]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - drivers/cpufreq/intel_pstate.c
Merge branches 'for-5.1/upstream-fixes', 'for-5.2/core', 'for-5.2/ish', 'for-5.2...
[mirror_ubuntu-kernels.git] / drivers / cpufreq / intel_pstate.c
1 /*
2 * intel_pstate.c: Native P state management for Intel processors
3 *
4 * (C) Copyright 2012 Intel Corporation
5 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
10 * of the License.
11 */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/kernel.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/module.h>
18 #include <linux/ktime.h>
19 #include <linux/hrtimer.h>
20 #include <linux/tick.h>
21 #include <linux/slab.h>
22 #include <linux/sched/cpufreq.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25 #include <linux/cpufreq.h>
26 #include <linux/sysfs.h>
27 #include <linux/types.h>
28 #include <linux/fs.h>
29 #include <linux/acpi.h>
30 #include <linux/vmalloc.h>
31 #include <trace/events/power.h>
32
33 #include <asm/div64.h>
34 #include <asm/msr.h>
35 #include <asm/cpu_device_id.h>
36 #include <asm/cpufeature.h>
37 #include <asm/intel-family.h>
38
39 #define INTEL_PSTATE_SAMPLING_INTERVAL (10 * NSEC_PER_MSEC)
40
41 #define INTEL_CPUFREQ_TRANSITION_LATENCY 20000
42 #define INTEL_CPUFREQ_TRANSITION_DELAY 500
43
44 #ifdef CONFIG_ACPI
45 #include <acpi/processor.h>
46 #include <acpi/cppc_acpi.h>
47 #endif
48
49 #define FRAC_BITS 8
50 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
51 #define fp_toint(X) ((X) >> FRAC_BITS)
52
53 #define ONE_EIGHTH_FP ((int64_t)1 << (FRAC_BITS - 3))
54
55 #define EXT_BITS 6
56 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
57 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
58 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
59
60 static inline int32_t mul_fp(int32_t x, int32_t y)
61 {
62 return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
63 }
64
65 static inline int32_t div_fp(s64 x, s64 y)
66 {
67 return div64_s64((int64_t)x << FRAC_BITS, y);
68 }
69
70 static inline int ceiling_fp(int32_t x)
71 {
72 int mask, ret;
73
74 ret = fp_toint(x);
75 mask = (1 << FRAC_BITS) - 1;
76 if (x & mask)
77 ret += 1;
78 return ret;
79 }
80
81 static inline int32_t percent_fp(int percent)
82 {
83 return div_fp(percent, 100);
84 }
85
86 static inline u64 mul_ext_fp(u64 x, u64 y)
87 {
88 return (x * y) >> EXT_FRAC_BITS;
89 }
90
91 static inline u64 div_ext_fp(u64 x, u64 y)
92 {
93 return div64_u64(x << EXT_FRAC_BITS, y);
94 }
95
96 static inline int32_t percent_ext_fp(int percent)
97 {
98 return div_ext_fp(percent, 100);
99 }
100
101 /**
102 * struct sample - Store performance sample
103 * @core_avg_perf: Ratio of APERF/MPERF which is the actual average
104 * performance during last sample period
105 * @busy_scaled: Scaled busy value which is used to calculate next
106 * P state. This can be different than core_avg_perf
107 * to account for cpu idle period
108 * @aperf: Difference of actual performance frequency clock count
109 * read from APERF MSR between last and current sample
110 * @mperf: Difference of maximum performance frequency clock count
111 * read from MPERF MSR between last and current sample
112 * @tsc: Difference of time stamp counter between last and
113 * current sample
114 * @time: Current time from scheduler
115 *
116 * This structure is used in the cpudata structure to store performance sample
117 * data for choosing next P State.
118 */
119 struct sample {
120 int32_t core_avg_perf;
121 int32_t busy_scaled;
122 u64 aperf;
123 u64 mperf;
124 u64 tsc;
125 u64 time;
126 };
127
128 /**
129 * struct pstate_data - Store P state data
130 * @current_pstate: Current requested P state
131 * @min_pstate: Min P state possible for this platform
132 * @max_pstate: Max P state possible for this platform
133 * @max_pstate_physical:This is physical Max P state for a processor
134 * This can be higher than the max_pstate which can
135 * be limited by platform thermal design power limits
136 * @scaling: Scaling factor to convert frequency to cpufreq
137 * frequency units
138 * @turbo_pstate: Max Turbo P state possible for this platform
139 * @max_freq: @max_pstate frequency in cpufreq units
140 * @turbo_freq: @turbo_pstate frequency in cpufreq units
141 *
142 * Stores the per cpu model P state limits and current P state.
143 */
144 struct pstate_data {
145 int current_pstate;
146 int min_pstate;
147 int max_pstate;
148 int max_pstate_physical;
149 int scaling;
150 int turbo_pstate;
151 unsigned int max_freq;
152 unsigned int turbo_freq;
153 };
154
155 /**
156 * struct vid_data - Stores voltage information data
157 * @min: VID data for this platform corresponding to
158 * the lowest P state
159 * @max: VID data corresponding to the highest P State.
160 * @turbo: VID data for turbo P state
161 * @ratio: Ratio of (vid max - vid min) /
162 * (max P state - Min P State)
163 *
164 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
165 * This data is used in Atom platforms, where in addition to target P state,
166 * the voltage data needs to be specified to select next P State.
167 */
168 struct vid_data {
169 int min;
170 int max;
171 int turbo;
172 int32_t ratio;
173 };
174
175 /**
176 * struct global_params - Global parameters, mostly tunable via sysfs.
177 * @no_turbo: Whether or not to use turbo P-states.
178 * @turbo_disabled: Whethet or not turbo P-states are available at all,
179 * based on the MSR_IA32_MISC_ENABLE value and whether or
180 * not the maximum reported turbo P-state is different from
181 * the maximum reported non-turbo one.
182 * @min_perf_pct: Minimum capacity limit in percent of the maximum turbo
183 * P-state capacity.
184 * @max_perf_pct: Maximum capacity limit in percent of the maximum turbo
185 * P-state capacity.
186 */
187 struct global_params {
188 bool no_turbo;
189 bool turbo_disabled;
190 int max_perf_pct;
191 int min_perf_pct;
192 };
193
194 /**
195 * struct cpudata - Per CPU instance data storage
196 * @cpu: CPU number for this instance data
197 * @policy: CPUFreq policy value
198 * @update_util: CPUFreq utility callback information
199 * @update_util_set: CPUFreq utility callback is set
200 * @iowait_boost: iowait-related boost fraction
201 * @last_update: Time of the last update.
202 * @pstate: Stores P state limits for this CPU
203 * @vid: Stores VID limits for this CPU
204 * @last_sample_time: Last Sample time
205 * @aperf_mperf_shift: Number of clock cycles after aperf, merf is incremented
206 * This shift is a multiplier to mperf delta to
207 * calculate CPU busy.
208 * @prev_aperf: Last APERF value read from APERF MSR
209 * @prev_mperf: Last MPERF value read from MPERF MSR
210 * @prev_tsc: Last timestamp counter (TSC) value
211 * @prev_cummulative_iowait: IO Wait time difference from last and
212 * current sample
213 * @sample: Storage for storing last Sample data
214 * @min_perf_ratio: Minimum capacity in terms of PERF or HWP ratios
215 * @max_perf_ratio: Maximum capacity in terms of PERF or HWP ratios
216 * @acpi_perf_data: Stores ACPI perf information read from _PSS
217 * @valid_pss_table: Set to true for valid ACPI _PSS entries found
218 * @epp_powersave: Last saved HWP energy performance preference
219 * (EPP) or energy performance bias (EPB),
220 * when policy switched to performance
221 * @epp_policy: Last saved policy used to set EPP/EPB
222 * @epp_default: Power on default HWP energy performance
223 * preference/bias
224 * @epp_saved: Saved EPP/EPB during system suspend or CPU offline
225 * operation
226 * @hwp_req_cached: Cached value of the last HWP Request MSR
227 * @hwp_cap_cached: Cached value of the last HWP Capabilities MSR
228 * @last_io_update: Last time when IO wake flag was set
229 * @sched_flags: Store scheduler flags for possible cross CPU update
230 * @hwp_boost_min: Last HWP boosted min performance
231 *
232 * This structure stores per CPU instance data for all CPUs.
233 */
234 struct cpudata {
235 int cpu;
236
237 unsigned int policy;
238 struct update_util_data update_util;
239 bool update_util_set;
240
241 struct pstate_data pstate;
242 struct vid_data vid;
243
244 u64 last_update;
245 u64 last_sample_time;
246 u64 aperf_mperf_shift;
247 u64 prev_aperf;
248 u64 prev_mperf;
249 u64 prev_tsc;
250 u64 prev_cummulative_iowait;
251 struct sample sample;
252 int32_t min_perf_ratio;
253 int32_t max_perf_ratio;
254 #ifdef CONFIG_ACPI
255 struct acpi_processor_performance acpi_perf_data;
256 bool valid_pss_table;
257 #endif
258 unsigned int iowait_boost;
259 s16 epp_powersave;
260 s16 epp_policy;
261 s16 epp_default;
262 s16 epp_saved;
263 u64 hwp_req_cached;
264 u64 hwp_cap_cached;
265 u64 last_io_update;
266 unsigned int sched_flags;
267 u32 hwp_boost_min;
268 };
269
270 static struct cpudata **all_cpu_data;
271
272 /**
273 * struct pstate_funcs - Per CPU model specific callbacks
274 * @get_max: Callback to get maximum non turbo effective P state
275 * @get_max_physical: Callback to get maximum non turbo physical P state
276 * @get_min: Callback to get minimum P state
277 * @get_turbo: Callback to get turbo P state
278 * @get_scaling: Callback to get frequency scaling factor
279 * @get_val: Callback to convert P state to actual MSR write value
280 * @get_vid: Callback to get VID data for Atom platforms
281 *
282 * Core and Atom CPU models have different way to get P State limits. This
283 * structure is used to store those callbacks.
