intel_pstate_get_base_pstate(struct cpudata *cpu)
1328 {
1329 return global.no_turbo || global.turbo_disabled ?
1330 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1331 }
1332
1333 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1334 {
1335 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1336 cpu->pstate.current_pstate = pstate;
1337 /*
1338 * Generally, there is no guarantee that this code will always run on
1339 * the CPU being updated, so force the register update to run on the
1340 * right CPU.
1341 */
1342 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1343 pstate_funcs.get_val(cpu, pstate));
1344 }
1345
1346 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1347 {
1348 intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1349 }
1350
1351 static void intel_pstate_max_within_limits(struct cpudata *cpu)
1352 {
1353 int pstate;
1354
1355 update_turbo_state();
1356 pstate = intel_pstate_get_base_pstate(cpu);
1357 pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
1358 intel_pstate_set_pstate(cpu, pstate);
1359 }
1360
1361 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1362 {
1363 cpu->pstate.min_pstate = pstate_funcs.get_min();
1364 cpu->pstate.max_pstate = pstate_funcs.get_max();
1365 cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1366 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1367 cpu->pstate.scaling = pstate_funcs.get_scaling();
1368 cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1369 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1370
1371 if (pstate_funcs.get_aperf_mperf_shift)
1372 cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();
1373
1374 if (pstate_funcs.get_vid)
1375 pstate_funcs.get_vid(cpu);
1376
1377 intel_pstate_set_min_pstate(cpu);
1378 }
1379
1380 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1381 {
1382 struct sample *sample = &cpu->sample;
1383
1384 sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1385 }
1386
1387 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1388 {
1389 u64 aperf, mperf;
1390 unsigned long flags;
1391 u64 tsc;
1392
1393 local_irq_save(flags);
1394 rdmsrl(MSR_IA32_APERF, aperf);
1395 rdmsrl(MSR_IA32_MPERF, mperf);
1396 tsc = rdtsc();
1397 if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1398 local_irq_restore(flags);
1399 return false;
1400 }
1401 local_irq_restore(flags);
1402
1403 cpu->last_sample_time = cpu->sample.time;
1404 cpu->sample.time = time;
1405 cpu->sample.aperf = aperf;
1406 cpu->sample.mperf = mperf;
1407 cpu->sample.tsc = tsc;
1408 cpu->sample.aperf -= cpu->prev_aperf;
1409 cpu->sample.mperf -= cpu->prev_mperf;
1410 cpu->sample.tsc -= cpu->prev_tsc;
1411
1412 cpu->prev_aperf = aperf;
1413 cpu->prev_mperf = mperf;
1414 cpu->prev_tsc = tsc;
1415 /*
1416 * First time this function is invoked in a given cycle, all of the
1417 * previous sample data fields are equal to zero or stale and they must
1418 * be populated with meaningful numbers for things to work, so assume
1419 * that sample.time will always be reset before setting the utilization
1420 * update hook and make the caller skip the sample then.
1421 */
1422 if (cpu->last_sample_time) {
1423 intel_pstate_calc_avg_perf(cpu);
1424 return true;
1425 }
1426 return false;
1427 }
1428
1429 static inline int32_t get_avg_frequency(struct cpudata *cpu)
1430 {
1431 return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
1432 }
1433
1434 static inline int32_t get_avg_pstate(struct cpudata *cpu)
1435 {
1436 return mul_ext_fp(cpu->pstate.max_pstate_physical,
1437 cpu->sample.core_avg_perf);
1438 }
1439
1440 static inline int32_t get_target_pstate(struct cpudata *cpu)
1441 {
1442 struct sample *sample = &cpu->sample;
1443 int32_t busy_frac, boost;
1444 int target, avg_pstate;
1445
1446 busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
1447 sample->tsc);
1448
1449 boost = cpu->iowait_boost;
1450 cpu->iowait_boost >>= 1;
1451
1452 if (busy_frac < boost)
1453 busy_frac = boost;
1454
1455 sample->busy_scaled = busy_frac * 100;
1456
1457 target = global.no_turbo || global.turbo_disabled ?
