]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/cpufreq/intel_pstate.c
scsi: cxgb4i: call neigh_event_send() to update MAC address
[mirror_ubuntu-artful-kernel.git] / drivers / cpufreq / intel_pstate.c
1 /*
2 * intel_pstate.c: Native P state management for Intel processors
3 *
4 * (C) Copyright 2012 Intel Corporation
5 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
10 * of the License.
11 */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/kernel.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/module.h>
18 #include <linux/ktime.h>
19 #include <linux/hrtimer.h>
20 #include <linux/tick.h>
21 #include <linux/slab.h>
22 #include <linux/sched/cpufreq.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25 #include <linux/cpufreq.h>
26 #include <linux/sysfs.h>
27 #include <linux/types.h>
28 #include <linux/fs.h>
29 #include <linux/debugfs.h>
30 #include <linux/acpi.h>
31 #include <linux/vmalloc.h>
32 #include <trace/events/power.h>
33
34 #include <asm/div64.h>
35 #include <asm/msr.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/cpufeature.h>
38 #include <asm/intel-family.h>
39
40 #define INTEL_PSTATE_DEFAULT_SAMPLING_INTERVAL (10 * NSEC_PER_MSEC)
41 #define INTEL_PSTATE_HWP_SAMPLING_INTERVAL (50 * NSEC_PER_MSEC)
42
43 #define INTEL_CPUFREQ_TRANSITION_LATENCY 20000
44 #define INTEL_CPUFREQ_TRANSITION_DELAY 500
45
46 #ifdef CONFIG_ACPI
47 #include <acpi/processor.h>
48 #include <acpi/cppc_acpi.h>
49 #endif
50
51 #define FRAC_BITS 8
52 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
53 #define fp_toint(X) ((X) >> FRAC_BITS)
54
55 #define EXT_BITS 6
56 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
57 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
58 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
59
60 static inline int32_t mul_fp(int32_t x, int32_t y)
61 {
62 return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
63 }
64
65 static inline int32_t div_fp(s64 x, s64 y)
66 {
67 return div64_s64((int64_t)x << FRAC_BITS, y);
68 }
69
70 static inline int ceiling_fp(int32_t x)
71 {
72 int mask, ret;
73
74 ret = fp_toint(x);
75 mask = (1 << FRAC_BITS) - 1;
76 if (x & mask)
77 ret += 1;
78 return ret;
79 }
80
81 static inline int32_t percent_fp(int percent)
82 {
83 return div_fp(percent, 100);
84 }
85
86 static inline u64 mul_ext_fp(u64 x, u64 y)
87 {
88 return (x * y) >> EXT_FRAC_BITS;
89 }
90
91 static inline u64 div_ext_fp(u64 x, u64 y)
92 {
93 return div64_u64(x << EXT_FRAC_BITS, y);
94 }
95
96 static inline int32_t percent_ext_fp(int percent)
97 {
98 return div_ext_fp(percent, 100);
99 }
100
101 /**
102 * struct sample - Store performance sample
103 * @core_avg_perf: Ratio of APERF/MPERF which is the actual average
104 * performance during last sample period
105 * @busy_scaled: Scaled busy value which is used to calculate next
106 * P state. This can be different than core_avg_perf
107 * to account for cpu idle period
108 * @aperf: Difference of actual performance frequency clock count
109 * read from APERF MSR between last and current sample
110 * @mperf: Difference of maximum performance frequency clock count
111 * read from MPERF MSR between last and current sample
112 * @tsc: Difference of time stamp counter between last and
113 * current sample
114 * @time: Current time from scheduler
115 *
116 * This structure is used in the cpudata structure to store performance sample
117 * data for choosing next P State.
118 */
119 struct sample {
120 int32_t core_avg_perf;
121 int32_t busy_scaled;
122 u64 aperf;
123 u64 mperf;
124 u64 tsc;
125 u64 time;
126 };
127
128 /**
129 * struct pstate_data - Store P state data
130 * @current_pstate: Current requested P state
131 * @min_pstate: Min P state possible for this platform
132 * @max_pstate: Max P state possible for this platform
133 * @max_pstate_physical:This is physical Max P state for a processor
134 * This can be higher than the max_pstate which can
135 * be limited by platform thermal design power limits
136 * @scaling: Scaling factor to convert frequency to cpufreq
137 * frequency units
138 * @turbo_pstate: Max Turbo P state possible for this platform
139 * @max_freq: @max_pstate frequency in cpufreq units
140 * @turbo_freq: @turbo_pstate frequency in cpufreq units
141 *
142 * Stores the per cpu model P state limits and current P state.
143 */
144 struct pstate_data {
145 int current_pstate;
146 int min_pstate;
147 int max_pstate;
148 int max_pstate_physical;
149 int scaling;
150 int turbo_pstate;
151 unsigned int max_freq;
152 unsigned int turbo_freq;
153 };
154
155 /**
156 * struct vid_data - Stores voltage information data
157 * @min: VID data for this platform corresponding to
158 * the lowest P state
159 * @max: VID data corresponding to the highest P State.
160 * @turbo: VID data for turbo P state
161 * @ratio: Ratio of (vid max - vid min) /
162 * (max P state - Min P State)
163 *
164 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
165 * This data is used in Atom platforms, where in addition to target P state,
166 * the voltage data needs to be specified to select next P State.
167 */
168 struct vid_data {
169 int min;
170 int max;
171 int turbo;
172 int32_t ratio;
173 };
174
175 /**
176 * struct _pid - Stores PID data
177 * @setpoint: Target set point for busyness or performance
178 * @integral: Storage for accumulated error values
179 * @p_gain: PID proportional gain
180 * @i_gain: PID integral gain
181 * @d_gain: PID derivative gain
182 * @deadband: PID deadband
183 * @last_err: Last error storage for integral part of PID calculation
184 *
185 * Stores PID coefficients and last error for PID controller.
186 */
187 struct _pid {
188 int setpoint;
189 int32_t integral;
190 int32_t p_gain;
191 int32_t i_gain;
192 int32_t d_gain;
193 int deadband;
194 int32_t last_err;
195 };
196
197 /**
198 * struct global_params - Global parameters, mostly tunable via sysfs.
199 * @no_turbo: Whether or not to use turbo P-states.
200 * @turbo_disabled: Whethet or not turbo P-states are available at all,
201 * based on the MSR_IA32_MISC_ENABLE value and whether or
202 * not the maximum reported turbo P-state is different from
203 * the maximum reported non-turbo one.
204 * @min_perf_pct: Minimum capacity limit in percent of the maximum turbo
205 * P-state capacity.
206 * @max_perf_pct: Maximum capacity limit in percent of the maximum turbo
207 * P-state capacity.
208 */
209 struct global_params {
210 bool no_turbo;
211 bool turbo_disabled;
212 int max_perf_pct;
213 int min_perf_pct;
214 };
215
216 /**
217 * struct cpudata - Per CPU instance data storage
218 * @cpu: CPU number for this instance data
219 * @policy: CPUFreq policy value
220 * @update_util: CPUFreq utility callback information
221 * @update_util_set: CPUFreq utility callback is set
222 * @iowait_boost: iowait-related boost fraction
223 * @last_update: Time of the last update.
224 * @pstate: Stores P state limits for this CPU
225 * @vid: Stores VID limits for this CPU
226 * @pid: Stores PID parameters for this CPU
227 * @last_sample_time: Last Sample time
228 * @prev_aperf: Last APERF value read from APERF MSR
229 * @prev_mperf: Last MPERF value read from MPERF MSR
230 * @prev_tsc: Last timestamp counter (TSC) value
231 * @prev_cummulative_iowait: IO Wait time difference from last and
232 * current sample
233 * @sample: Storage for storing last Sample data
234 * @min_perf_ratio: Minimum capacity in terms of PERF or HWP ratios
235 * @max_perf_ratio: Maximum capacity in terms of PERF or HWP ratios
236 * @acpi_perf_data: Stores ACPI perf information read from _PSS
237 * @valid_pss_table: Set to true for valid ACPI _PSS entries found
238 * @epp_powersave: Last saved HWP energy performance preference
239 * (EPP) or energy performance bias (EPB),
240 * when policy switched to performance
241 * @epp_policy: Last saved policy used to set EPP/EPB
242 * @epp_default: Power on default HWP energy performance
243 * preference/bias
244 * @epp_saved: Saved EPP/EPB during system suspend or CPU offline
245 * operation
246 *
247 * This structure stores per CPU instance data for all CPUs.
248 */
249 struct cpudata {
250 int cpu;
251
252 unsigned int policy;
253 struct update_util_data update_util;
254 bool update_util_set;
255
256 struct pstate_data pstate;
257 struct vid_data vid;
258 struct _pid pid;
259
260 u64 last_update;
261 u64 last_sample_time;
262 u64 prev_aperf;
263 u64 prev_mperf;
264 u64 prev_tsc;
265 u64 prev_cummulative_iowait;
266 struct sample sample;
267 int32_t min_perf_ratio;
268 int32_t max_perf_ratio;
269 #ifdef CONFIG_ACPI
270 struct acpi_processor_performance acpi_perf_data;
271 bool valid_pss_table;
272 #endif
273 unsigned int iowait_boost;
274 s16 epp_powersave;
275 s16 epp_policy;
276 s16 epp_default;
277 s16 epp_saved;
278 };
279
280 static struct cpudata **all_cpu_data;
281
282 /**
283 * struct pstate_adjust_policy - Stores static PID configuration data
284 * @sample_rate_ms: PID calculation sample rate in ms
285 * @sample_rate_ns: Sample rate calculation in ns
286 * @deadband: PID deadband
287 * @setpoint: PID Setpoint
288 * @p_gain_pct: PID proportional gain
289 * @i_gain_pct: PID integral gain
290 * @d_gain_pct: PID derivative gain
291 *
292 * Stores per CPU model static PID configuration data.