284 */
285 struct pstate_funcs {
286 int (*get_max)(void);
287 int (*get_max_physical)(void);
288 int (*get_min)(void);
289 int (*get_turbo)(void);
290 int (*get_scaling)(void);
291 int (*get_aperf_mperf_shift)(void);
292 u64 (*get_val)(struct cpudata*, int pstate);
293 void (*get_vid)(struct cpudata *);
294 };
295
296 static struct pstate_funcs pstate_funcs __read_mostly;
297
298 static int hwp_active __read_mostly;
299 static int hwp_mode_bdw __read_mostly;
300 static bool per_cpu_limits __read_mostly;
301 static bool hwp_boost __read_mostly;
302
303 static struct cpufreq_driver *intel_pstate_driver __read_mostly;
304
305 #ifdef CONFIG_ACPI
306 static bool acpi_ppc;
307 #endif
308
309 static struct global_params global;
310
311 static DEFINE_MUTEX(intel_pstate_driver_lock);
312 static DEFINE_MUTEX(intel_pstate_limits_lock);
313
314 #ifdef CONFIG_ACPI
315
316 static bool intel_pstate_acpi_pm_profile_server(void)
317 {
318 if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
319 acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
320 return true;
321
322 return false;
323 }
324
325 static bool intel_pstate_get_ppc_enable_status(void)
326 {
327 if (intel_pstate_acpi_pm_profile_server())
328 return true;
329
330 return acpi_ppc;
331 }
332
333 #ifdef CONFIG_ACPI_CPPC_LIB
334
335 /* The work item is needed to avoid CPU hotplug locking issues */
336 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
337 {
338 sched_set_itmt_support();
339 }
340
341 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
342
343 static void intel_pstate_set_itmt_prio(int cpu)
344 {
345 struct cppc_perf_caps cppc_perf;
346 static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
347 int ret;
348
349 ret = cppc_get_perf_caps(cpu, &cppc_perf);
350 if (ret)
351 return;
352
353 /*
354 * The priorities can be set regardless of whether or not
355 * sched_set_itmt_support(true) has been called and it is valid to
356 * update them at any time after it has been called.
357 */
358 sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
359
360 if (max_highest_perf <= min_highest_perf) {
361 if (cppc_perf.highest_perf > max_highest_perf)
362 max_highest_perf = cppc_perf.highest_perf;
363
364 if (cppc_perf.highest_perf < min_highest_perf)
365 min_highest_perf = cppc_perf.highest_perf;
366
367 if (max_highest_perf > min_highest_perf) {
368 /*
369 * This code can be run during CPU online under the
370 * CPU hotplug locks, so sched_set_itmt_support()
371 * cannot be called from here. Queue up a work item
372 * to invoke it.
373 */
374 schedule_work(&sched_itmt_work);
375 }
376 }
377 }
378
379 static int intel_pstate_get_cppc_guranteed(int cpu)
380 {
381 struct cppc_perf_caps cppc_perf;
382 int ret;
383
384 ret = cppc_get_perf_caps(cpu, &cppc_perf);
385 if (ret)
386 return ret;
387
388 if (cppc_perf.guaranteed_perf)
389 return cppc_perf.guaranteed_perf;
390
391 return cppc_perf.nominal_perf;
392 }
393
394 #else /* CONFIG_ACPI_CPPC_LIB */
395 static void intel_pstate_set_itmt_prio(int cpu)
396 {
397 }
398 #endif /* CONFIG_ACPI_CPPC_LIB */
399
400 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
401 {
402 struct cpudata *cpu;
403 int ret;
404 int i;
405
406 if (hwp_active) {
407 intel_pstate_set_itmt_prio(policy->cpu);
408 return;
409 }
410
411 if (!intel_pstate_get_ppc_enable_status())
412 return;
413
414 cpu = all_cpu_data[policy->cpu];
415
416 ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
417 policy->cpu);
418 if (ret)
419 return;
420
421 /*
422 * Check if the control value in _PSS is for PERF_CTL MSR, which should
423 * guarantee that the states returned by it map to the states in our
424 * list directly.
425 */
426 if (cpu->acpi_perf_data.control_register.space_id !=
427 ACPI_ADR_SPACE_FIXED_HARDWARE)
428 goto err;
429
430 /*
431 * If there is only one entry _PSS, simply ignore _PSS and continue as
432 * usual without taking _PSS into account
433 */
434 if (cpu->acpi_perf_data.state_count < 2)
435 goto err;
436
437 pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
438 for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
439 pr_debug(" %cP%d: %u MHz, %u mW, 0x%x\n",
440 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
441 (u32) cpu->acpi_perf_data.states[i].core_frequency,
442 (u32) cpu->acpi_perf_data.states[i].power,
443 (u32) cpu->acpi_perf_data.states[i].control);
444 }
445
446 /*
447 * The _PSS table doesn't contain whole turbo frequency range.
448 * This just contains +1 MHZ above the max non turbo frequency,
449 * with control value corresponding to max turbo ratio. But
450 * when cpufreq set policy is called, it will call with this
451 * max frequency, which will cause a reduced performance as
452 * this driver uses real max turbo frequency as the max
453 * frequency. So correct this frequency in _PSS table to
454 * correct max turbo frequency based on the turbo state.
455 * Also need to convert to MHz as _PSS freq is in MHz.
456 */
457 if (!global.turbo_disabled)
458 cpu->acpi_perf_data.states[0].core_frequency =
459 policy->cpuinfo.max_freq / 1000;
460 cpu->valid_pss_table = true;
461 pr_debug("_PPC limits will be enforced\n");
462
463 return;
464
465 err:
466 cpu->valid_pss_table = false;
467 acpi_processor_unregister_performance(policy->cpu);
468 }
469
470 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
471 {
472 struct cpudata *cpu;
473
474 cpu = all_cpu_data[policy->cpu];
475 if (!cpu->valid_pss_table)
476 return;
477
478 acpi_processor_unregister_performance(policy->cpu);
479 }
480 #else /* CONFIG_ACPI */
481 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
482 {
483 }
484
485 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
486 {
487 }
488
489 static inline bool intel_pstate_acpi_pm_profile_server(void)
490 {
491 return false;
492 }
493 #endif /* CONFIG_ACPI */
494
495 #ifndef CONFIG_ACPI_CPPC_LIB
496 static int intel_pstate_get_cppc_guranteed(int cpu)
497 {
498 return -ENOTSUPP;
499 }
500 #endif /* CONFIG_ACPI_CPPC_LIB */
501
502 static inline void update_turbo_state(void)
503 {
504 u64 misc_en;
505 struct cpudata *cpu;
506
507 cpu = all_cpu_data[0];
508 rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
509 global.turbo_disabled =
510 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
511 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
512 }
513
514 static int min_perf_pct_min(void)
515 {
516 struct cpudata *cpu = all_cpu_data[0];
517 int turbo_pstate = cpu->pstate.turbo_pstate;
518
519 return turbo_pstate ?
520 (cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
521 }
522
523 static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
524 {
525 u64 epb;
526 int ret;
527
528 if (!static_cpu_has(X86_FEATURE_EPB))
529 return -ENXIO;
530
531 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
532 if (ret)
533 return (s16)ret;
534
535 return (s16)(epb & 0x0f);
536 }
537
538 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
539 {
540 s16 epp;
541
542 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
543 /*
544 * When hwp_req_data is 0, means that caller didn't read
545 * MSR_HWP_REQUEST, so need to read and get EPP.
546 */
547 if (!hwp_req_data) {
548 epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
549 &hwp_req_data);
550 if (epp)
551 return epp;
552 }
553 epp = (hwp_req_data >> 24) & 0xff;
554 } else {
555 /* When there is no EPP present, HWP uses EPB settings */
556 epp = intel_pstate_get_epb(cpu_data);
557 }
558
559 return epp;
560 }
561
562 static int intel_pstate_set_epb(int cpu, s16 pref)
563 {
564 u64 epb;
565 int ret;
566
567 if (!static_cpu_has(X86_FEATURE_EPB))
568 return -ENXIO;
569
570 ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
571 if (ret)
572 return ret;
573
574 epb = (epb & ~0x0f) | pref;
575 wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
576
577 return 0;
578 }
579
580 /*
581 * EPP/EPB display strings corresponding to EPP index in the
582 * energy_perf_strings[]
583 * index String
584 *-------------------------------------
585 * 0 default
586 * 1 performance
587 * 2 balance_performance
588 * 3 balance_power
589 * 4 power
590 */
591 static const char * const energy_perf_strings[] = {
592 "default",
593 "performance",
594 "balance_performance",
595 "balance_power",
596 "power",
597 NULL
598 };
599 static const unsigned int epp_values[] = {
600 HWP_EPP_PERFORMANCE,
601 HWP_EPP_BALANCE_PERFORMANCE,
602 HWP_EPP_BALANCE_POWERSAVE,
603 HWP_EPP_POWERSAVE
604 };
605
606 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
607 {
608 s16 epp;
609 int index = -EINVAL;
610
611 epp = intel_pstate_get_epp(cpu_data, 0);
612 if (epp < 0)
613 return epp;
614
615 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
616 if (epp == HWP_EPP_PERFORMANCE)
617 return 1;
618 if (epp <= HWP_EPP_BALANCE_PERFORMANCE)
619 return 2;
620 if (epp <= HWP_EPP_BALANCE_POWERSAVE)
621 return 3;
622 else
623 return 4;
624 } else if (static_cpu_has(X86_FEATURE_EPB)) {
625 /*
626 * Range:
627 * 0x00-0x03 : Performance
628 * 0x04-0x07 : Balance performance
629 * 0x08-0x0B : Balance power
630 * 0x0C-0x0F : Power
631 * The EPB is a 4 bit value, but our ranges restrict the
632 * value which can be set. Here only using top two bits
633 * effectively.
