]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/cpufreq/intel_pstate.c
cpufreq: intel_pstate: round up min_perf limits
[mirror_ubuntu-bionic-kernel.git] / drivers / cpufreq / intel_pstate.c
1 /*
2 * intel_pstate.c: Native P state management for Intel processors
3 *
4 * (C) Copyright 2012 Intel Corporation
5 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
10 * of the License.
11 */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/kernel.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/module.h>
18 #include <linux/ktime.h>
19 #include <linux/hrtimer.h>
20 #include <linux/tick.h>
21 #include <linux/slab.h>
22 #include <linux/sched.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25 #include <linux/cpufreq.h>
26 #include <linux/sysfs.h>
27 #include <linux/types.h>
28 #include <linux/fs.h>
29 #include <linux/debugfs.h>
30 #include <linux/acpi.h>
31 #include <linux/vmalloc.h>
32 #include <trace/events/power.h>
33
34 #include <asm/div64.h>
35 #include <asm/msr.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/cpufeature.h>
38 #include <asm/intel-family.h>
39
40 #define INTEL_CPUFREQ_TRANSITION_LATENCY 20000
41
42 #define ATOM_RATIOS 0x66a
43 #define ATOM_VIDS 0x66b
44 #define ATOM_TURBO_RATIOS 0x66c
45 #define ATOM_TURBO_VIDS 0x66d
46
47 #ifdef CONFIG_ACPI
48 #include <acpi/processor.h>
49 #endif
50
51 #define FRAC_BITS 8
52 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
53 #define fp_toint(X) ((X) >> FRAC_BITS)
54
55 #define EXT_BITS 6
56 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
57
58 static inline int32_t mul_fp(int32_t x, int32_t y)
59 {
60 return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
61 }
62
63 static inline int32_t div_fp(s64 x, s64 y)
64 {
65 return div64_s64((int64_t)x << FRAC_BITS, y);
66 }
67
68 static inline int ceiling_fp(int32_t x)
69 {
70 int mask, ret;
71
72 ret = fp_toint(x);
73 mask = (1 << FRAC_BITS) - 1;
74 if (x & mask)
75 ret += 1;
76 return ret;
77 }
78
79 static inline u64 mul_ext_fp(u64 x, u64 y)
80 {
81 return (x * y) >> EXT_FRAC_BITS;
82 }
83
84 static inline u64 div_ext_fp(u64 x, u64 y)
85 {
86 return div64_u64(x << EXT_FRAC_BITS, y);
87 }
88
89 /**
90 * struct sample - Store performance sample
91 * @core_avg_perf: Ratio of APERF/MPERF which is the actual average
92 * performance during last sample period
93 * @busy_scaled: Scaled busy value which is used to calculate next
94 * P state. This can be different than core_avg_perf
95 * to account for cpu idle period
96 * @aperf: Difference of actual performance frequency clock count
97 * read from APERF MSR between last and current sample
98 * @mperf: Difference of maximum performance frequency clock count
99 * read from MPERF MSR between last and current sample
100 * @tsc: Difference of time stamp counter between last and
101 * current sample
102 * @time: Current time from scheduler
103 *
104 * This structure is used in the cpudata structure to store performance sample
105 * data for choosing next P State.
106 */
107 struct sample {
108 int32_t core_avg_perf;
109 int32_t busy_scaled;
110 u64 aperf;
111 u64 mperf;
112 u64 tsc;
113 u64 time;
114 };
115
116 /**
117 * struct pstate_data - Store P state data
118 * @current_pstate: Current requested P state
119 * @min_pstate: Min P state possible for this platform
120 * @max_pstate: Max P state possible for this platform
121 * @max_pstate_physical:This is physical Max P state for a processor
122 * This can be higher than the max_pstate which can
123 * be limited by platform thermal design power limits
124 * @scaling: Scaling factor to convert frequency to cpufreq
125 * frequency units
126 * @turbo_pstate: Max Turbo P state possible for this platform
127 * @max_freq: @max_pstate frequency in cpufreq units
128 * @turbo_freq: @turbo_pstate frequency in cpufreq units
129 *
130 * Stores the per cpu model P state limits and current P state.
131 */
132 struct pstate_data {
133 int current_pstate;
134 int min_pstate;
135 int max_pstate;
136 int max_pstate_physical;
137 int scaling;
138 int turbo_pstate;
139 unsigned int max_freq;
140 unsigned int turbo_freq;
141 };
142
143 /**
144 * struct vid_data - Stores voltage information data
145 * @min: VID data for this platform corresponding to
146 * the lowest P state
147 * @max: VID data corresponding to the highest P State.
148 * @turbo: VID data for turbo P state
149 * @ratio: Ratio of (vid max - vid min) /
150 * (max P state - Min P State)
151 *
152 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
153 * This data is used in Atom platforms, where in addition to target P state,
154 * the voltage data needs to be specified to select next P State.
155 */
156 struct vid_data {
157 int min;
158 int max;
159 int turbo;
160 int32_t ratio;
161 };
162
163 /**
164 * struct _pid - Stores PID data
165 * @setpoint: Target set point for busyness or performance
166 * @integral: Storage for accumulated error values
167 * @p_gain: PID proportional gain
168 * @i_gain: PID integral gain
169 * @d_gain: PID derivative gain
170 * @deadband: PID deadband
171 * @last_err: Last error storage for integral part of PID calculation
172 *
173 * Stores PID coefficients and last error for PID controller.
174 */
175 struct _pid {
176 int setpoint;
177 int32_t integral;
178 int32_t p_gain;
179 int32_t i_gain;
180 int32_t d_gain;
181 int deadband;
182 int32_t last_err;
183 };
184
185 /**
186 * struct perf_limits - Store user and policy limits
187 * @no_turbo: User requested turbo state from intel_pstate sysfs
188 * @turbo_disabled: Platform turbo status either from msr
189 * MSR_IA32_MISC_ENABLE or when maximum available pstate
190 * matches the maximum turbo pstate
191 * @max_perf_pct: Effective maximum performance limit in percentage, this
192 * is minimum of either limits enforced by cpufreq policy
193 * or limits from user set limits via intel_pstate sysfs
194 * @min_perf_pct: Effective minimum performance limit in percentage, this
195 * is maximum of either limits enforced by cpufreq policy
196 * or limits from user set limits via intel_pstate sysfs
197 * @max_perf: This is a scaled value between 0 to 255 for max_perf_pct
198 * This value is used to limit max pstate
199 * @min_perf: This is a scaled value between 0 to 255 for min_perf_pct
200 * This value is used to limit min pstate
201 * @max_policy_pct: The maximum performance in percentage enforced by
202 * cpufreq setpolicy interface
203 * @max_sysfs_pct: The maximum performance in percentage enforced by
204 * intel pstate sysfs interface, unused when per cpu
205 * controls are enforced
206 * @min_policy_pct: The minimum performance in percentage enforced by
207 * cpufreq setpolicy interface
208 * @min_sysfs_pct: The minimum performance in percentage enforced by
209 * intel pstate sysfs interface, unused when per cpu
210 * controls are enforced
211 *
212 * Storage for user and policy defined limits.
