]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/cpufreq/intel_pstate.c
Merge remote-tracking branch 'asoc/for-5.15' into asoc-linus
[mirror_ubuntu-jammy-kernel.git] / drivers / cpufreq / intel_pstate.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * intel_pstate.c: Native P state management for Intel processors
4 *
5 * (C) Copyright 2012 Intel Corporation
6 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
7 */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/kernel.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/module.h>
14 #include <linux/ktime.h>
15 #include <linux/hrtimer.h>
16 #include <linux/tick.h>
17 #include <linux/slab.h>
18 #include <linux/sched/cpufreq.h>
19 #include <linux/list.h>
20 #include <linux/cpu.h>
21 #include <linux/cpufreq.h>
22 #include <linux/sysfs.h>
23 #include <linux/types.h>
24 #include <linux/fs.h>
25 #include <linux/acpi.h>
26 #include <linux/vmalloc.h>
27 #include <linux/pm_qos.h>
28 #include <trace/events/power.h>
29
30 #include <asm/div64.h>
31 #include <asm/msr.h>
32 #include <asm/cpu_device_id.h>
33 #include <asm/cpufeature.h>
34 #include <asm/intel-family.h>
35
36 #define INTEL_PSTATE_SAMPLING_INTERVAL (10 * NSEC_PER_MSEC)
37
38 #define INTEL_CPUFREQ_TRANSITION_LATENCY 20000
39 #define INTEL_CPUFREQ_TRANSITION_DELAY_HWP 5000
40 #define INTEL_CPUFREQ_TRANSITION_DELAY 500
41
42 #ifdef CONFIG_ACPI
43 #include <acpi/processor.h>
44 #include <acpi/cppc_acpi.h>
45 #endif
46
47 #define FRAC_BITS 8
48 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
49 #define fp_toint(X) ((X) >> FRAC_BITS)
50
51 #define ONE_EIGHTH_FP ((int64_t)1 << (FRAC_BITS - 3))
52
53 #define EXT_BITS 6
54 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
55 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
56 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
57
58 static inline int32_t mul_fp(int32_t x, int32_t y)
59 {
60 return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
61 }
62
63 static inline int32_t div_fp(s64 x, s64 y)
64 {
65 return div64_s64((int64_t)x << FRAC_BITS, y);
66 }
67
68 static inline int ceiling_fp(int32_t x)
69 {
70 int mask, ret;
71
72 ret = fp_toint(x);
73 mask = (1 << FRAC_BITS) - 1;
74 if (x & mask)
75 ret += 1;
76 return ret;
77 }
78
79 static inline u64 mul_ext_fp(u64 x, u64 y)
80 {
81 return (x * y) >> EXT_FRAC_BITS;
82 }
83
84 static inline u64 div_ext_fp(u64 x, u64 y)
85 {
86 return div64_u64(x << EXT_FRAC_BITS, y);
87 }
88
89 /**
90 * struct sample - Store performance sample
91 * @core_avg_perf: Ratio of APERF/MPERF which is the actual average
92 * performance during last sample period
93 * @busy_scaled: Scaled busy value which is used to calculate next
94 * P state. This can be different than core_avg_perf
95 * to account for cpu idle period
96 * @aperf: Difference of actual performance frequency clock count
97 * read from APERF MSR between last and current sample
98 * @mperf: Difference of maximum performance frequency clock count
99 * read from MPERF MSR between last and current sample
100 * @tsc: Difference of time stamp counter between last and
101 * current sample
102 * @time: Current time from scheduler
103 *
104 * This structure is used in the cpudata structure to store performance sample
105 * data for choosing next P State.
106 */
107 struct sample {
108 int32_t core_avg_perf;
109 int32_t busy_scaled;
110 u64 aperf;
111 u64 mperf;
112 u64 tsc;
113 u64 time;
114 };
115
116 /**
117 * struct pstate_data - Store P state data
118 * @current_pstate: Current requested P state
119 * @min_pstate: Min P state possible for this platform
120 * @max_pstate: Max P state possible for this platform
121 * @max_pstate_physical:This is physical Max P state for a processor
122 * This can be higher than the max_pstate which can
123 * be limited by platform thermal design power limits
124 * @perf_ctl_scaling: PERF_CTL P-state to frequency scaling factor
125 * @scaling: Scaling factor between performance and frequency
126 * @turbo_pstate: Max Turbo P state possible for this platform
127 * @min_freq: @min_pstate frequency in cpufreq units
128 * @max_freq: @max_pstate frequency in cpufreq units
129 * @turbo_freq: @turbo_pstate frequency in cpufreq units
130 *
131 * Stores the per cpu model P state limits and current P state.
132 */
133 struct pstate_data {
134 int current_pstate;
135 int min_pstate;
136 int max_pstate;
137 int max_pstate_physical;
138 int perf_ctl_scaling;
139 int scaling;
140 int turbo_pstate;
141 unsigned int min_freq;
142 unsigned int max_freq;
143 unsigned int turbo_freq;
144 };
145
146 /**
147 * struct vid_data - Stores voltage information data
148 * @min: VID data for this platform corresponding to
149 * the lowest P state
150 * @max: VID data corresponding to the highest P State.
151 * @turbo: VID data for turbo P state
152 * @ratio: Ratio of (vid max - vid min) /
153 * (max P state - Min P State)
154 *
155 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
156 * This data is used in Atom platforms, where in addition to target P state,
157 * the voltage data needs to be specified to select next P State.
158 */
159 struct vid_data {
160 int min;
161 int max;
162 int turbo;
163 int32_t ratio;
164 };
165
166 /**
167 * struct global_params - Global parameters, mostly tunable via sysfs.
168 * @no_turbo: Whether or not to use turbo P-states.
169 * @turbo_disabled: Whether or not turbo P-states are available at all,
170 * based on the MSR_IA32_MISC_ENABLE value and whether or
171 * not the maximum reported turbo P-state is different from
172 * the maximum reported non-turbo one.
173 * @turbo_disabled_mf: The @turbo_disabled value reflected by cpuinfo.max_freq.
174 * @min_perf_pct: Minimum capacity limit in percent of the maximum turbo
175 * P-state capacity.
176 * @max_perf_pct: Maximum capacity limit in percent of the maximum turbo
177 * P-state capacity.
178 */
179 struct global_params {
180 bool no_turbo;
181 bool turbo_disabled;
182 bool turbo_disabled_mf;
183 int max_perf_pct;
184 int min_perf_pct;
185 };
186
187 /**
188 * struct cpudata - Per CPU instance data storage
189 * @cpu: CPU number for this instance data
190 * @policy: CPUFreq policy value
191 * @update_util: CPUFreq utility callback information
192 * @update_util_set: CPUFreq utility callback is set
193 * @iowait_boost: iowait-related boost fraction
194 * @last_update: Time of the last update.
195 * @pstate: Stores P state limits for this CPU
196 * @vid: Stores VID limits for this CPU
197 * @last_sample_time: Last Sample time
198 * @aperf_mperf_shift: APERF vs MPERF counting frequency difference
199 * @prev_aperf: Last APERF value read from APERF MSR
200 * @prev_mperf: Last MPERF value read from MPERF MSR
201 * @prev_tsc: Last timestamp counter (TSC) value
202 * @prev_cummulative_iowait: IO Wait time difference from last and
203 * current sample
204 * @sample: Storage for storing last Sample data
205 * @min_perf_ratio: Minimum capacity in terms of PERF or HWP ratios
206 * @max_perf_ratio: Maximum capacity in terms of PERF or HWP ratios
207 * @acpi_perf_data: Stores ACPI perf information read from _PSS
208 * @valid_pss_table: Set to true for valid ACPI _PSS entries found
209 * @epp_powersave: Last saved HWP energy performance preference
210 * (EPP) or energy performance bias (EPB),
211 * when policy switched to performance
212 * @epp_policy: Last saved policy used to set EPP/EPB
213 * @epp_default: Power on default HWP energy performance
214 * preference/bias
215 * @epp_cached Cached HWP energy-performance preference value
216 * @hwp_req_cached: Cached value of the last HWP Request MSR
217 * @hwp_cap_cached: Cached value of the last HWP Capabilities MSR
218 * @last_io_update: Last time when IO wake flag was set
219 * @sched_flags: Store scheduler flags for possible cross CPU update
220 * @hwp_boost_min: Last HWP boosted min performance
221 * @suspended: Whether or not the driver has been suspended.
222 *
223 * This structure stores per CPU instance data for all CPUs.
224 */
225 struct cpudata {
226 int cpu;
227
228 unsigned int policy;
229 struct update_util_data update_util;
230 bool update_util_set;
231
232 struct pstate_data pstate;
233 struct vid_data vid;
234
235 u64 last_update;
236 u64 last_sample_time;
237 u64 aperf_mperf_shift;
238 u64 prev_aperf;
239 u64 prev_mperf;
240 u64 prev_tsc;
241 u64 prev_cummulative_iowait;
242 struct sample sample;
243 int32_t min_perf_ratio;
244 int32_t max_perf_ratio;
245 #ifdef CONFIG_ACPI
246 struct acpi_processor_performance acpi_perf_data;
247 bool valid_pss_table;
248 #endif
249 unsigned int iowait_boost;
250 s16 epp_powersave;
251 s16 epp_policy;
252 s16 epp_default;
253 s16 epp_cached;
254 u64 hwp_req_cached;
255 u64 hwp_cap_cached;
256 u64 last_io_update;
257 unsigned int sched_flags;
258 u32 hwp_boost_min;
259 bool suspended;
260 };
261
262 static struct cpudata **all_cpu_data;
263
264 /**
265 * struct pstate_funcs - Per CPU model specific callbacks
266 * @get_max: Callback to get maximum non turbo effective P state
267 * @get_max_physical: Callback to get maximum non turbo physical P state
268 * @get_min: Callback to get minimum P state
269 * @get_turbo: Callback to get turbo P state
270 * @get_scaling: Callback to get frequency scaling factor
271 * @get_aperf_mperf_shift: Callback to get the APERF vs MPERF frequency difference
272 * @get_val: Callback to convert P state to actual MSR write value
273 * @get_vid: Callback to get VID data for Atom platforms
274 *
275 * Core and Atom CPU models have different way to get P State limits. This
276 * structure is used to store those callbacks.
277 */
278 struct pstate_funcs {
279 int (*get_max)(void);
280 int (*get_max_physical)(void);
281 int (*get_min)(void);
282 int (*get_turbo)(void);
283 int (*get_scaling)(void);
284 int (*get_aperf_mperf_shift)(void);
285 u64 (*get_val)(struct cpudata*, int pstate);
286 void (*get_vid)(struct cpudata *);
287 };
288
289 static struct pstate_funcs pstate_funcs __read_mostly;
290
291 static int hwp_active __read_mostly;
292 static int hwp_mode_bdw __read_mostly;
293 static bool per_cpu_limits __read_mostly;
294 static bool hwp_boost __read_mostly;
295
296 static struct cpufreq_driver *intel_pstate_driver __read_mostly;
297
298 #ifdef CONFIG_ACPI
299 static bool acpi_ppc;
300 #endif
301
302 static struct global_params global;
303
304 static DEFINE_MUTEX(intel_pstate_driver_lock);
305 static DEFINE_MUTEX(intel_pstate_limits_lock);
306
307 #ifdef CONFIG_ACPI
308
309 static bool intel_pstate_acpi_pm_profile_server(void)
310 {
311 if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
312 acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
313 return true;
314
315 return false;
316 }
317
318 static bool intel_pstate_get_ppc_enable_status(void)
319 {
320 if (intel_pstate_acpi_pm_profile_server())
321 return true;
322
323 return acpi_ppc;
324 }
325
326 #ifdef CONFIG_ACPI_CPPC_LIB
327
328 /* The work item is needed to avoid CPU hotplug locking issues */
329 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
330 {
331 sched_set_itmt_support();
332 }
333
334 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
335
336 static void intel_pstate_set_itmt_prio(int cpu)
337 {
338 struct cppc_perf_caps cppc_perf;
339 static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
340 int ret;
341
342 ret = cppc_get_perf_caps(cpu, &cppc_perf);
343 if (ret)
344 return;
345
346 /*
347 * The priorities can be set regardless of whether or not
348 * sched_set_itmt_support(true) has been called and it is valid to
349 * update them at any time after it has been called.
350 */
351 sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
352
353 if (max_highest_perf <= min_highest_perf) {
354 if (cppc_perf.highest_perf > max_highest_perf)
355 max_highest_perf = cppc_perf.highest_perf;
356
357 if (cppc_perf.highest_perf < min_highest_perf)
358 min_highest_perf = cppc_perf.highest_perf;
359
360 if (max_highest_perf > min_highest_perf) {
361 /*
362 * This code can be run during CPU online under the
363 * CPU hotplug locks, so sched_set_itmt_support()
364 * cannot be called from here. Queue up a work item
365 * to invoke it.
366 */
367 schedule_work(&sched_itmt_work);
368 }
369 }
370 }
371
372 static int intel_pstate_get_cppc_guaranteed(int cpu)
373 {
374 struct cppc_perf_caps cppc_perf;
375 int ret;
376
377 ret = cppc_get_perf_caps(cpu, &cppc_perf);
378 if (ret)
379 return ret;
380
381 if (cppc_perf.guaranteed_perf)
382 return cppc_perf.guaranteed_perf;
383
384 return cppc_perf.nominal_perf;
385 }
386
387 #else /* CONFIG_ACPI_CPPC_LIB */
388 static inline void intel_pstate_set_itmt_prio(int cpu)
389 {
390 }
391 #endif /* CONFIG_ACPI_CPPC_LIB */
392
393 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
394 {
395 struct cpudata *cpu;
396 int ret;
397 int i;
398
399 if (hwp_active) {
400 intel_pstate_set_itmt_prio(policy->cpu);
401 return;
402 }
403
404 if (!intel_pstate_get_ppc_enable_status())
405 return;
406
407 cpu = all_cpu_data[policy->cpu];
408
409 ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
410 policy->cpu);
411 if (ret)
412 return;
413
414 /*
415 * Check if the control value in _PSS is for PERF_CTL MSR, which should
416 * guarantee that the states returned by it map to the states in our
417 * list directly.