634 */
635 index = (epp >> 2) + 1;
636 }
637
638 return index;
639 }
640
641 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
642 int pref_index)
643 {
644 int epp = -EINVAL;
645 int ret;
646
647 if (!pref_index)
648 epp = cpu_data->epp_default;
649
650 mutex_lock(&intel_pstate_limits_lock);
651
652 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
653 u64 value;
654
655 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
656 if (ret)
657 goto return_pref;
658
659 value &= ~GENMASK_ULL(31, 24);
660
661 if (epp == -EINVAL)
662 epp = epp_values[pref_index - 1];
663
664 value |= (u64)epp << 24;
665 ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
666 } else {
667 if (epp == -EINVAL)
668 epp = (pref_index - 1) << 2;
669 ret = intel_pstate_set_epb(cpu_data->cpu, epp);
670 }
671 return_pref:
672 mutex_unlock(&intel_pstate_limits_lock);
673
674 return ret;
675 }
676
677 static ssize_t show_energy_performance_available_preferences(
678 struct cpufreq_policy *policy, char *buf)
679 {
680 int i = 0;
681 int ret = 0;
682
683 while (energy_perf_strings[i] != NULL)
684 ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
685
686 ret += sprintf(&buf[ret], "\n");
687
688 return ret;
689 }
690
691 cpufreq_freq_attr_ro(energy_performance_available_preferences);
692
693 static ssize_t store_energy_performance_preference(
694 struct cpufreq_policy *policy, const char *buf, size_t count)
695 {
696 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
697 char str_preference[21];
698 int ret;
699
700 ret = sscanf(buf, "%20s", str_preference);
701 if (ret != 1)
702 return -EINVAL;
703
704 ret = match_string(energy_perf_strings, -1, str_preference);
705 if (ret < 0)
706 return ret;
707
708 intel_pstate_set_energy_pref_index(cpu_data, ret);
709 return count;
710 }
711
712 static ssize_t show_energy_performance_preference(
713 struct cpufreq_policy *policy, char *buf)
714 {
715 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
716 int preference;
717
718 preference = intel_pstate_get_energy_pref_index(cpu_data);
719 if (preference < 0)
720 return preference;
721
722 return sprintf(buf, "%s\n", energy_perf_strings[preference]);
723 }
724
725 cpufreq_freq_attr_rw(energy_performance_preference);
726
727 static ssize_t show_base_frequency(struct cpufreq_policy *policy, char *buf)
728 {
729 struct cpudata *cpu;
730 u64 cap;
731 int ratio;
732
733 ratio = intel_pstate_get_cppc_guranteed(policy->cpu);
734 if (ratio <= 0) {
735 rdmsrl_on_cpu(policy->cpu, MSR_HWP_CAPABILITIES, &cap);
736 ratio = HWP_GUARANTEED_PERF(cap);
737 }
738
739 cpu = all_cpu_data[policy->cpu];
740
741 return sprintf(buf, "%d\n", ratio * cpu->pstate.scaling);
742 }
743
744 cpufreq_freq_attr_ro(base_frequency);
745
746 static struct freq_attr *hwp_cpufreq_attrs[] = {
747 &energy_performance_preference,
748 &energy_performance_available_preferences,
749 &base_frequency,
750 NULL,
751 };
752
753 static void intel_pstate_get_hwp_max(unsigned int cpu, int *phy_max,
754 int *current_max)
755 {
756 u64 cap;
757
758 rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
759 WRITE_ONCE(all_cpu_data[cpu]->hwp_cap_cached, cap);
760 if (global.no_turbo)
761 *current_max = HWP_GUARANTEED_PERF(cap);
762 else
763 *current_max = HWP_HIGHEST_PERF(cap);
764
765 *phy_max = HWP_HIGHEST_PERF(cap);
766 }
767
768 static void intel_pstate_hwp_set(unsigned int cpu)
769 {
770 struct cpudata *cpu_data = all_cpu_data[cpu];
771 int max, min;
772 u64 value;
773 s16 epp;
774
775 max = cpu_data->max_perf_ratio;
776 min = cpu_data->min_perf_ratio;
777
778 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
779 min = max;
780
781 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
782
783 value &= ~HWP_MIN_PERF(~0L);
784 value |= HWP_MIN_PERF(min);
785
786 value &= ~HWP_MAX_PERF(~0L);
787 value |= HWP_MAX_PERF(max);
788
789 if (cpu_data->epp_policy == cpu_data->policy)
790 goto skip_epp;
791
792 cpu_data->epp_policy = cpu_data->policy;
793
794 if (cpu_data->epp_saved >= 0) {
795 epp = cpu_data->epp_saved;
796 cpu_data->epp_saved = -EINVAL;
797 goto update_epp;
798 }
799
800 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
801 epp = intel_pstate_get_epp(cpu_data, value);
802 cpu_data->epp_powersave = epp;
803 /* If EPP read was failed, then don't try to write */
804 if (epp < 0)
805 goto skip_epp;
806
807 epp = 0;
808 } else {
809 /* skip setting EPP, when saved value is invalid */
810 if (cpu_data->epp_powersave < 0)
811 goto skip_epp;
812
813 /*
814 * No need to restore EPP when it is not zero. This
815 * means:
816 * - Policy is not changed
817 * - user has manually changed
818 * - Error reading EPB
819 */
820 epp = intel_pstate_get_epp(cpu_data, value);
821 if (epp)
822 goto skip_epp;
823
824 epp = cpu_data->epp_powersave;
825 }
826 update_epp:
827 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
828 value &= ~GENMASK_ULL(31, 24);
829 value |= (u64)epp << 24;
830 } else {
831 intel_pstate_set_epb(cpu, epp);
832 }
833 skip_epp:
834 WRITE_ONCE(cpu_data->hwp_req_cached, value);
835 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
836 }
837
838 static void intel_pstate_hwp_force_min_perf(int cpu)
839 {
840 u64 value;
841 int min_perf;
842
843 value = all_cpu_data[cpu]->hwp_req_cached;
844 value &= ~GENMASK_ULL(31, 0);
845 min_perf = HWP_LOWEST_PERF(all_cpu_data[cpu]->hwp_cap_cached);
846
847 /* Set hwp_max = hwp_min */
848 value |= HWP_MAX_PERF(min_perf);
849 value |= HWP_MIN_PERF(min_perf);
850
851 /* Set EPP/EPB to min */
852 if (static_cpu_has(X86_FEATURE_HWP_EPP))
853 value |= HWP_ENERGY_PERF_PREFERENCE(HWP_EPP_POWERSAVE);
854 else
855 intel_pstate_set_epb(cpu, HWP_EPP_BALANCE_POWERSAVE);
856
857 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
858 }
859
860 static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
861 {
862 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
863
864 if (!hwp_active)
865 return 0;
866
867 cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);
868
869 return 0;
870 }
871
872 static void intel_pstate_hwp_enable(struct cpudata *cpudata);
873
874 static int intel_pstate_resume(struct cpufreq_policy *policy)
875 {
876 if (!hwp_active)
877 return 0;
878
879 mutex_lock(&intel_pstate_limits_lock);
880
881 if (policy->cpu == 0)
882 intel_pstate_hwp_enable(all_cpu_data[policy->cpu]);
883
884 all_cpu_data[policy->cpu]->epp_policy = 0;
885 intel_pstate_hwp_set(policy->cpu);
886
887 mutex_unlock(&intel_pstate_limits_lock);
888
889 return 0;
890 }
891
892 static void intel_pstate_update_policies(void)
893 {
894 int cpu;
895
896 for_each_possible_cpu(cpu)
897 cpufreq_update_policy(cpu);
898 }
899
900 /************************** sysfs begin ************************/
901 #define show_one(file_name, object) \
902 static ssize_t show_##file_name \
903 (struct kobject *kobj, struct kobj_attribute *attr, char *buf) \
904 { \
905 return sprintf(buf, "%u\n", global.object); \
906 }
907
908 static ssize_t intel_pstate_show_status(char *buf);
909 static int intel_pstate_update_status(const char *buf, size_t size);
910
911 static ssize_t show_status(struct kobject *kobj,
912 struct kobj_attribute *attr, char *buf)
913 {
914 ssize_t ret;
915
916 mutex_lock(&intel_pstate_driver_lock);
917 ret = intel_pstate_show_status(buf);
918 mutex_unlock(&intel_pstate_driver_lock);
919
920 return ret;
921 }
922
923 static ssize_t store_status(struct kobject *a, struct kobj_attribute *b,
924 const char *buf, size_t count)
925 {
926 char *p = memchr(buf, '\n', count);
927 int ret;
928
929 mutex_lock(&intel_pstate_driver_lock);
930 ret = intel_pstate_update_status(buf, p ? p - buf : count);
931 mutex_unlock(&intel_pstate_driver_lock);
932
933 return ret < 0 ? ret : count;
934 }
935
936 static ssize_t show_turbo_pct(struct kobject *kobj,
937 struct kobj_attribute *attr, char *buf)
938 {
939 struct cpudata *cpu;
940 int total, no_turbo, turbo_pct;
941 uint32_t turbo_fp;
942
943 mutex_lock(&intel_pstate_driver_lock);
944
945 if (!intel_pstate_driver) {
946 mutex_unlock(&intel_pstate_driver_lock);
947 return -EAGAIN;
948 }
949
950 cpu = all_cpu_data[0];
951
952 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
953 no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
954 turbo_fp = div_fp(no_turbo, total);
955 turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
956
957 mutex_unlock(&intel_pstate_driver_lock);
958
959 return sprintf(buf, "%u\n", turbo_pct);
960 }
961
962 static ssize_t show_num_pstates(struct kobject *kobj,
963 struct kobj_attribute *attr, char *buf)
964 {
965 struct cpudata *cpu;
966 int total;
967
968 mutex_lock(&intel_pstate_driver_lock);
969
970 if (!intel_pstate_driver) {
971 mutex_unlock(&intel_pstate_driver_lock);
972 return -EAGAIN;
973 }
974
975 cpu = all_cpu_data[0];
976 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
977
978 mutex_unlock(&intel_pstate_driver_lock);
979
980 return sprintf(buf, "%u\n", total);
981 }
982
983 static ssize_t show_no_turbo(struct kobject *kobj,
984 struct kobj_attribute *attr, char *buf)
985 {
986 ssize_t ret;
987
988 mutex_lock(&intel_pstate_driver_lock);
989
990 if (!intel_pstate_driver) {
991 mutex_unlock(&intel_pstate_driver_lock);
992 return -EAGAIN;
993 }
994
995 update_turbo_state();
996 if (global.turbo_disabled)
997 ret = sprintf(buf, "%u\n", global.turbo_disabled);
998 else
999 ret = sprintf(buf, "%u\n", global.no_turbo);
1000
1001 mutex_unlock(&intel_pstate_driver_lock);
1002
1003 return ret;
1004 }
1005
1006 static ssize_t store_no_turbo(struct kobject *a, struct kobj_attribute *b,
1007 const char *buf, size_t count)
1008 {
1009 unsigned int input;
1010 int ret;
1011
1012 ret = sscanf(buf, "%u", &input);
1013 if (ret != 1)
1014 return -EINVAL;
1015
1016 mutex_lock(&intel_pstate_driver_lock);
1017
1018 if (!intel_pstate_driver) {
1019 mutex_unlock(&intel_pstate_driver_lock);
1020 return -EAGAIN;
1021 }
1022
1023 mutex_lock(&intel_pstate_limits_lock);
1024
1025 update_turbo_state();
1026 if (global.turbo_disabled) {
1027 pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
1028 mutex_unlock(&intel_pstate_limits_lock);
1029 mutex_unlock(&intel_pstate_driver_lock);
1030 return -EPERM;
1031 }
1032
1033 global.no_turbo = clamp_t(int, input, 0, 1);
1034
1035 if (global.no_turbo) {
1036 struct cpudata *cpu = all_cpu_data[0];
1037 int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
1038
1039 /* Squash the global minimum into the permitted range. */
1040 if (global.min_perf_pct > pct)
1041 global.min_perf_pct = pct;
1042 }
1043
1044 mutex_unlock(&intel_pstate_limits_lock);