213 */
214 struct perf_limits {
215 int no_turbo;
216 int turbo_disabled;
217 int max_perf_pct;
218 int min_perf_pct;
219 int32_t max_perf;
220 int32_t min_perf;
221 int max_policy_pct;
222 int max_sysfs_pct;
223 int min_policy_pct;
224 int min_sysfs_pct;
225 };
226
227 /**
228 * struct cpudata - Per CPU instance data storage
229 * @cpu: CPU number for this instance data
230 * @policy: CPUFreq policy value
231 * @update_util: CPUFreq utility callback information
232 * @update_util_set: CPUFreq utility callback is set
233 * @iowait_boost: iowait-related boost fraction
234 * @last_update: Time of the last update.
235 * @pstate: Stores P state limits for this CPU
236 * @vid: Stores VID limits for this CPU
237 * @pid: Stores PID parameters for this CPU
238 * @last_sample_time: Last Sample time
239 * @prev_aperf: Last APERF value read from APERF MSR
240 * @prev_mperf: Last MPERF value read from MPERF MSR
241 * @prev_tsc: Last timestamp counter (TSC) value
242 * @prev_cummulative_iowait: IO Wait time difference from last and
243 * current sample
244 * @sample: Storage for storing last Sample data
245 * @perf_limits: Pointer to perf_limit unique to this CPU
246 * Not all field in the structure are applicable
247 * when per cpu controls are enforced
248 * @acpi_perf_data: Stores ACPI perf information read from _PSS
249 * @valid_pss_table: Set to true for valid ACPI _PSS entries found
250 *
251 * This structure stores per CPU instance data for all CPUs.
252 */
253 struct cpudata {
254 int cpu;
255
256 unsigned int policy;
257 struct update_util_data update_util;
258 bool update_util_set;
259
260 struct pstate_data pstate;
261 struct vid_data vid;
262 struct _pid pid;
263
264 u64 last_update;
265 u64 last_sample_time;
266 u64 prev_aperf;
267 u64 prev_mperf;
268 u64 prev_tsc;
269 u64 prev_cummulative_iowait;
270 struct sample sample;
271 struct perf_limits *perf_limits;
272 #ifdef CONFIG_ACPI
273 struct acpi_processor_performance acpi_perf_data;
274 bool valid_pss_table;
275 #endif
276 unsigned int iowait_boost;
277 };
278
279 static struct cpudata **all_cpu_data;
280
281 /**
282 * struct pstate_adjust_policy - Stores static PID configuration data
283 * @sample_rate_ms: PID calculation sample rate in ms
284 * @sample_rate_ns: Sample rate calculation in ns
285 * @deadband: PID deadband
286 * @setpoint: PID Setpoint
287 * @p_gain_pct: PID proportional gain
288 * @i_gain_pct: PID integral gain
289 * @d_gain_pct: PID derivative gain
290 *
291 * Stores per CPU model static PID configuration data.
292 */
293 struct pstate_adjust_policy {
294 int sample_rate_ms;
295 s64 sample_rate_ns;
296 int deadband;
297 int setpoint;
298 int p_gain_pct;
299 int d_gain_pct;
300 int i_gain_pct;
301 };
302
303 /**
304 * struct pstate_funcs - Per CPU model specific callbacks
305 * @get_max: Callback to get maximum non turbo effective P state
306 * @get_max_physical: Callback to get maximum non turbo physical P state
307 * @get_min: Callback to get minimum P state
308 * @get_turbo: Callback to get turbo P state
309 * @get_scaling: Callback to get frequency scaling factor
310 * @get_val: Callback to convert P state to actual MSR write value
311 * @get_vid: Callback to get VID data for Atom platforms
312 * @get_target_pstate: Callback to a function to calculate next P state to use
313 *
314 * Core and Atom CPU models have different way to get P State limits. This
315 * structure is used to store those callbacks.
316 */
317 struct pstate_funcs {
318 int (*get_max)(void);
319 int (*get_max_physical)(void);
320 int (*get_min)(void);
321 int (*get_turbo)(void);
322 int (*get_scaling)(void);
323 u64 (*get_val)(struct cpudata*, int pstate);
324 void (*get_vid)(struct cpudata *);
325 int32_t (*get_target_pstate)(struct cpudata *);
326 };
327
328 /**
329 * struct cpu_defaults- Per CPU model default config data
330 * @pid_policy: PID config data
331 * @funcs: Callback function data
332 */
333 struct cpu_defaults {
334 struct pstate_adjust_policy pid_policy;
335 struct pstate_funcs funcs;
336 };
337
338 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
339 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
340
341 static struct pstate_adjust_policy pid_params __read_mostly;
342 static struct pstate_funcs pstate_funcs __read_mostly;
343 static int hwp_active __read_mostly;
344 static bool per_cpu_limits __read_mostly;
345
346 #ifdef CONFIG_ACPI
347 static bool acpi_ppc;
348 #endif
349
350 static struct perf_limits performance_limits = {
351 .no_turbo = 0,
352 .turbo_disabled = 0,
353 .max_perf_pct = 100,
354 .max_perf = int_tofp(1),
355 .min_perf_pct = 100,
356 .min_perf = int_tofp(1),
357 .max_policy_pct = 100,
358 .max_sysfs_pct = 100,
359 .min_policy_pct = 0,
360 .min_sysfs_pct = 0,
361 };
362
363 static struct perf_limits powersave_limits = {
364 .no_turbo = 0,
365 .turbo_disabled = 0,
366 .max_perf_pct = 100,
367 .max_perf = int_tofp(1),
368 .min_perf_pct = 0,
369 .min_perf = 0,
370 .max_policy_pct = 100,
371 .max_sysfs_pct = 100,
372 .min_policy_pct = 0,
373 .min_sysfs_pct = 0,
374 };
375
376 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
377 static struct perf_limits *limits = &performance_limits;
378 #else
379 static struct perf_limits *limits = &powersave_limits;
380 #endif
381
382 static DEFINE_MUTEX(intel_pstate_limits_lock);
383
384 #ifdef CONFIG_ACPI
385
386 static bool intel_pstate_get_ppc_enable_status(void)
387 {
388 if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
389 acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
390 return true;
391
392 return acpi_ppc;
393 }
394
395 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
396 {
397 struct cpudata *cpu;
398 int ret;
399 int i;
400
401 if (hwp_active)
402 return;
403
404 if (!intel_pstate_get_ppc_enable_status())
405 return;
406
407 cpu = all_cpu_data[policy->cpu];
408
409 ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
410 policy->cpu);
411 if (ret)
412 return;
413
414 /*
415 * Check if the control value in _PSS is for PERF_CTL MSR, which should
416 * guarantee that the states returned by it map to the states in our
417 * list directly.