418 */
419 if (cpu->acpi_perf_data.control_register.space_id !=
420 ACPI_ADR_SPACE_FIXED_HARDWARE)
421 goto err;
422
423 /*
424 * If there is only one entry _PSS, simply ignore _PSS and continue as
425 * usual without taking _PSS into account
426 */
427 if (cpu->acpi_perf_data.state_count < 2)
428 goto err;
429
430 pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
431 for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
432 pr_debug(" %cP%d: %u MHz, %u mW, 0x%x\n",
433 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
434 (u32) cpu->acpi_perf_data.states[i].core_frequency,
435 (u32) cpu->acpi_perf_data.states[i].power,
436 (u32) cpu->acpi_perf_data.states[i].control);
437 }
438
439 /*
440 * The _PSS table doesn't contain whole turbo frequency range.
441 * This just contains +1 MHZ above the max non turbo frequency,
442 * with control value corresponding to max turbo ratio. But
443 * when cpufreq set policy is called, it will call with this
444 * max frequency, which will cause a reduced performance as
445 * this driver uses real max turbo frequency as the max
446 * frequency. So correct this frequency in _PSS table to
447 * correct max turbo frequency based on the turbo state.
448 * Also need to convert to MHz as _PSS freq is in MHz.
449 */
450 if (!global.turbo_disabled)
451 cpu->acpi_perf_data.states[0].core_frequency =
452 policy->cpuinfo.max_freq / 1000;
453 cpu->valid_pss_table = true;
454 pr_debug("_PPC limits will be enforced\n");
455
456 return;
457
458 err:
459 cpu->valid_pss_table = false;
460 acpi_processor_unregister_performance(policy->cpu);
461 }
462
463 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
464 {
465 struct cpudata *cpu;
466
467 cpu = all_cpu_data[policy->cpu];
468 if (!cpu->valid_pss_table)
469 return;
470
471 acpi_processor_unregister_performance(policy->cpu);
472 }
473
474 static bool intel_pstate_cppc_perf_valid(u32 perf, struct cppc_perf_caps *caps)
475 {
476 return perf && perf <= caps->highest_perf && perf >= caps->lowest_perf;
477 }
478
479 static bool intel_pstate_cppc_perf_caps(struct cpudata *cpu,
480 struct cppc_perf_caps *caps)
481 {
482 if (cppc_get_perf_caps(cpu->cpu, caps))
483 return false;
484
485 return caps->highest_perf && caps->lowest_perf <= caps->highest_perf;
486 }
487 #else /* CONFIG_ACPI */
488 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
489 {
490 }
491
492 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
493 {
494 }
495
496 static inline bool intel_pstate_acpi_pm_profile_server(void)
497 {
498 return false;
499 }
500 #endif /* CONFIG_ACPI */
501
502 #ifndef CONFIG_ACPI_CPPC_LIB
503 static inline int intel_pstate_get_cppc_guaranteed(int cpu)
504 {
505 return -ENOTSUPP;
506 }
507 #endif /* CONFIG_ACPI_CPPC_LIB */
508
509 static void intel_pstate_hybrid_hwp_perf_ctl_parity(struct cpudata *cpu)
510 {
511 pr_debug("CPU%d: Using PERF_CTL scaling for HWP\n", cpu->cpu);
512
513 cpu->pstate.scaling = cpu->pstate.perf_ctl_scaling;
514 }
515
516 /**
517 * intel_pstate_hybrid_hwp_calibrate - Calibrate HWP performance levels.
518 * @cpu: Target CPU.
519 *
520 * On hybrid processors, HWP may expose more performance levels than there are
521 * P-states accessible through the PERF_CTL interface. If that happens, the
522 * scaling factor between HWP performance levels and CPU frequency will be less
523 * than the scaling factor between P-state values and CPU frequency.
524 *
525 * In that case, the scaling factor between HWP performance levels and CPU
526 * frequency needs to be determined which can be done with the help of the
527 * observation that certain HWP performance levels should correspond to certain
528 * P-states, like for example the HWP highest performance should correspond
529 * to the maximum turbo P-state of the CPU.
530 */
531 static void intel_pstate_hybrid_hwp_calibrate(struct cpudata *cpu)
532 {
533 int perf_ctl_max_phys = cpu->pstate.max_pstate_physical;
534 int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
535 int perf_ctl_turbo = pstate_funcs.get_turbo();
536 int turbo_freq = perf_ctl_turbo * perf_ctl_scaling;
537 int perf_ctl_max = pstate_funcs.get_max();
538 int max_freq = perf_ctl_max * perf_ctl_scaling;
539 int scaling = INT_MAX;
540 int freq;
541
542 pr_debug("CPU%d: perf_ctl_max_phys = %d\n", cpu->cpu, perf_ctl_max_phys);
543 pr_debug("CPU%d: perf_ctl_max = %d\n", cpu->cpu, perf_ctl_max);
544 pr_debug("CPU%d: perf_ctl_turbo = %d\n", cpu->cpu, perf_ctl_turbo);
545 pr_debug("CPU%d: perf_ctl_scaling = %d\n", cpu->cpu, perf_ctl_scaling);
546
547 pr_debug("CPU%d: HWP_CAP guaranteed = %d\n", cpu->cpu, cpu->pstate.max_pstate);
548 pr_debug("CPU%d: HWP_CAP highest = %d\n", cpu->cpu, cpu->pstate.turbo_pstate);
549
550 #ifdef CONFIG_ACPI
551 if (IS_ENABLED(CONFIG_ACPI_CPPC_LIB)) {
552 struct cppc_perf_caps caps;
553
554 if (intel_pstate_cppc_perf_caps(cpu, &caps)) {
555 if (intel_pstate_cppc_perf_valid(caps.nominal_perf, &caps)) {
556 pr_debug("CPU%d: Using CPPC nominal\n", cpu->cpu);
557
558 /*
559 * If the CPPC nominal performance is valid, it
560 * can be assumed to correspond to cpu_khz.
561 */
562 if (caps.nominal_perf == perf_ctl_max_phys) {
563 intel_pstate_hybrid_hwp_perf_ctl_parity(cpu);
564 return;
565 }
566 scaling = DIV_ROUND_UP(cpu_khz, caps.nominal_perf);
567 } else if (intel_pstate_cppc_perf_valid(caps.guaranteed_perf, &caps)) {
568 pr_debug("CPU%d: Using CPPC guaranteed\n", cpu->cpu);
569
570 /*
571 * If the CPPC guaranteed performance is valid,
572 * it can be assumed to correspond to max_freq.
573 */
574 if (caps.guaranteed_perf == perf_ctl_max) {
575 intel_pstate_hybrid_hwp_perf_ctl_parity(cpu);
576 return;
577 }
578 scaling = DIV_ROUND_UP(max_freq, caps.guaranteed_perf);
579 }
580 }
581 }
582 #endif
583 /*
584 * If using the CPPC data to compute the HWP-to-frequency scaling factor
585 * doesn't work, use the HWP_CAP gauranteed perf for this purpose with
586 * the assumption that it corresponds to max_freq.
587 */
588 if (scaling > perf_ctl_scaling) {
589 pr_debug("CPU%d: Using HWP_CAP guaranteed\n", cpu->cpu);
590
591 if (cpu->pstate.max_pstate == perf_ctl_max) {
592 intel_pstate_hybrid_hwp_perf_ctl_parity(cpu);
593 return;
594 }
595 scaling = DIV_ROUND_UP(max_freq, cpu->pstate.max_pstate);
596 if (scaling > perf_ctl_scaling) {
597 /*
598 * This should not happen, because it would mean that
599 * the number of HWP perf levels was less than the
600 * number of P-states, so use the PERF_CTL scaling in
601 * that case.
602 */
603 pr_debug("CPU%d: scaling (%d) out of range\n", cpu->cpu,
604 scaling);
605
606 intel_pstate_hybrid_hwp_perf_ctl_parity(cpu);
607 return;
608 }
609 }
610
611 /*
612 * If the product of the HWP performance scaling factor obtained above
613 * and the HWP_CAP highest performance is greater than the maximum turbo
614 * frequency corresponding to the pstate_funcs.get_turbo() return value,
615 * the scaling factor is too high, so recompute it so that the HWP_CAP
616 * highest performance corresponds to the maximum turbo frequency.
617 */
618 if (turbo_freq < cpu->pstate.turbo_pstate * scaling) {
619 pr_debug("CPU%d: scaling too high (%d)\n", cpu->cpu, scaling);
620
621 cpu->pstate.turbo_freq = turbo_freq;
622 scaling = DIV_ROUND_UP(turbo_freq, cpu->pstate.turbo_pstate);
623 }
624
625 cpu->pstate.scaling = scaling;
626
627 pr_debug("CPU%d: HWP-to-frequency scaling factor: %d\n", cpu->cpu, scaling);
628
629 cpu->pstate.max_freq = rounddown(cpu->pstate.max_pstate * scaling,
630 perf_ctl_scaling);
631
632 freq = perf_ctl_max_phys * perf_ctl_scaling;
633 cpu->pstate.max_pstate_physical = DIV_ROUND_UP(freq, scaling);
634
635 cpu->pstate.min_freq = cpu->pstate.min_pstate * perf_ctl_scaling;
636 /*
637 * Cast the min P-state value retrieved via pstate_funcs.get_min() to
638 * the effective range of HWP performance levels.
639 */
640 cpu->pstate.min_pstate = DIV_ROUND_UP(cpu->pstate.min_freq, scaling);
641 }
642
643 static inline void update_turbo_state(void)
644 {
645 u64 misc_en;
646 struct cpudata *cpu;
647
648 cpu = all_cpu_data[0];
649 rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
650 global.turbo_disabled =
651 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
652 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
653 }
654
655 static int min_perf_pct_min(void)
656 {
657 struct cpudata *cpu = all_cpu_data[0];
658 int turbo_pstate = cpu->pstate.turbo_pstate;
659
660 return turbo_pstate ?
661 (cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
662 }
663
664 static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
665 {
666 u64 epb;
667 int ret;
668
669 if (!boot_cpu_has(X86_FEATURE_EPB))
670 return -ENXIO;
671
672 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
673 if (ret)
674 return (s16)ret;
675
676 return (s16)(epb & 0x0f);
677 }
678
679 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
680 {
681 s16 epp;
682
683 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
684 /*
685 * When hwp_req_data is 0, means that caller didn't read
686 * MSR_HWP_REQUEST, so need to read and get EPP.
687 */
688 if (!hwp_req_data) {
689 epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
690 &hwp_req_data);
691 if (epp)
692 return epp;
693 }
694 epp = (hwp_req_data >> 24) & 0xff;
695 } else {
696 /* When there is no EPP present, HWP uses EPB settings */
697 epp = intel_pstate_get_epb(cpu_data);
698 }
699
700 return epp;
701 }
702
703 static int intel_pstate_set_epb(int cpu, s16 pref)
704 {
705 u64 epb;
706 int ret;
707
708 if (!boot_cpu_has(X86_FEATURE_EPB))
709 return -ENXIO;
710
711 ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
712 if (ret)
713 return ret;
714
715 epb = (epb & ~0x0f) | pref;
716 wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
717
718 return 0;
719 }
720
721 /*
722 * EPP/EPB display strings corresponding to EPP index in the
723 * energy_perf_strings[]
724 * index String
725 *-------------------------------------
726 * 0 default
727 * 1 performance
728 * 2 balance_performance
729 * 3 balance_power
730 * 4 power
731 */
732 static const char * const energy_perf_strings[] = {
733 "default",
734 "performance",
735 "balance_performance",
736 "balance_power",
737 "power",
738 NULL
739 };
740 static const unsigned int epp_values[] = {
741 HWP_EPP_PERFORMANCE,
742 HWP_EPP_BALANCE_PERFORMANCE,
743 HWP_EPP_BALANCE_POWERSAVE,
744 HWP_EPP_POWERSAVE
745 };
746
747 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data, int *raw_epp)
748 {
749 s16 epp;
750 int index = -EINVAL;
751
752 *raw_epp = 0;
753 epp = intel_pstate_get_epp(cpu_data, 0);
754 if (epp < 0)
755 return epp;
756
757 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
758 if (epp == HWP_EPP_PERFORMANCE)
759 return 1;
760 if (epp == HWP_EPP_BALANCE_PERFORMANCE)
761 return 2;
762 if (epp == HWP_EPP_BALANCE_POWERSAVE)
763 return 3;
764 if (epp == HWP_EPP_POWERSAVE)
765 return 4;
766 *raw_epp = epp;
767 return 0;
768 } else if (boot_cpu_has(X86_FEATURE_EPB)) {
769 /*
770 * Range:
771 * 0x00-0x03 : Performance
772 * 0x04-0x07 : Balance performance
773 * 0x08-0x0B : Balance power
774 * 0x0C-0x0F : Power
775 * The EPB is a 4 bit value, but our ranges restrict the
776 * value which can be set. Here only using top two bits
777 * effectively.
778 */
779 index = (epp >> 2) + 1;
780 }
781
782 return index;
783 }
784
785 static int intel_pstate_set_epp(struct cpudata *cpu, u32 epp)
786 {
787 int ret;
788
789 /*
790 * Use the cached HWP Request MSR value, because in the active mode the
791 * register itself may be updated by intel_pstate_hwp_boost_up() or
792 * intel_pstate_hwp_boost_down() at any time.
793 */
794 u64 value = READ_ONCE(cpu->hwp_req_cached);
795
796 value &= ~GENMASK_ULL(31, 24);
797 value |= (u64)epp << 24;
798 /*
799 * The only other updater of hwp_req_cached in the active mode,
800 * intel_pstate_hwp_set(), is called under the same lock as this
801 * function, so it cannot run in parallel with the update below.