293 */
294 struct pstate_adjust_policy {
295 int sample_rate_ms;
296 s64 sample_rate_ns;
297 int deadband;
298 int setpoint;
299 int p_gain_pct;
300 int d_gain_pct;
301 int i_gain_pct;
302 };
303
304 /**
305 * struct pstate_funcs - Per CPU model specific callbacks
306 * @get_max: Callback to get maximum non turbo effective P state
307 * @get_max_physical: Callback to get maximum non turbo physical P state
308 * @get_min: Callback to get minimum P state
309 * @get_turbo: Callback to get turbo P state
310 * @get_scaling: Callback to get frequency scaling factor
311 * @get_val: Callback to convert P state to actual MSR write value
312 * @get_vid: Callback to get VID data for Atom platforms
313 * @update_util: Active mode utilization update callback.
314 *
315 * Core and Atom CPU models have different way to get P State limits. This
316 * structure is used to store those callbacks.
317 */
318 struct pstate_funcs {
319 int (*get_max)(void);
320 int (*get_max_physical)(void);
321 int (*get_min)(void);
322 int (*get_turbo)(void);
323 int (*get_scaling)(void);
324 u64 (*get_val)(struct cpudata*, int pstate);
325 void (*get_vid)(struct cpudata *);
326 void (*update_util)(struct update_util_data *data, u64 time,
327 unsigned int flags);
328 };
329
330 static struct pstate_funcs pstate_funcs __read_mostly;
331 static struct pstate_adjust_policy pid_params __read_mostly = {
332 .sample_rate_ms = 10,
333 .sample_rate_ns = 10 * NSEC_PER_MSEC,
334 .deadband = 0,
335 .setpoint = 97,
336 .p_gain_pct = 20,
337 .d_gain_pct = 0,
338 .i_gain_pct = 0,
339 };
340
341 static int hwp_active __read_mostly;
342 static bool per_cpu_limits __read_mostly;
343
344 static struct cpufreq_driver *intel_pstate_driver __read_mostly;
345
346 #ifdef CONFIG_ACPI
347 static bool acpi_ppc;
348 #endif
349
350 static struct global_params global;
351
352 static DEFINE_MUTEX(intel_pstate_driver_lock);
353 static DEFINE_MUTEX(intel_pstate_limits_lock);
354
355 #ifdef CONFIG_ACPI
356
357 static bool intel_pstate_get_ppc_enable_status(void)
358 {
359 if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
360 acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
361 return true;
362
363 return acpi_ppc;
364 }
365
366 #ifdef CONFIG_ACPI_CPPC_LIB
367
368 /* The work item is needed to avoid CPU hotplug locking issues */
369 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
370 {
371 sched_set_itmt_support();
372 }
373
374 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
375
376 static void intel_pstate_set_itmt_prio(int cpu)
377 {
378 struct cppc_perf_caps cppc_perf;
379 static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
380 int ret;
381
382 ret = cppc_get_perf_caps(cpu, &cppc_perf);
383 if (ret)
384 return;
385
386 /*
387 * The priorities can be set regardless of whether or not
388 * sched_set_itmt_support(true) has been called and it is valid to
389 * update them at any time after it has been called.
390 */
391 sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
392
393 if (max_highest_perf <= min_highest_perf) {
394 if (cppc_perf.highest_perf > max_highest_perf)
395 max_highest_perf = cppc_perf.highest_perf;
396
397 if (cppc_perf.highest_perf < min_highest_perf)
398 min_highest_perf = cppc_perf.highest_perf;
399
400 if (max_highest_perf > min_highest_perf) {
401 /*
402 * This code can be run during CPU online under the
403 * CPU hotplug locks, so sched_set_itmt_support()
404 * cannot be called from here. Queue up a work item
405 * to invoke it.
406 */
407 schedule_work(&sched_itmt_work);
408 }
409 }
410 }
411 #else
412 static void intel_pstate_set_itmt_prio(int cpu)
413 {
414 }
415 #endif
416
417 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
418 {
419 struct cpudata *cpu;
420 int ret;
421 int i;
422
423 if (hwp_active) {
424 intel_pstate_set_itmt_prio(policy->cpu);
425 return;
426 }
427
428 if (!intel_pstate_get_ppc_enable_status())
429 return;
430
431 cpu = all_cpu_data[policy->cpu];
432
433 ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
434 policy->cpu);
435 if (ret)
436 return;
437
438 /*
439 * Check if the control value in _PSS is for PERF_CTL MSR, which should
440 * guarantee that the states returned by it map to the states in our
441 * list directly.
442 */
443 if (cpu->acpi_perf_data.control_register.space_id !=
444 ACPI_ADR_SPACE_FIXED_HARDWARE)
445 goto err;
446
447 /*
448 * If there is only one entry _PSS, simply ignore _PSS and continue as
449 * usual without taking _PSS into account
450 */
451 if (cpu->acpi_perf_data.state_count < 2)
452 goto err;
453
454 pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
455 for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
456 pr_debug(" %cP%d: %u MHz, %u mW, 0x%x\n",
457 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
458 (u32) cpu->acpi_perf_data.states[i].core_frequency,
459 (u32) cpu->acpi_perf_data.states[i].power,
460 (u32) cpu->acpi_perf_data.states[i].control);
461 }
462
463 /*
464 * The _PSS table doesn't contain whole turbo frequency range.
465 * This just contains +1 MHZ above the max non turbo frequency,
466 * with control value corresponding to max turbo ratio. But
467 * when cpufreq set policy is called, it will call with this
468 * max frequency, which will cause a reduced performance as
469 * this driver uses real max turbo frequency as the max
470 * frequency. So correct this frequency in _PSS table to
471 * correct max turbo frequency based on the turbo state.
472 * Also need to convert to MHz as _PSS freq is in MHz.
473 */
474 if (!global.turbo_disabled)
475 cpu->acpi_perf_data.states[0].core_frequency =
476 policy->cpuinfo.max_freq / 1000;
477 cpu->valid_pss_table = true;
478 pr_debug("_PPC limits will be enforced\n");
479
480 return;
481
482 err:
483 cpu->valid_pss_table = false;
484 acpi_processor_unregister_performance(policy->cpu);
485 }
486
487 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
488 {
489 struct cpudata *cpu;
490
491 cpu = all_cpu_data[policy->cpu];
492 if (!cpu->valid_pss_table)
493 return;
494
495 acpi_processor_unregister_performance(policy->cpu);
496 }
497 #else
498 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
499 {
500 }
501
502 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
503 {
504 }
505 #endif
506
507 static signed int pid_calc(struct _pid *pid, int32_t busy)
508 {
509 signed int result;
510 int32_t pterm, dterm, fp_error;
511 int32_t integral_limit;
512
513 fp_error = pid->setpoint - busy;
514
515 if (abs(fp_error) <= pid->deadband)
516 return 0;
517
518 pterm = mul_fp(pid->p_gain, fp_error);
519
520 pid->integral += fp_error;
521
522 /*
523 * We limit the integral here so that it will never
524 * get higher than 30. This prevents it from becoming
525 * too large an input over long periods of time and allows
526 * it to get factored out sooner.
527 *
528 * The value of 30 was chosen through experimentation.
529 */
530 integral_limit = int_tofp(30);
531 if (pid->integral > integral_limit)
532 pid->integral = integral_limit;
533 if (pid->integral < -integral_limit)
534 pid->integral = -integral_limit;
535
536 dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
537 pid->last_err = fp_error;
538
539 result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
540 result = result + (1 << (FRAC_BITS-1));
541 return (signed int)fp_toint(result);
542 }
543
544 static inline void intel_pstate_pid_reset(struct cpudata *cpu)
545 {
546 struct _pid *pid = &cpu->pid;
547
548 pid->p_gain = percent_fp(pid_params.p_gain_pct);
549 pid->d_gain = percent_fp(pid_params.d_gain_pct);
550 pid->i_gain = percent_fp(pid_params.i_gain_pct);
551 pid->setpoint = int_tofp(pid_params.setpoint);
552 pid->last_err = pid->setpoint - int_tofp(100);
553 pid->deadband = int_tofp(pid_params.deadband);
554 pid->integral = 0;
555 }
556
557 static inline void update_turbo_state(void)
558 {
559 u64 misc_en;
560 struct cpudata *cpu;
561
562 cpu = all_cpu_data[0];
563 rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
564 global.turbo_disabled =
565 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
566 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
567 }
568
569 static int min_perf_pct_min(void)
570 {
571 struct cpudata *cpu = all_cpu_data[0];
572 int turbo_pstate = cpu->pstate.turbo_pstate;
573
574 return turbo_pstate ?
575 DIV_ROUND_UP(cpu->pstate.min_pstate * 100, turbo_pstate) : 0;
576 }
577
578 static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
579 {
580 u64 epb;
581 int ret;
582
583 if (!static_cpu_has(X86_FEATURE_EPB))
584 return -ENXIO;
585
586 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
587 if (ret)
588 return (s16)ret;
589
590 return (s16)(epb & 0x0f);
591 }
592
593 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
594 {
595 s16 epp;
596
597 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
598 /*
599 * When hwp_req_data is 0, means that caller didn't read
600 * MSR_HWP_REQUEST, so need to read and get EPP.
601 */
602 if (!hwp_req_data) {
603 epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
604 &hwp_req_data);
605 if (epp)
606 return epp;
607 }
608 epp = (hwp_req_data >> 24) & 0xff;
609 } else {
610 /* When there is no EPP present, HWP uses EPB settings */
611 epp = intel_pstate_get_epb(cpu_data);
612 }
613
614 return epp;
615 }
616
617 static int intel_pstate_set_epb(int cpu, s16 pref)
618 {
619 u64 epb;
620 int ret;
621
622 if (!static_cpu_has(X86_FEATURE_EPB))
623 return -ENXIO;
624
625 ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
626 if (ret)
627 return ret;
628
629 epb = (epb & ~0x0f) | pref;
630 wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
631
632 return 0;
633 }
634
635 /*
636 * EPP/EPB display strings corresponding to EPP index in the
637 * energy_perf_strings[]
638 * index String
639 *-------------------------------------
640 * 0 default
641 * 1 performance
642 * 2 balance_performance
643 * 3 balance_power
644 * 4 power
645 */
646 static const char * const energy_perf_strings[] = {
647 "default",
648 "performance",
649 "balance_performance",
650 "balance_power",
651 "power",
652 NULL
653 };
654 static const unsigned int epp_values[] = {
655 HWP_EPP_PERFORMANCE,
656 HWP_EPP_BALANCE_PERFORMANCE,
657 HWP_EPP_BALANCE_POWERSAVE,
658 HWP_EPP_POWERSAVE
659 };
660
661 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
662 {
663 s16 epp;
664 int index = -EINVAL;
665
666 epp = intel_pstate_get_epp(cpu_data, 0);
667 if (epp < 0)
668 return epp;
669
670 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
671 if (epp == HWP_EPP_PERFORMANCE)
672 return 1;
673 if (epp <= HWP_EPP_BALANCE_PERFORMANCE)
674 return 2;
675 if (epp <= HWP_EPP_BALANCE_POWERSAVE)
676 return 3;
677 else
678 return 4;
679 } else if (static_cpu_has(X86_FEATURE_EPB)) {
680 /*
681 * Range:
682 * 0x00-0x03 : Performance
683 * 0x04-0x07 : Balance performance
684 * 0x08-0x0B : Balance power
685 * 0x0C-0x0F : Power
686 * The EPB is a 4 bit value, but our ranges restrict the
687 * value which can be set. Here only using top two bits
688 * effectively.