418 */
419 if (cpu->acpi_perf_data.control_register.space_id !=
420 ACPI_ADR_SPACE_FIXED_HARDWARE)
421 goto err;
422
423 /*
424 * If there is only one entry _PSS, simply ignore _PSS and continue as
425 * usual without taking _PSS into account
426 */
427 if (cpu->acpi_perf_data.state_count < 2)
428 goto err;
429
430 pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
431 for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
432 pr_debug(" %cP%d: %u MHz, %u mW, 0x%x\n",
433 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
434 (u32) cpu->acpi_perf_data.states[i].core_frequency,
435 (u32) cpu->acpi_perf_data.states[i].power,
436 (u32) cpu->acpi_perf_data.states[i].control);
437 }
438
439 /*
440 * The _PSS table doesn't contain whole turbo frequency range.
441 * This just contains +1 MHZ above the max non turbo frequency,
442 * with control value corresponding to max turbo ratio. But
443 * when cpufreq set policy is called, it will call with this
444 * max frequency, which will cause a reduced performance as
445 * this driver uses real max turbo frequency as the max
446 * frequency. So correct this frequency in _PSS table to
447 * correct max turbo frequency based on the turbo state.
448 * Also need to convert to MHz as _PSS freq is in MHz.
449 */
450 if (!limits->turbo_disabled)
451 cpu->acpi_perf_data.states[0].core_frequency =
452 policy->cpuinfo.max_freq / 1000;
453 cpu->valid_pss_table = true;
454 pr_debug("_PPC limits will be enforced\n");
455
456 return;
457
458 err:
459 cpu->valid_pss_table = false;
460 acpi_processor_unregister_performance(policy->cpu);
461 }
462
463 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
464 {
465 struct cpudata *cpu;
466
467 cpu = all_cpu_data[policy->cpu];
468 if (!cpu->valid_pss_table)
469 return;
470
471 acpi_processor_unregister_performance(policy->cpu);
472 }
473
474 #else
475 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
476 {
477 }
478
479 static inline int intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
480 {
481 }
482 #endif
483
484 static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
485 int deadband, int integral) {
486 pid->setpoint = int_tofp(setpoint);
487 pid->deadband = int_tofp(deadband);
488 pid->integral = int_tofp(integral);
489 pid->last_err = int_tofp(setpoint) - int_tofp(busy);
490 }
491
492 static inline void pid_p_gain_set(struct _pid *pid, int percent)
493 {
494 pid->p_gain = div_fp(percent, 100);
495 }
496
497 static inline void pid_i_gain_set(struct _pid *pid, int percent)
498 {
499 pid->i_gain = div_fp(percent, 100);
500 }
501
502 static inline void pid_d_gain_set(struct _pid *pid, int percent)
503 {
504 pid->d_gain = div_fp(percent, 100);
505 }
506
507 static signed int pid_calc(struct _pid *pid, int32_t busy)
508 {
509 signed int result;
510 int32_t pterm, dterm, fp_error;
511 int32_t integral_limit;
512
513 fp_error = pid->setpoint - busy;
514
515 if (abs(fp_error) <= pid->deadband)
516 return 0;
517
518 pterm = mul_fp(pid->p_gain, fp_error);
519
520 pid->integral += fp_error;
521
522 /*
523 * We limit the integral here so that it will never
524 * get higher than 30. This prevents it from becoming
525 * too large an input over long periods of time and allows
526 * it to get factored out sooner.
527 *
528 * The value of 30 was chosen through experimentation.