802 */
803 WRITE_ONCE(cpu->hwp_req_cached, value);
804 ret = wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
805 if (!ret)
806 cpu->epp_cached = epp;
807
808 return ret;
809 }
810
811 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
812 int pref_index, bool use_raw,
813 u32 raw_epp)
814 {
815 int epp = -EINVAL;
816 int ret;
817
818 if (!pref_index)
819 epp = cpu_data->epp_default;
820
821 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
822 if (use_raw)
823 epp = raw_epp;
824 else if (epp == -EINVAL)
825 epp = epp_values[pref_index - 1];
826
827 /*
828 * To avoid confusion, refuse to set EPP to any values different
829 * from 0 (performance) if the current policy is "performance",
830 * because those values would be overridden.
831 */
832 if (epp > 0 && cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
833 return -EBUSY;
834
835 ret = intel_pstate_set_epp(cpu_data, epp);
836 } else {
837 if (epp == -EINVAL)
838 epp = (pref_index - 1) << 2;
839 ret = intel_pstate_set_epb(cpu_data->cpu, epp);
840 }
841
842 return ret;
843 }
844
845 static ssize_t show_energy_performance_available_preferences(
846 struct cpufreq_policy *policy, char *buf)
847 {
848 int i = 0;
849 int ret = 0;
850
851 while (energy_perf_strings[i] != NULL)
852 ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
853
854 ret += sprintf(&buf[ret], "\n");
855
856 return ret;
857 }
858
859 cpufreq_freq_attr_ro(energy_performance_available_preferences);
860
861 static struct cpufreq_driver intel_pstate;
862
863 static ssize_t store_energy_performance_preference(
864 struct cpufreq_policy *policy, const char *buf, size_t count)
865 {
866 struct cpudata *cpu = all_cpu_data[policy->cpu];
867 char str_preference[21];
868 bool raw = false;
869 ssize_t ret;
870 u32 epp = 0;
871
872 ret = sscanf(buf, "%20s", str_preference);
873 if (ret != 1)
874 return -EINVAL;
875
876 ret = match_string(energy_perf_strings, -1, str_preference);
877 if (ret < 0) {
878 if (!boot_cpu_has(X86_FEATURE_HWP_EPP))
879 return ret;
880
881 ret = kstrtouint(buf, 10, &epp);
882 if (ret)
883 return ret;
884
885 if (epp > 255)
886 return -EINVAL;
887
888 raw = true;
889 }
890
891 /*
892 * This function runs with the policy R/W semaphore held, which
893 * guarantees that the driver pointer will not change while it is
894 * running.
895 */
896 if (!intel_pstate_driver)
897 return -EAGAIN;
898
899 mutex_lock(&intel_pstate_limits_lock);
900
901 if (intel_pstate_driver == &intel_pstate) {
902 ret = intel_pstate_set_energy_pref_index(cpu, ret, raw, epp);
903 } else {
904 /*
905 * In the passive mode the governor needs to be stopped on the
906 * target CPU before the EPP update and restarted after it,
907 * which is super-heavy-weight, so make sure it is worth doing
908 * upfront.
909 */
910 if (!raw)
911 epp = ret ? epp_values[ret - 1] : cpu->epp_default;
912
913 if (cpu->epp_cached != epp) {
914 int err;
915
916 cpufreq_stop_governor(policy);
917 ret = intel_pstate_set_epp(cpu, epp);
918 err = cpufreq_start_governor(policy);
919 if (!ret)
920 ret = err;
921 }
922 }
923
924 mutex_unlock(&intel_pstate_limits_lock);
925
926 return ret ?: count;
927 }
928
929 static ssize_t show_energy_performance_preference(
930 struct cpufreq_policy *policy, char *buf)
931 {
932 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
933 int preference, raw_epp;
934
935 preference = intel_pstate_get_energy_pref_index(cpu_data, &raw_epp);
936 if (preference < 0)
937 return preference;
938
939 if (raw_epp)
940 return sprintf(buf, "%d\n", raw_epp);
941 else
942 return sprintf(buf, "%s\n", energy_perf_strings[preference]);
943 }
944
945 cpufreq_freq_attr_rw(energy_performance_preference);
946
947 static ssize_t show_base_frequency(struct cpufreq_policy *policy, char *buf)
948 {
949 struct cpudata *cpu = all_cpu_data[policy->cpu];
950 int ratio, freq;
951
952 ratio = intel_pstate_get_cppc_guaranteed(policy->cpu);
953 if (ratio <= 0) {
954 u64 cap;
955
956 rdmsrl_on_cpu(policy->cpu, MSR_HWP_CAPABILITIES, &cap);
957 ratio = HWP_GUARANTEED_PERF(cap);
958 }
959
960 freq = ratio * cpu->pstate.scaling;
961 if (cpu->pstate.scaling != cpu->pstate.perf_ctl_scaling)
962 freq = rounddown(freq, cpu->pstate.perf_ctl_scaling);
963
964 return sprintf(buf, "%d\n", freq);
965 }
966
967 cpufreq_freq_attr_ro(base_frequency);
968
969 static struct freq_attr *hwp_cpufreq_attrs[] = {
970 &energy_performance_preference,
971 &energy_performance_available_preferences,
972 &base_frequency,
973 NULL,
974 };
975
976 static void __intel_pstate_get_hwp_cap(struct cpudata *cpu)
977 {
978 u64 cap;
979
980 rdmsrl_on_cpu(cpu->cpu, MSR_HWP_CAPABILITIES, &cap);
981 WRITE_ONCE(cpu->hwp_cap_cached, cap);
982 cpu->pstate.max_pstate = HWP_GUARANTEED_PERF(cap);
983 cpu->pstate.turbo_pstate = HWP_HIGHEST_PERF(cap);
984 }
985
986 static void intel_pstate_get_hwp_cap(struct cpudata *cpu)
987 {
988 int scaling = cpu->pstate.scaling;
989
990 __intel_pstate_get_hwp_cap(cpu);
991
992 cpu->pstate.max_freq = cpu->pstate.max_pstate * scaling;
993 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * scaling;
994 if (scaling != cpu->pstate.perf_ctl_scaling) {
995 int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
996
997 cpu->pstate.max_freq = rounddown(cpu->pstate.max_freq,
998 perf_ctl_scaling);
999 cpu->pstate.turbo_freq = rounddown(cpu->pstate.turbo_freq,
1000 perf_ctl_scaling);
1001 }
1002 }
1003
1004 static void intel_pstate_hwp_set(unsigned int cpu)
1005 {
1006 struct cpudata *cpu_data = all_cpu_data[cpu];
1007 int max, min;
1008 u64 value;
1009 s16 epp;
1010
1011 max = cpu_data->max_perf_ratio;
1012 min = cpu_data->min_perf_ratio;
1013
1014 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
1015 min = max;
1016
1017 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
1018
1019 value &= ~HWP_MIN_PERF(~0L);
1020 value |= HWP_MIN_PERF(min);
1021
1022 value &= ~HWP_MAX_PERF(~0L);
1023 value |= HWP_MAX_PERF(max);
1024
1025 if (cpu_data->epp_policy == cpu_data->policy)
1026 goto skip_epp;
1027
1028 cpu_data->epp_policy = cpu_data->policy;
1029
1030 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
1031 epp = intel_pstate_get_epp(cpu_data, value);
1032 cpu_data->epp_powersave = epp;
1033 /* If EPP read was failed, then don't try to write */
1034 if (epp < 0)
1035 goto skip_epp;
1036
1037 epp = 0;
1038 } else {
1039 /* skip setting EPP, when saved value is invalid */
1040 if (cpu_data->epp_powersave < 0)
1041 goto skip_epp;
1042
1043 /*
1044 * No need to restore EPP when it is not zero. This
1045 * means:
1046 * - Policy is not changed
1047 * - user has manually changed
1048 * - Error reading EPB
1049 */
1050 epp = intel_pstate_get_epp(cpu_data, value);
1051 if (epp)
1052 goto skip_epp;
1053
1054 epp = cpu_data->epp_powersave;
1055 }
1056 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
1057 value &= ~GENMASK_ULL(31, 24);
1058 value |= (u64)epp << 24;
1059 } else {
1060 intel_pstate_set_epb(cpu, epp);
1061 }
1062 skip_epp:
1063 WRITE_ONCE(cpu_data->hwp_req_cached, value);
1064 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
1065 }
1066
1067 static void intel_pstate_hwp_offline(struct cpudata *cpu)
1068 {
1069 u64 value = READ_ONCE(cpu->hwp_req_cached);
1070 int min_perf;
1071
1072 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
1073 /*
1074 * In case the EPP has been set to "performance" by the
1075 * active mode "performance" scaling algorithm, replace that
1076 * temporary value with the cached EPP one.
1077 */
1078 value &= ~GENMASK_ULL(31, 24);
1079 value |= HWP_ENERGY_PERF_PREFERENCE(cpu->epp_cached);
1080 WRITE_ONCE(cpu->hwp_req_cached, value);
1081 }
1082
1083 value &= ~GENMASK_ULL(31, 0);
1084 min_perf = HWP_LOWEST_PERF(READ_ONCE(cpu->hwp_cap_cached));
1085
1086 /* Set hwp_max = hwp_min */
1087 value |= HWP_MAX_PERF(min_perf);
1088 value |= HWP_MIN_PERF(min_perf);
1089
1090 /* Set EPP to min */
1091 if (boot_cpu_has(X86_FEATURE_HWP_EPP))
1092 value |= HWP_ENERGY_PERF_PREFERENCE(HWP_EPP_POWERSAVE);
1093
1094 wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
1095 }
1096
1097 #define POWER_CTL_EE_ENABLE 1
1098 #define POWER_CTL_EE_DISABLE 2
1099
1100 static int power_ctl_ee_state;
1101
1102 static void set_power_ctl_ee_state(bool input)
1103 {
1104 u64 power_ctl;
1105
1106 mutex_lock(&intel_pstate_driver_lock);
1107 rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
1108 if (input) {
1109 power_ctl &= ~BIT(MSR_IA32_POWER_CTL_BIT_EE);
1110 power_ctl_ee_state = POWER_CTL_EE_ENABLE;
1111 } else {
1112 power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1113 power_ctl_ee_state = POWER_CTL_EE_DISABLE;
1114 }
1115 wrmsrl(MSR_IA32_POWER_CTL, power_ctl);
1116 mutex_unlock(&intel_pstate_driver_lock);
1117 }
1118
1119 static void intel_pstate_hwp_enable(struct cpudata *cpudata);
1120
1121 static void intel_pstate_hwp_reenable(struct cpudata *cpu)
1122 {
1123 intel_pstate_hwp_enable(cpu);
1124 wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, READ_ONCE(cpu->hwp_req_cached));
1125 }
1126
1127 static int intel_pstate_suspend(struct cpufreq_policy *policy)
1128 {
1129 struct cpudata *cpu = all_cpu_data[policy->cpu];
1130
1131 pr_debug("CPU %d suspending\n", cpu->cpu);
1132
1133 cpu->suspended = true;
1134
1135 return 0;
1136 }
1137
1138 static int intel_pstate_resume(struct cpufreq_policy *policy)
1139 {
1140 struct cpudata *cpu = all_cpu_data[policy->cpu];
1141
1142 pr_debug("CPU %d resuming\n", cpu->cpu);
1143
1144 /* Only restore if the system default is changed */
1145 if (power_ctl_ee_state == POWER_CTL_EE_ENABLE)
1146 set_power_ctl_ee_state(true);
1147 else if (power_ctl_ee_state == POWER_CTL_EE_DISABLE)
1148 set_power_ctl_ee_state(false);
1149
1150 if (cpu->suspended && hwp_active) {
1151 mutex_lock(&intel_pstate_limits_lock);
1152
1153 /* Re-enable HWP, because "online" has not done that. */
1154 intel_pstate_hwp_reenable(cpu);
1155
1156 mutex_unlock(&intel_pstate_limits_lock);
1157 }
1158
1159 cpu->suspended = false;
1160
1161 return 0;
1162 }
1163
1164 static void intel_pstate_update_policies(void)
1165 {
1166 int cpu;
1167
1168 for_each_possible_cpu(cpu)
1169 cpufreq_update_policy(cpu);
1170 }
1171
1172 static void intel_pstate_update_max_freq(unsigned int cpu)
1173 {
1174 struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
1175 struct cpudata *cpudata;
1176
1177 if (!policy)
1178 return;
1179
1180 cpudata = all_cpu_data[cpu];
1181 policy->cpuinfo.max_freq = global.turbo_disabled_mf ?
1182 cpudata->pstate.max_freq : cpudata->pstate.turbo_freq;
1183
1184 refresh_frequency_limits(policy);
1185
1186 cpufreq_cpu_release(policy);
1187 }
1188
1189 static void intel_pstate_update_limits(unsigned int cpu)
1190 {
1191 mutex_lock(&intel_pstate_driver_lock);
1192
1193 update_turbo_state();
1194 /*
1195 * If turbo has been turned on or off globally, policy limits for
1196 * all CPUs need to be updated to reflect that.