1458 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1459 target += target >> 2;
1460 target = mul_fp(target, busy_frac);
1461 if (target < cpu->pstate.min_pstate)
1462 target = cpu->pstate.min_pstate;
1463
1464 /*
1465 * If the average P-state during the previous cycle was higher than the
1466 * current target, add 50% of the difference to the target to reduce
1467 * possible performance oscillations and offset possible performance
1468 * loss related to moving the workload from one CPU to another within
1469 * a package/module.
1470 */
1471 avg_pstate = get_avg_pstate(cpu);
1472 if (avg_pstate > target)
1473 target += (avg_pstate - target) >> 1;
1474
1475 return target;
1476 }
1477
1478 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1479 {
1480 int max_pstate = intel_pstate_get_base_pstate(cpu);
1481 int min_pstate;
1482
1483 min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
1484 max_pstate = max(min_pstate, cpu->max_perf_ratio);
1485 return clamp_t(int, pstate, min_pstate, max_pstate);
1486 }
1487
1488 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1489 {
1490 if (pstate == cpu->pstate.current_pstate)
1491 return;
1492
1493 cpu->pstate.current_pstate = pstate;
1494 wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1495 }
1496
1497 static void intel_pstate_adjust_pstate(struct cpudata *cpu)
1498 {
1499 int from = cpu->pstate.current_pstate;
1500 struct sample *sample;
1501 int target_pstate;
1502
1503 update_turbo_state();
1504
1505 target_pstate = get_target_pstate(cpu);
1506 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
1507 trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1508 intel_pstate_update_pstate(cpu, target_pstate);
1509
1510 sample = &cpu->sample;
1511 trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1512 fp_toint(sample->busy_scaled),
1513 from,
1514 cpu->pstate.current_pstate,
1515 sample->mperf,
1516 sample->aperf,
1517 sample->tsc,
1518 get_avg_frequency(cpu),
1519 fp_toint(cpu->iowait_boost * 100));
1520 }
1521
1522 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1523 unsigned int flags)
1524 {
1525 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1526 u64 delta_ns;
1527
1528 /* Don't allow remote callbacks */
1529 if (smp_processor_id() != cpu->cpu)
1530 return;
1531
1532 if (flags & SCHED_CPUFREQ_IOWAIT) {
1533 cpu->iowait_boost = int_tofp(1);
1534 cpu->last_update = time;
1535 /*
1536 * The last time the busy was 100% so P-state was max anyway
1537 * so avoid overhead of computation.
1538 */
1539 if (fp_toint(cpu->sample.busy_scaled) == 100)
1540 return;
1541
1542 goto set_pstate;
1543 } else if (cpu->iowait_boost) {
1544 /* Clear iowait_boost if the CPU may have been idle. */
1545 delta_ns = time - cpu->last_update;
1546 if (delta_ns > TICK_NSEC)
1547 cpu->iowait_boost = 0;
1548 }
1549 cpu->last_update = time;
1550 delta_ns = time - cpu->sample.time;
1551 if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
1552 return;
1553
1554 set_pstate:
1555 if (intel_pstate_sample(cpu, time))
1556 intel_pstate_adjust_pstate(cpu);
1557 }
1558
1559 static struct pstate_funcs core_funcs = {
1560 .get_max = core_get_max_pstate,
1561 .get_max_physical = core_get_max_pstate_physical,
1562 .get_min = core_get_min_pstate,
1563 .get_turbo = core_get_turbo_pstate,
1564 .get_scaling = core_get_scaling,
1565 .get_val = core_get_val,
1566 };
1567
1568 static const struct pstate_funcs silvermont_funcs = {
1569 .get_max = atom_get_max_pstate,
1570 .get_max_physical = atom_get_max_pstate,
1571 .get_min = atom_get_min_pstate,
1572 .get_turbo = atom_get_turbo_pstate,
1573 .get_val = atom_get_val,
1574 .get_scaling = silvermont_get_scaling,
1575 .get_vid = atom_get_vid,
1576 };
1577
1578 static const struct pstate_funcs airmont_funcs = {
1579 .get_max = atom_get_max_pstate,
1580 .get_max_physical = atom_get_max_pstate,
1581 .get_min = atom_get_min_pstate,
1582 .get_turbo = atom_get_turbo_pstate,
1583 .get_val = atom_get_val,
1584 .get_scaling = airmont_get_scaling,
1585 .get_vid = atom_get_vid,