1045
1046 intel_pstate_update_policies();
1047
1048 mutex_unlock(&intel_pstate_driver_lock);
1049
1050 return count;
1051 }
1052
1053 static ssize_t store_max_perf_pct(struct kobject *a, struct kobj_attribute *b,
1054 const char *buf, size_t count)
1055 {
1056 unsigned int input;
1057 int ret;
1058
1059 ret = sscanf(buf, "%u", &input);
1060 if (ret != 1)
1061 return -EINVAL;
1062
1063 mutex_lock(&intel_pstate_driver_lock);
1064
1065 if (!intel_pstate_driver) {
1066 mutex_unlock(&intel_pstate_driver_lock);
1067 return -EAGAIN;
1068 }
1069
1070 mutex_lock(&intel_pstate_limits_lock);
1071
1072 global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1073
1074 mutex_unlock(&intel_pstate_limits_lock);
1075
1076 intel_pstate_update_policies();
1077
1078 mutex_unlock(&intel_pstate_driver_lock);
1079
1080 return count;
1081 }
1082
1083 static ssize_t store_min_perf_pct(struct kobject *a, struct kobj_attribute *b,
1084 const char *buf, size_t count)
1085 {
1086 unsigned int input;
1087 int ret;
1088
1089 ret = sscanf(buf, "%u", &input);
1090 if (ret != 1)
1091 return -EINVAL;
1092
1093 mutex_lock(&intel_pstate_driver_lock);
1094
1095 if (!intel_pstate_driver) {
1096 mutex_unlock(&intel_pstate_driver_lock);
1097 return -EAGAIN;
1098 }
1099
1100 mutex_lock(&intel_pstate_limits_lock);
1101
1102 global.min_perf_pct = clamp_t(int, input,
1103 min_perf_pct_min(), global.max_perf_pct);
1104
1105 mutex_unlock(&intel_pstate_limits_lock);
1106
1107 intel_pstate_update_policies();
1108
1109 mutex_unlock(&intel_pstate_driver_lock);
1110
1111 return count;
1112 }
1113
1114 static ssize_t show_hwp_dynamic_boost(struct kobject *kobj,
1115 struct kobj_attribute *attr, char *buf)
1116 {
1117 return sprintf(buf, "%u\n", hwp_boost);
1118 }
1119
1120 static ssize_t store_hwp_dynamic_boost(struct kobject *a,
1121 struct kobj_attribute *b,
1122 const char *buf, size_t count)
1123 {
1124 unsigned int input;
1125 int ret;
1126
1127 ret = kstrtouint(buf, 10, &input);
1128 if (ret)
1129 return ret;
1130
1131 mutex_lock(&intel_pstate_driver_lock);
1132 hwp_boost = !!input;
1133 intel_pstate_update_policies();
1134 mutex_unlock(&intel_pstate_driver_lock);
1135
1136 return count;
1137 }
1138
1139 show_one(max_perf_pct, max_perf_pct);
1140 show_one(min_perf_pct, min_perf_pct);
1141
1142 define_one_global_rw(status);
1143 define_one_global_rw(no_turbo);
1144 define_one_global_rw(max_perf_pct);
1145 define_one_global_rw(min_perf_pct);
1146 define_one_global_ro(turbo_pct);
1147 define_one_global_ro(num_pstates);
1148 define_one_global_rw(hwp_dynamic_boost);
1149
1150 static struct attribute *intel_pstate_attributes[] = {
1151 &status.attr,
1152 &no_turbo.attr,
1153 &turbo_pct.attr,
1154 &num_pstates.attr,
1155 NULL
1156 };
1157
1158 static const struct attribute_group intel_pstate_attr_group = {
1159 .attrs = intel_pstate_attributes,
1160 };
1161
1162 static void __init intel_pstate_sysfs_expose_params(void)
1163 {
1164 struct kobject *intel_pstate_kobject;
1165 int rc;
1166
1167 intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1168 &cpu_subsys.dev_root->kobj);
1169 if (WARN_ON(!intel_pstate_kobject))
1170 return;
1171
1172 rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1173 if (WARN_ON(rc))
1174 return;
1175
1176 /*
1177 * If per cpu limits are enforced there are no global limits, so
1178 * return without creating max/min_perf_pct attributes
1179 */
1180 if (per_cpu_limits)
1181 return;
1182
1183 rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1184 WARN_ON(rc);
1185
1186 rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1187 WARN_ON(rc);
1188
1189 if (hwp_active) {
1190 rc = sysfs_create_file(intel_pstate_kobject,
1191 &hwp_dynamic_boost.attr);
1192 WARN_ON(rc);
1193 }
1194 }
1195 /************************** sysfs end ************************/
1196
1197 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1198 {
1199 /* First disable HWP notification interrupt as we don't process them */
1200 if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
1201 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1202
1203 wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1204 cpudata->epp_policy = 0;
1205 if (cpudata->epp_default == -EINVAL)
1206 cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1207 }
1208
1209 #define MSR_IA32_POWER_CTL_BIT_EE 19
1210
1211 /* Disable energy efficiency optimization */
1212 static void intel_pstate_disable_ee(int cpu)
1213 {
1214 u64 power_ctl;
1215 int ret;
1216
1217 ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
1218 if (ret)
1219 return;
1220
1221 if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
1222 pr_info("Disabling energy efficiency optimization\n");
1223 power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1224 wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
1225 }
1226 }
1227
1228 static int atom_get_min_pstate(void)
1229 {
1230 u64 value;
1231
1232 rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1233 return (value >> 8) & 0x7F;
1234 }
1235
1236 static int atom_get_max_pstate(void)
1237 {
1238 u64 value;
1239
1240 rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1241 return (value >> 16) & 0x7F;
1242 }
1243
1244 static int atom_get_turbo_pstate(void)
1245 {
1246 u64 value;
1247
1248 rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
1249 return value & 0x7F;
1250 }
1251
1252 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1253 {
1254 u64 val;
1255 int32_t vid_fp;
1256 u32 vid;
1257
1258 val = (u64)pstate << 8;
1259 if (global.no_turbo && !global.turbo_disabled)
1260 val |= (u64)1 << 32;
1261
1262 vid_fp = cpudata->vid.min + mul_fp(
1263 int_tofp(pstate - cpudata->pstate.min_pstate),
1264 cpudata->vid.ratio);
1265
1266 vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1267 vid = ceiling_fp(vid_fp);
1268
1269 if (pstate > cpudata->pstate.max_pstate)
1270 vid = cpudata->vid.turbo;
1271
1272 return val | vid;
1273 }
1274
1275 static int silvermont_get_scaling(void)
1276 {
1277 u64 value;
1278 int i;
1279 /* Defined in Table 35-6 from SDM (Sept 2015) */
1280 static int silvermont_freq_table[] = {
1281 83300, 100000, 133300, 116700, 80000};
1282
1283 rdmsrl(MSR_FSB_FREQ, value);
1284 i = value & 0x7;
1285 WARN_ON(i > 4);
1286
1287 return silvermont_freq_table[i];
1288 }
1289
1290 static int airmont_get_scaling(void)
1291 {
1292 u64 value;
1293 int i;
1294 /* Defined in Table 35-10 from SDM (Sept 2015) */
1295 static int airmont_freq_table[] = {
1296 83300, 100000, 133300, 116700, 80000,
1297 93300, 90000, 88900, 87500};
1298
1299 rdmsrl(MSR_FSB_FREQ, value);
1300 i = value & 0xF;
1301 WARN_ON(i > 8);
1302
1303 return airmont_freq_table[i];
1304 }
1305
1306 static void atom_get_vid(struct cpudata *cpudata)
1307 {
1308 u64 value;
1309
1310 rdmsrl(MSR_ATOM_CORE_VIDS, value);
1311 cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1312 cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1313 cpudata->vid.ratio = div_fp(
1314 cpudata->vid.max - cpudata->vid.min,
1315 int_tofp(cpudata->pstate.max_pstate -
1316 cpudata->pstate.min_pstate));
1317
1318 rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1319 cpudata->vid.turbo = value & 0x7f;
1320 }
1321
1322 static int core_get_min_pstate(void)
1323 {
1324 u64 value;
1325
1326 rdmsrl(MSR_PLATFORM_INFO, value);
1327 return (value >> 40) & 0xFF;
1328 }
1329
1330 static int core_get_max_pstate_physical(void)
1331 {
1332 u64 value;
1333
1334 rdmsrl(MSR_PLATFORM_INFO, value);
1335 return (value >> 8) & 0xFF;
1336 }
1337
1338 static int core_get_tdp_ratio(u64 plat_info)
1339 {
1340 /* Check how many TDP levels present */
1341 if (plat_info & 0x600000000) {
1342 u64 tdp_ctrl;
1343 u64 tdp_ratio;
1344 int tdp_msr;
1345 int err;
1346
1347 /* Get the TDP level (0, 1, 2) to get ratios */
1348 err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1349 if (err)
1350 return err;
1351
1352 /* TDP MSR are continuous starting at 0x648 */
1353 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1354 err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1355 if (err)
1356 return err;
1357
1358 /* For level 1 and 2, bits[23:16] contain the ratio */
1359 if (tdp_ctrl & 0x03)
1360 tdp_ratio >>= 16;
1361
1362 tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1363 pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1364
1365 return (int)tdp_ratio;
1366 }
1367
1368 return -ENXIO;
1369 }
1370
1371 static int core_get_max_pstate(void)
1372 {
1373 u64 tar;
1374 u64 plat_info;
1375 int max_pstate;
1376 int tdp_ratio;
1377 int err;
1378
1379 rdmsrl(MSR_PLATFORM_INFO, plat_info);
1380 max_pstate = (plat_info >> 8) & 0xFF;
1381
1382 tdp_ratio = core_get_tdp_ratio(plat_info);
1383 if (tdp_ratio <= 0)
1384 return max_pstate;
1385
1386 if (hwp_active) {
1387 /* Turbo activation ratio is not used on HWP platforms */
1388 return tdp_ratio;
1389 }
1390
1391 err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1392 if (!err) {
1393 int tar_levels;
1394
1395 /* Do some sanity checking for safety */
1396 tar_levels = tar & 0xff;
1397 if (tdp_ratio - 1 == tar_levels) {
1398 max_pstate = tar_levels;
1399 pr_debug("max_pstate=TAC %x\n", max_pstate);
1400 }
1401 }
1402
1403 return max_pstate;
1404 }
1405
1406 static int core_get_turbo_pstate(void)
1407 {
1408 u64 value;
1409 int nont, ret;
1410
1411 rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1412 nont = core_get_max_pstate();
1413 ret = (value) & 255;
1414 if (ret <= nont)
1415 ret = nont;
1416 return ret;
1417 }
1418
1419 static inline int core_get_scaling(void)
1420 {
1421 return 100000;
1422 }
1423
1424 static u64 core_get_val(struct cpudata *cpudata, int pstate)
1425 {
1426 u64 val;
1427
1428 val = (u64)pstate << 8;
1429 if (global.no_turbo && !global.turbo_disabled)
1430 val |= (u64)1 << 32;
1431
1432 return val;
1433 }
1434
1435 static int knl_get_aperf_mperf_shift(void)
1436 {
1437 return 10;
1438 }
1439
1440 static int knl_get_turbo_pstate(void)
1441 {
1442 u64 value;
1443 int nont, ret;
1444
1445 rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1446 nont = core_get_max_pstate();
1447 ret = (((value) >> 8) & 0xFF);
1448 if (ret <= nont)
1449 ret = nont;
1450 return ret;
1451 }
1452
1453 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1454 {
1455 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1456 cpu->pstate.current_pstate = pstate;
1457 /*
1458 * Generally, there is no guarantee that this code will always run on
1459 * the CPU being updated, so force the register update to run on the
1460 * right CPU.