529 */
530 integral_limit = int_tofp(30);
531 if (pid->integral > integral_limit)
532 pid->integral = integral_limit;
533 if (pid->integral < -integral_limit)
534 pid->integral = -integral_limit;
535
536 dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
537 pid->last_err = fp_error;
538
539 result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
540 result = result + (1 << (FRAC_BITS-1));
541 return (signed int)fp_toint(result);
542 }
543
544 static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
545 {
546 pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
547 pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
548 pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
549
550 pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
551 }
552
553 static inline void intel_pstate_reset_all_pid(void)
554 {
555 unsigned int cpu;
556
557 for_each_online_cpu(cpu) {
558 if (all_cpu_data[cpu])
559 intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
560 }
561 }
562
563 static inline void update_turbo_state(void)
564 {
565 u64 misc_en;
566 struct cpudata *cpu;
567
568 cpu = all_cpu_data[0];
569 rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
570 limits->turbo_disabled =
571 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
572 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
573 }
574
575 static void intel_pstate_hwp_set(const struct cpumask *cpumask)
576 {
577 int min, hw_min, max, hw_max, cpu, range, adj_range;
578 struct perf_limits *perf_limits = limits;
579 u64 value, cap;
580
581 for_each_cpu(cpu, cpumask) {
582 int max_perf_pct, min_perf_pct;
583
584 if (per_cpu_limits)
585 perf_limits = all_cpu_data[cpu]->perf_limits;
586
587 rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
588 hw_min = HWP_LOWEST_PERF(cap);
589 hw_max = HWP_HIGHEST_PERF(cap);
590 range = hw_max - hw_min;
591
592 max_perf_pct = perf_limits->max_perf_pct;
593 min_perf_pct = perf_limits->min_perf_pct;
594
595 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
596 adj_range = min_perf_pct * range / 100;
597 min = hw_min + adj_range;
598 value &= ~HWP_MIN_PERF(~0L);
599 value |= HWP_MIN_PERF(min);
600
601 adj_range = max_perf_pct * range / 100;
602 max = hw_min + adj_range;
603 if (limits->no_turbo) {
604 hw_max = HWP_GUARANTEED_PERF(cap);
605 if (hw_max < max)
606 max = hw_max;
607 }
608
609 value &= ~HWP_MAX_PERF(~0L);
610 value |= HWP_MAX_PERF(max);
611 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
612 }
613 }
614
615 static int intel_pstate_hwp_set_policy(struct cpufreq_policy *policy)
616 {
617 if (hwp_active)
618 intel_pstate_hwp_set(policy->cpus);
619
620 return 0;
621 }
622
623 static void intel_pstate_hwp_set_online_cpus(void)
624 {
625 get_online_cpus();
626 intel_pstate_hwp_set(cpu_online_mask);
627 put_online_cpus();
628 }
629
630 /************************** debugfs begin ************************/
631 static int pid_param_set(void *data, u64 val)
632 {
633 *(u32 *)data = val;
634 intel_pstate_reset_all_pid();
635 return 0;
636 }
637
638 static int pid_param_get(void *data, u64 *val)
639 {
640 *val = *(u32 *)data;
641 return 0;
642 }
643 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
644
645 struct pid_param {
646 char *name;
647 void *value;
648 };
649
650 static struct pid_param pid_files[] = {
651 {"sample_rate_ms", &pid_params.sample_rate_ms},
652 {"d_gain_pct", &pid_params.d_gain_pct},
653 {"i_gain_pct", &pid_params.i_gain_pct},
654 {"deadband", &pid_params.deadband},
655 {"setpoint", &pid_params.setpoint},
656 {"p_gain_pct", &pid_params.p_gain_pct},
657 {NULL, NULL}
658 };
659
660 static void __init intel_pstate_debug_expose_params(void)
661 {
662 struct dentry *debugfs_parent;
663 int i = 0;
664
665 if (hwp_active ||
666 pstate_funcs.get_target_pstate == get_target_pstate_use_cpu_load)
667 return;
668
669 debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
670 if (IS_ERR_OR_NULL(debugfs_parent))
671 return;
672 while (pid_files[i].name) {
673 debugfs_create_file(pid_files[i].name, 0660,
674 debugfs_parent, pid_files[i].value,
675 &fops_pid_param);
676 i++;
677 }
678 }
679
680 /************************** debugfs end ************************/
681
682 /************************** sysfs begin ************************/
683 #define show_one(file_name, object) \
684 static ssize_t show_##file_name \
685 (struct kobject *kobj, struct attribute *attr, char *buf) \
686 { \
687 return sprintf(buf, "%u\n", limits->object); \
688 }
689
690 static ssize_t show_turbo_pct(struct kobject *kobj,
691 struct attribute *attr, char *buf)
692 {
693 struct cpudata *cpu;
694 int total, no_turbo, turbo_pct;
695 uint32_t turbo_fp;
696
697 cpu = all_cpu_data[0];
698
699 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
700 no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
701 turbo_fp = div_fp(no_turbo, total);
702 turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
703 return sprintf(buf, "%u\n", turbo_pct);
704 }
705
706 static ssize_t show_num_pstates(struct kobject *kobj,
707 struct attribute *attr, char *buf)
708 {
709 struct cpudata *cpu;
710 int total;
711
712 cpu = all_cpu_data[0];
713 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
714 return sprintf(buf, "%u\n", total);
715 }
716
717 static ssize_t show_no_turbo(struct kobject *kobj,
718 struct attribute *attr, char *buf)
719 {
720 ssize_t ret;
721
722 update_turbo_state();
723 if (limits->turbo_disabled)
724 ret = sprintf(buf, "%u\n", limits->turbo_disabled);
725 else
726 ret = sprintf(buf, "%u\n", limits->no_turbo);
727
728 return ret;
729 }
730
731 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
732 const char *buf, size_t count)
733 {
734 unsigned int input;
735 int ret;
736
737 ret = sscanf(buf, "%u", &input);
738 if (ret != 1)
739 return -EINVAL;
740
741 mutex_lock(&intel_pstate_limits_lock);
742
743 update_turbo_state();
744 if (limits->turbo_disabled) {
745 pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