689 */
690 index = (epp >> 2) + 1;
691 }
692
693 return index;
694 }
695
696 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
697 int pref_index)
698 {
699 int epp = -EINVAL;
700 int ret;
701
702 if (!pref_index)
703 epp = cpu_data->epp_default;
704
705 mutex_lock(&intel_pstate_limits_lock);
706
707 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
708 u64 value;
709
710 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
711 if (ret)
712 goto return_pref;
713
714 value &= ~GENMASK_ULL(31, 24);
715
716 if (epp == -EINVAL)
717 epp = epp_values[pref_index - 1];
718
719 value |= (u64)epp << 24;
720 ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
721 } else {
722 if (epp == -EINVAL)
723 epp = (pref_index - 1) << 2;
724 ret = intel_pstate_set_epb(cpu_data->cpu, epp);
725 }
726 return_pref:
727 mutex_unlock(&intel_pstate_limits_lock);
728
729 return ret;
730 }
731
732 static ssize_t show_energy_performance_available_preferences(
733 struct cpufreq_policy *policy, char *buf)
734 {
735 int i = 0;
736 int ret = 0;
737
738 while (energy_perf_strings[i] != NULL)
739 ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
740
741 ret += sprintf(&buf[ret], "\n");
742
743 return ret;
744 }
745
746 cpufreq_freq_attr_ro(energy_performance_available_preferences);
747
748 static ssize_t store_energy_performance_preference(
749 struct cpufreq_policy *policy, const char *buf, size_t count)
750 {
751 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
752 char str_preference[21];
753 int ret, i = 0;
754
755 ret = sscanf(buf, "%20s", str_preference);
756 if (ret != 1)
757 return -EINVAL;
758
759 while (energy_perf_strings[i] != NULL) {
760 if (!strcmp(str_preference, energy_perf_strings[i])) {
761 intel_pstate_set_energy_pref_index(cpu_data, i);
762 return count;
763 }
764 ++i;
765 }
766
767 return -EINVAL;
768 }
769
770 static ssize_t show_energy_performance_preference(
771 struct cpufreq_policy *policy, char *buf)
772 {
773 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
774 int preference;
775
776 preference = intel_pstate_get_energy_pref_index(cpu_data);
777 if (preference < 0)
778 return preference;
779
780 return sprintf(buf, "%s\n", energy_perf_strings[preference]);
781 }
782
783 cpufreq_freq_attr_rw(energy_performance_preference);
784
785 static struct freq_attr *hwp_cpufreq_attrs[] = {
786 &energy_performance_preference,
787 &energy_performance_available_preferences,
788 NULL,
789 };
790
791 static void intel_pstate_get_hwp_max(unsigned int cpu, int *phy_max,
792 int *current_max)
793 {
794 u64 cap;
795
796 rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
797 if (global.no_turbo)
798 *current_max = HWP_GUARANTEED_PERF(cap);
799 else
800 *current_max = HWP_HIGHEST_PERF(cap);
801
802 *phy_max = HWP_HIGHEST_PERF(cap);
803 }
804
805 static void intel_pstate_hwp_set(unsigned int cpu)
806 {
807 struct cpudata *cpu_data = all_cpu_data[cpu];
808 int max, min;
809 u64 value;
810 s16 epp;
811
812 max = cpu_data->max_perf_ratio;
813 min = cpu_data->min_perf_ratio;
814
815 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
816 min = max;
817
818 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
819
820 value &= ~HWP_MIN_PERF(~0L);
821 value |= HWP_MIN_PERF(min);
822
823 value &= ~HWP_MAX_PERF(~0L);
824 value |= HWP_MAX_PERF(max);
825
826 if (cpu_data->epp_policy == cpu_data->policy)
827 goto skip_epp;
828
829 cpu_data->epp_policy = cpu_data->policy;
830
831 if (cpu_data->epp_saved >= 0) {
832 epp = cpu_data->epp_saved;
833 cpu_data->epp_saved = -EINVAL;
834 goto update_epp;
835 }
836
837 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
838 epp = intel_pstate_get_epp(cpu_data, value);
839 cpu_data->epp_powersave = epp;
840 /* If EPP read was failed, then don't try to write */
841 if (epp < 0)
842 goto skip_epp;
843
844 epp = 0;
845 } else {
846 /* skip setting EPP, when saved value is invalid */
847 if (cpu_data->epp_powersave < 0)
848 goto skip_epp;
849
850 /*
851 * No need to restore EPP when it is not zero. This
852 * means:
853 * - Policy is not changed
854 * - user has manually changed
855 * - Error reading EPB
856 */
857 epp = intel_pstate_get_epp(cpu_data, value);
858 if (epp)
859 goto skip_epp;
860
861 epp = cpu_data->epp_powersave;
862 }
863 update_epp:
864 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
865 value &= ~GENMASK_ULL(31, 24);
866 value |= (u64)epp << 24;
867 } else {
868 intel_pstate_set_epb(cpu, epp);
869 }
870 skip_epp:
871 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
872 }
873
874 static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
875 {
876 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
877
878 if (!hwp_active)
879 return 0;
880
881 cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);
882
883 return 0;
884 }
885
886 static int intel_pstate_resume(struct cpufreq_policy *policy)
887 {
888 if (!hwp_active)
889 return 0;
890
891 mutex_lock(&intel_pstate_limits_lock);
892
893 all_cpu_data[policy->cpu]->epp_policy = 0;
894 intel_pstate_hwp_set(policy->cpu);
895
896 mutex_unlock(&intel_pstate_limits_lock);
897
898 return 0;
899 }
900
901 static void intel_pstate_update_policies(void)
902 {
903 int cpu;
904
905 for_each_possible_cpu(cpu)
906 cpufreq_update_policy(cpu);
907 }
908
909 /************************** debugfs begin ************************/
910 static int pid_param_set(void *data, u64 val)
911 {
912 unsigned int cpu;
913
914 *(u32 *)data = val;
915 pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
916 for_each_possible_cpu(cpu)
917 if (all_cpu_data[cpu])
918 intel_pstate_pid_reset(all_cpu_data[cpu]);
919
920 return 0;
921 }
922
923 static int pid_param_get(void *data, u64 *val)
924 {
925 *val = *(u32 *)data;
926 return 0;
927 }
928 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
929
930 static struct dentry *debugfs_parent;
931
932 struct pid_param {
933 char *name;
934 void *value;
935 struct dentry *dentry;
936 };
937
938 static struct pid_param pid_files[] = {
939 {"sample_rate_ms", &pid_params.sample_rate_ms, },
940 {"d_gain_pct", &pid_params.d_gain_pct, },
941 {"i_gain_pct", &pid_params.i_gain_pct, },
942 {"deadband", &pid_params.deadband, },
943 {"setpoint", &pid_params.setpoint, },
944 {"p_gain_pct", &pid_params.p_gain_pct, },
945 {NULL, NULL, }
946 };
947
948 static void intel_pstate_debug_expose_params(void)
949 {
950 int i;
951
952 debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
953 if (IS_ERR_OR_NULL(debugfs_parent))
954 return;
955
956 for (i = 0; pid_files[i].name; i++) {
957 struct dentry *dentry;
958
959 dentry = debugfs_create_file(pid_files[i].name, 0660,
960 debugfs_parent, pid_files[i].value,
961 &fops_pid_param);
962 if (!IS_ERR(dentry))
963 pid_files[i].dentry = dentry;
964 }
965 }
966
967 static void intel_pstate_debug_hide_params(void)
968 {
969 int i;
970
971 if (IS_ERR_OR_NULL(debugfs_parent))
972 return;
973
974 for (i = 0; pid_files[i].name; i++) {
975 debugfs_remove(pid_files[i].dentry);
976 pid_files[i].dentry = NULL;
977 }
978
979 debugfs_remove(debugfs_parent);
980 debugfs_parent = NULL;
981 }
982
983 /************************** debugfs end ************************/
984
985 /************************** sysfs begin ************************/
986 #define show_one(file_name, object) \
987 static ssize_t show_##file_name \
988 (struct kobject *kobj, struct attribute *attr, char *buf) \
989 { \
990 return sprintf(buf, "%u\n", global.object); \
991 }
992
993 static ssize_t intel_pstate_show_status(char *buf);
994 static int intel_pstate_update_status(const char *buf, size_t size);
995
996 static ssize_t show_status(struct kobject *kobj,
997 struct attribute *attr, char *buf)
998 {
999 ssize_t ret;
1000
1001 mutex_lock(&intel_pstate_driver_lock);
1002 ret = intel_pstate_show_status(buf);
1003 mutex_unlock(&intel_pstate_driver_lock);
1004
1005 return ret;
1006 }
1007
1008 static ssize_t store_status(struct kobject *a, struct attribute *b,
1009 const char *buf, size_t count)
1010 {
1011 char *p = memchr(buf, '\n', count);
1012 int ret;
1013
1014 mutex_lock(&intel_pstate_driver_lock);
1015 ret = intel_pstate_update_status(buf, p ? p - buf : count);
1016 mutex_unlock(&intel_pstate_driver_lock);
1017
1018 return ret < 0 ? ret : count;
1019 }
1020
1021 static ssize_t show_turbo_pct(struct kobject *kobj,
1022 struct attribute *attr, char *buf)
1023 {
1024 struct cpudata *cpu;
1025 int total, no_turbo, turbo_pct;
1026 uint32_t turbo_fp;
1027
1028 mutex_lock(&intel_pstate_driver_lock);
1029
1030 if (!intel_pstate_driver) {
1031 mutex_unlock(&intel_pstate_driver_lock);
1032 return -EAGAIN;
1033 }
1034
1035 cpu = all_cpu_data[0];
1036