1461 */
1462 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1463 pstate_funcs.get_val(cpu, pstate));
1464 }
1465
1466 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1467 {
1468 intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1469 }
1470
1471 static void intel_pstate_max_within_limits(struct cpudata *cpu)
1472 {
1473 int pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
1474
1475 update_turbo_state();
1476 intel_pstate_set_pstate(cpu, pstate);
1477 }
1478
1479 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1480 {
1481 cpu->pstate.min_pstate = pstate_funcs.get_min();
1482 cpu->pstate.max_pstate = pstate_funcs.get_max();
1483 cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1484 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1485 cpu->pstate.scaling = pstate_funcs.get_scaling();
1486 cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1487
1488 if (hwp_active && !hwp_mode_bdw) {
1489 unsigned int phy_max, current_max;
1490
1491 intel_pstate_get_hwp_max(cpu->cpu, &phy_max, &current_max);
1492 cpu->pstate.turbo_freq = phy_max * cpu->pstate.scaling;
1493 } else {
1494 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1495 }
1496
1497 if (pstate_funcs.get_aperf_mperf_shift)
1498 cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();
1499
1500 if (pstate_funcs.get_vid)
1501 pstate_funcs.get_vid(cpu);
1502
1503 intel_pstate_set_min_pstate(cpu);
1504 }
1505
1506 /*
1507 * Long hold time will keep high perf limits for long time,
1508 * which negatively impacts perf/watt for some workloads,
1509 * like specpower. 3ms is based on experiements on some
1510 * workoads.
1511 */
1512 static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC;
1513
1514 static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu)
1515 {
1516 u64 hwp_req = READ_ONCE(cpu->hwp_req_cached);
1517 u32 max_limit = (hwp_req & 0xff00) >> 8;
1518 u32 min_limit = (hwp_req & 0xff);
1519 u32 boost_level1;
1520
1521 /*
1522 * Cases to consider (User changes via sysfs or boot time):
1523 * If, P0 (Turbo max) = P1 (Guaranteed max) = min:
1524 * No boost, return.
1525 * If, P0 (Turbo max) > P1 (Guaranteed max) = min:
1526 * Should result in one level boost only for P0.
1527 * If, P0 (Turbo max) = P1 (Guaranteed max) > min:
1528 * Should result in two level boost:
1529 * (min + p1)/2 and P1.
1530 * If, P0 (Turbo max) > P1 (Guaranteed max) > min:
1531 * Should result in three level boost:
1532 * (min + p1)/2, P1 and P0.
1533 */
1534
1535 /* If max and min are equal or already at max, nothing to boost */
1536 if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit)
1537 return;
1538
1539 if (!cpu->hwp_boost_min)
1540 cpu->hwp_boost_min = min_limit;
1541
1542 /* level at half way mark between min and guranteed */
1543 boost_level1 = (HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) + min_limit) >> 1;
1544
1545 if (cpu->hwp_boost_min < boost_level1)
1546 cpu->hwp_boost_min = boost_level1;
1547 else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
1548 cpu->hwp_boost_min = HWP_GUARANTEED_PERF(cpu->hwp_cap_cached);
1549 else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) &&
1550 max_limit != HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
1551 cpu->hwp_boost_min = max_limit;
1552 else
1553 return;
1554
1555 hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min;
1556 wrmsrl(MSR_HWP_REQUEST, hwp_req);
1557 cpu->last_update = cpu->sample.time;
1558 }
1559
1560 static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu)
1561 {
1562 if (cpu->hwp_boost_min) {
1563 bool expired;
1564
1565 /* Check if we are idle for hold time to boost down */
1566 expired = time_after64(cpu->sample.time, cpu->last_update +
1567 hwp_boost_hold_time_ns);
1568 if (expired) {
1569 wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached);
1570 cpu->hwp_boost_min = 0;
1571 }
1572 }
1573 cpu->last_update = cpu->sample.time;
1574 }
1575
1576 static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu,
1577 u64 time)
1578 {
1579 cpu->sample.time = time;
1580
1581 if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) {
1582 bool do_io = false;
1583
1584 cpu->sched_flags = 0;
1585 /*
1586 * Set iowait_boost flag and update time. Since IO WAIT flag
1587 * is set all the time, we can't just conclude that there is
1588 * some IO bound activity is scheduled on this CPU with just
1589 * one occurrence. If we receive at least two in two
1590 * consecutive ticks, then we treat as boost candidate.
1591 */
1592 if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC))
1593 do_io = true;
1594
1595 cpu->last_io_update = time;
1596
1597 if (do_io)
1598 intel_pstate_hwp_boost_up(cpu);
1599
1600 } else {
1601 intel_pstate_hwp_boost_down(cpu);
1602 }
1603 }
1604
1605 static inline void intel_pstate_update_util_hwp(struct update_util_data *data,
1606 u64 time, unsigned int flags)
1607 {
1608 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1609
1610 cpu->sched_flags |= flags;
1611
1612 if (smp_processor_id() == cpu->cpu)
1613 intel_pstate_update_util_hwp_local(cpu, time);
1614 }
1615
1616 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1617 {
1618 struct sample *sample = &cpu->sample;
1619
1620 sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1621 }
1622
1623 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1624 {
1625 u64 aperf, mperf;
1626 unsigned long flags;
1627 u64 tsc;
1628
1629 local_irq_save(flags);
1630 rdmsrl(MSR_IA32_APERF, aperf);
1631 rdmsrl(MSR_IA32_MPERF, mperf);
1632 tsc = rdtsc();
1633 if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1634 local_irq_restore(flags);
1635 return false;
1636 }
1637 local_irq_restore(flags);
1638
1639 cpu->last_sample_time = cpu->sample.time;
1640 cpu->sample.time = time;
1641 cpu->sample.aperf = aperf;
1642 cpu->sample.mperf = mperf;
1643 cpu->sample.tsc = tsc;
1644 cpu->sample.aperf -= cpu->prev_aperf;
1645 cpu->sample.mperf -= cpu->prev_mperf;
1646 cpu->sample.tsc -= cpu->prev_tsc;
1647
1648 cpu->prev_aperf = aperf;
1649 cpu->prev_mperf = mperf;
1650 cpu->prev_tsc = tsc;
1651 /*
1652 * First time this function is invoked in a given cycle, all of the
1653 * previous sample data fields are equal to zero or stale and they must
1654 * be populated with meaningful numbers for things to work, so assume
1655 * that sample.time will always be reset before setting the utilization
1656 * update hook and make the caller skip the sample then.
1657 */
1658 if (cpu->last_sample_time) {
1659 intel_pstate_calc_avg_perf(cpu);
1660 return true;
1661 }
1662 return false;
1663 }
1664
1665 static inline int32_t get_avg_frequency(struct cpudata *cpu)
1666 {
1667 return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
1668 }
1669
1670 static inline int32_t get_avg_pstate(struct cpudata *cpu)
1671 {
1672 return mul_ext_fp(cpu->pstate.max_pstate_physical,
1673 cpu->sample.core_avg_perf);
1674 }
1675
1676 static inline int32_t get_target_pstate(struct cpudata *cpu)
1677 {
1678 struct sample *sample = &cpu->sample;
1679 int32_t busy_frac;
1680 int target, avg_pstate;
1681
1682 busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
1683 sample->tsc);
1684
1685 if (busy_frac < cpu->iowait_boost)
1686 busy_frac = cpu->iowait_boost;
1687
1688 sample->busy_scaled = busy_frac * 100;
1689
1690 target = global.no_turbo || global.turbo_disabled ?
1691 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1692 target += target >> 2;
1693 target = mul_fp(target, busy_frac);
1694 if (target < cpu->pstate.min_pstate)
1695 target = cpu->pstate.min_pstate;
1696
1697 /*
1698 * If the average P-state during the previous cycle was higher than the
1699 * current target, add 50% of the difference to the target to reduce
1700 * possible performance oscillations and offset possible performance
1701 * loss related to moving the workload from one CPU to another within
1702 * a package/module.