746 mutex_unlock(&intel_pstate_limits_lock);
747 return -EPERM;
748 }
749
750 limits->no_turbo = clamp_t(int, input, 0, 1);
751
752 mutex_unlock(&intel_pstate_limits_lock);
753
754 if (hwp_active)
755 intel_pstate_hwp_set_online_cpus();
756
757 return count;
758 }
759
760 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
761 const char *buf, size_t count)
762 {
763 unsigned int input;
764 int ret;
765
766 ret = sscanf(buf, "%u", &input);
767 if (ret != 1)
768 return -EINVAL;
769
770 mutex_lock(&intel_pstate_limits_lock);
771
772 limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
773 limits->max_perf_pct = min(limits->max_policy_pct,
774 limits->max_sysfs_pct);
775 limits->max_perf_pct = max(limits->min_policy_pct,
776 limits->max_perf_pct);
777 limits->max_perf_pct = max(limits->min_perf_pct,
778 limits->max_perf_pct);
779 limits->max_perf = div_fp(limits->max_perf_pct, 100);
780
781 mutex_unlock(&intel_pstate_limits_lock);
782
783 if (hwp_active)
784 intel_pstate_hwp_set_online_cpus();
785 return count;
786 }
787
788 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
789 const char *buf, size_t count)
790 {
791 unsigned int input;
792 int ret;
793
794 ret = sscanf(buf, "%u", &input);
795 if (ret != 1)
796 return -EINVAL;
797
798 mutex_lock(&intel_pstate_limits_lock);
799
800 limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
801 limits->min_perf_pct = max(limits->min_policy_pct,
802 limits->min_sysfs_pct);
803 limits->min_perf_pct = min(limits->max_policy_pct,
804 limits->min_perf_pct);
805 limits->min_perf_pct = min(limits->max_perf_pct,
806 limits->min_perf_pct);
807 limits->min_perf = div_fp(limits->min_perf_pct, 100);
808
809 mutex_unlock(&intel_pstate_limits_lock);
810
811 if (hwp_active)
812 intel_pstate_hwp_set_online_cpus();
813 return count;
814 }
815
816 show_one(max_perf_pct, max_perf_pct);
817 show_one(min_perf_pct, min_perf_pct);
818
819 define_one_global_rw(no_turbo);
820 define_one_global_rw(max_perf_pct);
821 define_one_global_rw(min_perf_pct);
822 define_one_global_ro(turbo_pct);
823 define_one_global_ro(num_pstates);
824
825 static struct attribute *intel_pstate_attributes[] = {
826 &no_turbo.attr,
827 &turbo_pct.attr,
828 &num_pstates.attr,
829 NULL
830 };
831
832 static struct attribute_group intel_pstate_attr_group = {
833 .attrs = intel_pstate_attributes,
834 };
835
836 static void __init intel_pstate_sysfs_expose_params(void)
837 {
838 struct kobject *intel_pstate_kobject;
839 int rc;
840
841 intel_pstate_kobject = kobject_create_and_add("intel_pstate",
842 &cpu_subsys.dev_root->kobj);
843 if (WARN_ON(!intel_pstate_kobject))
844 return;
845
846 rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
847 if (WARN_ON(rc))
848 return;
849
850 /*
851 * If per cpu limits are enforced there are no global limits, so
852 * return without creating max/min_perf_pct attributes
853 */
854 if (per_cpu_limits)
855 return;
856
857 rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
858 WARN_ON(rc);
859
860 rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
861 WARN_ON(rc);
862
863 }
864 /************************** sysfs end ************************/
865
866 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
867 {
868 /* First disable HWP notification interrupt as we don't process them */
869 if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
870 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
871
872 wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
873 }
874
875 static int atom_get_min_pstate(void)
876 {
877 u64 value;
878
879 rdmsrl(ATOM_RATIOS, value);
880 return (value >> 8) & 0x7F;
881 }
882
883 static int atom_get_max_pstate(void)
884 {
885 u64 value;
886
887 rdmsrl(ATOM_RATIOS, value);
888 return (value >> 16) & 0x7F;
889 }
890
891 static int atom_get_turbo_pstate(void)
892 {
893 u64 value;
894
895 rdmsrl(ATOM_TURBO_RATIOS, value);
896 return value & 0x7F;
897 }
898
899 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
900 {
901 u64 val;
902 int32_t vid_fp;
903 u32 vid;
904
905 val = (u64)pstate << 8;
906 if (limits->no_turbo && !limits->turbo_disabled)
907 val |= (u64)1 << 32;
908
909 vid_fp = cpudata->vid.min + mul_fp(
910 int_tofp(pstate - cpudata->pstate.min_pstate),
911 cpudata->vid.ratio);
912
913 vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
914 vid = ceiling_fp(vid_fp);
915
916 if (pstate > cpudata->pstate.max_pstate)
917 vid = cpudata->vid.turbo;
918
919 return val | vid;
920 }
921
922 static int silvermont_get_scaling(void)
923 {
924 u64 value;
925 int i;
926 /* Defined in Table 35-6 from SDM (Sept 2015) */
927 static int silvermont_freq_table[] = {
928 83300, 100000, 133300, 116700, 80000};
929
930 rdmsrl(MSR_FSB_FREQ, value);
931 i = value & 0x7;
932 WARN_ON(i > 4);
933
934 return silvermont_freq_table[i];
935 }
936
937 static int airmont_get_scaling(void)
938 {
939 u64 value;
940 int i;
941 /* Defined in Table 35-10 from SDM (Sept 2015) */
942 static int airmont_freq_table[] = {
943 83300, 100000, 133300, 116700, 80000,
944 93300, 90000, 88900, 87500};
945
946 rdmsrl(MSR_FSB_FREQ, value);
947 i = value & 0xF;
948 WARN_ON(i > 8);
949
950 return airmont_freq_table[i];
951 }
952
953 static void atom_get_vid(struct cpudata *cpudata)
954 {
955 u64 value;
956
957 rdmsrl(ATOM_VIDS, value);
958 cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
959 cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
960 cpudata->vid.ratio = div_fp(
961 cpudata->vid.max - cpudata->vid.min,
962 int_tofp(cpudata->pstate.max_pstate -
963 cpudata->pstate.min_pstate));
964
965 rdmsrl(ATOM_TURBO_VIDS, value);
966 cpudata->vid.turbo = value & 0x7f;
967 }
968
969 static int core_get_min_pstate(void)
970 {
971 u64 value;
972
973 rdmsrl(MSR_PLATFORM_INFO, value);
974 return (value >> 40) & 0xFF;
975 }
976
977 static int core_get_max_pstate_physical(void)
978 {
979 u64 value;
980
981 rdmsrl(MSR_PLATFORM_INFO, value);
982 return (value >> 8) & 0xFF;
983 }
984
985 static int core_get_max_pstate(void)