1586 };
1587
1588 static const struct pstate_funcs knl_funcs = {
1589 .get_max = core_get_max_pstate,
1590 .get_max_physical = core_get_max_pstate_physical,
1591 .get_min = core_get_min_pstate,
1592 .get_turbo = knl_get_turbo_pstate,
1593 .get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
1594 .get_scaling = core_get_scaling,
1595 .get_val = core_get_val,
1596 };
1597
1598 static const struct pstate_funcs bxt_funcs = {
1599 .get_max = core_get_max_pstate,
1600 .get_max_physical = core_get_max_pstate_physical,
1601 .get_min = core_get_min_pstate,
1602 .get_turbo = core_get_turbo_pstate,
1603 .get_scaling = core_get_scaling,
1604 .get_val = core_get_val,
1605 };
1606
1607 #define ICPU(model, policy) \
1608 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1609 (unsigned long)&policy }
1610
1611 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1612 ICPU(INTEL_FAM6_SANDYBRIDGE, core_funcs),
1613 ICPU(INTEL_FAM6_SANDYBRIDGE_X, core_funcs),
1614 ICPU(INTEL_FAM6_ATOM_SILVERMONT1, silvermont_funcs),
1615 ICPU(INTEL_FAM6_IVYBRIDGE, core_funcs),
1616 ICPU(INTEL_FAM6_HASWELL_CORE, core_funcs),
1617 ICPU(INTEL_FAM6_BROADWELL_CORE, core_funcs),
1618 ICPU(INTEL_FAM6_IVYBRIDGE_X, core_funcs),
1619 ICPU(INTEL_FAM6_HASWELL_X, core_funcs),
1620 ICPU(INTEL_FAM6_HASWELL_ULT, core_funcs),
1621 ICPU(INTEL_FAM6_HASWELL_GT3E, core_funcs),
1622 ICPU(INTEL_FAM6_BROADWELL_GT3E, core_funcs),
1623 ICPU(INTEL_FAM6_ATOM_AIRMONT, airmont_funcs),
1624 ICPU(INTEL_FAM6_SKYLAKE_MOBILE, core_funcs),
1625 ICPU(INTEL_FAM6_BROADWELL_X, core_funcs),
1626 ICPU(INTEL_FAM6_SKYLAKE_DESKTOP, core_funcs),
1627 ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_funcs),
1628 ICPU(INTEL_FAM6_XEON_PHI_KNL, knl_funcs),
1629 ICPU(INTEL_FAM6_XEON_PHI_KNM, knl_funcs),
1630 ICPU(INTEL_FAM6_ATOM_GOLDMONT, bxt_funcs),
1631 ICPU(INTEL_FAM6_ATOM_GEMINI_LAKE, bxt_funcs),
1632 {}
1633 };
1634 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1635
1636 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1637 ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_funcs),
1638 ICPU(INTEL_FAM6_BROADWELL_X, core_funcs),
1639 ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
1640 {}
1641 };
1642
1643 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
1644 ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_funcs),
1645 {}
1646 };
1647
1648 static int intel_pstate_init_cpu(unsigned int cpunum)
1649 {
1650 struct cpudata *cpu;
1651
1652 cpu = all_cpu_data[cpunum];
1653
1654 if (!cpu) {
1655 cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
1656 if (!cpu)
1657 return -ENOMEM;
1658
1659 all_cpu_data[cpunum] = cpu;
1660
1661 cpu->epp_default = -EINVAL;
1662 cpu->epp_powersave = -EINVAL;
1663 cpu->epp_saved = -EINVAL;
1664 }
1665
1666 cpu = all_cpu_data[cpunum];
1667
1668 cpu->cpu = cpunum;
1669
1670 if (hwp_active) {
1671 const struct x86_cpu_id *id;
1672
1673 id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
1674 if (id)
1675 intel_pstate_disable_ee(cpunum);
1676
1677 intel_pstate_hwp_enable(cpu);
1678 }
1679
1680 intel_pstate_get_cpu_pstates(cpu);
1681
1682 pr_debug("controlling: cpu %d\n", cpunum);
1683
1684 return 0;
1685 }
1686
1687 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1688 {
1689 struct cpudata *cpu = all_cpu_data[cpu_num];
1690
1691 if (hwp_active)
1692 return;
1693
1694 if (cpu->update_util_set)
1695 return;
1696
1697 /* Prevent intel_pstate_update_util() from using stale data. */
1698 cpu->sample.time = 0;
1699 cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1700 intel_pstate_update_util);
1701 cpu->update_util_set = true;
1702 }
1703
1704 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1705 {
1706 struct cpudata *cpu_data = all_cpu_data[cpu];
1707
1708 if (!cpu_data->update_util_set)
1709 return;
1710
1711 cpufreq_remove_update_util_hook(cpu);
1712 cpu_data->update_util_set = false;
1713 synchronize_sched();
1714 }
1715
1716 static int intel_pstate_get_max_freq(struct cpudata *cpu)
1717 {
1718 return global.turbo_disabled || global.no_turbo ?