1037 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1038 no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1039 turbo_fp = div_fp(no_turbo, total);
1040 turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1041
1042 mutex_unlock(&intel_pstate_driver_lock);
1043
1044 return sprintf(buf, "%u\n", turbo_pct);
1045 }
1046
1047 static ssize_t show_num_pstates(struct kobject *kobj,
1048 struct attribute *attr, char *buf)
1049 {
1050 struct cpudata *cpu;
1051 int total;
1052
1053 mutex_lock(&intel_pstate_driver_lock);
1054
1055 if (!intel_pstate_driver) {
1056 mutex_unlock(&intel_pstate_driver_lock);
1057 return -EAGAIN;
1058 }
1059
1060 cpu = all_cpu_data[0];
1061 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1062
1063 mutex_unlock(&intel_pstate_driver_lock);
1064
1065 return sprintf(buf, "%u\n", total);
1066 }
1067
1068 static ssize_t show_no_turbo(struct kobject *kobj,
1069 struct attribute *attr, char *buf)
1070 {
1071 ssize_t ret;
1072
1073 mutex_lock(&intel_pstate_driver_lock);
1074
1075 if (!intel_pstate_driver) {
1076 mutex_unlock(&intel_pstate_driver_lock);
1077 return -EAGAIN;
1078 }
1079
1080 update_turbo_state();
1081 if (global.turbo_disabled)
1082 ret = sprintf(buf, "%u\n", global.turbo_disabled);
1083 else
1084 ret = sprintf(buf, "%u\n", global.no_turbo);
1085
1086 mutex_unlock(&intel_pstate_driver_lock);
1087
1088 return ret;
1089 }
1090
1091 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
1092 const char *buf, size_t count)
1093 {
1094 unsigned int input;
1095 int ret;
1096
1097 ret = sscanf(buf, "%u", &input);
1098 if (ret != 1)
1099 return -EINVAL;
1100
1101 mutex_lock(&intel_pstate_driver_lock);
1102
1103 if (!intel_pstate_driver) {
1104 mutex_unlock(&intel_pstate_driver_lock);
1105 return -EAGAIN;
1106 }
1107
1108 mutex_lock(&intel_pstate_limits_lock);
1109
1110 update_turbo_state();
1111 if (global.turbo_disabled) {
1112 pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
1113 mutex_unlock(&intel_pstate_limits_lock);
1114 mutex_unlock(&intel_pstate_driver_lock);
1115 return -EPERM;
1116 }
1117
1118 global.no_turbo = clamp_t(int, input, 0, 1);
1119
1120 if (global.no_turbo) {
1121 struct cpudata *cpu = all_cpu_data[0];
1122 int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
1123
1124 /* Squash the global minimum into the permitted range. */
1125 if (global.min_perf_pct > pct)
1126 global.min_perf_pct = pct;
1127 }
1128
1129 mutex_unlock(&intel_pstate_limits_lock);
1130
1131 intel_pstate_update_policies();
1132
1133 mutex_unlock(&intel_pstate_driver_lock);
1134
1135 return count;
1136 }
1137
1138 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
1139 const char *buf, size_t count)
1140 {
1141 unsigned int input;
1142 int ret;
1143
1144 ret = sscanf(buf, "%u", &input);
1145 if (ret != 1)
1146 return -EINVAL;
1147
1148 mutex_lock(&intel_pstate_driver_lock);
1149
1150 if (!intel_pstate_driver) {
1151 mutex_unlock(&intel_pstate_driver_lock);
1152 return -EAGAIN;
1153 }
1154
1155 mutex_lock(&intel_pstate_limits_lock);
1156
1157 global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1158
1159 mutex_unlock(&intel_pstate_limits_lock);
1160
1161 intel_pstate_update_policies();
1162
1163 mutex_unlock(&intel_pstate_driver_lock);
1164
1165 return count;
1166 }
1167
1168 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
1169 const char *buf, size_t count)
1170 {
1171 unsigned int input;
1172 int ret;
1173
1174 ret = sscanf(buf, "%u", &input);
1175 if (ret != 1)
1176 return -EINVAL;
1177
1178 mutex_lock(&intel_pstate_driver_lock);
1179
1180 if (!intel_pstate_driver) {
1181 mutex_unlock(&intel_pstate_driver_lock);
1182 return -EAGAIN;
1183 }
1184
1185 mutex_lock(&intel_pstate_limits_lock);
1186
1187 global.min_perf_pct = clamp_t(int, input,
1188 min_perf_pct_min(), global.max_perf_pct);
1189
1190 mutex_unlock(&intel_pstate_limits_lock);
1191
1192 intel_pstate_update_policies();
1193
1194 mutex_unlock(&intel_pstate_driver_lock);
1195
1196 return count;
1197 }
1198
1199 show_one(max_perf_pct, max_perf_pct);
1200 show_one(min_perf_pct, min_perf_pct);
1201
1202 define_one_global_rw(status);
1203 define_one_global_rw(no_turbo);
1204 define_one_global_rw(max_perf_pct);
1205 define_one_global_rw(min_perf_pct);
1206 define_one_global_ro(turbo_pct);
1207 define_one_global_ro(num_pstates);
1208
1209 static struct attribute *intel_pstate_attributes[] = {
1210 &status.attr,
1211 &no_turbo.attr,
1212 &turbo_pct.attr,
1213 &num_pstates.attr,
1214 NULL
1215 };
1216
1217 static const struct attribute_group intel_pstate_attr_group = {
1218 .attrs = intel_pstate_attributes,
1219 };
1220
1221 static void __init intel_pstate_sysfs_expose_params(void)
1222 {
1223 struct kobject *intel_pstate_kobject;
1224 int rc;
1225
1226 intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1227 &cpu_subsys.dev_root->kobj);
1228 if (WARN_ON(!intel_pstate_kobject))
1229 return;
1230
1231 rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1232 if (WARN_ON(rc))
1233 return;
1234
1235 /*
1236 * If per cpu limits are enforced there are no global limits, so
1237 * return without creating max/min_perf_pct attributes
1238 */
1239 if (per_cpu_limits)
1240 return;
1241
1242 rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1243 WARN_ON(rc);
1244
1245 rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1246 WARN_ON(rc);
1247
1248 }
1249 /************************** sysfs end ************************/
1250
1251 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1252 {
1253 /* First disable HWP notification interrupt as we don't process them */
1254 if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
1255 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1256
1257 wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1258 cpudata->epp_policy = 0;
1259 if (cpudata->epp_default == -EINVAL)
1260 cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1261 }
1262
1263 #define MSR_IA32_POWER_CTL_BIT_EE 19
1264
1265 /* Disable energy efficiency optimization */
1266 static void intel_pstate_disable_ee(int cpu)
1267 {
1268 u64 power_ctl;
1269 int ret;
1270
1271 ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
1272 if (ret)
1273 return;
1274
1275 if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
1276 pr_info("Disabling energy efficiency optimization\n");
1277 power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1278 wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
1279 }
1280 }
1281
1282 static int atom_get_min_pstate(void)
1283 {
1284 u64 value;
1285
1286 rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1287 return (value >> 8) & 0x7F;
1288 }
1289
1290 static int atom_get_max_pstate(void)
1291 {
1292 u64 value;
1293
1294 rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1295 return (value >> 16) & 0x7F;
1296 }
1297
1298 static int atom_get_turbo_pstate(void)
1299 {
1300 u64 value;
1301
1302 rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
1303 return value & 0x7F;
1304 }
1305
1306 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1307 {
1308 u64 val;
1309 int32_t vid_fp;
1310 u32 vid;
1311
1312 val = (u64)pstate << 8;
1313 if (global.no_turbo && !global.turbo_disabled)
1314 val |= (u64)1 << 32;
1315
1316 vid_fp = cpudata->vid.min + mul_fp(
1317 int_tofp(pstate - cpudata->pstate.min_pstate),
1318 cpudata->vid.ratio);
1319
1320 vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1321 vid = ceiling_fp(vid_fp);
1322
1323 if (pstate > cpudata->pstate.max_pstate)
1324 vid = cpudata->vid.turbo;
1325
1326 return val | vid;
1327 }
1328
1329 static int silvermont_get_scaling(void)
1330 {
1331 u64 value;
1332 int i;
1333 /* Defined in Table 35-6 from SDM (Sept 2015) */
1334 static int silvermont_freq_table[] = {
1335 83300, 100000, 133300, 116700, 80000};
1336
1337 rdmsrl(MSR_FSB_FREQ, value);
1338 i = value & 0x7;
1339 WARN_ON(i > 4);
1340
1341 return silvermont_freq_table[i];
1342 }
1343
1344 static int airmont_get_scaling(void)
1345 {
1346 u64 value;
1347 int i;
1348 /* Defined in Table 35-10 from SDM (Sept 2015) */
1349 static int airmont_freq_table[] = {
1350 83300, 100000, 133300, 116700, 80000,
1351 93300, 90000, 88900, 87500};
1352
1353 rdmsrl(MSR_FSB_FREQ, value);
1354 i = value & 0xF;
1355 WARN_ON(i > 8);
1356
1357 return airmont_freq_table[i];
1358 }
1359
1360 static void atom_get_vid(struct cpudata *cpudata)
1361 {
1362 u64 value;
1363
1364 rdmsrl(MSR_ATOM_CORE_VIDS, value);
1365 cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1366 cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1367 cpudata->vid.ratio = div_fp(
1368 cpudata->vid.max - cpudata->vid.min,
1369 int_tofp(cpudata->pstate.max_pstate -