1197 */
1198 if (global.turbo_disabled_mf != global.turbo_disabled) {
1199 global.turbo_disabled_mf = global.turbo_disabled;
1200 arch_set_max_freq_ratio(global.turbo_disabled);
1201 for_each_possible_cpu(cpu)
1202 intel_pstate_update_max_freq(cpu);
1203 } else {
1204 cpufreq_update_policy(cpu);
1205 }
1206
1207 mutex_unlock(&intel_pstate_driver_lock);
1208 }
1209
1210 /************************** sysfs begin ************************/
1211 #define show_one(file_name, object) \
1212 static ssize_t show_##file_name \
1213 (struct kobject *kobj, struct kobj_attribute *attr, char *buf) \
1214 { \
1215 return sprintf(buf, "%u\n", global.object); \
1216 }
1217
1218 static ssize_t intel_pstate_show_status(char *buf);
1219 static int intel_pstate_update_status(const char *buf, size_t size);
1220
1221 static ssize_t show_status(struct kobject *kobj,
1222 struct kobj_attribute *attr, char *buf)
1223 {
1224 ssize_t ret;
1225
1226 mutex_lock(&intel_pstate_driver_lock);
1227 ret = intel_pstate_show_status(buf);
1228 mutex_unlock(&intel_pstate_driver_lock);
1229
1230 return ret;
1231 }
1232
1233 static ssize_t store_status(struct kobject *a, struct kobj_attribute *b,
1234 const char *buf, size_t count)
1235 {
1236 char *p = memchr(buf, '\n', count);
1237 int ret;
1238
1239 mutex_lock(&intel_pstate_driver_lock);
1240 ret = intel_pstate_update_status(buf, p ? p - buf : count);
1241 mutex_unlock(&intel_pstate_driver_lock);
1242
1243 return ret < 0 ? ret : count;
1244 }
1245
1246 static ssize_t show_turbo_pct(struct kobject *kobj,
1247 struct kobj_attribute *attr, char *buf)
1248 {
1249 struct cpudata *cpu;
1250 int total, no_turbo, turbo_pct;
1251 uint32_t turbo_fp;
1252
1253 mutex_lock(&intel_pstate_driver_lock);
1254
1255 if (!intel_pstate_driver) {
1256 mutex_unlock(&intel_pstate_driver_lock);
1257 return -EAGAIN;
1258 }
1259
1260 cpu = all_cpu_data[0];
1261
1262 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1263 no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1264 turbo_fp = div_fp(no_turbo, total);
1265 turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1266
1267 mutex_unlock(&intel_pstate_driver_lock);
1268
1269 return sprintf(buf, "%u\n", turbo_pct);
1270 }
1271
1272 static ssize_t show_num_pstates(struct kobject *kobj,
1273 struct kobj_attribute *attr, char *buf)
1274 {
1275 struct cpudata *cpu;
1276 int total;
1277
1278 mutex_lock(&intel_pstate_driver_lock);
1279
1280 if (!intel_pstate_driver) {
1281 mutex_unlock(&intel_pstate_driver_lock);
1282 return -EAGAIN;
1283 }
1284
1285 cpu = all_cpu_data[0];
1286 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1287
1288 mutex_unlock(&intel_pstate_driver_lock);
1289
1290 return sprintf(buf, "%u\n", total);
1291 }
1292
1293 static ssize_t show_no_turbo(struct kobject *kobj,
1294 struct kobj_attribute *attr, char *buf)
1295 {
1296 ssize_t ret;
1297
1298 mutex_lock(&intel_pstate_driver_lock);
1299
1300 if (!intel_pstate_driver) {
1301 mutex_unlock(&intel_pstate_driver_lock);
1302 return -EAGAIN;
1303 }
1304
1305 update_turbo_state();
1306 if (global.turbo_disabled)
1307 ret = sprintf(buf, "%u\n", global.turbo_disabled);
1308 else
1309 ret = sprintf(buf, "%u\n", global.no_turbo);
1310
1311 mutex_unlock(&intel_pstate_driver_lock);
1312
1313 return ret;
1314 }
1315
1316 static ssize_t store_no_turbo(struct kobject *a, struct kobj_attribute *b,
1317 const char *buf, size_t count)
1318 {
1319 unsigned int input;
1320 int ret;
1321
1322 ret = sscanf(buf, "%u", &input);
1323 if (ret != 1)
1324 return -EINVAL;
1325
1326 mutex_lock(&intel_pstate_driver_lock);
1327
1328 if (!intel_pstate_driver) {
1329 mutex_unlock(&intel_pstate_driver_lock);
1330 return -EAGAIN;
1331 }
1332
1333 mutex_lock(&intel_pstate_limits_lock);
1334
1335 update_turbo_state();
1336 if (global.turbo_disabled) {
1337 pr_notice_once("Turbo disabled by BIOS or unavailable on processor\n");
1338 mutex_unlock(&intel_pstate_limits_lock);
1339 mutex_unlock(&intel_pstate_driver_lock);
1340 return -EPERM;
1341 }
1342
1343 global.no_turbo = clamp_t(int, input, 0, 1);
1344
1345 if (global.no_turbo) {
1346 struct cpudata *cpu = all_cpu_data[0];
1347 int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
1348
1349 /* Squash the global minimum into the permitted range. */
1350 if (global.min_perf_pct > pct)
1351 global.min_perf_pct = pct;
1352 }
1353
1354 mutex_unlock(&intel_pstate_limits_lock);
1355
1356 intel_pstate_update_policies();
1357
1358 mutex_unlock(&intel_pstate_driver_lock);
1359
1360 return count;
1361 }
1362
1363 static void update_qos_request(enum freq_qos_req_type type)
1364 {
1365 struct freq_qos_request *req;
1366 struct cpufreq_policy *policy;
1367 int i;
1368
1369 for_each_possible_cpu(i) {
1370 struct cpudata *cpu = all_cpu_data[i];
1371 unsigned int freq, perf_pct;
1372
1373 policy = cpufreq_cpu_get(i);
1374 if (!policy)
1375 continue;
1376
1377 req = policy->driver_data;
1378 cpufreq_cpu_put(policy);
1379
1380 if (!req)
1381 continue;
1382
1383 if (hwp_active)
1384 intel_pstate_get_hwp_cap(cpu);
1385
1386 if (type == FREQ_QOS_MIN) {
1387 perf_pct = global.min_perf_pct;
1388 } else {
1389 req++;
1390 perf_pct = global.max_perf_pct;
1391 }
1392
1393 freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * perf_pct, 100);
1394
1395 if (freq_qos_update_request(req, freq) < 0)
1396 pr_warn("Failed to update freq constraint: CPU%d\n", i);
1397 }
1398 }
1399
1400 static ssize_t store_max_perf_pct(struct kobject *a, struct kobj_attribute *b,
1401 const char *buf, size_t count)
1402 {
1403 unsigned int input;
1404 int ret;
1405
1406 ret = sscanf(buf, "%u", &input);
1407 if (ret != 1)
1408 return -EINVAL;
1409
1410 mutex_lock(&intel_pstate_driver_lock);
1411
1412 if (!intel_pstate_driver) {
1413 mutex_unlock(&intel_pstate_driver_lock);
1414 return -EAGAIN;
1415 }
1416
1417 mutex_lock(&intel_pstate_limits_lock);
1418
1419 global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1420
1421 mutex_unlock(&intel_pstate_limits_lock);
1422
1423 if (intel_pstate_driver == &intel_pstate)
1424 intel_pstate_update_policies();
1425 else
1426 update_qos_request(FREQ_QOS_MAX);
1427
1428 mutex_unlock(&intel_pstate_driver_lock);
1429
1430 return count;
1431 }
1432
1433 static ssize_t store_min_perf_pct(struct kobject *a, struct kobj_attribute *b,
1434 const char *buf, size_t count)
1435 {
1436 unsigned int input;
1437 int ret;
1438
1439 ret = sscanf(buf, "%u", &input);
1440 if (ret != 1)
1441 return -EINVAL;
1442
1443 mutex_lock(&intel_pstate_driver_lock);
1444
1445 if (!intel_pstate_driver) {
1446 mutex_unlock(&intel_pstate_driver_lock);
1447 return -EAGAIN;
1448 }
1449
1450 mutex_lock(&intel_pstate_limits_lock);
1451
1452 global.min_perf_pct = clamp_t(int, input,
1453 min_perf_pct_min(), global.max_perf_pct);
1454
1455 mutex_unlock(&intel_pstate_limits_lock);
1456
1457 if (intel_pstate_driver == &intel_pstate)
1458 intel_pstate_update_policies();
1459 else
1460 update_qos_request(FREQ_QOS_MIN);
1461
1462 mutex_unlock(&intel_pstate_driver_lock);
1463
1464 return count;
1465 }
1466
1467 static ssize_t show_hwp_dynamic_boost(struct kobject *kobj,
1468 struct kobj_attribute *attr, char *buf)
1469 {
1470 return sprintf(buf, "%u\n", hwp_boost);
1471 }
1472
1473 static ssize_t store_hwp_dynamic_boost(struct kobject *a,
1474 struct kobj_attribute *b,
1475 const char *buf, size_t count)
1476 {
1477 unsigned int input;
1478 int ret;
1479
1480 ret = kstrtouint(buf, 10, &input);
1481 if (ret)
1482 return ret;
1483
1484 mutex_lock(&intel_pstate_driver_lock);
1485 hwp_boost = !!input;
1486 intel_pstate_update_policies();
1487 mutex_unlock(&intel_pstate_driver_lock);
1488
1489 return count;
1490 }
1491
1492 static ssize_t show_energy_efficiency(struct kobject *kobj, struct kobj_attribute *attr,
1493 char *buf)
1494 {
1495 u64 power_ctl;
1496 int enable;
1497
1498 rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
1499 enable = !!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE));
1500 return sprintf(buf, "%d\n", !enable);
1501 }
1502
1503 static ssize_t store_energy_efficiency(struct kobject *a, struct kobj_attribute *b,
1504 const char *buf, size_t count)
1505 {
1506 bool input;
1507 int ret;
1508
1509 ret = kstrtobool(buf, &input);
1510 if (ret)
1511 return ret;
1512
1513 set_power_ctl_ee_state(input);
1514
1515 return count;
1516 }
1517
1518 show_one(max_perf_pct, max_perf_pct);
1519 show_one(min_perf_pct, min_perf_pct);
1520
1521 define_one_global_rw(status);
1522 define_one_global_rw(no_turbo);
1523 define_one_global_rw(max_perf_pct);
1524 define_one_global_rw(min_perf_pct);
1525 define_one_global_ro(turbo_pct);
1526 define_one_global_ro(num_pstates);
1527 define_one_global_rw(hwp_dynamic_boost);
1528 define_one_global_rw(energy_efficiency);
1529
1530 static struct attribute *intel_pstate_attributes[] = {
1531 &status.attr,
1532 &no_turbo.attr,
1533 NULL
1534 };
1535
1536 static const struct attribute_group intel_pstate_attr_group = {
1537 .attrs = intel_pstate_attributes,
1538 };
1539
1540 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[];
1541
1542 static struct kobject *intel_pstate_kobject;
1543
1544 static void __init intel_pstate_sysfs_expose_params(void)
1545 {
1546 int rc;
1547
1548 intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1549 &cpu_subsys.dev_root->kobj);
1550 if (WARN_ON(!intel_pstate_kobject))
1551 return;
1552
1553 rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1554 if (WARN_ON(rc))
1555 return;
1556
1557 if (!boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
1558 rc = sysfs_create_file(intel_pstate_kobject, &turbo_pct.attr);
1559 WARN_ON(rc);
1560
1561 rc = sysfs_create_file(intel_pstate_kobject, &num_pstates.attr);
1562 WARN_ON(rc);
1563 }
1564
1565 /*
1566 * If per cpu limits are enforced there are no global limits, so
1567 * return without creating max/min_perf_pct attributes
1568 */
1569 if (per_cpu_limits)
1570 return;
1571
1572 rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1573 WARN_ON(rc);
1574
1575 rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1576 WARN_ON(rc);
1577
1578 if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids)) {
1579 rc = sysfs_create_file(intel_pstate_kobject, &energy_efficiency.attr);
1580 WARN_ON(rc);
1581 }
1582 }
1583
1584 static void __init intel_pstate_sysfs_remove(void)
1585 {
1586 if (!intel_pstate_kobject)
1587 return;
1588
1589 sysfs_remove_group(intel_pstate_kobject, &intel_pstate_attr_group);
1590
1591 if (!boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
1592 sysfs_remove_file(intel_pstate_kobject, &num_pstates.attr);
1593 sysfs_remove_file(intel_pstate_kobject, &turbo_pct.attr);
1594 }
1595
1596 if (!per_cpu_limits) {
1597 sysfs_remove_file(intel_pstate_kobject, &max_perf_pct.attr);
1598 sysfs_remove_file(intel_pstate_kobject, &min_perf_pct.attr);
1599
1600 if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids))
1601 sysfs_remove_file(intel_pstate_kobject, &energy_efficiency.attr);
1602 }
1603
1604 kobject_put(intel_pstate_kobject);
1605 }
1606
1607 static void intel_pstate_sysfs_expose_hwp_dynamic_boost(void)
1608 {
1609 int rc;
1610
1611 if (!hwp_active)
1612 return;
1613
1614 rc = sysfs_create_file(intel_pstate_kobject, &hwp_dynamic_boost.attr);
1615 WARN_ON_ONCE(rc);
1616 }
1617
1618 static void intel_pstate_sysfs_hide_hwp_dynamic_boost(void)
1619 {
1620 if (!hwp_active)
1621 return;
1622
1623 sysfs_remove_file(intel_pstate_kobject, &hwp_dynamic_boost.attr);
1624 }
1625
1626 /************************** sysfs end ************************/
1627
1628 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1629 {
1630 /* First disable HWP notification interrupt as we don't process them */
1631 if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1632 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1633
1634 wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1635 if (cpudata->epp_default == -EINVAL)
1636 cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1637 }
1638
1639 static int atom_get_min_pstate(void)
1640 {
1641 u64 value;
1642
1643 rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1644 return (value >> 8) & 0x7F;
1645 }
1646
1647 static int atom_get_max_pstate(void)
1648 {
1649 u64 value;
1650
1651 rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1652 return (value >> 16) & 0x7F;
1653 }
1654
1655 static int atom_get_turbo_pstate(void)
1656 {
1657 u64 value;
1658
1659 rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
1660 return value & 0x7F;
1661 }
1662
1663 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1664 {
1665 u64 val;
1666 int32_t vid_fp;
1667 u32 vid;
1668
1669 val = (u64)pstate << 8;
1670 if (global.no_turbo && !global.turbo_disabled)
1671 val |= (u64)1 << 32;
1672
1673 vid_fp = cpudata->vid.min + mul_fp(
1674 int_tofp(pstate - cpudata->pstate.min_pstate),
1675 cpudata->vid.ratio);
1676
1677 vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1678 vid = ceiling_fp(vid_fp);
1679
1680 if (pstate > cpudata->pstate.max_pstate)