1719 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
1720 }
1721
1722 static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
1723 struct cpudata *cpu)
1724 {
1725 int max_freq = intel_pstate_get_max_freq(cpu);
1726 int32_t max_policy_perf, min_policy_perf;
1727 int max_state, turbo_max;
1728
1729 /*
1730 * HWP needs some special consideration, because on BDX the
1731 * HWP_REQUEST uses abstract value to represent performance
1732 * rather than pure ratios.
1733 */
1734 if (hwp_active) {
1735 intel_pstate_get_hwp_max(cpu->cpu, &turbo_max, &max_state);
1736 } else {
1737 max_state = intel_pstate_get_base_pstate(cpu);
1738 turbo_max = cpu->pstate.turbo_pstate;
1739 }
1740
1741 max_policy_perf = max_state * policy->max / max_freq;
1742 if (policy->max == policy->min) {
1743 min_policy_perf = max_policy_perf;
1744 } else {
1745 min_policy_perf = max_state * policy->min / max_freq;
1746 min_policy_perf = clamp_t(int32_t, min_policy_perf,
1747 0, max_policy_perf);
1748 }
1749
1750 pr_debug("cpu:%d max_state %d min_policy_perf:%d max_policy_perf:%d\n",
1751 policy->cpu, max_state,
1752 min_policy_perf, max_policy_perf);
1753
1754 /* Normalize user input to [min_perf, max_perf] */
1755 if (per_cpu_limits) {
1756 cpu->min_perf_ratio = min_policy_perf;
1757 cpu->max_perf_ratio = max_policy_perf;
1758 } else {
1759 int32_t global_min, global_max;
1760
1761 /* Global limits are in percent of the maximum turbo P-state. */
1762 global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
1763 global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
1764 global_min = clamp_t(int32_t, global_min, 0, global_max);
1765
1766 pr_debug("cpu:%d global_min:%d global_max:%d\n", policy->cpu,
1767 global_min, global_max);
1768
1769 cpu->min_perf_ratio = max(min_policy_perf, global_min);
1770 cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
1771 cpu->max_perf_ratio = min(max_policy_perf, global_max);
1772 cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
1773
1774 /* Make sure min_perf <= max_perf */
1775 cpu->min_perf_ratio = min(cpu->min_perf_ratio,
1776 cpu->max_perf_ratio);
1777
1778 }
1779 pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", policy->cpu,
1780 cpu->max_perf_ratio,
1781 cpu->min_perf_ratio);
1782 }
1783
1784 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
1785 {
1786 struct cpudata *cpu;
1787
1788 if (!policy->cpuinfo.max_freq)
1789 return -ENODEV;
1790
1791 pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
1792 policy->cpuinfo.max_freq, policy->max);
1793
1794 cpu = all_cpu_data[policy->cpu];
1795 cpu->policy = policy->policy;
1796
1797 mutex_lock(&intel_pstate_limits_lock);
1798
1799 intel_pstate_update_perf_limits(policy, cpu);
1800
1801 if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
1802 /*
1803 * NOHZ_FULL CPUs need this as the governor callback may not
1804 * be invoked on them.