1370 cpudata->pstate.min_pstate));
1371
1372 rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1373 cpudata->vid.turbo = value & 0x7f;
1374 }
1375
1376 static int core_get_min_pstate(void)
1377 {
1378 u64 value;
1379
1380 rdmsrl(MSR_PLATFORM_INFO, value);
1381 return (value >> 40) & 0xFF;
1382 }
1383
1384 static int core_get_max_pstate_physical(void)
1385 {
1386 u64 value;
1387
1388 rdmsrl(MSR_PLATFORM_INFO, value);
1389 return (value >> 8) & 0xFF;
1390 }
1391
1392 static int core_get_tdp_ratio(u64 plat_info)
1393 {
1394 /* Check how many TDP levels present */
1395 if (plat_info & 0x600000000) {
1396 u64 tdp_ctrl;
1397 u64 tdp_ratio;
1398 int tdp_msr;
1399 int err;
1400
1401 /* Get the TDP level (0, 1, 2) to get ratios */
1402 err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1403 if (err)
1404 return err;
1405
1406 /* TDP MSR are continuous starting at 0x648 */
1407 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1408 err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1409 if (err)
1410 return err;
1411
1412 /* For level 1 and 2, bits[23:16] contain the ratio */
1413 if (tdp_ctrl & 0x03)
1414 tdp_ratio >>= 16;
1415
1416 tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1417 pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1418
1419 return (int)tdp_ratio;
1420 }
1421
1422 return -ENXIO;
1423 }
1424
1425 static int core_get_max_pstate(void)
1426 {
1427 u64 tar;
1428 u64 plat_info;
1429 int max_pstate;
1430 int tdp_ratio;
1431 int err;
1432
1433 rdmsrl(MSR_PLATFORM_INFO, plat_info);
1434 max_pstate = (plat_info >> 8) & 0xFF;
1435
1436 tdp_ratio = core_get_tdp_ratio(plat_info);
1437 if (tdp_ratio <= 0)
1438 return max_pstate;
1439
1440 if (hwp_active) {
1441 /* Turbo activation ratio is not used on HWP platforms */
1442 return tdp_ratio;
1443 }
1444
1445 err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1446 if (!err) {
1447 int tar_levels;
1448
1449 /* Do some sanity checking for safety */
1450 tar_levels = tar & 0xff;
1451 if (tdp_ratio - 1 == tar_levels) {
1452 max_pstate = tar_levels;
1453 pr_debug("max_pstate=TAC %x\n", max_pstate);
1454 }
1455 }
1456
1457 return max_pstate;
1458 }
1459
1460 static int core_get_turbo_pstate(void)
1461 {
1462 u64 value;
1463 int nont, ret;
1464
1465 rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1466 nont = core_get_max_pstate();
1467 ret = (value) & 255;
1468 if (ret <= nont)
1469 ret = nont;
1470 return ret;
1471 }
1472
1473 static inline int core_get_scaling(void)
1474 {
1475 return 100000;
1476 }
1477
1478 static u64 core_get_val(struct cpudata *cpudata, int pstate)
1479 {
1480 u64 val;
1481
1482 val = (u64)pstate << 8;
1483 if (global.no_turbo && !global.turbo_disabled)
1484 val |= (u64)1 << 32;
1485
1486 return val;
1487 }
1488
1489 static int knl_get_turbo_pstate(void)
1490 {
1491 u64 value;
1492 int nont, ret;
1493
1494 rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1495 nont = core_get_max_pstate();
1496 ret = (((value) >> 8) & 0xFF);
1497 if (ret <= nont)
1498 ret = nont;
1499 return ret;
1500 }
1501
1502 static int intel_pstate_get_base_pstate(struct cpudata *cpu)
1503 {
1504 return global.no_turbo || global.turbo_disabled ?
1505 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1506 }
1507
1508 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1509 {
1510 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1511 cpu->pstate.current_pstate = pstate;
1512 /*
1513 * Generally, there is no guarantee that this code will always run on
1514 * the CPU being updated, so force the register update to run on the
1515 * right CPU.
1516 */
1517 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1518 pstate_funcs.get_val(cpu, pstate));
1519 }
1520
1521 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1522 {
1523 intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1524 }
1525
1526 static void intel_pstate_max_within_limits(struct cpudata *cpu)
1527 {
1528 int pstate;
1529
1530 update_turbo_state();
1531 pstate = intel_pstate_get_base_pstate(cpu);
1532 pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
1533 intel_pstate_set_pstate(cpu, pstate);
1534 }
1535
1536 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1537 {
1538 cpu->pstate.min_pstate = pstate_funcs.get_min();
1539 cpu->pstate.max_pstate = pstate_funcs.get_max();
1540 cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1541 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1542 cpu->pstate.scaling = pstate_funcs.get_scaling();
1543 cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1544 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1545
1546 if (pstate_funcs.get_vid)
1547 pstate_funcs.get_vid(cpu);
1548
1549 intel_pstate_set_min_pstate(cpu);
1550 }
1551
1552 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1553 {
1554 struct sample *sample = &cpu->sample;
1555
1556 sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1557 }
1558
1559 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1560 {
1561 u64 aperf, mperf;
1562 unsigned long flags;
1563 u64 tsc;
1564
1565 local_irq_save(flags);
1566 rdmsrl(MSR_IA32_APERF, aperf);
1567 rdmsrl(MSR_IA32_MPERF, mperf);
1568 tsc = rdtsc();
1569 if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1570 local_irq_restore(flags);
1571 return false;
1572 }
1573 local_irq_restore(flags);
1574
1575 cpu->last_sample_time = cpu->sample.time;
1576 cpu->sample.time = time;
1577 cpu->sample.aperf = aperf;
1578 cpu->sample.mperf = mperf;
1579 cpu->sample.tsc = tsc;
1580 cpu->sample.aperf -= cpu->prev_aperf;
1581 cpu->sample.mperf -= cpu->prev_mperf;
1582 cpu->sample.tsc -= cpu->prev_tsc;
1583
1584 cpu->prev_aperf = aperf;
1585 cpu->prev_mperf = mperf;
1586 cpu->prev_tsc = tsc;
1587 /*
1588 * First time this function is invoked in a given cycle, all of the
1589 * previous sample data fields are equal to zero or stale and they must
1590 * be populated with meaningful numbers for things to work, so assume
1591 * that sample.time will always be reset before setting the utilization
1592 * update hook and make the caller skip the sample then.
1593 */
1594 if (cpu->last_sample_time) {
1595 intel_pstate_calc_avg_perf(cpu);
1596 return true;
1597 }
1598 return false;
1599 }
1600
1601 static inline int32_t get_avg_frequency(struct cpudata *cpu)
1602 {
1603 return mul_ext_fp(cpu->sample.core_avg_perf,
1604 cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
1605 }
1606
1607 static inline int32_t get_avg_pstate(struct cpudata *cpu)
1608 {
1609 return mul_ext_fp(cpu->pstate.max_pstate_physical,
1610 cpu->sample.core_avg_perf);
1611 }
1612
1613 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
1614 {
1615 struct sample *sample = &cpu->sample;
1616 int32_t busy_frac, boost;
1617 int target, avg_pstate;
1618
1619 busy_frac = div_fp(sample->mperf, sample->tsc);
1620
1621 boost = cpu->iowait_boost;
1622 cpu->iowait_boost >>= 1;
1623
1624 if (busy_frac < boost)
1625 busy_frac = boost;
1626
1627 sample->busy_scaled = busy_frac * 100;
1628
1629 target = global.no_turbo || global.turbo_disabled ?
1630 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1631 target += target >> 2;
1632 target = mul_fp(target, busy_frac);
1633 if (target < cpu->pstate.min_pstate)
1634 target = cpu->pstate.min_pstate;
1635
1636 /*
1637 * If the average P-state during the previous cycle was higher than the
1638 * current target, add 50% of the difference to the target to reduce
1639 * possible performance oscillations and offset possible performance
1640 * loss related to moving the workload from one CPU to another within
1641 * a package/module.
1642 */
1643 avg_pstate = get_avg_pstate(cpu);
1644 if (avg_pstate > target)
1645 target += (avg_pstate - target) >> 1;
1646
1647 return target;
1648 }
1649
1650 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
1651 {
1652 int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
1653 u64 duration_ns;
1654
1655 /*
1656 * perf_scaled is the ratio of the average P-state during the last
1657 * sampling period to the P-state requested last time (in percent).
1658 *
1659 * That measures the system's response to the previous P-state
1660 * selection.
1661 */
1662 max_pstate = cpu->pstate.max_pstate_physical;
1663 current_pstate = cpu->pstate.current_pstate;
1664 perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
1665 div_fp(100 * max_pstate, current_pstate));
1666
1667 /*
1668 * Since our utilization update callback will not run unless we are
1669 * in C0, check if the actual elapsed time is significantly greater (3x)
1670 * than our sample interval. If it is, then we were idle for a long
1671 * enough period of time to adjust our performance metric.