1703 */
1704 avg_pstate = get_avg_pstate(cpu);
1705 if (avg_pstate > target)
1706 target += (avg_pstate - target) >> 1;
1707
1708 return target;
1709 }
1710
1711 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1712 {
1713 int min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
1714 int max_pstate = max(min_pstate, cpu->max_perf_ratio);
1715
1716 return clamp_t(int, pstate, min_pstate, max_pstate);
1717 }
1718
1719 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1720 {
1721 if (pstate == cpu->pstate.current_pstate)
1722 return;
1723
1724 cpu->pstate.current_pstate = pstate;
1725 wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1726 }
1727
1728 static void intel_pstate_adjust_pstate(struct cpudata *cpu)
1729 {
1730 int from = cpu->pstate.current_pstate;
1731 struct sample *sample;
1732 int target_pstate;
1733
1734 update_turbo_state();
1735
1736 target_pstate = get_target_pstate(cpu);
1737 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
1738 trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1739 intel_pstate_update_pstate(cpu, target_pstate);
1740
1741 sample = &cpu->sample;
1742 trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1743 fp_toint(sample->busy_scaled),
1744 from,
1745 cpu->pstate.current_pstate,
1746 sample->mperf,
1747 sample->aperf,
1748 sample->tsc,
1749 get_avg_frequency(cpu),
1750 fp_toint(cpu->iowait_boost * 100));
1751 }
1752
1753 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1754 unsigned int flags)
1755 {
1756 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1757 u64 delta_ns;
1758
1759 /* Don't allow remote callbacks */
1760 if (smp_processor_id() != cpu->cpu)
1761 return;
1762
1763 delta_ns = time - cpu->last_update;
1764 if (flags & SCHED_CPUFREQ_IOWAIT) {
1765 /* Start over if the CPU may have been idle. */
1766 if (delta_ns > TICK_NSEC) {
1767 cpu->iowait_boost = ONE_EIGHTH_FP;
1768 } else if (cpu->iowait_boost >= ONE_EIGHTH_FP) {
1769 cpu->iowait_boost <<= 1;
1770 if (cpu->iowait_boost > int_tofp(1))
1771 cpu->iowait_boost = int_tofp(1);
1772 } else {
1773 cpu->iowait_boost = ONE_EIGHTH_FP;
1774 }
1775 } else if (cpu->iowait_boost) {
1776 /* Clear iowait_boost if the CPU may have been idle. */
1777 if (delta_ns > TICK_NSEC)
1778 cpu->iowait_boost = 0;
1779 else
1780 cpu->iowait_boost >>= 1;
1781 }
1782 cpu->last_update = time;
1783 delta_ns = time - cpu->sample.time;
1784 if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
1785 return;
1786
1787 if (intel_pstate_sample(cpu, time))
1788 intel_pstate_adjust_pstate(cpu);
1789 }
1790
1791 static struct pstate_funcs core_funcs = {
1792 .get_max = core_get_max_pstate,
1793 .get_max_physical = core_get_max_pstate_physical,
1794 .get_min = core_get_min_pstate,
1795 .get_turbo = core_get_turbo_pstate,
1796 .get_scaling = core_get_scaling,
1797 .get_val = core_get_val,
1798 };
1799
1800 static const struct pstate_funcs silvermont_funcs = {
1801 .get_max = atom_get_max_pstate,
1802 .get_max_physical = atom_get_max_pstate,
1803 .get_min = atom_get_min_pstate,
1804 .get_turbo = atom_get_turbo_pstate,
1805 .get_val = atom_get_val,
1806 .get_scaling = silvermont_get_scaling,
1807 .get_vid = atom_get_vid,
1808 };
1809
1810 static const struct pstate_funcs airmont_funcs = {
1811 .get_max = atom_get_max_pstate,
1812 .get_max_physical = atom_get_max_pstate,
1813 .get_min = atom_get_min_pstate,
1814 .get_turbo = atom_get_turbo_pstate,
1815 .get_val = atom_get_val,
1816 .get_scaling = airmont_get_scaling,
1817 .get_vid = atom_get_vid,
1818 };
1819
1820 static const struct pstate_funcs knl_funcs = {
1821 .get_max = core_get_max_pstate,
1822 .get_max_physical = core_get_max_pstate_physical,
1823 .get_min = core_get_min_pstate,
1824 .get_turbo = knl_get_turbo_pstate,
1825 .get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
1826 .get_scaling = core_get_scaling,
1827 .get_val = core_get_val,
1828 };
1829
1830 #define ICPU(model, policy) \
1831 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1832 (unsigned long)&policy }
1833
1834 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1835 ICPU(INTEL_FAM6_SANDYBRIDGE, core_funcs),
1836 ICPU(INTEL_FAM6_SANDYBRIDGE_X, core_funcs),
1837 ICPU(INTEL_FAM6_ATOM_SILVERMONT, silvermont_funcs),
1838 ICPU(INTEL_FAM6_IVYBRIDGE, core_funcs),
1839 ICPU(INTEL_FAM6_HASWELL_CORE, core_funcs),
1840 ICPU(INTEL_FAM6_BROADWELL_CORE, core_funcs),
1841 ICPU(INTEL_FAM6_IVYBRIDGE_X, core_funcs),
1842 ICPU(INTEL_FAM6_HASWELL_X, core_funcs),
1843 ICPU(INTEL_FAM6_HASWELL_ULT, core_funcs),
1844 ICPU(INTEL_FAM6_HASWELL_GT3E, core_funcs),
1845 ICPU(INTEL_FAM6_BROADWELL_GT3E, core_funcs),
1846 ICPU(INTEL_FAM6_ATOM_AIRMONT, airmont_funcs),
1847 ICPU(INTEL_FAM6_SKYLAKE_MOBILE, core_funcs),
1848 ICPU(INTEL_FAM6_BROADWELL_X, core_funcs),
1849 ICPU(INTEL_FAM6_SKYLAKE_DESKTOP, core_funcs),
1850 ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_funcs),
1851 ICPU(INTEL_FAM6_XEON_PHI_KNL, knl_funcs),
1852 ICPU(INTEL_FAM6_XEON_PHI_KNM, knl_funcs),
1853 ICPU(INTEL_FAM6_ATOM_GOLDMONT, core_funcs),
1854 ICPU(INTEL_FAM6_ATOM_GOLDMONT_PLUS, core_funcs),
1855 ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
1856 {}
1857 };
1858 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1859
1860 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1861 ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_funcs),
1862 ICPU(INTEL_FAM6_BROADWELL_X, core_funcs),
1863 ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
1864 {}
1865 };
1866
1867 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
1868 ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_funcs),
1869 {}
1870 };
1871
1872 static const struct x86_cpu_id intel_pstate_hwp_boost_ids[] = {
1873 ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
1874 ICPU(INTEL_FAM6_SKYLAKE_DESKTOP, core_funcs),
1875 {}
1876 };
1877
1878 static int intel_pstate_init_cpu(unsigned int cpunum)
1879 {
1880 struct cpudata *cpu;
1881
1882 cpu = all_cpu_data[cpunum];
1883
1884 if (!cpu) {
1885 cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
1886 if (!cpu)
1887 return -ENOMEM;
1888
1889 all_cpu_data[cpunum] = cpu;
1890
1891 cpu->epp_default = -EINVAL;
1892 cpu->epp_powersave = -EINVAL;
1893 cpu->epp_saved = -EINVAL;
1894 }
1895
1896 cpu = all_cpu_data[cpunum];
1897
1898 cpu->cpu = cpunum;
1899
1900 if (hwp_active) {
1901 const struct x86_cpu_id *id;
1902
1903 id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
1904 if (id)
1905 intel_pstate_disable_ee(cpunum);
1906
1907 intel_pstate_hwp_enable(cpu);
1908
1909 id = x86_match_cpu(intel_pstate_hwp_boost_ids);
1910 if (id && intel_pstate_acpi_pm_profile_server())
1911 hwp_boost = true;
1912 }
1913
1914 intel_pstate_get_cpu_pstates(cpu);
1915
1916 pr_debug("controlling: cpu %d\n", cpunum);
1917
1918 return 0;
1919 }
1920
1921 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1922 {
1923 struct cpudata *cpu = all_cpu_data[cpu_num];
1924
1925 if (hwp_active && !hwp_boost)
1926 return;
1927
1928 if (cpu->update_util_set)
1929 return;
1930
1931 /* Prevent intel_pstate_update_util() from using stale data. */
1932 cpu->sample.time = 0;
1933 cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1934 (hwp_active ?
1935 intel_pstate_update_util_hwp :
1936 intel_pstate_update_util));
1937 cpu->update_util_set = true;
1938 }
1939
1940 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1941 {
1942 struct cpudata *cpu_data = all_cpu_data[cpu];
1943
1944 if (!cpu_data->update_util_set)
1945 return;
1946
1947 cpufreq_remove_update_util_hook(cpu);
1948 cpu_data->update_util_set = false;
1949 synchronize_rcu();
1950 }
1951
1952 static int intel_pstate_get_max_freq(struct cpudata *cpu)
1953 {
1954 return global.turbo_disabled || global.no_turbo ?
1955 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
1956 }
1957
1958 static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
1959 struct cpudata *cpu)
1960 {
1961 int max_freq = intel_pstate_get_max_freq(cpu);
1962 int32_t max_policy_perf, min_policy_perf;
1963 int max_state, turbo_max;
1964
1965 /*
1966 * HWP needs some special consideration, because on BDX the
1967 * HWP_REQUEST uses abstract value to represent performance
1968 * rather than pure ratios.
1969 */
1970 if (hwp_active) {
1971 intel_pstate_get_hwp_max(cpu->cpu, &turbo_max, &max_state);
1972 } else {
1973 max_state = global.no_turbo || global.turbo_disabled ?
1974 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1975 turbo_max = cpu->pstate.turbo_pstate;
1976 }
1977
1978 max_policy_perf = max_state * policy->max / max_freq;
1979 if (policy->max == policy->min) {
1980 min_policy_perf = max_policy_perf;
1981 } else {
1982 min_policy_perf = max_state * policy->min / max_freq;
1983 min_policy_perf = clamp_t(int32_t, min_policy_perf,
1984 0, max_policy_perf);
1985 }
1986
1987 pr_debug("cpu:%d max_state %d min_policy_perf:%d max_policy_perf:%d\n",
1988 policy->cpu, max_state,
1989 min_policy_perf, max_policy_perf);
1990
1991 /* Normalize user input to [min_perf, max_perf] */
1992 if (per_cpu_limits) {
1993 cpu->min_perf_ratio = min_policy_perf;
1994 cpu->max_perf_ratio = max_policy_perf;
1995 } else {
1996 int32_t global_min, global_max;
1997
1998 /* Global limits are in percent of the maximum turbo P-state. */
1999 global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
2000 global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
2001 global_min = clamp_t(int32_t, global_min, 0, global_max);
2002
2003 pr_debug("cpu:%d global_min:%d global_max:%d\n", policy->cpu,
2004 global_min, global_max);
2005
2006 cpu->min_perf_ratio = max(min_policy_perf, global_min);
2007 cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
2008 cpu->max_perf_ratio = min(max_policy_perf, global_max);
2009 cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
2010
2011 /* Make sure min_perf <= max_perf */
2012 cpu->min_perf_ratio = min(cpu->min_perf_ratio,
2013 cpu->max_perf_ratio);
2014
2015 }
2016 pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", policy->cpu,
2017 cpu->max_perf_ratio,
2018 cpu->min_perf_ratio);
2019 }
2020
2021 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2022 {
2023 struct cpudata *cpu;
2024
2025 if (!policy->cpuinfo.max_freq)
2026 return -ENODEV;
2027
2028 pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2029 policy->cpuinfo.max_freq, policy->max);
2030
2031 cpu = all_cpu_data[policy->cpu];
2032 cpu->policy = policy->policy;
2033
2034 mutex_lock(&intel_pstate_limits_lock);
2035
2036 intel_pstate_update_perf_limits(policy, cpu);
2037
2038 if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2039 /*
2040 * NOHZ_FULL CPUs need this as the governor callback may not
2041 * be invoked on them.