1681 vid = cpudata->vid.turbo;
1682
1683 return val | vid;
1684 }
1685
1686 static int silvermont_get_scaling(void)
1687 {
1688 u64 value;
1689 int i;
1690 /* Defined in Table 35-6 from SDM (Sept 2015) */
1691 static int silvermont_freq_table[] = {
1692 83300, 100000, 133300, 116700, 80000};
1693
1694 rdmsrl(MSR_FSB_FREQ, value);
1695 i = value & 0x7;
1696 WARN_ON(i > 4);
1697
1698 return silvermont_freq_table[i];
1699 }
1700
1701 static int airmont_get_scaling(void)
1702 {
1703 u64 value;
1704 int i;
1705 /* Defined in Table 35-10 from SDM (Sept 2015) */
1706 static int airmont_freq_table[] = {
1707 83300, 100000, 133300, 116700, 80000,
1708 93300, 90000, 88900, 87500};
1709
1710 rdmsrl(MSR_FSB_FREQ, value);
1711 i = value & 0xF;
1712 WARN_ON(i > 8);
1713
1714 return airmont_freq_table[i];
1715 }
1716
1717 static void atom_get_vid(struct cpudata *cpudata)
1718 {
1719 u64 value;
1720
1721 rdmsrl(MSR_ATOM_CORE_VIDS, value);
1722 cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1723 cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1724 cpudata->vid.ratio = div_fp(
1725 cpudata->vid.max - cpudata->vid.min,
1726 int_tofp(cpudata->pstate.max_pstate -
1727 cpudata->pstate.min_pstate));
1728
1729 rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1730 cpudata->vid.turbo = value & 0x7f;
1731 }
1732
1733 static int core_get_min_pstate(void)
1734 {
1735 u64 value;
1736
1737 rdmsrl(MSR_PLATFORM_INFO, value);
1738 return (value >> 40) & 0xFF;
1739 }
1740
1741 static int core_get_max_pstate_physical(void)
1742 {
1743 u64 value;
1744
1745 rdmsrl(MSR_PLATFORM_INFO, value);
1746 return (value >> 8) & 0xFF;
1747 }
1748
1749 static int core_get_tdp_ratio(u64 plat_info)
1750 {
1751 /* Check how many TDP levels present */
1752 if (plat_info & 0x600000000) {
1753 u64 tdp_ctrl;
1754 u64 tdp_ratio;
1755 int tdp_msr;
1756 int err;
1757
1758 /* Get the TDP level (0, 1, 2) to get ratios */
1759 err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1760 if (err)
1761 return err;
1762
1763 /* TDP MSR are continuous starting at 0x648 */
1764 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1765 err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1766 if (err)
1767 return err;
1768
1769 /* For level 1 and 2, bits[23:16] contain the ratio */
1770 if (tdp_ctrl & 0x03)
1771 tdp_ratio >>= 16;
1772
1773 tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1774 pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1775
1776 return (int)tdp_ratio;
1777 }
1778
1779 return -ENXIO;
1780 }
1781
1782 static int core_get_max_pstate(void)
1783 {
1784 u64 tar;
1785 u64 plat_info;
1786 int max_pstate;
1787 int tdp_ratio;
1788 int err;
1789
1790 rdmsrl(MSR_PLATFORM_INFO, plat_info);
1791 max_pstate = (plat_info >> 8) & 0xFF;
1792
1793 tdp_ratio = core_get_tdp_ratio(plat_info);
1794 if (tdp_ratio <= 0)
1795 return max_pstate;
1796
1797 if (hwp_active) {
1798 /* Turbo activation ratio is not used on HWP platforms */
1799 return tdp_ratio;
1800 }
1801
1802 err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1803 if (!err) {
1804 int tar_levels;
1805
1806 /* Do some sanity checking for safety */
1807 tar_levels = tar & 0xff;
1808 if (tdp_ratio - 1 == tar_levels) {
1809 max_pstate = tar_levels;
1810 pr_debug("max_pstate=TAC %x\n", max_pstate);
1811 }
1812 }
1813
1814 return max_pstate;
1815 }
1816
1817 static int core_get_turbo_pstate(void)
1818 {
1819 u64 value;
1820 int nont, ret;
1821
1822 rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1823 nont = core_get_max_pstate();
1824 ret = (value) & 255;
1825 if (ret <= nont)
1826 ret = nont;
1827 return ret;
1828 }
1829
1830 static inline int core_get_scaling(void)
1831 {
1832 return 100000;
1833 }
1834
1835 static u64 core_get_val(struct cpudata *cpudata, int pstate)
1836 {
1837 u64 val;
1838
1839 val = (u64)pstate << 8;
1840 if (global.no_turbo && !global.turbo_disabled)
1841 val |= (u64)1 << 32;
1842
1843 return val;
1844 }
1845
1846 static int knl_get_aperf_mperf_shift(void)
1847 {
1848 return 10;
1849 }
1850
1851 static int knl_get_turbo_pstate(void)
1852 {
1853 u64 value;
1854 int nont, ret;
1855
1856 rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1857 nont = core_get_max_pstate();
1858 ret = (((value) >> 8) & 0xFF);
1859 if (ret <= nont)
1860 ret = nont;
1861 return ret;
1862 }
1863
1864 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1865 {
1866 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1867 cpu->pstate.current_pstate = pstate;
1868 /*
1869 * Generally, there is no guarantee that this code will always run on
1870 * the CPU being updated, so force the register update to run on the
1871 * right CPU.
1872 */
1873 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1874 pstate_funcs.get_val(cpu, pstate));
1875 }
1876
1877 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1878 {
1879 intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1880 }
1881
1882 static void intel_pstate_max_within_limits(struct cpudata *cpu)
1883 {
1884 int pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
1885
1886 update_turbo_state();
1887 intel_pstate_set_pstate(cpu, pstate);
1888 }
1889
1890 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1891 {
1892 bool hybrid_cpu = boot_cpu_has(X86_FEATURE_HYBRID_CPU);
1893 int perf_ctl_max_phys = pstate_funcs.get_max_physical();
1894 int perf_ctl_scaling = hybrid_cpu ? cpu_khz / perf_ctl_max_phys :
1895 pstate_funcs.get_scaling();
1896
1897 cpu->pstate.min_pstate = pstate_funcs.get_min();
1898 cpu->pstate.max_pstate_physical = perf_ctl_max_phys;
1899 cpu->pstate.perf_ctl_scaling = perf_ctl_scaling;
1900
1901 if (hwp_active && !hwp_mode_bdw) {
1902 __intel_pstate_get_hwp_cap(cpu);
1903
1904 if (hybrid_cpu)
1905 intel_pstate_hybrid_hwp_calibrate(cpu);
1906 else
1907 cpu->pstate.scaling = perf_ctl_scaling;
1908 } else {
1909 cpu->pstate.scaling = perf_ctl_scaling;
1910 cpu->pstate.max_pstate = pstate_funcs.get_max();
1911 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1912 }
1913
1914 if (cpu->pstate.scaling == perf_ctl_scaling) {
1915 cpu->pstate.min_freq = cpu->pstate.min_pstate * perf_ctl_scaling;
1916 cpu->pstate.max_freq = cpu->pstate.max_pstate * perf_ctl_scaling;
1917 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * perf_ctl_scaling;
1918 }
1919
1920 if (pstate_funcs.get_aperf_mperf_shift)
1921 cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();
1922
1923 if (pstate_funcs.get_vid)
1924 pstate_funcs.get_vid(cpu);
1925
1926 intel_pstate_set_min_pstate(cpu);
1927 }
1928
1929 /*
1930 * Long hold time will keep high perf limits for long time,
1931 * which negatively impacts perf/watt for some workloads,
1932 * like specpower. 3ms is based on experiements on some
1933 * workoads.
1934 */
1935 static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC;
1936
1937 static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu)
1938 {
1939 u64 hwp_req = READ_ONCE(cpu->hwp_req_cached);
1940 u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached);
1941 u32 max_limit = (hwp_req & 0xff00) >> 8;
1942 u32 min_limit = (hwp_req & 0xff);
1943 u32 boost_level1;
1944
1945 /*
1946 * Cases to consider (User changes via sysfs or boot time):
1947 * If, P0 (Turbo max) = P1 (Guaranteed max) = min:
1948 * No boost, return.
1949 * If, P0 (Turbo max) > P1 (Guaranteed max) = min:
1950 * Should result in one level boost only for P0.
1951 * If, P0 (Turbo max) = P1 (Guaranteed max) > min:
1952 * Should result in two level boost:
1953 * (min + p1)/2 and P1.
1954 * If, P0 (Turbo max) > P1 (Guaranteed max) > min:
1955 * Should result in three level boost:
1956 * (min + p1)/2, P1 and P0.
1957 */
1958
1959 /* If max and min are equal or already at max, nothing to boost */
1960 if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit)
1961 return;
1962
1963 if (!cpu->hwp_boost_min)
1964 cpu->hwp_boost_min = min_limit;
1965
1966 /* level at half way mark between min and guranteed */
1967 boost_level1 = (HWP_GUARANTEED_PERF(hwp_cap) + min_limit) >> 1;
1968
1969 if (cpu->hwp_boost_min < boost_level1)
1970 cpu->hwp_boost_min = boost_level1;
1971 else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(hwp_cap))
1972 cpu->hwp_boost_min = HWP_GUARANTEED_PERF(hwp_cap);
1973 else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(hwp_cap) &&
1974 max_limit != HWP_GUARANTEED_PERF(hwp_cap))
1975 cpu->hwp_boost_min = max_limit;
1976 else
1977 return;
1978
1979 hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min;
1980 wrmsrl(MSR_HWP_REQUEST, hwp_req);
1981 cpu->last_update = cpu->sample.time;
1982 }
1983
1984 static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu)
1985 {
1986 if (cpu->hwp_boost_min) {
1987 bool expired;
1988
1989 /* Check if we are idle for hold time to boost down */
1990 expired = time_after64(cpu->sample.time, cpu->last_update +
1991 hwp_boost_hold_time_ns);
1992 if (expired) {
1993 wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached);
1994 cpu->hwp_boost_min = 0;
1995 }
1996 }
1997 cpu->last_update = cpu->sample.time;
1998 }
1999
2000 static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu,
2001 u64 time)
2002 {
2003 cpu->sample.time = time;
2004
2005 if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) {
2006 bool do_io = false;
2007
2008 cpu->sched_flags = 0;
2009 /*
2010 * Set iowait_boost flag and update time. Since IO WAIT flag
2011 * is set all the time, we can't just conclude that there is
2012 * some IO bound activity is scheduled on this CPU with just
2013 * one occurrence. If we receive at least two in two
2014 * consecutive ticks, then we treat as boost candidate.
2015 */
2016 if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC))
2017 do_io = true;
2018
2019 cpu->last_io_update = time;
2020
2021 if (do_io)
2022 intel_pstate_hwp_boost_up(cpu);
2023
2024 } else {
2025 intel_pstate_hwp_boost_down(cpu);
2026 }
2027 }
2028
2029 static inline void intel_pstate_update_util_hwp(struct update_util_data *data,
2030 u64 time, unsigned int flags)
2031 {
2032 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
2033
2034 cpu->sched_flags |= flags;
2035
2036 if (smp_processor_id() == cpu->cpu)
2037 intel_pstate_update_util_hwp_local(cpu, time);
2038 }
2039
2040 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
2041 {
2042 struct sample *sample = &cpu->sample;
2043
2044 sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
2045 }
2046
2047 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
2048 {
2049 u64 aperf, mperf;
2050 unsigned long flags;
2051 u64 tsc;
2052
2053 local_irq_save(flags);
2054 rdmsrl(MSR_IA32_APERF, aperf);
2055 rdmsrl(MSR_IA32_MPERF, mperf);
2056 tsc = rdtsc();
2057 if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
2058 local_irq_restore(flags);
2059 return false;
2060 }
2061 local_irq_restore(flags);
2062
2063 cpu->last_sample_time = cpu->sample.time;
2064 cpu->sample.time = time;
2065 cpu->sample.aperf = aperf;
2066 cpu->sample.mperf = mperf;
2067 cpu->sample.tsc = tsc;
2068 cpu->sample.aperf -= cpu->prev_aperf;
2069 cpu->sample.mperf -= cpu->prev_mperf;
2070 cpu->sample.tsc -= cpu->prev_tsc;
2071
2072 cpu->prev_aperf = aperf;
2073 cpu->prev_mperf = mperf;
2074 cpu->prev_tsc = tsc;
2075 /*
2076 * First time this function is invoked in a given cycle, all of the
2077 * previous sample data fields are equal to zero or stale and they must
2078 * be populated with meaningful numbers for things to work, so assume
2079 * that sample.time will always be reset before setting the utilization
2080 * update hook and make the caller skip the sample then.
2081 */
2082 if (cpu->last_sample_time) {
2083 intel_pstate_calc_avg_perf(cpu);
2084 return true;
2085 }
2086 return false;
2087 }
2088
2089 static inline int32_t get_avg_frequency(struct cpudata *cpu)
2090 {
2091 return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
2092 }
2093
2094 static inline int32_t get_avg_pstate(struct cpudata *cpu)
2095 {
2096 return mul_ext_fp(cpu->pstate.max_pstate_physical,
2097 cpu->sample.core_avg_perf);
2098 }
2099
2100 static inline int32_t get_target_pstate(struct cpudata *cpu)
2101 {
2102 struct sample *sample = &cpu->sample;
2103 int32_t busy_frac;
2104 int target, avg_pstate;
2105
2106 busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
2107 sample->tsc);
2108
2109 if (busy_frac < cpu->iowait_boost)
2110 busy_frac = cpu->iowait_boost;
2111
2112 sample->busy_scaled = busy_frac * 100;
2113
2114 target = global.no_turbo || global.turbo_disabled ?
2115 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2116 target += target >> 2;
2117 target = mul_fp(target, busy_frac);
2118 if (target < cpu->pstate.min_pstate)
2119 target = cpu->pstate.min_pstate;
2120
2121 /*
2122 * If the average P-state during the previous cycle was higher than the
2123 * current target, add 50% of the difference to the target to reduce
2124 * possible performance oscillations and offset possible performance
2125 * loss related to moving the workload from one CPU to another within
2126 * a package/module.