1805 */
1806 intel_pstate_clear_update_util_hook(policy->cpu);
1807 intel_pstate_max_within_limits(cpu);
1808 } else {
1809 intel_pstate_set_update_util_hook(policy->cpu);
1810 }
1811
1812 if (hwp_active)
1813 intel_pstate_hwp_set(policy->cpu);
1814
1815 mutex_unlock(&intel_pstate_limits_lock);
1816
1817 return 0;
1818 }
1819
1820 static void intel_pstate_adjust_policy_max(struct cpufreq_policy *policy,
1821 struct cpudata *cpu)
1822 {
1823 if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
1824 policy->max < policy->cpuinfo.max_freq &&
1825 policy->max > cpu->pstate.max_freq) {
1826 pr_debug("policy->max > max non turbo frequency\n");
1827 policy->max = policy->cpuinfo.max_freq;
1828 }
1829 }
1830
1831 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
1832 {
1833 struct cpudata *cpu = all_cpu_data[policy->cpu];
1834
1835 update_turbo_state();
1836 cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
1837 intel_pstate_get_max_freq(cpu));
1838
1839 if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
1840 policy->policy != CPUFREQ_POLICY_PERFORMANCE)
1841 return -EINVAL;
1842
1843 intel_pstate_adjust_policy_max(policy, cpu);
1844
1845 return 0;
1846 }
1847
1848 static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
1849 {
1850 intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
1851 }
1852
1853 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
1854 {
1855 pr_debug("CPU %d exiting\n", policy->cpu);
1856
1857 intel_pstate_clear_update_util_hook(policy->cpu);
1858 if (hwp_active)
1859 intel_pstate_hwp_save_state(policy);
1860 else
1861 intel_cpufreq_stop_cpu(policy);
1862 }
1863
1864 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
1865 {
1866 intel_pstate_exit_perf_limits(policy);
1867
1868 policy->fast_switch_possible = false;
1869
1870 return 0;
1871 }
1872
1873 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
1874 {
1875 struct cpudata *cpu;
1876 int rc;
1877
1878 rc = intel_pstate_init_cpu(policy->cpu);
1879 if (rc)
1880 return rc;
1881
1882 cpu = all_cpu_data[policy->cpu];
1883
1884 cpu->max_perf_ratio = 0xFF;
1885 cpu->min_perf_ratio = 0;
1886
1887 policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
1888 policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1889
1890 /* cpuinfo and default policy values */
1891 policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
1892 update_turbo_state();
1893 policy->cpuinfo.max_freq = global.turbo_disabled ?
1894 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1895 policy->cpuinfo.max_freq *= cpu->pstate.scaling;
1896
1897 intel_pstate_init_acpi_perf_limits(policy);
1898
1899 policy->fast_switch_possible = true;
1900
1901 return 0;
1902 }
1903
1904 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
1905 {
1906 int ret = __intel_pstate_cpu_init(policy);
1907
1908 if (ret)
1909 return ret;
1910
1911 if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE))
1912 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
1913 else
1914 policy->policy = CPUFREQ_POLICY_POWERSAVE;
1915
1916 return 0;
1917 }
1918
1919 static struct cpufreq_driver intel_pstate = {
1920 .flags = CPUFREQ_CONST_LOOPS,
1921 .verify = intel_pstate_verify_policy,
1922 .setpolicy = intel_pstate_set_policy,
1923 .suspend = intel_pstate_hwp_save_state,
1924 .resume = intel_pstate_resume,
1925 .init = intel_pstate_cpu_init,
1926 .exit = intel_pstate_cpu_exit,
1927 .stop_cpu = intel_pstate_stop_cpu,
1928 .name = "intel_pstate",
1929 };
1930
1931 static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
1932 {
1933 struct cpudata *cpu = all_cpu_data[policy->cpu];
1934
1935 update_turbo_state();
1936 cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
1937 intel_pstate_get_max_freq(cpu));
1938
1939 intel_pstate_adjust_policy_max(policy, cpu);
1940
1941 intel_pstate_update_perf_limits(policy, cpu);
1942
1943 return 0;
1944 }
1945
1946 static int intel_cpufreq_target(struct cpufreq_policy *policy,