2042 */
2043 intel_pstate_clear_update_util_hook(policy->cpu);
2044 intel_pstate_max_within_limits(cpu);
2045 } else {
2046 intel_pstate_set_update_util_hook(policy->cpu);
2047 }
2048
2049 if (hwp_active) {
2050 /*
2051 * When hwp_boost was active before and dynamically it
2052 * was turned off, in that case we need to clear the
2053 * update util hook.
2054 */
2055 if (!hwp_boost)
2056 intel_pstate_clear_update_util_hook(policy->cpu);
2057 intel_pstate_hwp_set(policy->cpu);
2058 }
2059
2060 mutex_unlock(&intel_pstate_limits_lock);
2061
2062 return 0;
2063 }
2064
2065 static void intel_pstate_adjust_policy_max(struct cpufreq_policy *policy,
2066 struct cpudata *cpu)
2067 {
2068 if (!hwp_active &&
2069 cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2070 policy->max < policy->cpuinfo.max_freq &&
2071 policy->max > cpu->pstate.max_freq) {
2072 pr_debug("policy->max > max non turbo frequency\n");
2073 policy->max = policy->cpuinfo.max_freq;
2074 }
2075 }
2076
2077 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
2078 {
2079 struct cpudata *cpu = all_cpu_data[policy->cpu];
2080
2081 update_turbo_state();
2082 cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2083 intel_pstate_get_max_freq(cpu));
2084
2085 if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
2086 policy->policy != CPUFREQ_POLICY_PERFORMANCE)
2087 return -EINVAL;
2088
2089 intel_pstate_adjust_policy_max(policy, cpu);
2090
2091 return 0;
2092 }
2093
2094 static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
2095 {
2096 intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
2097 }
2098
2099 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2100 {
2101 pr_debug("CPU %d exiting\n", policy->cpu);
2102
2103 intel_pstate_clear_update_util_hook(policy->cpu);
2104 if (hwp_active) {
2105 intel_pstate_hwp_save_state(policy);
2106 intel_pstate_hwp_force_min_perf(policy->cpu);
2107 } else {
2108 intel_cpufreq_stop_cpu(policy);
2109 }
2110 }
2111
2112 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2113 {
2114 intel_pstate_exit_perf_limits(policy);
2115
2116 policy->fast_switch_possible = false;
2117
2118 return 0;
2119 }
2120
2121 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2122 {
2123 struct cpudata *cpu;
2124 int rc;
2125
2126 rc = intel_pstate_init_cpu(policy->cpu);
2127 if (rc)
2128 return rc;
2129
2130 cpu = all_cpu_data[policy->cpu];
2131
2132 cpu->max_perf_ratio = 0xFF;
2133 cpu->min_perf_ratio = 0;
2134
2135 policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
2136 policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2137
2138 /* cpuinfo and default policy values */
2139 policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2140 update_turbo_state();
2141 policy->cpuinfo.max_freq = global.turbo_disabled ?
2142 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2143 policy->cpuinfo.max_freq *= cpu->pstate.scaling;
2144
2145 if (hwp_active) {
2146 unsigned int max_freq;
2147
2148 max_freq = global.turbo_disabled ?
2149 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2150 if (max_freq < policy->cpuinfo.max_freq)
2151 policy->cpuinfo.max_freq = max_freq;
2152 }
2153
2154 intel_pstate_init_acpi_perf_limits(policy);
2155
2156 policy->fast_switch_possible = true;
2157
2158 return 0;
2159 }
2160
2161 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2162 {
2163 int ret = __intel_pstate_cpu_init(policy);
2164
2165 if (ret)
2166 return ret;
2167
2168 if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE))
2169 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
2170 else
2171 policy->policy = CPUFREQ_POLICY_POWERSAVE;
2172
2173 return 0;
2174 }
2175
2176 static struct cpufreq_driver intel_pstate = {
2177 .flags = CPUFREQ_CONST_LOOPS,
2178 .verify = intel_pstate_verify_policy,
2179 .setpolicy = intel_pstate_set_policy,
2180 .suspend = intel_pstate_hwp_save_state,
2181 .resume = intel_pstate_resume,
2182 .init = intel_pstate_cpu_init,
2183 .exit = intel_pstate_cpu_exit,
2184 .stop_cpu = intel_pstate_stop_cpu,
2185 .name = "intel_pstate",
2186 };
2187
2188 static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
2189 {
2190 struct cpudata *cpu = all_cpu_data[policy->cpu];
2191
2192 update_turbo_state();
2193 cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2194 intel_pstate_get_max_freq(cpu));
2195
2196 intel_pstate_adjust_policy_max(policy, cpu);
2197
2198 intel_pstate_update_perf_limits(policy, cpu);
2199
2200 return 0;
2201 }
2202
2203 /* Use of trace in passive mode:
2204 *
2205 * In passive mode the trace core_busy field (also known as the
2206 * performance field, and lablelled as such on the graphs; also known as
2207 * core_avg_perf) is not needed and so is re-assigned to indicate if the
2208 * driver call was via the normal or fast switch path. Various graphs
2209 * output from the intel_pstate_tracer.py utility that include core_busy
2210 * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
2211 * so we use 10 to indicate the the normal path through the driver, and
2212 * 90 to indicate the fast switch path through the driver.
2213 * The scaled_busy field is not used, and is set to 0.
2214 */
2215
2216 #define INTEL_PSTATE_TRACE_TARGET 10
2217 #define INTEL_PSTATE_TRACE_FAST_SWITCH 90
2218
2219 static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate)
2220 {
2221 struct sample *sample;
2222
2223 if (!trace_pstate_sample_enabled())
2224 return;
2225
2226 if (!intel_pstate_sample(cpu, ktime_get()))
2227 return;
2228
2229 sample = &cpu->sample;
2230 trace_pstate_sample(trace_type,
2231 0,
2232 old_pstate,
2233 cpu->pstate.current_pstate,
2234 sample->mperf,
2235 sample->aperf,
2236 sample->tsc,
2237 get_avg_frequency(cpu),
2238 fp_toint(cpu->iowait_boost * 100));
2239 }
2240
2241 static int intel_cpufreq_target(struct cpufreq_policy *policy,
2242 unsigned int target_freq,
2243 unsigned int relation)
2244 {
2245 struct cpudata *cpu = all_cpu_data[policy->cpu];
2246 struct cpufreq_freqs freqs;
2247 int target_pstate, old_pstate;
2248
2249 update_turbo_state();
2250
2251 freqs.old = policy->cur;
2252 freqs.new = target_freq;
2253
2254 cpufreq_freq_transition_begin(policy, &freqs);
2255 switch (relation) {
2256 case CPUFREQ_RELATION_L:
2257 target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2258 break;
2259 case CPUFREQ_RELATION_H:
2260 target_pstate = freqs.new / cpu->pstate.scaling;
2261 break;
2262 default:
2263 target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2264 break;
2265 }
2266 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2267 old_pstate = cpu->pstate.current_pstate;
2268 if (target_pstate != cpu->pstate.current_pstate) {
2269 cpu->pstate.current_pstate = target_pstate;
2270 wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
2271 pstate_funcs.get_val(cpu, target_pstate));
2272 }
2273 freqs.new = target_pstate * cpu->pstate.scaling;
2274 intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_TARGET, old_pstate);
2275 cpufreq_freq_transition_end(policy, &freqs, false);
2276
2277 return 0;
2278 }
2279
2280 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2281 unsigned int target_freq)
2282 {
2283 struct cpudata *cpu = all_cpu_data[policy->cpu];
2284 int target_pstate, old_pstate;
2285
2286 update_turbo_state();
2287
2288 target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2289 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2290 old_pstate = cpu->pstate.current_pstate;
2291 intel_pstate_update_pstate(cpu, target_pstate);
2292 intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate);
2293 return target_pstate * cpu->pstate.scaling;
2294 }
2295
2296 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2297 {
2298 int ret = __intel_pstate_cpu_init(policy);
2299
2300 if (ret)
2301 return ret;
2302
2303 policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2304 policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
2305 /* This reflects the intel_pstate_get_cpu_pstates() setting. */
2306 policy->cur = policy->cpuinfo.min_freq;
2307
2308 return 0;
2309 }
2310
2311 static struct cpufreq_driver intel_cpufreq = {
2312 .flags = CPUFREQ_CONST_LOOPS,
2313 .verify = intel_cpufreq_verify_policy,
2314 .target = intel_cpufreq_target,
2315 .fast_switch = intel_cpufreq_fast_switch,
2316 .init = intel_cpufreq_cpu_init,
2317 .exit = intel_pstate_cpu_exit,
2318 .stop_cpu = intel_cpufreq_stop_cpu,
2319 .name = "intel_cpufreq",
2320 };
2321
2322 static struct cpufreq_driver *default_driver = &intel_pstate;
2323
2324 static void intel_pstate_driver_cleanup(void)
2325 {
2326 unsigned int cpu;
2327
2328 get_online_cpus();
2329 for_each_online_cpu(cpu) {
2330 if (all_cpu_data[cpu]) {
2331 if (intel_pstate_driver == &intel_pstate)
2332 intel_pstate_clear_update_util_hook(cpu);
2333
2334 kfree(all_cpu_data[cpu]);
2335 all_cpu_data[cpu] = NULL;
2336 }
2337 }
2338 put_online_cpus();
2339 intel_pstate_driver = NULL;
2340 }
2341
2342 static int intel_pstate_register_driver(struct cpufreq_driver *driver)
2343 {
2344 int ret;
2345
2346 memset(&global, 0, sizeof(global));
2347 global.max_perf_pct = 100;
2348
2349 intel_pstate_driver = driver;
2350 ret = cpufreq_register_driver(intel_pstate_driver);
2351 if (ret) {
2352 intel_pstate_driver_cleanup();
2353 return ret;
2354 }
2355
2356 global.min_perf_pct = min_perf_pct_min();
2357
2358 return 0;
2359 }
2360
2361 static int intel_pstate_unregister_driver(void)
2362 {
2363 if (hwp_active)
2364 return -EBUSY;
2365
2366 cpufreq_unregister_driver(intel_pstate_driver);
2367 intel_pstate_driver_cleanup();
2368
2369 return 0;
2370 }
2371
2372 static ssize_t intel_pstate_show_status(char *buf)
2373 {
2374 if (!intel_pstate_driver)
2375 return sprintf(buf, "off\n");
2376
2377 return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
2378 "active" : "passive");
2379 }
2380
2381 static int intel_pstate_update_status(const char *buf, size_t size)
2382 {
2383 int ret;
2384
2385 if (size == 3 && !strncmp(buf, "off", size))
2386 return intel_pstate_driver ?