1672 */
1673 duration_ns = cpu->sample.time - cpu->last_sample_time;
1674 if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
1675 sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1676 perf_scaled = mul_fp(perf_scaled, sample_ratio);
1677 } else {
1678 sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
1679 if (sample_ratio < int_tofp(1))
1680 perf_scaled = 0;
1681 }
1682
1683 cpu->sample.busy_scaled = perf_scaled;
1684 return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
1685 }
1686
1687 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1688 {
1689 int max_pstate = intel_pstate_get_base_pstate(cpu);
1690 int min_pstate;
1691
1692 min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
1693 max_pstate = max(min_pstate, cpu->max_perf_ratio);
1694 return clamp_t(int, pstate, min_pstate, max_pstate);
1695 }
1696
1697 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1698 {
1699 if (pstate == cpu->pstate.current_pstate)
1700 return;
1701
1702 cpu->pstate.current_pstate = pstate;
1703 wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1704 }
1705
1706 static void intel_pstate_adjust_pstate(struct cpudata *cpu, int target_pstate)
1707 {
1708 int from = cpu->pstate.current_pstate;
1709 struct sample *sample;
1710
1711 update_turbo_state();
1712
1713 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
1714 trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1715 intel_pstate_update_pstate(cpu, target_pstate);
1716
1717 sample = &cpu->sample;
1718 trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1719 fp_toint(sample->busy_scaled),
1720 from,
1721 cpu->pstate.current_pstate,
1722 sample->mperf,
1723 sample->aperf,
1724 sample->tsc,
1725 get_avg_frequency(cpu),
1726 fp_toint(cpu->iowait_boost * 100));
1727 }
1728
1729 static void intel_pstate_update_util_pid(struct update_util_data *data,
1730 u64 time, unsigned int flags)
1731 {
1732 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1733 u64 delta_ns = time - cpu->sample.time;
1734
1735 if ((s64)delta_ns < pid_params.sample_rate_ns)
1736 return;
1737
1738 if (intel_pstate_sample(cpu, time)) {
1739 int target_pstate;
1740
1741 target_pstate = get_target_pstate_use_performance(cpu);
1742 intel_pstate_adjust_pstate(cpu, target_pstate);
1743 }
1744 }
1745
1746 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1747 unsigned int flags)
1748 {
1749 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1750 u64 delta_ns;
1751
1752 if (flags & SCHED_CPUFREQ_IOWAIT) {
1753 cpu->iowait_boost = int_tofp(1);
1754 } else if (cpu->iowait_boost) {
1755 /* Clear iowait_boost if the CPU may have been idle. */
1756 delta_ns = time - cpu->last_update;
1757 if (delta_ns > TICK_NSEC)
1758 cpu->iowait_boost = 0;
1759 }
1760 cpu->last_update = time;
1761 delta_ns = time - cpu->sample.time;
1762 if ((s64)delta_ns < INTEL_PSTATE_DEFAULT_SAMPLING_INTERVAL)
1763 return;
1764
1765 if (intel_pstate_sample(cpu, time)) {
1766 int target_pstate;
1767
1768 target_pstate = get_target_pstate_use_cpu_load(cpu);
1769 intel_pstate_adjust_pstate(cpu, target_pstate);
1770 }
1771 }
1772
1773 static struct pstate_funcs core_funcs = {
1774 .get_max = core_get_max_pstate,
1775 .get_max_physical = core_get_max_pstate_physical,
1776 .get_min = core_get_min_pstate,
1777 .get_turbo = core_get_turbo_pstate,
1778 .get_scaling = core_get_scaling,
1779 .get_val = core_get_val,
1780 .update_util = intel_pstate_update_util_pid,
1781 };
1782
1783 static const struct pstate_funcs silvermont_funcs = {
1784 .get_max = atom_get_max_pstate,
1785 .get_max_physical = atom_get_max_pstate,
1786 .get_min = atom_get_min_pstate,
1787 .get_turbo = atom_get_turbo_pstate,
1788 .get_val = atom_get_val,
1789 .get_scaling = silvermont_get_scaling,
1790 .get_vid = atom_get_vid,
1791 .update_util = intel_pstate_update_util,
1792 };
1793
1794 static const struct pstate_funcs airmont_funcs = {
1795 .get_max = atom_get_max_pstate,
1796 .get_max_physical = atom_get_max_pstate,
1797 .get_min = atom_get_min_pstate,
1798 .get_turbo = atom_get_turbo_pstate,
1799 .get_val = atom_get_val,
1800 .get_scaling = airmont_get_scaling,
1801 .get_vid = atom_get_vid,
1802 .update_util = intel_pstate_update_util,
1803 };
1804
1805 static const struct pstate_funcs knl_funcs = {
1806 .get_max = core_get_max_pstate,
1807 .get_max_physical = core_get_max_pstate_physical,
1808 .get_min = core_get_min_pstate,
1809 .get_turbo = knl_get_turbo_pstate,
1810 .get_scaling = core_get_scaling,
1811 .get_val = core_get_val,
1812 .update_util = intel_pstate_update_util_pid,
1813 };
1814
1815 static const struct pstate_funcs bxt_funcs = {
1816 .get_max = core_get_max_pstate,
1817 .get_max_physical = core_get_max_pstate_physical,
1818 .get_min = core_get_min_pstate,
1819 .get_turbo = core_get_turbo_pstate,
1820 .get_scaling = core_get_scaling,
1821 .get_val = core_get_val,
1822 .update_util = intel_pstate_update_util,
1823 };
1824
1825 #define ICPU(model, policy) \
1826 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1827 (unsigned long)&policy }
1828
1829 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1830 ICPU(INTEL_FAM6_SANDYBRIDGE, core_funcs),
1831 ICPU(INTEL_FAM6_SANDYBRIDGE_X, core_funcs),
1832 ICPU(INTEL_FAM6_ATOM_SILVERMONT1, silvermont_funcs),
1833 ICPU(INTEL_FAM6_IVYBRIDGE, core_funcs),
1834 ICPU(INTEL_FAM6_HASWELL_CORE, core_funcs),
1835 ICPU(INTEL_FAM6_BROADWELL_CORE, core_funcs),
1836 ICPU(INTEL_FAM6_IVYBRIDGE_X, core_funcs),
1837 ICPU(INTEL_FAM6_HASWELL_X, core_funcs),
1838 ICPU(INTEL_FAM6_HASWELL_ULT, core_funcs),
1839 ICPU(INTEL_FAM6_HASWELL_GT3E, core_funcs),
1840 ICPU(INTEL_FAM6_BROADWELL_GT3E, core_funcs),
1841 ICPU(INTEL_FAM6_ATOM_AIRMONT, airmont_funcs),
1842 ICPU(INTEL_FAM6_SKYLAKE_MOBILE, core_funcs),
1843 ICPU(INTEL_FAM6_BROADWELL_X, core_funcs),
1844 ICPU(INTEL_FAM6_SKYLAKE_DESKTOP, core_funcs),
1845 ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_funcs),
1846 ICPU(INTEL_FAM6_XEON_PHI_KNL, knl_funcs),
1847 ICPU(INTEL_FAM6_XEON_PHI_KNM, knl_funcs),
1848 ICPU(INTEL_FAM6_ATOM_GOLDMONT, bxt_funcs),
1849 ICPU(INTEL_FAM6_ATOM_GEMINI_LAKE, bxt_funcs),
1850 {}
1851 };
1852 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1853
1854 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1855 ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_funcs),
1856 ICPU(INTEL_FAM6_BROADWELL_X, core_funcs),
1857 ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
1858 {}
1859 };
1860
1861 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
1862 ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_funcs),
1863 {}
1864 };
1865
1866 static bool pid_in_use(void);
1867
1868 static int intel_pstate_init_cpu(unsigned int cpunum)
1869 {
1870 struct cpudata *cpu;
1871
1872 cpu = all_cpu_data[cpunum];
1873
1874 if (!cpu) {
1875 cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
1876 if (!cpu)
1877 return -ENOMEM;
1878
1879 all_cpu_data[cpunum] = cpu;
1880
1881 cpu->epp_default = -EINVAL;
1882 cpu->epp_powersave = -EINVAL;
1883 cpu->epp_saved = -EINVAL;
1884 }
1885
1886 cpu = all_cpu_data[cpunum];
1887
1888 cpu->cpu = cpunum;
1889
1890 if (hwp_active) {
1891 const struct x86_cpu_id *id;
1892
1893 id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
1894 if (id)
1895 intel_pstate_disable_ee(cpunum);
1896
1897 intel_pstate_hwp_enable(cpu);
1898 } else if (pid_in_use()) {
1899 intel_pstate_pid_reset(cpu);
1900 }
1901
1902 intel_pstate_get_cpu_pstates(cpu);
1903
1904 pr_debug("controlling: cpu %d\n", cpunum);
1905
1906 return 0;
1907 }
1908
1909 static unsigned int intel_pstate_get(unsigned int cpu_num)
1910 {
1911 struct cpudata *cpu = all_cpu_data[cpu_num];
1912
1913 return cpu ? get_avg_frequency(cpu) : 0;
1914 }
1915
1916 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1917 {
1918 struct cpudata *cpu = all_cpu_data[cpu_num];
1919
1920 if (hwp_active)
1921 return;
1922
1923 if (cpu->update_util_set)
1924 return;
1925
1926 /* Prevent intel_pstate_update_util() from using stale data. */
1927 cpu->sample.time = 0;
1928 cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1929 pstate_funcs.update_util);
1930 cpu->update_util_set = true;
1931 }
1932
1933 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1934 {
1935 struct cpudata *cpu_data = all_cpu_data[cpu];
1936
1937 if (!cpu_data->update_util_set)
1938 return;
1939
1940 cpufreq_remove_update_util_hook(cpu);
1941 cpu_data->update_util_set = false;
1942 synchronize_sched();
1943 }
1944
1945 static int intel_pstate_get_max_freq(struct cpudata *cpu)
1946 {
1947 return global.turbo_disabled || global.no_turbo ?
1948 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
1949 }
1950
1951 static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
1952 struct cpudata *cpu)
1953 {
1954 int max_freq = intel_pstate_get_max_freq(cpu);
1955 int32_t max_policy_perf, min_policy_perf;
1956 int max_state, turbo_max;
1957
1958 /*
1959 * HWP needs some special consideration, because on BDX the
1960 * HWP_REQUEST uses abstract value to represent performance
1961 * rather than pure ratios.