986 {
987 u64 tar;
988 u64 plat_info;
989 int max_pstate;
990 int err;
991
992 rdmsrl(MSR_PLATFORM_INFO, plat_info);
993 max_pstate = (plat_info >> 8) & 0xFF;
994
995 err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
996 if (!err) {
997 /* Do some sanity checking for safety */
998 if (plat_info & 0x600000000) {
999 u64 tdp_ctrl;
1000 u64 tdp_ratio;
1001 int tdp_msr;
1002
1003 err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1004 if (err)
1005 goto skip_tar;
1006
1007 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x3);
1008 err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1009 if (err)
1010 goto skip_tar;
1011
1012 /* For level 1 and 2, bits[23:16] contain the ratio */
1013 if (tdp_ctrl)
1014 tdp_ratio >>= 16;
1015
1016 tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1017 if (tdp_ratio - 1 == tar) {
1018 max_pstate = tar;
1019 pr_debug("max_pstate=TAC %x\n", max_pstate);
1020 } else {
1021 goto skip_tar;
1022 }
1023 }
1024 }
1025
1026 skip_tar:
1027 return max_pstate;
1028 }
1029
1030 static int core_get_turbo_pstate(void)
1031 {
1032 u64 value;
1033 int nont, ret;
1034
1035 rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1036 nont = core_get_max_pstate();
1037 ret = (value) & 255;
1038 if (ret <= nont)
1039 ret = nont;
1040 return ret;
1041 }
1042
1043 static inline int core_get_scaling(void)
1044 {
1045 return 100000;
1046 }
1047
1048 static u64 core_get_val(struct cpudata *cpudata, int pstate)
1049 {
1050 u64 val;
1051
1052 val = (u64)pstate << 8;
1053 if (limits->no_turbo && !limits->turbo_disabled)
1054 val |= (u64)1 << 32;
1055
1056 return val;
1057 }
1058
1059 static int knl_get_turbo_pstate(void)
1060 {
1061 u64 value;
1062 int nont, ret;
1063
1064 rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1065 nont = core_get_max_pstate();
1066 ret = (((value) >> 8) & 0xFF);
1067 if (ret <= nont)
1068 ret = nont;
1069 return ret;
1070 }
1071
1072 static struct cpu_defaults core_params = {
1073 .pid_policy = {
1074 .sample_rate_ms = 10,
1075 .deadband = 0,
1076 .setpoint = 97,
1077 .p_gain_pct = 20,
1078 .d_gain_pct = 0,
1079 .i_gain_pct = 0,
1080 },
1081 .funcs = {
1082 .get_max = core_get_max_pstate,
1083 .get_max_physical = core_get_max_pstate_physical,
1084 .get_min = core_get_min_pstate,
1085 .get_turbo = core_get_turbo_pstate,
1086 .get_scaling = core_get_scaling,
1087 .get_val = core_get_val,
1088 .get_target_pstate = get_target_pstate_use_performance,
1089 },
1090 };
1091
1092 static const struct cpu_defaults silvermont_params = {
1093 .pid_policy = {
1094 .sample_rate_ms = 10,
1095 .deadband = 0,
1096 .setpoint = 60,
1097 .p_gain_pct = 14,
1098 .d_gain_pct = 0,
1099 .i_gain_pct = 4,
1100 },
1101 .funcs = {
1102 .get_max = atom_get_max_pstate,
1103 .get_max_physical = atom_get_max_pstate,
1104 .get_min = atom_get_min_pstate,
1105 .get_turbo = atom_get_turbo_pstate,
1106 .get_val = atom_get_val,
1107 .get_scaling = silvermont_get_scaling,
1108 .get_vid = atom_get_vid,
1109 .get_target_pstate = get_target_pstate_use_cpu_load,
1110 },
1111 };
1112
1113 static const struct cpu_defaults airmont_params = {
1114 .pid_policy = {
1115 .sample_rate_ms = 10,
1116 .deadband = 0,
1117 .setpoint = 60,
1118 .p_gain_pct = 14,
1119 .d_gain_pct = 0,
1120 .i_gain_pct = 4,
1121 },
1122 .funcs = {
1123 .get_max = atom_get_max_pstate,
1124 .get_max_physical = atom_get_max_pstate,
1125 .get_min = atom_get_min_pstate,
1126 .get_turbo = atom_get_turbo_pstate,
1127 .get_val = atom_get_val,
1128 .get_scaling = airmont_get_scaling,
1129 .get_vid = atom_get_vid,
1130 .get_target_pstate = get_target_pstate_use_cpu_load,
1131 },
1132 };
1133
1134 static const struct cpu_defaults knl_params = {
1135 .pid_policy = {
1136 .sample_rate_ms = 10,
1137 .deadband = 0,
1138 .setpoint = 97,
1139 .p_gain_pct = 20,
1140 .d_gain_pct = 0,
1141 .i_gain_pct = 0,
1142 },
1143 .funcs = {
1144 .get_max = core_get_max_pstate,
1145 .get_max_physical = core_get_max_pstate_physical,
1146 .get_min = core_get_min_pstate,
1147 .get_turbo = knl_get_turbo_pstate,
1148 .get_scaling = core_get_scaling,
1149 .get_val = core_get_val,
1150 .get_target_pstate = get_target_pstate_use_performance,
1151 },
1152 };
1153
1154 static const struct cpu_defaults bxt_params = {
1155 .pid_policy = {
1156 .sample_rate_ms = 10,
1157 .deadband = 0,
1158 .setpoint = 60,
1159 .p_gain_pct = 14,
1160 .d_gain_pct = 0,
1161 .i_gain_pct = 4,
1162 },
1163 .funcs = {
1164 .get_max = core_get_max_pstate,
1165 .get_max_physical = core_get_max_pstate_physical,
1166 .get_min = core_get_min_pstate,
1167 .get_turbo = core_get_turbo_pstate,
1168 .get_scaling = core_get_scaling,
1169 .get_val = core_get_val,
1170 .get_target_pstate = get_target_pstate_use_cpu_load,
1171 },
1172 };
1173
1174 static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
1175 {
1176 int max_perf = cpu->pstate.turbo_pstate;
1177 int max_perf_adj;
1178 int min_perf;
1179 struct perf_limits *perf_limits = limits;
1180
1181 if (limits->no_turbo || limits->turbo_disabled)
1182 max_perf = cpu->pstate.max_pstate;
1183
1184 if (per_cpu_limits)
1185 perf_limits = cpu->perf_limits;
1186
1187 /*
1188 * performance can be limited by user through sysfs, by cpufreq
1189 * policy, or by cpu specific default values determined through
1190 * experimentation.
1191 */
1192 max_perf_adj = fp_toint(max_perf * perf_limits->max_perf);
1193 *max = clamp_t(int, max_perf_adj,
1194 cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
1195
1196 min_perf = fp_toint(max_perf * perf_limits->min_perf);
1197 *min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
1198 }
1199
1200 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1201 {
1202 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1203 cpu->pstate.current_pstate = pstate;
1204 /*
1205 * Generally, there is no guarantee that this code will always run on
1206 * the CPU being updated, so force the register update to run on the
1207 * right CPU.