2127 */
2128 avg_pstate = get_avg_pstate(cpu);
2129 if (avg_pstate > target)
2130 target += (avg_pstate - target) >> 1;
2131
2132 return target;
2133 }
2134
2135 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
2136 {
2137 int min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
2138 int max_pstate = max(min_pstate, cpu->max_perf_ratio);
2139
2140 return clamp_t(int, pstate, min_pstate, max_pstate);
2141 }
2142
2143 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
2144 {
2145 if (pstate == cpu->pstate.current_pstate)
2146 return;
2147
2148 cpu->pstate.current_pstate = pstate;
2149 wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
2150 }
2151
2152 static void intel_pstate_adjust_pstate(struct cpudata *cpu)
2153 {
2154 int from = cpu->pstate.current_pstate;
2155 struct sample *sample;
2156 int target_pstate;
2157
2158 update_turbo_state();
2159
2160 target_pstate = get_target_pstate(cpu);
2161 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2162 trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
2163 intel_pstate_update_pstate(cpu, target_pstate);
2164
2165 sample = &cpu->sample;
2166 trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
2167 fp_toint(sample->busy_scaled),
2168 from,
2169 cpu->pstate.current_pstate,
2170 sample->mperf,
2171 sample->aperf,
2172 sample->tsc,
2173 get_avg_frequency(cpu),
2174 fp_toint(cpu->iowait_boost * 100));
2175 }
2176
2177 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
2178 unsigned int flags)
2179 {
2180 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
2181 u64 delta_ns;
2182
2183 /* Don't allow remote callbacks */
2184 if (smp_processor_id() != cpu->cpu)
2185 return;
2186
2187 delta_ns = time - cpu->last_update;
2188 if (flags & SCHED_CPUFREQ_IOWAIT) {
2189 /* Start over if the CPU may have been idle. */
2190 if (delta_ns > TICK_NSEC) {
2191 cpu->iowait_boost = ONE_EIGHTH_FP;
2192 } else if (cpu->iowait_boost >= ONE_EIGHTH_FP) {
2193 cpu->iowait_boost <<= 1;
2194 if (cpu->iowait_boost > int_tofp(1))
2195 cpu->iowait_boost = int_tofp(1);
2196 } else {
2197 cpu->iowait_boost = ONE_EIGHTH_FP;
2198 }
2199 } else if (cpu->iowait_boost) {
2200 /* Clear iowait_boost if the CPU may have been idle. */
2201 if (delta_ns > TICK_NSEC)
2202 cpu->iowait_boost = 0;
2203 else
2204 cpu->iowait_boost >>= 1;
2205 }
2206 cpu->last_update = time;
2207 delta_ns = time - cpu->sample.time;
2208 if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
2209 return;
2210
2211 if (intel_pstate_sample(cpu, time))
2212 intel_pstate_adjust_pstate(cpu);
2213 }
2214
2215 static struct pstate_funcs core_funcs = {
2216 .get_max = core_get_max_pstate,
2217 .get_max_physical = core_get_max_pstate_physical,
2218 .get_min = core_get_min_pstate,
2219 .get_turbo = core_get_turbo_pstate,
2220 .get_scaling = core_get_scaling,
2221 .get_val = core_get_val,
2222 };
2223
2224 static const struct pstate_funcs silvermont_funcs = {
2225 .get_max = atom_get_max_pstate,
2226 .get_max_physical = atom_get_max_pstate,
2227 .get_min = atom_get_min_pstate,
2228 .get_turbo = atom_get_turbo_pstate,
2229 .get_val = atom_get_val,
2230 .get_scaling = silvermont_get_scaling,
2231 .get_vid = atom_get_vid,
2232 };
2233
2234 static const struct pstate_funcs airmont_funcs = {
2235 .get_max = atom_get_max_pstate,
2236 .get_max_physical = atom_get_max_pstate,
2237 .get_min = atom_get_min_pstate,
2238 .get_turbo = atom_get_turbo_pstate,
2239 .get_val = atom_get_val,
2240 .get_scaling = airmont_get_scaling,
2241 .get_vid = atom_get_vid,
2242 };
2243
2244 static const struct pstate_funcs knl_funcs = {
2245 .get_max = core_get_max_pstate,
2246 .get_max_physical = core_get_max_pstate_physical,
2247 .get_min = core_get_min_pstate,
2248 .get_turbo = knl_get_turbo_pstate,
2249 .get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
2250 .get_scaling = core_get_scaling,
2251 .get_val = core_get_val,
2252 };
2253
2254 #define X86_MATCH(model, policy) \
2255 X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
2256 X86_FEATURE_APERFMPERF, &policy)
2257
2258 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
2259 X86_MATCH(SANDYBRIDGE, core_funcs),
2260 X86_MATCH(SANDYBRIDGE_X, core_funcs),
2261 X86_MATCH(ATOM_SILVERMONT, silvermont_funcs),
2262 X86_MATCH(IVYBRIDGE, core_funcs),
2263 X86_MATCH(HASWELL, core_funcs),
2264 X86_MATCH(BROADWELL, core_funcs),
2265 X86_MATCH(IVYBRIDGE_X, core_funcs),
2266 X86_MATCH(HASWELL_X, core_funcs),
2267 X86_MATCH(HASWELL_L, core_funcs),
2268 X86_MATCH(HASWELL_G, core_funcs),
2269 X86_MATCH(BROADWELL_G, core_funcs),
2270 X86_MATCH(ATOM_AIRMONT, airmont_funcs),
2271 X86_MATCH(SKYLAKE_L, core_funcs),
2272 X86_MATCH(BROADWELL_X, core_funcs),
2273 X86_MATCH(SKYLAKE, core_funcs),
2274 X86_MATCH(BROADWELL_D, core_funcs),
2275 X86_MATCH(XEON_PHI_KNL, knl_funcs),
2276 X86_MATCH(XEON_PHI_KNM, knl_funcs),
2277 X86_MATCH(ATOM_GOLDMONT, core_funcs),
2278 X86_MATCH(ATOM_GOLDMONT_PLUS, core_funcs),
2279 X86_MATCH(SKYLAKE_X, core_funcs),
2280 X86_MATCH(COMETLAKE, core_funcs),
2281 X86_MATCH(ICELAKE_X, core_funcs),
2282 {}
2283 };
2284 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
2285
2286 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
2287 X86_MATCH(BROADWELL_D, core_funcs),
2288 X86_MATCH(BROADWELL_X, core_funcs),
2289 X86_MATCH(SKYLAKE_X, core_funcs),
2290 {}
2291 };
2292
2293 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
2294 X86_MATCH(KABYLAKE, core_funcs),
2295 {}
2296 };
2297
2298 static const struct x86_cpu_id intel_pstate_hwp_boost_ids[] = {
2299 X86_MATCH(SKYLAKE_X, core_funcs),
2300 X86_MATCH(SKYLAKE, core_funcs),
2301 {}
2302 };
2303
2304 static int intel_pstate_init_cpu(unsigned int cpunum)
2305 {
2306 struct cpudata *cpu;
2307
2308 cpu = all_cpu_data[cpunum];
2309
2310 if (!cpu) {
2311 cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
2312 if (!cpu)
2313 return -ENOMEM;
2314
2315 all_cpu_data[cpunum] = cpu;
2316
2317 cpu->cpu = cpunum;
2318
2319 cpu->epp_default = -EINVAL;
2320
2321 if (hwp_active) {
2322 const struct x86_cpu_id *id;
2323
2324 intel_pstate_hwp_enable(cpu);
2325
2326 id = x86_match_cpu(intel_pstate_hwp_boost_ids);
2327 if (id && intel_pstate_acpi_pm_profile_server())
2328 hwp_boost = true;
2329 }
2330 } else if (hwp_active) {
2331 /*
2332 * Re-enable HWP in case this happens after a resume from ACPI
2333 * S3 if the CPU was offline during the whole system/resume
2334 * cycle.
2335 */
2336 intel_pstate_hwp_reenable(cpu);
2337 }
2338
2339 cpu->epp_powersave = -EINVAL;
2340 cpu->epp_policy = 0;
2341
2342 intel_pstate_get_cpu_pstates(cpu);
2343
2344 pr_debug("controlling: cpu %d\n", cpunum);
2345
2346 return 0;
2347 }
2348
2349 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
2350 {
2351 struct cpudata *cpu = all_cpu_data[cpu_num];
2352
2353 if (hwp_active && !hwp_boost)
2354 return;
2355
2356 if (cpu->update_util_set)
2357 return;
2358
2359 /* Prevent intel_pstate_update_util() from using stale data. */
2360 cpu->sample.time = 0;
2361 cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
2362 (hwp_active ?
2363 intel_pstate_update_util_hwp :
2364 intel_pstate_update_util));
2365 cpu->update_util_set = true;
2366 }
2367
2368 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
2369 {
2370 struct cpudata *cpu_data = all_cpu_data[cpu];
2371
2372 if (!cpu_data->update_util_set)
2373 return;
2374
2375 cpufreq_remove_update_util_hook(cpu);
2376 cpu_data->update_util_set = false;
2377 synchronize_rcu();
2378 }
2379
2380 static int intel_pstate_get_max_freq(struct cpudata *cpu)
2381 {
2382 return global.turbo_disabled || global.no_turbo ?
2383 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2384 }
2385
2386 static void intel_pstate_update_perf_limits(struct cpudata *cpu,
2387 unsigned int policy_min,
2388 unsigned int policy_max)
2389 {
2390 int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
2391 int32_t max_policy_perf, min_policy_perf;
2392
2393 max_policy_perf = policy_max / perf_ctl_scaling;
2394 if (policy_max == policy_min) {
2395 min_policy_perf = max_policy_perf;
2396 } else {
2397 min_policy_perf = policy_min / perf_ctl_scaling;
2398 min_policy_perf = clamp_t(int32_t, min_policy_perf,
2399 0, max_policy_perf);
2400 }
2401
2402 /*
2403 * HWP needs some special consideration, because HWP_REQUEST uses
2404 * abstract values to represent performance rather than pure ratios.
2405 */
2406 if (hwp_active) {
2407 intel_pstate_get_hwp_cap(cpu);
2408
2409 if (cpu->pstate.scaling != perf_ctl_scaling) {
2410 int scaling = cpu->pstate.scaling;
2411 int freq;
2412
2413 freq = max_policy_perf * perf_ctl_scaling;
2414 max_policy_perf = DIV_ROUND_UP(freq, scaling);
2415 freq = min_policy_perf * perf_ctl_scaling;
2416 min_policy_perf = DIV_ROUND_UP(freq, scaling);
2417 }
2418 }
2419
2420 pr_debug("cpu:%d min_policy_perf:%d max_policy_perf:%d\n",
2421 cpu->cpu, min_policy_perf, max_policy_perf);
2422
2423 /* Normalize user input to [min_perf, max_perf] */
2424 if (per_cpu_limits) {
2425 cpu->min_perf_ratio = min_policy_perf;
2426 cpu->max_perf_ratio = max_policy_perf;
2427 } else {
2428 int turbo_max = cpu->pstate.turbo_pstate;
2429 int32_t global_min, global_max;
2430
2431 /* Global limits are in percent of the maximum turbo P-state. */
2432 global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
2433 global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
2434 global_min = clamp_t(int32_t, global_min, 0, global_max);
2435
2436 pr_debug("cpu:%d global_min:%d global_max:%d\n", cpu->cpu,
2437 global_min, global_max);
2438
2439 cpu->min_perf_ratio = max(min_policy_perf, global_min);
2440 cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
2441 cpu->max_perf_ratio = min(max_policy_perf, global_max);
2442 cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
2443
2444 /* Make sure min_perf <= max_perf */
2445 cpu->min_perf_ratio = min(cpu->min_perf_ratio,
2446 cpu->max_perf_ratio);
2447
2448 }
2449 pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", cpu->cpu,
2450 cpu->max_perf_ratio,
2451 cpu->min_perf_ratio);
2452 }
2453
2454 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2455 {
2456 struct cpudata *cpu;
2457
2458 if (!policy->cpuinfo.max_freq)
2459 return -ENODEV;
2460
2461 pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2462 policy->cpuinfo.max_freq, policy->max);
2463
2464 cpu = all_cpu_data[policy->cpu];
2465 cpu->policy = policy->policy;
2466
2467 mutex_lock(&intel_pstate_limits_lock);
2468
2469 intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2470
2471 if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2472 /*
2473 * NOHZ_FULL CPUs need this as the governor callback may not
2474 * be invoked on them.
2475 */
2476 intel_pstate_clear_update_util_hook(policy->cpu);
2477 intel_pstate_max_within_limits(cpu);
2478 } else {
2479 intel_pstate_set_update_util_hook(policy->cpu);
2480 }
2481
2482 if (hwp_active) {
2483 /*
2484 * When hwp_boost was active before and dynamically it
2485 * was turned off, in that case we need to clear the
2486 * update util hook.
2487 */
2488 if (!hwp_boost)
2489 intel_pstate_clear_update_util_hook(policy->cpu);
2490 intel_pstate_hwp_set(policy->cpu);
2491 }
2492
2493 mutex_unlock(&intel_pstate_limits_lock);
2494
2495 return 0;
2496 }
2497
2498 static void intel_pstate_adjust_policy_max(struct cpudata *cpu,
2499 struct cpufreq_policy_data *policy)
2500 {
2501 if (!hwp_active &&
2502 cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2503 policy->max < policy->cpuinfo.max_freq &&
2504 policy->max > cpu->pstate.max_freq) {
2505 pr_debug("policy->max > max non turbo frequency\n");
2506 policy->max = policy->cpuinfo.max_freq;
2507 }
2508 }
2509
2510 static void intel_pstate_verify_cpu_policy(struct cpudata *cpu,
2511 struct cpufreq_policy_data *policy)
2512 {
2513 int max_freq;
2514
2515 update_turbo_state();
2516 if (hwp_active) {
2517 intel_pstate_get_hwp_cap(cpu);
2518 max_freq = global.no_turbo || global.turbo_disabled ?