1962 */
1963 if (hwp_active) {
1964 intel_pstate_get_hwp_max(cpu->cpu, &turbo_max, &max_state);
1965 } else {
1966 max_state = intel_pstate_get_base_pstate(cpu);
1967 turbo_max = cpu->pstate.turbo_pstate;
1968 }
1969
1970 max_policy_perf = max_state * policy->max / max_freq;
1971 if (policy->max == policy->min) {
1972 min_policy_perf = max_policy_perf;
1973 } else {
1974 min_policy_perf = max_state * policy->min / max_freq;
1975 min_policy_perf = clamp_t(int32_t, min_policy_perf,
1976 0, max_policy_perf);
1977 }
1978
1979 pr_debug("cpu:%d max_state %d min_policy_perf:%d max_policy_perf:%d\n",
1980 policy->cpu, max_state,
1981 min_policy_perf, max_policy_perf);
1982
1983 /* Normalize user input to [min_perf, max_perf] */
1984 if (per_cpu_limits) {
1985 cpu->min_perf_ratio = min_policy_perf;
1986 cpu->max_perf_ratio = max_policy_perf;
1987 } else {
1988 int32_t global_min, global_max;
1989
1990 /* Global limits are in percent of the maximum turbo P-state. */
1991 global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
1992 global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
1993 global_min = clamp_t(int32_t, global_min, 0, global_max);
1994
1995 pr_debug("cpu:%d global_min:%d global_max:%d\n", policy->cpu,
1996 global_min, global_max);
1997
1998 cpu->min_perf_ratio = max(min_policy_perf, global_min);
1999 cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
2000 cpu->max_perf_ratio = min(max_policy_perf, global_max);
2001 cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
2002
2003 /* Make sure min_perf <= max_perf */
2004 cpu->min_perf_ratio = min(cpu->min_perf_ratio,
2005 cpu->max_perf_ratio);
2006
2007 }
2008 pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", policy->cpu,
2009 cpu->max_perf_ratio,
2010 cpu->min_perf_ratio);
2011 }
2012
2013 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2014 {
2015 struct cpudata *cpu;
2016
2017 if (!policy->cpuinfo.max_freq)
2018 return -ENODEV;
2019
2020 pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2021 policy->cpuinfo.max_freq, policy->max);
2022
2023 cpu = all_cpu_data[policy->cpu];
2024 cpu->policy = policy->policy;
2025
2026 mutex_lock(&intel_pstate_limits_lock);
2027
2028 intel_pstate_update_perf_limits(policy, cpu);
2029
2030 if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2031 /*
2032 * NOHZ_FULL CPUs need this as the governor callback may not
2033 * be invoked on them.
2034 */
2035 intel_pstate_clear_update_util_hook(policy->cpu);
2036 intel_pstate_max_within_limits(cpu);
2037 } else {
2038 intel_pstate_set_update_util_hook(policy->cpu);
2039 }
2040
2041 if (hwp_active)
2042 intel_pstate_hwp_set(policy->cpu);
2043
2044 mutex_unlock(&intel_pstate_limits_lock);
2045
2046 return 0;
2047 }
2048
2049 static void intel_pstate_adjust_policy_max(struct cpufreq_policy *policy,
2050 struct cpudata *cpu)
2051 {
2052 if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2053 policy->max < policy->cpuinfo.max_freq &&
2054 policy->max > cpu->pstate.max_freq) {
2055 pr_debug("policy->max > max non turbo frequency\n");
2056 policy->max = policy->cpuinfo.max_freq;
2057 }
2058 }
2059
2060 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
2061 {
2062 struct cpudata *cpu = all_cpu_data[policy->cpu];
2063
2064 update_turbo_state();
2065 cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2066 intel_pstate_get_max_freq(cpu));
2067
2068 if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
2069 policy->policy != CPUFREQ_POLICY_PERFORMANCE)
2070 return -EINVAL;
2071
2072 intel_pstate_adjust_policy_max(policy, cpu);
2073
2074 return 0;
2075 }
2076
2077 static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
2078 {
2079 intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
2080 }
2081
2082 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2083 {
2084 pr_debug("CPU %d exiting\n", policy->cpu);
2085
2086 intel_pstate_clear_update_util_hook(policy->cpu);
2087 if (hwp_active)
2088 intel_pstate_hwp_save_state(policy);
2089 else
2090 intel_cpufreq_stop_cpu(policy);
2091 }
2092
2093 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2094 {
2095 intel_pstate_exit_perf_limits(policy);
2096
2097 policy->fast_switch_possible = false;
2098
2099 return 0;
2100 }
2101
2102 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2103 {
2104 struct cpudata *cpu;
2105 int rc;
2106
2107 rc = intel_pstate_init_cpu(policy->cpu);
2108 if (rc)
2109 return rc;
2110
2111 cpu = all_cpu_data[policy->cpu];
2112
2113 cpu->max_perf_ratio = 0xFF;
2114 cpu->min_perf_ratio = 0;
2115
2116 policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
2117 policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2118
2119 /* cpuinfo and default policy values */
2120 policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2121 update_turbo_state();
2122 policy->cpuinfo.max_freq = global.turbo_disabled ?
2123 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2124 policy->cpuinfo.max_freq *= cpu->pstate.scaling;
2125
2126 intel_pstate_init_acpi_perf_limits(policy);
2127 cpumask_set_cpu(policy->cpu, policy->cpus);
2128
2129 policy->fast_switch_possible = true;
2130
2131 return 0;
2132 }
2133
2134 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2135 {
2136 int ret = __intel_pstate_cpu_init(policy);
2137
2138 if (ret)
2139 return ret;
2140
2141 policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
2142 if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE))
2143 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
2144 else
2145 policy->policy = CPUFREQ_POLICY_POWERSAVE;
2146
2147 return 0;
2148 }
2149
2150 static struct cpufreq_driver intel_pstate = {
2151 .flags = CPUFREQ_CONST_LOOPS,
2152 .verify = intel_pstate_verify_policy,
2153 .setpolicy = intel_pstate_set_policy,
2154 .suspend = intel_pstate_hwp_save_state,
2155 .resume = intel_pstate_resume,
2156 .get = intel_pstate_get,
2157 .init = intel_pstate_cpu_init,
2158 .exit = intel_pstate_cpu_exit,
2159 .stop_cpu = intel_pstate_stop_cpu,
2160 .name = "intel_pstate",
2161 };
2162
2163 static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
2164 {
2165 struct cpudata *cpu = all_cpu_data[policy->cpu];
2166
2167 update_turbo_state();
2168 cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2169 intel_pstate_get_max_freq(cpu));
2170
2171 intel_pstate_adjust_policy_max(policy, cpu);
2172
2173 intel_pstate_update_perf_limits(policy, cpu);
2174
2175 return 0;
2176 }
2177
2178 static int intel_cpufreq_target(struct cpufreq_policy *policy,
2179 unsigned int target_freq,
2180 unsigned int relation)
2181 {
2182 struct cpudata *cpu = all_cpu_data[policy->cpu];
2183 struct cpufreq_freqs freqs;
2184 int target_pstate;
2185
2186 update_turbo_state();
2187
2188 freqs.old = policy->cur;
2189 freqs.new = target_freq;
2190
2191 cpufreq_freq_transition_begin(policy, &freqs);
2192 switch (relation) {
2193 case CPUFREQ_RELATION_L:
2194 target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2195 break;
2196 case CPUFREQ_RELATION_H:
2197 target_pstate = freqs.new / cpu->pstate.scaling;
2198 break;
2199 default:
2200 target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2201 break;
2202 }
2203 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2204 if (target_pstate != cpu->pstate.current_pstate) {
2205 cpu->pstate.current_pstate = target_pstate;
2206 wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
2207 pstate_funcs.get_val(cpu, target_pstate));
2208 }
2209 freqs.new = target_pstate * cpu->pstate.scaling;
2210 cpufreq_freq_transition_end(policy, &freqs, false);
2211
2212 return 0;
2213 }
2214
2215 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2216 unsigned int target_freq)
2217 {
2218 struct cpudata *cpu = all_cpu_data[policy->cpu];
2219 int target_pstate;
2220
2221 update_turbo_state();
2222
2223 target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2224 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2225 intel_pstate_update_pstate(cpu, target_pstate);
2226 return target_pstate * cpu->pstate.scaling;
2227 }
2228
2229 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2230 {
2231 int ret = __intel_pstate_cpu_init(policy);
2232
2233 if (ret)
2234 return ret;
2235
2236 policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2237 policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
2238 /* This reflects the intel_pstate_get_cpu_pstates() setting. */
2239 policy->cur = policy->cpuinfo.min_freq;
2240
2241 return 0;
2242 }
2243
2244 static struct cpufreq_driver intel_cpufreq = {
2245 .flags = CPUFREQ_CONST_LOOPS,
2246 .verify = intel_cpufreq_verify_policy,
2247 .target = intel_cpufreq_target,
2248 .fast_switch = intel_cpufreq_fast_switch,
2249 .init = intel_cpufreq_cpu_init,
2250 .exit = intel_pstate_cpu_exit,
2251 .stop_cpu = intel_cpufreq_stop_cpu,
2252 .name = "intel_cpufreq",
2253 };
2254
2255 static struct cpufreq_driver *default_driver = &intel_pstate;
2256
2257 static bool pid_in_use(void)
2258 {
2259 return intel_pstate_driver == &intel_pstate &&
2260 pstate_funcs.update_util == intel_pstate_update_util_pid;
2261 }
2262
2263 static void intel_pstate_driver_cleanup(void)
2264 {
2265 unsigned int cpu;
2266
2267 get_online_cpus();
2268 for_each_online_cpu(cpu) {
2269 if (all_cpu_data[cpu]) {
2270 if (intel_pstate_driver == &intel_pstate)
2271 intel_pstate_clear_update_util_hook(cpu);
2272
2273 kfree(all_cpu_data[cpu]);
2274 all_cpu_data[cpu] = NULL;
2275 }
2276 }
2277 put_online_cpus();
2278 intel_pstate_driver = NULL;
2279 }
2280
2281 static int intel_pstate_register_driver(struct cpufreq_driver *driver)
2282 {
2283 int ret;
2284
2285 memset(&global, 0, sizeof(global));
2286 global.max_perf_pct = 100;
2287
2288 intel_pstate_driver = driver;
2289 ret = cpufreq_register_driver(intel_pstate_driver);
2290 if (ret) {
2291 intel_pstate_driver_cleanup();
2292 return ret;
2293 }
2294
2295 global.min_perf_pct = min_perf_pct_min();
2296
2297 if (pid_in_use())
2298 intel_pstate_debug_expose_params();
2299
2300 return 0;
2301 }
2302
2303 static int intel_pstate_unregister_driver(void)
2304 {
2305 if (hwp_active)
2306 return -EBUSY;
2307
2308 if (pid_in_use())
2309 intel_pstate_debug_hide_params();
2310
2311 cpufreq_unregister_driver(intel_pstate_driver);
2312 intel_pstate_driver_cleanup();
2313
2314 return 0;
2315 }
2316
2317 static ssize_t intel_pstate_show_status(char *buf)
2318 {
2319 if (!intel_pstate_driver)
2320 return sprintf(buf, "off\n");
2321
2322 return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
2323 "active" : "passive");
2324 }
2325
2326 static int intel_pstate_update_status(const char *buf, size_t size)
2327 {
2328 int ret;
2329
2330 if (size == 3 && !strncmp(buf, "off", size))
2331 return intel_pstate_driver ?