1947 unsigned int target_freq,
1948 unsigned int relation)
1949 {
1950 struct cpudata *cpu = all_cpu_data[policy->cpu];
1951 struct cpufreq_freqs freqs;
1952 int target_pstate;
1953
1954 update_turbo_state();
1955
1956 freqs.old = policy->cur;
1957 freqs.new = target_freq;
1958
1959 cpufreq_freq_transition_begin(policy, &freqs);
1960 switch (relation) {
1961 case CPUFREQ_RELATION_L:
1962 target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
1963 break;
1964 case CPUFREQ_RELATION_H:
1965 target_pstate = freqs.new / cpu->pstate.scaling;
1966 break;
1967 default:
1968 target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
1969 break;
1970 }
1971 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
1972 if (target_pstate != cpu->pstate.current_pstate) {
1973 cpu->pstate.current_pstate = target_pstate;
1974 wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
1975 pstate_funcs.get_val(cpu, target_pstate));
1976 }
1977 freqs.new = target_pstate * cpu->pstate.scaling;
1978 cpufreq_freq_transition_end(policy, &freqs, false);
1979
1980 return 0;
1981 }
1982
1983 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
1984 unsigned int target_freq)
1985 {
1986 struct cpudata *cpu = all_cpu_data[policy->cpu];
1987 int target_pstate;
1988
1989 update_turbo_state();
1990
1991 target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
1992 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
1993 intel_pstate_update_pstate(cpu, target_pstate);
1994 return target_pstate * cpu->pstate.scaling;
1995 }
1996
1997 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
1998 {
1999 int ret = __intel_pstate_cpu_init(policy);
2000
2001 if (ret)
2002 return ret;
2003
2004 policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2005 policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
2006 /* This reflects the intel_pstate_get_cpu_pstates() setting. */
2007 policy->cur = policy->cpuinfo.min_freq;
2008
2009 return 0;
2010 }
2011
2012 static struct cpufreq_driver intel_cpufreq = {
2013 .flags = CPUFREQ_CONST_LOOPS,
2014 .verify = intel_cpufreq_verify_policy,
2015 .target = intel_cpufreq_target,
2016 .fast_switch = intel_cpufreq_fast_switch,
2017 .init = intel_cpufreq_cpu_init,
2018 .exit = intel_pstate_cpu_exit,
2019 .stop_cpu = intel_cpufreq_stop_cpu,
2020 .name = "intel_cpufreq",
2021 };
2022
2023 static struct cpufreq_driver *default_driver = &intel_pstate;
2024
2025 static void intel_pstate_driver_cleanup(void)
2026 {
2027 unsigned int cpu;
2028
2029 get_online_cpus();
2030 for_each_online_cpu(cpu) {
2031 if (all_cpu_data[cpu]) {
2032 if (intel_pstate_driver == &intel_pstate)
2033 intel_pstate_clear_update_util_hook(cpu);
2034
2035 kfree(all_cpu_data[cpu]);
2036 all_cpu_data[cpu] = NULL;
2037 }
2038 }
2039 put_online_cpus();
2040 intel_pstate_driver = NULL;
2041 }
2042
2043 static int intel_pstate_register_driver(struct cpufreq_driver *driver)
2044 {
2045 int ret;
2046
2047 memset(&global, 0, sizeof(global));
2048 global.max_perf_pct = 100;
2049
2050 intel_pstate_driver = driver;
2051 ret = cpufreq_register_driver(intel_pstate_driver);
2052 if (ret) {
2053 intel_pstate_driver_cleanup();
2054 return ret;
2055 }
2056
2057 global.min_perf_pct = min_perf_pct_min();
2058
2059 return 0;
2060 }
2061
2062 static int intel_pstate_unregister_driver(void)
2063 {
2064 if (hwp_active)
2065 return -EBUSY;
2066
2067 cpufreq_unregister_driver(intel_pstate_driver);
2068 intel_pstate_driver_cleanup();
2069
2070 return 0;
2071 }
2072
2073 static ssize_t intel_pstate_show_status(char *buf)
2074 {
2075 if (!intel_pstate_driver)
2076 return sprintf(buf, "off\n");
2077
2078 return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
2079 "active" : "passive");
2080 }
2081
2082 static int intel_pstate_update_status(const char *buf, size_t size)
2083 {
2084 int ret;
2085
2086 if (size == 3 && !strncmp(buf, "off", size))
2087 return intel_pstate_driver ?