1208 */
1209 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1210 pstate_funcs.get_val(cpu, pstate));
1211 }
1212
1213 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1214 {
1215 intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1216 }
1217
1218 static void intel_pstate_max_within_limits(struct cpudata *cpu)
1219 {
1220 int min_pstate, max_pstate;
1221
1222 update_turbo_state();
1223 intel_pstate_get_min_max(cpu, &min_pstate, &max_pstate);
1224 intel_pstate_set_pstate(cpu, max_pstate);
1225 }
1226
1227 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1228 {
1229 cpu->pstate.min_pstate = pstate_funcs.get_min();
1230 cpu->pstate.max_pstate = pstate_funcs.get_max();
1231 cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1232 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1233 cpu->pstate.scaling = pstate_funcs.get_scaling();
1234 cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1235 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1236
1237 if (pstate_funcs.get_vid)
1238 pstate_funcs.get_vid(cpu);
1239
1240 intel_pstate_set_min_pstate(cpu);
1241 }
1242
1243 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1244 {
1245 struct sample *sample = &cpu->sample;
1246
1247 sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1248 }
1249
1250 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1251 {
1252 u64 aperf, mperf;
1253 unsigned long flags;
1254 u64 tsc;
1255
1256 local_irq_save(flags);
1257 rdmsrl(MSR_IA32_APERF, aperf);
1258 rdmsrl(MSR_IA32_MPERF, mperf);
1259 tsc = rdtsc();
1260 if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1261 local_irq_restore(flags);
1262 return false;
1263 }
1264 local_irq_restore(flags);
1265
1266 cpu->last_sample_time = cpu->sample.time;
1267 cpu->sample.time = time;
1268 cpu->sample.aperf = aperf;
1269 cpu->sample.mperf = mperf;
1270 cpu->sample.tsc = tsc;
1271 cpu->sample.aperf -= cpu->prev_aperf;
1272 cpu->sample.mperf -= cpu->prev_mperf;
1273 cpu->sample.tsc -= cpu->prev_tsc;
1274
1275 cpu->prev_aperf = aperf;
1276 cpu->prev_mperf = mperf;
1277 cpu->prev_tsc = tsc;
1278 /*
1279 * First time this function is invoked in a given cycle, all of the
1280 * previous sample data fields are equal to zero or stale and they must
1281 * be populated with meaningful numbers for things to work, so assume
1282 * that sample.time will always be reset before setting the utilization
1283 * update hook and make the caller skip the sample then.
1284 */
1285 return !!cpu->last_sample_time;
1286 }
1287
1288 static inline int32_t get_avg_frequency(struct cpudata *cpu)
1289 {
1290 return mul_ext_fp(cpu->sample.core_avg_perf,
1291 cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
1292 }
1293
1294 static inline int32_t get_avg_pstate(struct cpudata *cpu)
1295 {
1296 return mul_ext_fp(cpu->pstate.max_pstate_physical,
1297 cpu->sample.core_avg_perf);
1298 }
1299
1300 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
1301 {
1302 struct sample *sample = &cpu->sample;
1303 int32_t busy_frac, boost;
1304 int target, avg_pstate;
1305
1306 busy_frac = div_fp(sample->mperf, sample->tsc);
1307
1308 boost = cpu->iowait_boost;
1309 cpu->iowait_boost >>= 1;
1310
1311 if (busy_frac < boost)
1312 busy_frac = boost;
1313
1314 sample->busy_scaled = busy_frac * 100;
1315
1316 target = limits->no_turbo || limits->turbo_disabled ?
1317 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1318 target += target >> 2;
1319 target = mul_fp(target, busy_frac);
1320 if (target < cpu->pstate.min_pstate)
1321 target = cpu->pstate.min_pstate;
1322
1323 /*
1324 * If the average P-state during the previous cycle was higher than the
1325 * current target, add 50% of the difference to the target to reduce
1326 * possible performance oscillations and offset possible performance
1327 * loss related to moving the workload from one CPU to another within
1328 * a package/module.
1329 */
1330 avg_pstate = get_avg_pstate(cpu);
1331 if (avg_pstate > target)
1332 target += (avg_pstate - target) >> 1;
1333
1334 return target;
1335 }
1336
1337 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
1338 {
1339 int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
1340 u64 duration_ns;
1341
1342 /*
1343 * perf_scaled is the ratio of the average P-state during the last
1344 * sampling period to the P-state requested last time (in percent).
1345 *
1346 * That measures the system's response to the previous P-state
1347 * selection.
1348 */
1349 max_pstate = cpu->pstate.max_pstate_physical;
1350 current_pstate = cpu->pstate.current_pstate;
1351 perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
1352 div_fp(100 * max_pstate, current_pstate));
1353
1354 /*
1355 * Since our utilization update callback will not run unless we are
1356 * in C0, check if the actual elapsed time is significantly greater (3x)
1357 * than our sample interval. If it is, then we were idle for a long
1358 * enough period of time to adjust our performance metric.
1359 */
1360 duration_ns = cpu->sample.time - cpu->last_sample_time;
1361 if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
1362 sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1363 perf_scaled = mul_fp(perf_scaled, sample_ratio);
1364 } else {
1365 sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
1366 if (sample_ratio < int_tofp(1))
1367 perf_scaled = 0;
1368 }
1369
1370 cpu->sample.busy_scaled = perf_scaled;
1371 return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
1372 }
1373
1374 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1375 {
1376 int max_perf, min_perf;
1377
1378 intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
1379 pstate = clamp_t(int, pstate, min_perf, max_perf);
1380 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1381 return pstate;
1382 }
1383
1384 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1385 {
1386 pstate = intel_pstate_prepare_request(cpu, pstate);
1387 if (pstate == cpu->pstate.current_pstate)
1388 return;
1389
1390 cpu->pstate.current_pstate = pstate;
1391 wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1392 }
1393
1394 static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
1395 {
1396 int from, target_pstate;
1397 struct sample *sample;
1398
1399 from = cpu->pstate.current_pstate;
1400
1401 target_pstate = cpu->policy == CPUFREQ_POLICY_PERFORMANCE ?