2387 intel_pstate_unregister_driver() : -EINVAL;
2388
2389 if (size == 6 && !strncmp(buf, "active", size)) {
2390 if (intel_pstate_driver) {
2391 if (intel_pstate_driver == &intel_pstate)
2392 return 0;
2393
2394 ret = intel_pstate_unregister_driver();
2395 if (ret)
2396 return ret;
2397 }
2398
2399 return intel_pstate_register_driver(&intel_pstate);
2400 }
2401
2402 if (size == 7 && !strncmp(buf, "passive", size)) {
2403 if (intel_pstate_driver) {
2404 if (intel_pstate_driver == &intel_cpufreq)
2405 return 0;
2406
2407 ret = intel_pstate_unregister_driver();
2408 if (ret)
2409 return ret;
2410 }
2411
2412 return intel_pstate_register_driver(&intel_cpufreq);
2413 }
2414
2415 return -EINVAL;
2416 }
2417
2418 static int no_load __initdata;
2419 static int no_hwp __initdata;
2420 static int hwp_only __initdata;
2421 static unsigned int force_load __initdata;
2422
2423 static int __init intel_pstate_msrs_not_valid(void)
2424 {
2425 if (!pstate_funcs.get_max() ||
2426 !pstate_funcs.get_min() ||
2427 !pstate_funcs.get_turbo())
2428 return -ENODEV;
2429
2430 return 0;
2431 }
2432
2433 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2434 {
2435 pstate_funcs.get_max = funcs->get_max;
2436 pstate_funcs.get_max_physical = funcs->get_max_physical;
2437 pstate_funcs.get_min = funcs->get_min;
2438 pstate_funcs.get_turbo = funcs->get_turbo;
2439 pstate_funcs.get_scaling = funcs->get_scaling;
2440 pstate_funcs.get_val = funcs->get_val;
2441 pstate_funcs.get_vid = funcs->get_vid;
2442 pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
2443 }
2444
2445 #ifdef CONFIG_ACPI
2446
2447 static bool __init intel_pstate_no_acpi_pss(void)
2448 {
2449 int i;
2450
2451 for_each_possible_cpu(i) {
2452 acpi_status status;
2453 union acpi_object *pss;
2454 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
2455 struct acpi_processor *pr = per_cpu(processors, i);
2456
2457 if (!pr)
2458 continue;
2459
2460 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
2461 if (ACPI_FAILURE(status))
2462 continue;
2463
2464 pss = buffer.pointer;
2465 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
2466 kfree(pss);
2467 return false;
2468 }
2469
2470 kfree(pss);
2471 }
2472
2473 pr_debug("ACPI _PSS not found\n");
2474 return true;
2475 }
2476
2477 static bool __init intel_pstate_no_acpi_pcch(void)
2478 {
2479 acpi_status status;
2480 acpi_handle handle;
2481
2482 status = acpi_get_handle(NULL, "\\_SB", &handle);
2483 if (ACPI_FAILURE(status))
2484 goto not_found;
2485
2486 if (acpi_has_method(handle, "PCCH"))
2487 return false;
2488
2489 not_found:
2490 pr_debug("ACPI PCCH not found\n");
2491 return true;
2492 }
2493
2494 static bool __init intel_pstate_has_acpi_ppc(void)
2495 {
2496 int i;
2497
2498 for_each_possible_cpu(i) {
2499 struct acpi_processor *pr = per_cpu(processors, i);
2500
2501 if (!pr)
2502 continue;
2503 if (acpi_has_method(pr->handle, "_PPC"))
2504 return true;
2505 }
2506 pr_debug("ACPI _PPC not found\n");
2507 return false;
2508 }
2509
2510 enum {
2511 PSS,
2512 PPC,
2513 };
2514
2515 /* Hardware vendor-specific info that has its own power management modes */
2516 static struct acpi_platform_list plat_info[] __initdata = {
2517 {"HP ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, 0, PSS},
2518 {"ORACLE", "X4-2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2519 {"ORACLE", "X4-2L ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2520 {"ORACLE", "X4-2B ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2521 {"ORACLE", "X3-2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2522 {"ORACLE", "X3-2L ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2523 {"ORACLE", "X3-2B ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2524 {"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2525 {"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2526 {"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2527 {"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2528 {"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2529 {"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2530 {"ORACLE", "X6-2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2531 {"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2532 { } /* End */
2533 };
2534
2535 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2536 {
2537 const struct x86_cpu_id *id;
2538 u64 misc_pwr;
2539 int idx;
2540
2541 id = x86_match_cpu(intel_pstate_cpu_oob_ids);
2542 if (id) {
2543 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2544 if (misc_pwr & (1 << 8)) {
2545 pr_debug("Bit 8 in the MISC_PWR_MGMT MSR set\n");
2546 return true;
2547 }
2548 }
2549
2550 idx = acpi_match_platform_list(plat_info);
2551 if (idx < 0)
2552 return false;
2553
2554 switch (plat_info[idx].data) {
2555 case PSS:
2556 if (!intel_pstate_no_acpi_pss())
2557 return false;
2558
2559 return intel_pstate_no_acpi_pcch();
2560 case PPC:
2561 return intel_pstate_has_acpi_ppc() && !force_load;
2562 }
2563
2564 return false;
2565 }
2566
2567 static void intel_pstate_request_control_from_smm(void)
2568 {
2569 /*
2570 * It may be unsafe to request P-states control from SMM if _PPC support
2571 * has not been enabled.
2572 */
2573 if (acpi_ppc)
2574 acpi_processor_pstate_control();
2575 }
2576 #else /* CONFIG_ACPI not enabled */
2577 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2578 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2579 static inline void intel_pstate_request_control_from_smm(void) {}
2580 #endif /* CONFIG_ACPI */
2581
2582 #define INTEL_PSTATE_HWP_BROADWELL 0x01
2583
2584 #define ICPU_HWP(model, hwp_mode) \
2585 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_HWP, hwp_mode }
2586
2587 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2588 ICPU_HWP(INTEL_FAM6_BROADWELL_X, INTEL_PSTATE_HWP_BROADWELL),
2589 ICPU_HWP(INTEL_FAM6_BROADWELL_XEON_D, INTEL_PSTATE_HWP_BROADWELL),
2590 ICPU_HWP(X86_MODEL_ANY, 0),
2591 {}
2592 };
2593
2594 static int __init intel_pstate_init(void)
2595 {
2596 const struct x86_cpu_id *id;
2597 int rc;
2598
2599 if (no_load)
2600 return -ENODEV;
2601
2602 id = x86_match_cpu(hwp_support_ids);
2603 if (id) {
2604 copy_cpu_funcs(&core_funcs);
2605 if (!no_hwp) {
2606 hwp_active++;
2607 hwp_mode_bdw = id->driver_data;
2608 intel_pstate.attr = hwp_cpufreq_attrs;
2609 goto hwp_cpu_matched;
2610 }
2611 } else {
2612 id = x86_match_cpu(intel_pstate_cpu_ids);
2613 if (!id) {
2614 pr_info("CPU ID not supported\n");
2615 return -ENODEV;
2616 }
2617
2618 copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
2619 }
2620
2621 if (intel_pstate_msrs_not_valid()) {
2622 pr_info("Invalid MSRs\n");
2623 return -ENODEV;
2624 }
2625
2626 hwp_cpu_matched:
2627 /*
2628 * The Intel pstate driver will be ignored if the platform
2629 * firmware has its own power management modes.
2630 */
2631 if (intel_pstate_platform_pwr_mgmt_exists()) {
2632 pr_info("P-states controlled by the platform\n");
2633 return -ENODEV;
2634 }
2635
2636 if (!hwp_active && hwp_only)
2637 return -ENOTSUPP;
2638
2639 pr_info("Intel P-state driver initializing\n");
2640
2641 all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus()));
2642 if (!all_cpu_data)
2643 return -ENOMEM;
2644
2645 intel_pstate_request_control_from_smm();
2646
2647 intel_pstate_sysfs_expose_params();
2648
2649 mutex_lock(&intel_pstate_driver_lock);
2650 rc = intel_pstate_register_driver(default_driver);
2651 mutex_unlock(&intel_pstate_driver_lock);
2652 if (rc)
2653 return rc;
2654
2655 if (hwp_active)
2656 pr_info("HWP enabled\n");
2657
2658 return 0;
2659 }
2660 device_initcall(intel_pstate_init);
2661
2662 static int __init intel_pstate_setup(char *str)
2663 {
2664 if (!str)
2665 return -EINVAL;
2666
2667 if (!strcmp(str, "disable")) {
2668 no_load = 1;
2669 } else if (!strcmp(str, "passive")) {
2670 pr_info("Passive mode enabled\n");
2671 default_driver = &intel_cpufreq;
2672 no_hwp = 1;
2673 }
2674 if (!strcmp(str, "no_hwp")) {
2675 pr_info("HWP disabled\n");
2676 no_hwp = 1;
2677 }
2678 if (!strcmp(str, "force"))
2679 force_load = 1;
2680 if (!strcmp(str, "hwp_only"))
2681 hwp_only = 1;
2682 if (!strcmp(str, "per_cpu_perf_limits"))
2683 per_cpu_limits = true;
2684
2685 #ifdef CONFIG_ACPI
2686 if (!strcmp(str, "support_acpi_ppc"))
2687 acpi_ppc = true;
2688 #endif
2689
2690 return 0;
2691 }
2692 early_param("intel_pstate", intel_pstate_setup);
2693
2694 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
2695 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
2696 MODULE_LICENSE("GPL");