2088 intel_pstate_unregister_driver() : -EINVAL;
2089
2090 if (size == 6 && !strncmp(buf, "active", size)) {
2091 if (intel_pstate_driver) {
2092 if (intel_pstate_driver == &intel_pstate)
2093 return 0;
2094
2095 ret = intel_pstate_unregister_driver();
2096 if (ret)
2097 return ret;
2098 }
2099
2100 return intel_pstate_register_driver(&intel_pstate);
2101 }
2102
2103 if (size == 7 && !strncmp(buf, "passive", size)) {
2104 if (intel_pstate_driver) {
2105 if (intel_pstate_driver == &intel_cpufreq)
2106 return 0;
2107
2108 ret = intel_pstate_unregister_driver();
2109 if (ret)
2110 return ret;
2111 }
2112
2113 return intel_pstate_register_driver(&intel_cpufreq);
2114 }
2115
2116 return -EINVAL;
2117 }
2118
2119 static int no_load __initdata;
2120 static int no_hwp __initdata;
2121 static int hwp_only __initdata;
2122 static unsigned int force_load __initdata;
2123
2124 static int __init intel_pstate_msrs_not_valid(void)
2125 {
2126 if (!pstate_funcs.get_max() ||
2127 !pstate_funcs.get_min() ||
2128 !pstate_funcs.get_turbo())
2129 return -ENODEV;
2130
2131 return 0;
2132 }
2133
2134 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2135 {
2136 pstate_funcs.get_max = funcs->get_max;
2137 pstate_funcs.get_max_physical = funcs->get_max_physical;
2138 pstate_funcs.get_min = funcs->get_min;
2139 pstate_funcs.get_turbo = funcs->get_turbo;
2140 pstate_funcs.get_scaling = funcs->get_scaling;
2141 pstate_funcs.get_val = funcs->get_val;
2142 pstate_funcs.get_vid = funcs->get_vid;
2143 pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
2144 }
2145
2146 #ifdef CONFIG_ACPI
2147
2148 static bool __init intel_pstate_no_acpi_pss(void)
2149 {
2150 int i;
2151
2152 for_each_possible_cpu(i) {
2153 acpi_status status;
2154 union acpi_object *pss;
2155 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
2156 struct acpi_processor *pr = per_cpu(processors, i);
2157
2158 if (!pr)
2159 continue;
2160
2161 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
2162 if (ACPI_FAILURE(status))
2163 continue;
2164
2165 pss = buffer.pointer;
2166 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
2167 kfree(pss);
2168 return false;
2169 }
2170
2171 kfree(pss);
2172 }
2173
2174 return true;
2175 }
2176
2177 static bool __init intel_pstate_has_acpi_ppc(void)
2178 {
2179 int i;
2180
2181 for_each_possible_cpu(i) {
2182 struct acpi_processor *pr = per_cpu(processors, i);
2183
2184 if (!pr)
2185 continue;
2186 if (acpi_has_method(pr->handle, "_PPC"))
2187 return true;
2188 }
2189 return false;
2190 }
2191
2192 enum {
2193 PSS,
2194 PPC,
2195 };
2196
2197 /* Hardware vendor-specific info that has its own power management modes */
2198 static struct acpi_platform_list plat_info[] __initdata = {
2199 {"HP ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, 0, PSS},
2200 {"ORACLE", "X4-2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2201 {"ORACLE", "X4-2L ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2202 {"ORACLE", "X4-2B ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2203 {"ORACLE", "X3-2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2204 {"ORACLE", "X3-2L ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2205 {"ORACLE", "X3-2B ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2206 {"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2207 {"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2208 {"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2209 {"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2210 {"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2211 {"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2212 {"ORACLE", "X6-2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2213 {"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2214 { } /* End */
2215 };
2216
2217 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2218 {
2219 const struct x86_cpu_id *id;
2220 u64 misc_pwr;
2221 int idx;
2222
2223 id = x86_match_cpu(intel_pstate_cpu_oob_ids);
2224 if (id) {
2225 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2226 if ( misc_pwr & (1 << 8))
2227 return true;
2228 }
2229
2230 idx = acpi_match_platform_list(plat_info);
2231 if (idx < 0)
2232 return false;
2233
2234 switch (plat_info[idx].data) {
2235 case PSS:
2236 return intel_pstate_no_acpi_pss();
2237 case PPC:
2238 return intel_pstate_has_acpi_ppc() && !force_load;
2239 }
2240
2241 return false;
2242 }
2243
2244 static void intel_pstate_request_control_from_smm(void)
2245 {
2246 /*
2247 * It may be unsafe to request P-states control from SMM if _PPC support
2248 * has not been enabled.