2519 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2520 } else {
2521 max_freq = intel_pstate_get_max_freq(cpu);
2522 }
2523 cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq, max_freq);
2524
2525 intel_pstate_adjust_policy_max(cpu, policy);
2526 }
2527
2528 static int intel_pstate_verify_policy(struct cpufreq_policy_data *policy)
2529 {
2530 intel_pstate_verify_cpu_policy(all_cpu_data[policy->cpu], policy);
2531
2532 return 0;
2533 }
2534
2535 static int intel_cpufreq_cpu_offline(struct cpufreq_policy *policy)
2536 {
2537 struct cpudata *cpu = all_cpu_data[policy->cpu];
2538
2539 pr_debug("CPU %d going offline\n", cpu->cpu);
2540
2541 if (cpu->suspended)
2542 return 0;
2543
2544 /*
2545 * If the CPU is an SMT thread and it goes offline with the performance
2546 * settings different from the minimum, it will prevent its sibling
2547 * from getting to lower performance levels, so force the minimum
2548 * performance on CPU offline to prevent that from happening.
2549 */
2550 if (hwp_active)
2551 intel_pstate_hwp_offline(cpu);
2552 else
2553 intel_pstate_set_min_pstate(cpu);
2554
2555 intel_pstate_exit_perf_limits(policy);
2556
2557 return 0;
2558 }
2559
2560 static int intel_pstate_cpu_online(struct cpufreq_policy *policy)
2561 {
2562 struct cpudata *cpu = all_cpu_data[policy->cpu];
2563
2564 pr_debug("CPU %d going online\n", cpu->cpu);
2565
2566 intel_pstate_init_acpi_perf_limits(policy);
2567
2568 if (hwp_active) {
2569 /*
2570 * Re-enable HWP and clear the "suspended" flag to let "resume"
2571 * know that it need not do that.
2572 */
2573 intel_pstate_hwp_reenable(cpu);
2574 cpu->suspended = false;
2575 }
2576
2577 return 0;
2578 }
2579
2580 static int intel_pstate_cpu_offline(struct cpufreq_policy *policy)
2581 {
2582 intel_pstate_clear_update_util_hook(policy->cpu);
2583
2584 return intel_cpufreq_cpu_offline(policy);
2585 }
2586
2587 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2588 {
2589 pr_debug("CPU %d exiting\n", policy->cpu);
2590
2591 policy->fast_switch_possible = false;
2592
2593 return 0;
2594 }
2595
2596 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2597 {
2598 struct cpudata *cpu;
2599 int rc;
2600
2601 rc = intel_pstate_init_cpu(policy->cpu);
2602 if (rc)
2603 return rc;
2604
2605 cpu = all_cpu_data[policy->cpu];
2606
2607 cpu->max_perf_ratio = 0xFF;
2608 cpu->min_perf_ratio = 0;
2609
2610 /* cpuinfo and default policy values */
2611 policy->cpuinfo.min_freq = cpu->pstate.min_freq;
2612 update_turbo_state();
2613 global.turbo_disabled_mf = global.turbo_disabled;
2614 policy->cpuinfo.max_freq = global.turbo_disabled ?
2615 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2616
2617 policy->min = policy->cpuinfo.min_freq;
2618 policy->max = policy->cpuinfo.max_freq;
2619
2620 intel_pstate_init_acpi_perf_limits(policy);
2621
2622 policy->fast_switch_possible = true;
2623
2624 return 0;
2625 }
2626
2627 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2628 {
2629 int ret = __intel_pstate_cpu_init(policy);
2630
2631 if (ret)
2632 return ret;
2633
2634 /*
2635 * Set the policy to powersave to provide a valid fallback value in case
2636 * the default cpufreq governor is neither powersave nor performance.
2637 */
2638 policy->policy = CPUFREQ_POLICY_POWERSAVE;
2639
2640 if (hwp_active) {
2641 struct cpudata *cpu = all_cpu_data[policy->cpu];
2642
2643 cpu->epp_cached = intel_pstate_get_epp(cpu, 0);
2644 }
2645
2646 return 0;
2647 }
2648
2649 static struct cpufreq_driver intel_pstate = {
2650 .flags = CPUFREQ_CONST_LOOPS,
2651 .verify = intel_pstate_verify_policy,
2652 .setpolicy = intel_pstate_set_policy,
2653 .suspend = intel_pstate_suspend,
2654 .resume = intel_pstate_resume,
2655 .init = intel_pstate_cpu_init,
2656 .exit = intel_pstate_cpu_exit,
2657 .offline = intel_pstate_cpu_offline,
2658 .online = intel_pstate_cpu_online,
2659 .update_limits = intel_pstate_update_limits,
2660 .name = "intel_pstate",
2661 };
2662
2663 static int intel_cpufreq_verify_policy(struct cpufreq_policy_data *policy)
2664 {
2665 struct cpudata *cpu = all_cpu_data[policy->cpu];
2666
2667 intel_pstate_verify_cpu_policy(cpu, policy);
2668 intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2669
2670 return 0;
2671 }
2672
2673 /* Use of trace in passive mode:
2674 *
2675 * In passive mode the trace core_busy field (also known as the
2676 * performance field, and lablelled as such on the graphs; also known as
2677 * core_avg_perf) is not needed and so is re-assigned to indicate if the
2678 * driver call was via the normal or fast switch path. Various graphs
2679 * output from the intel_pstate_tracer.py utility that include core_busy
2680 * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
2681 * so we use 10 to indicate the normal path through the driver, and
2682 * 90 to indicate the fast switch path through the driver.
2683 * The scaled_busy field is not used, and is set to 0.
2684 */
2685
2686 #define INTEL_PSTATE_TRACE_TARGET 10
2687 #define INTEL_PSTATE_TRACE_FAST_SWITCH 90
2688
2689 static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate)
2690 {
2691 struct sample *sample;
2692
2693 if (!trace_pstate_sample_enabled())
2694 return;
2695
2696 if (!intel_pstate_sample(cpu, ktime_get()))
2697 return;
2698
2699 sample = &cpu->sample;
2700 trace_pstate_sample(trace_type,
2701 0,
2702 old_pstate,
2703 cpu->pstate.current_pstate,
2704 sample->mperf,
2705 sample->aperf,
2706 sample->tsc,
2707 get_avg_frequency(cpu),
2708 fp_toint(cpu->iowait_boost * 100));
2709 }
2710
2711 static void intel_cpufreq_hwp_update(struct cpudata *cpu, u32 min, u32 max,
2712 u32 desired, bool fast_switch)
2713 {
2714 u64 prev = READ_ONCE(cpu->hwp_req_cached), value = prev;
2715
2716 value &= ~HWP_MIN_PERF(~0L);
2717 value |= HWP_MIN_PERF(min);
2718
2719 value &= ~HWP_MAX_PERF(~0L);
2720 value |= HWP_MAX_PERF(max);
2721
2722 value &= ~HWP_DESIRED_PERF(~0L);
2723 value |= HWP_DESIRED_PERF(desired);
2724
2725 if (value == prev)
2726 return;
2727
2728 WRITE_ONCE(cpu->hwp_req_cached, value);
2729 if (fast_switch)
2730 wrmsrl(MSR_HWP_REQUEST, value);
2731 else
2732 wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
2733 }
2734
2735 static void intel_cpufreq_perf_ctl_update(struct cpudata *cpu,
2736 u32 target_pstate, bool fast_switch)
2737 {
2738 if (fast_switch)
2739 wrmsrl(MSR_IA32_PERF_CTL,
2740 pstate_funcs.get_val(cpu, target_pstate));
2741 else
2742 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
2743 pstate_funcs.get_val(cpu, target_pstate));
2744 }
2745
2746 static int intel_cpufreq_update_pstate(struct cpufreq_policy *policy,
2747 int target_pstate, bool fast_switch)
2748 {
2749 struct cpudata *cpu = all_cpu_data[policy->cpu];
2750 int old_pstate = cpu->pstate.current_pstate;
2751
2752 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2753 if (hwp_active) {
2754 int max_pstate = policy->strict_target ?
2755 target_pstate : cpu->max_perf_ratio;
2756
2757 intel_cpufreq_hwp_update(cpu, target_pstate, max_pstate, 0,
2758 fast_switch);
2759 } else if (target_pstate != old_pstate) {
2760 intel_cpufreq_perf_ctl_update(cpu, target_pstate, fast_switch);
2761 }
2762
2763 cpu->pstate.current_pstate = target_pstate;
2764
2765 intel_cpufreq_trace(cpu, fast_switch ? INTEL_PSTATE_TRACE_FAST_SWITCH :
2766 INTEL_PSTATE_TRACE_TARGET, old_pstate);
2767
2768 return target_pstate;
2769 }
2770
2771 static int intel_cpufreq_target(struct cpufreq_policy *policy,
2772 unsigned int target_freq,
2773 unsigned int relation)
2774 {
2775 struct cpudata *cpu = all_cpu_data[policy->cpu];
2776 struct cpufreq_freqs freqs;
2777 int target_pstate;
2778
2779 update_turbo_state();
2780
2781 freqs.old = policy->cur;
2782 freqs.new = target_freq;
2783
2784 cpufreq_freq_transition_begin(policy, &freqs);
2785
2786 switch (relation) {
2787 case CPUFREQ_RELATION_L:
2788 target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2789 break;
2790 case CPUFREQ_RELATION_H:
2791 target_pstate = freqs.new / cpu->pstate.scaling;
2792 break;
2793 default:
2794 target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2795 break;
2796 }
2797
2798 target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, false);
2799
2800 freqs.new = target_pstate * cpu->pstate.scaling;
2801
2802 cpufreq_freq_transition_end(policy, &freqs, false);
2803
2804 return 0;
2805 }
2806
2807 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2808 unsigned int target_freq)
2809 {
2810 struct cpudata *cpu = all_cpu_data[policy->cpu];
2811 int target_pstate;
2812
2813 update_turbo_state();
2814
2815 target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2816
2817 target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, true);
2818
2819 return target_pstate * cpu->pstate.scaling;
2820 }
2821
2822 static void intel_cpufreq_adjust_perf(unsigned int cpunum,
2823 unsigned long min_perf,
2824 unsigned long target_perf,
2825 unsigned long capacity)
2826 {
2827 struct cpudata *cpu = all_cpu_data[cpunum];
2828 u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached);
2829 int old_pstate = cpu->pstate.current_pstate;
2830 int cap_pstate, min_pstate, max_pstate, target_pstate;
2831
2832 update_turbo_state();
2833 cap_pstate = global.turbo_disabled ? HWP_GUARANTEED_PERF(hwp_cap) :
2834 HWP_HIGHEST_PERF(hwp_cap);
2835
2836 /* Optimization: Avoid unnecessary divisions. */
2837
2838 target_pstate = cap_pstate;
2839 if (target_perf < capacity)
2840 target_pstate = DIV_ROUND_UP(cap_pstate * target_perf, capacity);
2841
2842 min_pstate = cap_pstate;
2843 if (min_perf < capacity)
2844 min_pstate = DIV_ROUND_UP(cap_pstate * min_perf, capacity);
2845
2846 if (min_pstate < cpu->pstate.min_pstate)
2847 min_pstate = cpu->pstate.min_pstate;
2848
2849 if (min_pstate < cpu->min_perf_ratio)
2850 min_pstate = cpu->min_perf_ratio;
2851
2852 max_pstate = min(cap_pstate, cpu->max_perf_ratio);
2853 if (max_pstate < min_pstate)
2854 max_pstate = min_pstate;
2855
2856 target_pstate = clamp_t(int, target_pstate, min_pstate, max_pstate);
2857
2858 intel_cpufreq_hwp_update(cpu, min_pstate, max_pstate, target_pstate, true);
2859
2860 cpu->pstate.current_pstate = target_pstate;
2861 intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate);
2862 }
2863
2864 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2865 {
2866 struct freq_qos_request *req;
2867 struct cpudata *cpu;
2868 struct device *dev;
2869 int ret, freq;
2870
2871 dev = get_cpu_device(policy->cpu);
2872 if (!dev)
2873 return -ENODEV;
2874
2875 ret = __intel_pstate_cpu_init(policy);
2876 if (ret)
2877 return ret;
2878
2879 policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2880 /* This reflects the intel_pstate_get_cpu_pstates() setting. */
2881 policy->cur = policy->cpuinfo.min_freq;
2882
2883 req = kcalloc(2, sizeof(*req), GFP_KERNEL);
2884 if (!req) {
2885 ret = -ENOMEM;
2886 goto pstate_exit;
2887 }
2888
2889 cpu = all_cpu_data[policy->cpu];
2890
2891 if (hwp_active) {
2892 u64 value;
2893
2894 policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY_HWP;
2895
2896 intel_pstate_get_hwp_cap(cpu);
2897
2898 rdmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, &value);
2899 WRITE_ONCE(cpu->hwp_req_cached, value);
2900
2901 cpu->epp_cached = intel_pstate_get_epp(cpu, value);
2902 } else {
2903 policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
2904 }
2905
2906 freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * global.min_perf_pct, 100);
2907
2908 ret = freq_qos_add_request(&policy->constraints, req, FREQ_QOS_MIN,
2909 freq);
2910 if (ret < 0) {
2911 dev_err(dev, "Failed to add min-freq constraint (%d)\n", ret);
2912 goto free_req;
2913 }
2914
2915 freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * global.max_perf_pct, 100);
2916
2917 ret = freq_qos_add_request(&policy->constraints, req + 1, FREQ_QOS_MAX,
2918 freq);
2919 if (ret < 0) {
2920 dev_err(dev, "Failed to add max-freq constraint (%d)\n", ret);
2921 goto remove_min_req;
2922 }
2923
2924 policy->driver_data = req;
2925
2926 return 0;
2927
2928 remove_min_req:
2929 freq_qos_remove_request(req);
2930 free_req:
2931 kfree(req);
2932 pstate_exit:
2933 intel_pstate_exit_perf_limits(policy);
2934
2935 return ret;
2936 }
2937
2938 static int intel_cpufreq_cpu_exit(struct cpufreq_policy *policy)
2939 {
2940 struct freq_qos_request *req;
2941
2942 req = policy->driver_data;