2332 intel_pstate_unregister_driver() : -EINVAL;
2333
2334 if (size == 6 && !strncmp(buf, "active", size)) {
2335 if (intel_pstate_driver) {
2336 if (intel_pstate_driver == &intel_pstate)
2337 return 0;
2338
2339 ret = intel_pstate_unregister_driver();
2340 if (ret)
2341 return ret;
2342 }
2343
2344 return intel_pstate_register_driver(&intel_pstate);
2345 }
2346
2347 if (size == 7 && !strncmp(buf, "passive", size)) {
2348 if (intel_pstate_driver) {
2349 if (intel_pstate_driver == &intel_cpufreq)
2350 return 0;
2351
2352 ret = intel_pstate_unregister_driver();
2353 if (ret)
2354 return ret;
2355 }
2356
2357 return intel_pstate_register_driver(&intel_cpufreq);
2358 }
2359
2360 return -EINVAL;
2361 }
2362
2363 static int no_load __initdata;
2364 static int no_hwp __initdata;
2365 static int hwp_only __initdata;
2366 static unsigned int force_load __initdata;
2367
2368 static int __init intel_pstate_msrs_not_valid(void)
2369 {
2370 if (!pstate_funcs.get_max() ||
2371 !pstate_funcs.get_min() ||
2372 !pstate_funcs.get_turbo())
2373 return -ENODEV;
2374
2375 return 0;
2376 }
2377
2378 #ifdef CONFIG_ACPI
2379 static void intel_pstate_use_acpi_profile(void)
2380 {
2381 switch (acpi_gbl_FADT.preferred_profile) {
2382 case PM_MOBILE:
2383 case PM_TABLET:
2384 case PM_APPLIANCE_PC:
2385 case PM_DESKTOP:
2386 case PM_WORKSTATION:
2387 pstate_funcs.update_util = intel_pstate_update_util;
2388 }
2389 }
2390 #else
2391 static void intel_pstate_use_acpi_profile(void)
2392 {
2393 }
2394 #endif
2395
2396 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2397 {
2398 pstate_funcs.get_max = funcs->get_max;
2399 pstate_funcs.get_max_physical = funcs->get_max_physical;
2400 pstate_funcs.get_min = funcs->get_min;
2401 pstate_funcs.get_turbo = funcs->get_turbo;
2402 pstate_funcs.get_scaling = funcs->get_scaling;
2403 pstate_funcs.get_val = funcs->get_val;
2404 pstate_funcs.get_vid = funcs->get_vid;
2405 pstate_funcs.update_util = funcs->update_util;
2406
2407 intel_pstate_use_acpi_profile();
2408 }
2409
2410 #ifdef CONFIG_ACPI
2411
2412 static bool __init intel_pstate_no_acpi_pss(void)
2413 {
2414 int i;
2415
2416 for_each_possible_cpu(i) {
2417 acpi_status status;
2418 union acpi_object *pss;
2419 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
2420 struct acpi_processor *pr = per_cpu(processors, i);
2421
2422 if (!pr)
2423 continue;
2424
2425 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
2426 if (ACPI_FAILURE(status))
2427 continue;
2428
2429 pss = buffer.pointer;
2430 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
2431 kfree(pss);
2432 return false;
2433 }
2434
2435 kfree(pss);
2436 }
2437
2438 return true;
2439 }
2440
2441 static bool __init intel_pstate_has_acpi_ppc(void)
2442 {
2443 int i;
2444
2445 for_each_possible_cpu(i) {
2446 struct acpi_processor *pr = per_cpu(processors, i);
2447
2448 if (!pr)
2449 continue;
2450 if (acpi_has_method(pr->handle, "_PPC"))
2451 return true;
2452 }
2453 return false;
2454 }
2455
2456 enum {
2457 PSS,
2458 PPC,
2459 };
2460
2461 struct hw_vendor_info {
2462 u16 valid;
2463 char oem_id[ACPI_OEM_ID_SIZE];
2464 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
2465 int oem_pwr_table;
2466 };
2467
2468 /* Hardware vendor-specific info that has its own power management modes */
2469 static struct hw_vendor_info vendor_info[] __initdata = {
2470 {1, "HP ", "ProLiant", PSS},
2471 {1, "ORACLE", "X4-2 ", PPC},
2472 {1, "ORACLE", "X4-2L ", PPC},
2473 {1, "ORACLE", "X4-2B ", PPC},
2474 {1, "ORACLE", "X3-2 ", PPC},
2475 {1, "ORACLE", "X3-2L ", PPC},
2476 {1, "ORACLE", "X3-2B ", PPC},
2477 {1, "ORACLE", "X4470M2 ", PPC},
2478 {1, "ORACLE", "X4270M3 ", PPC},
2479 {1, "ORACLE", "X4270M2 ", PPC},
2480 {1, "ORACLE", "X4170M2 ", PPC},
2481 {1, "ORACLE", "X4170 M3", PPC},
2482 {1, "ORACLE", "X4275 M3", PPC},
2483 {1, "ORACLE", "X6-2 ", PPC},
2484 {1, "ORACLE", "Sudbury ", PPC},
2485 {0, "", ""},
2486 };
2487
2488 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2489 {
2490 struct acpi_table_header hdr;
2491 struct hw_vendor_info *v_info;
2492 const struct x86_cpu_id *id;
2493 u64 misc_pwr;
2494
2495 id = x86_match_cpu(intel_pstate_cpu_oob_ids);
2496 if (id) {
2497 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2498 if ( misc_pwr & (1 << 8))
2499 return true;
2500 }
2501
2502 if (acpi_disabled ||
2503 ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
2504 return false;
2505
2506 for (v_info = vendor_info; v_info->valid; v_info++) {
2507 if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
2508 !strncmp(hdr.oem_table_id, v_info->oem_table_id,
2509 ACPI_OEM_TABLE_ID_SIZE))
2510 switch (v_info->oem_pwr_table) {
2511 case PSS:
2512 return intel_pstate_no_acpi_pss();
2513 case PPC:
2514 return intel_pstate_has_acpi_ppc() &&
2515 (!force_load);
2516 }
2517 }
2518
2519 return false;
2520 }
2521
2522 static void intel_pstate_request_control_from_smm(void)
2523 {
2524 /*
2525 * It may be unsafe to request P-states control from SMM if _PPC support
2526 * has not been enabled.
2527 */
2528 if (acpi_ppc)
2529 acpi_processor_pstate_control();
2530 }
2531 #else /* CONFIG_ACPI not enabled */
2532 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2533 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2534 static inline void intel_pstate_request_control_from_smm(void) {}
2535 #endif /* CONFIG_ACPI */
2536
2537 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2538 { X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
2539 {}
2540 };
2541
2542 static int __init intel_pstate_init(void)
2543 {
2544 int rc;
2545
2546 if (no_load)
2547 return -ENODEV;
2548
2549 if (x86_match_cpu(hwp_support_ids)) {
2550 copy_cpu_funcs(&core_funcs);
2551 if (no_hwp) {
2552 pstate_funcs.update_util = intel_pstate_update_util;
2553 } else {
2554 hwp_active++;
2555 intel_pstate.attr = hwp_cpufreq_attrs;
2556 goto hwp_cpu_matched;
2557 }
2558 } else {
2559 const struct x86_cpu_id *id;
2560
2561 id = x86_match_cpu(intel_pstate_cpu_ids);
2562 if (!id)
2563 return -ENODEV;
2564
2565 copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
2566 }
2567
2568 if (intel_pstate_msrs_not_valid())
2569 return -ENODEV;
2570
2571 hwp_cpu_matched:
2572 /*
2573 * The Intel pstate driver will be ignored if the platform
2574 * firmware has its own power management modes.
2575 */
2576 if (intel_pstate_platform_pwr_mgmt_exists())
2577 return -ENODEV;
2578
2579 if (!hwp_active && hwp_only)
2580 return -ENOTSUPP;
2581
2582 pr_info("Intel P-state driver initializing\n");
2583
2584 all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
2585 if (!all_cpu_data)
2586 return -ENOMEM;
2587
2588 intel_pstate_request_control_from_smm();
2589
2590 intel_pstate_sysfs_expose_params();
2591
2592 mutex_lock(&intel_pstate_driver_lock);
2593 rc = intel_pstate_register_driver(default_driver);
2594 mutex_unlock(&intel_pstate_driver_lock);
2595 if (rc)
2596 return rc;
2597
2598 if (hwp_active)
2599 pr_info("HWP enabled\n");
2600
2601 return 0;
2602 }
2603 device_initcall(intel_pstate_init);
2604
2605 static int __init intel_pstate_setup(char *str)
2606 {
2607 if (!str)
2608 return -EINVAL;
2609
2610 if (!strcmp(str, "disable")) {
2611 no_load = 1;
2612 } else if (!strcmp(str, "passive")) {
2613 pr_info("Passive mode enabled\n");
2614 default_driver = &intel_cpufreq;
2615 no_hwp = 1;
2616 }
2617 if (!strcmp(str, "no_hwp")) {
2618 pr_info("HWP disabled\n");
2619 no_hwp = 1;
2620 }
2621 if (!strcmp(str, "force"))
2622 force_load = 1;
2623 if (!strcmp(str, "hwp_only"))
2624 hwp_only = 1;
2625 if (!strcmp(str, "per_cpu_perf_limits"))
2626 per_cpu_limits = true;
2627
2628 #ifdef CONFIG_ACPI
2629 if (!strcmp(str, "support_acpi_ppc"))
2630 acpi_ppc = true;
2631 #endif
2632
2633 return 0;
2634 }
2635 early_param("intel_pstate", intel_pstate_setup);
2636
2637 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
2638 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
2639 MODULE_LICENSE("GPL");