2249 */
2250 if (acpi_ppc)
2251 acpi_processor_pstate_control();
2252 }
2253 #else /* CONFIG_ACPI not enabled */
2254 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2255 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2256 static inline void intel_pstate_request_control_from_smm(void) {}
2257 #endif /* CONFIG_ACPI */
2258
2259 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2260 { X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
2261 {}
2262 };
2263
2264 static int __init intel_pstate_init(void)
2265 {
2266 int rc;
2267
2268 if (no_load)
2269 return -ENODEV;
2270
2271 if (x86_match_cpu(hwp_support_ids)) {
2272 copy_cpu_funcs(&core_funcs);
2273 if (!no_hwp) {
2274 hwp_active++;
2275 intel_pstate.attr = hwp_cpufreq_attrs;
2276 goto hwp_cpu_matched;
2277 }
2278 } else {
2279 const struct x86_cpu_id *id;
2280
2281 id = x86_match_cpu(intel_pstate_cpu_ids);
2282 if (!id)
2283 return -ENODEV;
2284
2285 copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
2286 }
2287
2288 if (intel_pstate_msrs_not_valid())
2289 return -ENODEV;
2290
2291 hwp_cpu_matched:
2292 /*
2293 * The Intel pstate driver will be ignored if the platform
2294 * firmware has its own power management modes.
2295 */
2296 if (intel_pstate_platform_pwr_mgmt_exists())
2297 return -ENODEV;
2298
2299 if (!hwp_active && hwp_only)
2300 return -ENOTSUPP;
2301
2302 pr_info("Intel P-state driver initializing\n");
2303
2304 all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
2305 if (!all_cpu_data)
2306 return -ENOMEM;
2307
2308 intel_pstate_request_control_from_smm();
2309
2310 intel_pstate_sysfs_expose_params();
2311
2312 mutex_lock(&intel_pstate_driver_lock);
2313 rc = intel_pstate_register_driver(default_driver);
2314 mutex_unlock(&intel_pstate_driver_lock);
2315 if (rc)
2316 return rc;
2317
2318 if (hwp_active)
2319 pr_info("HWP enabled\n");
2320
2321 return 0;
2322 }
2323 device_initcall(intel_pstate_init);
2324
2325 static int __init intel_pstate_setup(char *str)
2326 {
2327 if (!str)
2328 return -EINVAL;
2329
2330 if (!strcmp(str, "disable")) {
2331 no_load = 1;
2332 } else if (!strcmp(str, "passive")) {
2333 pr_info("Passive mode enabled\n");
2334 default_driver = &intel_cpufreq;
2335 no_hwp = 1;
2336 }
2337 if (!strcmp(str, "no_hwp")) {
2338 pr_info("HWP disabled\n");
2339 no_hwp = 1;
2340 }
2341 if (!strcmp(str, "force"))
2342 force_load = 1;
2343 if (!strcmp(str, "hwp_only"))
2344 hwp_only = 1;
2345 if (!strcmp(str, "per_cpu_perf_limits"))
2346 per_cpu_limits = true;
2347
2348 #ifdef CONFIG_ACPI
2349 if (!strcmp(str, "support_acpi_ppc"))
2350 acpi_ppc = true;
2351 #endif
2352
2353 return 0;
2354 }
2355 early_param("intel_pstate", intel_pstate_setup);
2356
2357 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
2358 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
2359 MODULE_LICENSE("GPL");