2943
2944 freq_qos_remove_request(req + 1);
2945 freq_qos_remove_request(req);
2946 kfree(req);
2947
2948 return intel_pstate_cpu_exit(policy);
2949 }
2950
2951 static struct cpufreq_driver intel_cpufreq = {
2952 .flags = CPUFREQ_CONST_LOOPS,
2953 .verify = intel_cpufreq_verify_policy,
2954 .target = intel_cpufreq_target,
2955 .fast_switch = intel_cpufreq_fast_switch,
2956 .init = intel_cpufreq_cpu_init,
2957 .exit = intel_cpufreq_cpu_exit,
2958 .offline = intel_cpufreq_cpu_offline,
2959 .online = intel_pstate_cpu_online,
2960 .suspend = intel_pstate_suspend,
2961 .resume = intel_pstate_resume,
2962 .update_limits = intel_pstate_update_limits,
2963 .name = "intel_cpufreq",
2964 };
2965
2966 static struct cpufreq_driver *default_driver;
2967
2968 static void intel_pstate_driver_cleanup(void)
2969 {
2970 unsigned int cpu;
2971
2972 get_online_cpus();
2973 for_each_online_cpu(cpu) {
2974 if (all_cpu_data[cpu]) {
2975 if (intel_pstate_driver == &intel_pstate)
2976 intel_pstate_clear_update_util_hook(cpu);
2977
2978 kfree(all_cpu_data[cpu]);
2979 all_cpu_data[cpu] = NULL;
2980 }
2981 }
2982 put_online_cpus();
2983
2984 intel_pstate_driver = NULL;
2985 }
2986
2987 static int intel_pstate_register_driver(struct cpufreq_driver *driver)
2988 {
2989 int ret;
2990
2991 if (driver == &intel_pstate)
2992 intel_pstate_sysfs_expose_hwp_dynamic_boost();
2993
2994 memset(&global, 0, sizeof(global));
2995 global.max_perf_pct = 100;
2996
2997 intel_pstate_driver = driver;
2998 ret = cpufreq_register_driver(intel_pstate_driver);
2999 if (ret) {
3000 intel_pstate_driver_cleanup();
3001 return ret;
3002 }
3003
3004 global.min_perf_pct = min_perf_pct_min();
3005
3006 return 0;
3007 }
3008
3009 static ssize_t intel_pstate_show_status(char *buf)
3010 {
3011 if (!intel_pstate_driver)
3012 return sprintf(buf, "off\n");
3013
3014 return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
3015 "active" : "passive");
3016 }
3017
3018 static int intel_pstate_update_status(const char *buf, size_t size)
3019 {
3020 if (size == 3 && !strncmp(buf, "off", size)) {
3021 if (!intel_pstate_driver)
3022 return -EINVAL;
3023
3024 if (hwp_active)
3025 return -EBUSY;
3026
3027 cpufreq_unregister_driver(intel_pstate_driver);
3028 intel_pstate_driver_cleanup();
3029 return 0;
3030 }
3031
3032 if (size == 6 && !strncmp(buf, "active", size)) {
3033 if (intel_pstate_driver) {
3034 if (intel_pstate_driver == &intel_pstate)
3035 return 0;
3036
3037 cpufreq_unregister_driver(intel_pstate_driver);
3038 }
3039
3040 return intel_pstate_register_driver(&intel_pstate);
3041 }
3042
3043 if (size == 7 && !strncmp(buf, "passive", size)) {
3044 if (intel_pstate_driver) {
3045 if (intel_pstate_driver == &intel_cpufreq)
3046 return 0;
3047
3048 cpufreq_unregister_driver(intel_pstate_driver);
3049 intel_pstate_sysfs_hide_hwp_dynamic_boost();
3050 }
3051
3052 return intel_pstate_register_driver(&intel_cpufreq);
3053 }
3054
3055 return -EINVAL;
3056 }
3057
3058 static int no_load __initdata;
3059 static int no_hwp __initdata;
3060 static int hwp_only __initdata;
3061 static unsigned int force_load __initdata;
3062
3063 static int __init intel_pstate_msrs_not_valid(void)
3064 {
3065 if (!pstate_funcs.get_max() ||
3066 !pstate_funcs.get_min() ||
3067 !pstate_funcs.get_turbo())
3068 return -ENODEV;
3069
3070 return 0;
3071 }
3072
3073 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
3074 {
3075 pstate_funcs.get_max = funcs->get_max;
3076 pstate_funcs.get_max_physical = funcs->get_max_physical;
3077 pstate_funcs.get_min = funcs->get_min;
3078 pstate_funcs.get_turbo = funcs->get_turbo;
3079 pstate_funcs.get_scaling = funcs->get_scaling;
3080 pstate_funcs.get_val = funcs->get_val;
3081 pstate_funcs.get_vid = funcs->get_vid;
3082 pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
3083 }
3084
3085 #ifdef CONFIG_ACPI
3086
3087 static bool __init intel_pstate_no_acpi_pss(void)
3088 {
3089 int i;
3090
3091 for_each_possible_cpu(i) {
3092 acpi_status status;
3093 union acpi_object *pss;
3094 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
3095 struct acpi_processor *pr = per_cpu(processors, i);
3096
3097 if (!pr)
3098 continue;
3099
3100 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
3101 if (ACPI_FAILURE(status))
3102 continue;
3103
3104 pss = buffer.pointer;
3105 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
3106 kfree(pss);
3107 return false;
3108 }
3109
3110 kfree(pss);
3111 }
3112
3113 pr_debug("ACPI _PSS not found\n");
3114 return true;
3115 }
3116
3117 static bool __init intel_pstate_no_acpi_pcch(void)
3118 {
3119 acpi_status status;
3120 acpi_handle handle;
3121
3122 status = acpi_get_handle(NULL, "\\_SB", &handle);
3123 if (ACPI_FAILURE(status))
3124 goto not_found;
3125
3126 if (acpi_has_method(handle, "PCCH"))
3127 return false;
3128
3129 not_found:
3130 pr_debug("ACPI PCCH not found\n");
3131 return true;
3132 }
3133
3134 static bool __init intel_pstate_has_acpi_ppc(void)
3135 {
3136 int i;
3137
3138 for_each_possible_cpu(i) {
3139 struct acpi_processor *pr = per_cpu(processors, i);
3140
3141 if (!pr)
3142 continue;
3143 if (acpi_has_method(pr->handle, "_PPC"))
3144 return true;
3145 }
3146 pr_debug("ACPI _PPC not found\n");
3147 return false;
3148 }
3149
3150 enum {
3151 PSS,
3152 PPC,
3153 };
3154
3155 /* Hardware vendor-specific info that has its own power management modes */
3156 static struct acpi_platform_list plat_info[] __initdata = {
3157 {"HP ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, NULL, PSS},
3158 {"ORACLE", "X4-2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3159 {"ORACLE", "X4-2L ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3160 {"ORACLE", "X4-2B ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3161 {"ORACLE", "X3-2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3162 {"ORACLE", "X3-2L ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3163 {"ORACLE", "X3-2B ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3164 {"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3165 {"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3166 {"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3167 {"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3168 {"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3169 {"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3170 {"ORACLE", "X6-2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3171 {"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3172 { } /* End */
3173 };
3174
3175 #define BITMASK_OOB (BIT(8) | BIT(18))
3176
3177 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
3178 {
3179 const struct x86_cpu_id *id;
3180 u64 misc_pwr;
3181 int idx;
3182
3183 id = x86_match_cpu(intel_pstate_cpu_oob_ids);
3184 if (id) {
3185 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
3186 if (misc_pwr & BITMASK_OOB) {
3187 pr_debug("Bit 8 or 18 in the MISC_PWR_MGMT MSR set\n");
3188 pr_debug("P states are controlled in Out of Band mode by the firmware/hardware\n");
3189 return true;
3190 }
3191 }
3192
3193 idx = acpi_match_platform_list(plat_info);
3194 if (idx < 0)
3195 return false;
3196
3197 switch (plat_info[idx].data) {
3198 case PSS:
3199 if (!intel_pstate_no_acpi_pss())
3200 return false;
3201
3202 return intel_pstate_no_acpi_pcch();
3203 case PPC:
3204 return intel_pstate_has_acpi_ppc() && !force_load;
3205 }
3206
3207 return false;
3208 }
3209
3210 static void intel_pstate_request_control_from_smm(void)
3211 {
3212 /*
3213 * It may be unsafe to request P-states control from SMM if _PPC support
3214 * has not been enabled.
3215 */
3216 if (acpi_ppc)
3217 acpi_processor_pstate_control();
3218 }
3219 #else /* CONFIG_ACPI not enabled */
3220 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
3221 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
3222 static inline void intel_pstate_request_control_from_smm(void) {}
3223 #endif /* CONFIG_ACPI */
3224
3225 #define INTEL_PSTATE_HWP_BROADWELL 0x01
3226
3227 #define X86_MATCH_HWP(model, hwp_mode) \
3228 X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
3229 X86_FEATURE_HWP, hwp_mode)
3230
3231 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
3232 X86_MATCH_HWP(BROADWELL_X, INTEL_PSTATE_HWP_BROADWELL),
3233 X86_MATCH_HWP(BROADWELL_D, INTEL_PSTATE_HWP_BROADWELL),
3234 X86_MATCH_HWP(ANY, 0),
3235 {}
3236 };
3237
3238 static bool intel_pstate_hwp_is_enabled(void)
3239 {
3240 u64 value;
3241
3242 rdmsrl(MSR_PM_ENABLE, value);
3243 return !!(value & 0x1);
3244 }
3245
3246 static int __init intel_pstate_init(void)
3247 {
3248 const struct x86_cpu_id *id;
3249 int rc;
3250
3251 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
3252 return -ENODEV;
3253
3254 if (no_load)
3255 return -ENODEV;
3256
3257 id = x86_match_cpu(hwp_support_ids);
3258 if (id) {
3259 copy_cpu_funcs(&core_funcs);
3260 /*
3261 * Avoid enabling HWP for processors without EPP support,
3262 * because that means incomplete HWP implementation which is a
3263 * corner case and supporting it is generally problematic.
3264 *
3265 * If HWP is enabled already, though, there is no choice but to
3266 * deal with it.
3267 */
3268 if ((!no_hwp && boot_cpu_has(X86_FEATURE_HWP_EPP)) ||
3269 intel_pstate_hwp_is_enabled()) {
3270 hwp_active++;
3271 hwp_mode_bdw = id->driver_data;
3272 intel_pstate.attr = hwp_cpufreq_attrs;
3273 intel_cpufreq.attr = hwp_cpufreq_attrs;
3274 intel_cpufreq.flags |= CPUFREQ_NEED_UPDATE_LIMITS;
3275 intel_cpufreq.adjust_perf = intel_cpufreq_adjust_perf;
3276 if (!default_driver)
3277 default_driver = &intel_pstate;
3278
3279 goto hwp_cpu_matched;
3280 }
3281 } else {
3282 id = x86_match_cpu(intel_pstate_cpu_ids);
3283 if (!id) {
3284 pr_info("CPU model not supported\n");
3285 return -ENODEV;
3286 }
3287
3288 copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
3289 }
3290
3291 if (intel_pstate_msrs_not_valid()) {
3292 pr_info("Invalid MSRs\n");
3293 return -ENODEV;
3294 }
3295 /* Without HWP start in the passive mode. */
3296 if (!default_driver)
3297 default_driver = &intel_cpufreq;
3298
3299 hwp_cpu_matched:
3300 /*
3301 * The Intel pstate driver will be ignored if the platform
3302 * firmware has its own power management modes.
3303 */
3304 if (intel_pstate_platform_pwr_mgmt_exists()) {
3305 pr_info("P-states controlled by the platform\n");
3306 return -ENODEV;
3307 }
3308
3309 if (!hwp_active && hwp_only)
3310 return -ENOTSUPP;
3311
3312 pr_info("Intel P-state driver initializing\n");
3313
3314 all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus()));
3315 if (!all_cpu_data)
3316 return -ENOMEM;
3317
3318 intel_pstate_request_control_from_smm();
3319
3320 intel_pstate_sysfs_expose_params();
3321
3322 mutex_lock(&intel_pstate_driver_lock);
3323 rc = intel_pstate_register_driver(default_driver);
3324 mutex_unlock(&intel_pstate_driver_lock);
3325 if (rc) {
3326 intel_pstate_sysfs_remove();
3327 return rc;
3328 }
3329
3330 if (hwp_active) {
3331 const struct x86_cpu_id *id;
3332
3333 id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
3334 if (id) {
3335 set_power_ctl_ee_state(false);
3336 pr_info("Disabling energy efficiency optimization\n");
3337 }
3338
3339 pr_info("HWP enabled\n");
3340 } else if (boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
3341 pr_warn("Problematic setup: Hybrid processor with disabled HWP\n");
3342 }
3343
3344 return 0;
3345 }
3346 device_initcall(intel_pstate_init);
3347
3348 static int __init intel_pstate_setup(char *str)
3349 {
3350 if (!str)
3351 return -EINVAL;
3352
3353 if (!strcmp(str, "disable"))
3354 no_load = 1;
3355 else if (!strcmp(str, "active"))
3356 default_driver = &intel_pstate;
3357 else if (!strcmp(str, "passive"))
3358 default_driver = &intel_cpufreq;
3359
3360 if (!strcmp(str, "no_hwp")) {
3361 pr_info("HWP disabled\n");
3362 no_hwp = 1;
3363 }
3364 if (!strcmp(str, "force"))
3365 force_load = 1;
3366 if (!strcmp(str, "hwp_only"))
3367 hwp_only = 1;
3368 if (!strcmp(str, "per_cpu_perf_limits"))
3369 per_cpu_limits = true;
3370
3371 #ifdef CONFIG_ACPI
3372 if (!strcmp(str, "support_acpi_ppc"))
3373 acpi_ppc = true;
3374 #endif
3375
3376 return 0;
3377 }
3378 early_param("intel_pstate", intel_pstate_setup);
3379
3380 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
3381 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
3382 MODULE_LICENSE("GPL");