1402 cpu->pstate.turbo_pstate : pstate_funcs.get_target_pstate(cpu);
1403
1404 update_turbo_state();
1405
1406 intel_pstate_update_pstate(cpu, target_pstate);
1407
1408 sample = &cpu->sample;
1409 trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1410 fp_toint(sample->busy_scaled),
1411 from,
1412 cpu->pstate.current_pstate,
1413 sample->mperf,
1414 sample->aperf,
1415 sample->tsc,
1416 get_avg_frequency(cpu),
1417 fp_toint(cpu->iowait_boost * 100));
1418 }
1419
1420 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1421 unsigned int flags)
1422 {
1423 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1424 u64 delta_ns;
1425
1426 if (pstate_funcs.get_target_pstate == get_target_pstate_use_cpu_load) {
1427 if (flags & SCHED_CPUFREQ_IOWAIT) {
1428 cpu->iowait_boost = int_tofp(1);
1429 } else if (cpu->iowait_boost) {
1430 /* Clear iowait_boost if the CPU may have been idle. */
1431 delta_ns = time - cpu->last_update;
1432 if (delta_ns > TICK_NSEC)
1433 cpu->iowait_boost = 0;
1434 }
1435 cpu->last_update = time;
1436 }
1437
1438 delta_ns = time - cpu->sample.time;
1439 if ((s64)delta_ns >= pid_params.sample_rate_ns) {
1440 bool sample_taken = intel_pstate_sample(cpu, time);
1441
1442 if (sample_taken) {
1443 intel_pstate_calc_avg_perf(cpu);
1444 if (!hwp_active)
1445 intel_pstate_adjust_busy_pstate(cpu);
1446 }
1447 }
1448 }
1449
1450 #define ICPU(model, policy) \
1451 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1452 (unsigned long)&policy }
1453
1454 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1455 ICPU(INTEL_FAM6_SANDYBRIDGE, core_params),
1456 ICPU(INTEL_FAM6_SANDYBRIDGE_X, core_params),
1457 ICPU(INTEL_FAM6_ATOM_SILVERMONT1, silvermont_params),
1458 ICPU(INTEL_FAM6_IVYBRIDGE, core_params),
1459 ICPU(INTEL_FAM6_HASWELL_CORE, core_params),
1460 ICPU(INTEL_FAM6_BROADWELL_CORE, core_params),
1461 ICPU(INTEL_FAM6_IVYBRIDGE_X, core_params),
1462 ICPU(INTEL_FAM6_HASWELL_X, core_params),
1463 ICPU(INTEL_FAM6_HASWELL_ULT, core_params),
1464 ICPU(INTEL_FAM6_HASWELL_GT3E, core_params),
1465 ICPU(INTEL_FAM6_BROADWELL_GT3E, core_params),
1466 ICPU(INTEL_FAM6_ATOM_AIRMONT, airmont_params),
1467 ICPU(INTEL_FAM6_SKYLAKE_MOBILE, core_params),
1468 ICPU(INTEL_FAM6_BROADWELL_X, core_params),
1469 ICPU(INTEL_FAM6_SKYLAKE_DESKTOP, core_params),
1470 ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
1471 ICPU(INTEL_FAM6_XEON_PHI_KNL, knl_params),
1472 ICPU(INTEL_FAM6_ATOM_GOLDMONT, bxt_params),
1473 {}
1474 };
1475 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1476
1477 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1478 ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
1479 ICPU(INTEL_FAM6_BROADWELL_X, core_params),
1480 ICPU(INTEL_FAM6_SKYLAKE_X, core_params),
1481 {}
1482 };
1483
1484 static int intel_pstate_init_cpu(unsigned int cpunum)
1485 {
1486 struct cpudata *cpu;
1487
1488 cpu = all_cpu_data[cpunum];
1489
1490 if (!cpu) {
1491 unsigned int size = sizeof(struct cpudata);
1492
1493 if (per_cpu_limits)
1494 size += sizeof(struct perf_limits);
1495
1496 cpu = kzalloc(size, GFP_KERNEL);
1497 if (!cpu)
1498 return -ENOMEM;
1499
1500 all_cpu_data[cpunum] = cpu;
1501 if (per_cpu_limits)
1502 cpu->perf_limits = (struct perf_limits *)(cpu + 1);
1503
1504 }
1505
1506 cpu = all_cpu_data[cpunum];
1507
1508 cpu->cpu = cpunum;
1509
1510 if (hwp_active) {
1511 intel_pstate_hwp_enable(cpu);
1512 pid_params.sample_rate_ms = 50;
1513 pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
1514 }
1515
1516 intel_pstate_get_cpu_pstates(cpu);
1517
1518 intel_pstate_busy_pid_reset(cpu);
1519
1520 pr_debug("controlling: cpu %d\n", cpunum);
1521
1522 return 0;
1523 }
1524
1525 static unsigned int intel_pstate_get(unsigned int cpu_num)
1526 {
1527 struct cpudata *cpu = all_cpu_data[cpu_num];
1528
1529 return cpu ? get_avg_frequency(cpu) : 0;
1530 }
1531
1532 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1533 {
1534 struct cpudata *cpu = all_cpu_data[cpu_num];
1535
1536 if (cpu->update_util_set)
1537 return;
1538
1539 /* Prevent intel_pstate_update_util() from using stale data. */
1540 cpu->sample.time = 0;
1541 cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1542 intel_pstate_update_util);
1543 cpu->update_util_set = true;
1544 }
1545
1546 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1547 {
1548 struct cpudata *cpu_data = all_cpu_data[cpu];
1549
1550 if (!cpu_data->update_util_set)
1551 return;
1552
1553 cpufreq_remove_update_util_hook(cpu);
1554 cpu_data->update_util_set = false;
1555 synchronize_sched();
1556 }
1557
1558 static void intel_pstate_set_performance_limits(struct perf_limits *limits)
1559 {
1560 mutex_lock(&intel_pstate_limits_lock);
1561 limits->no_turbo = 0;
1562 limits->turbo_disabled = 0;
1563 limits->max_perf_pct = 100;
1564 limits->max_perf = int_tofp(1);
1565 limits->min_perf_pct = 100;
1566 limits->min_perf = int_tofp(1);
1567 limits->max_policy_pct = 100;
1568 limits->max_sysfs_pct = 100;
1569 limits->min_policy_pct = 0;
1570 limits->min_sysfs_pct = 0;
1571 mutex_unlock(&intel_pstate_limits_lock);
1572 }
1573
1574 static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
1575 struct perf_limits *limits)
1576 {
1577
1578 mutex_lock(&intel_pstate_limits_lock);
1579
1580 limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100,
1581 policy->cpuinfo.max_freq);
1582 limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0, 100);
1583 if (policy->max == policy->min) {
1584 limits->min_policy_pct = limits->max_policy_pct;
1585 } else {
1586 limits->min_policy_pct = DIV_ROUND_UP(policy->min * 100,
1587 policy->cpuinfo.max_freq);
1588 limits->min_policy_pct = clamp_t(int, limits->min_policy_pct,
1589 0, 100);
1590 }
1591
1592 /* Normalize user input to [min_policy_pct, max_policy_pct] */
1593 limits->min_perf_pct = max(limits->min_policy_pct,
1594 limits->min_sysfs_pct);
1595 limits->min_perf_pct = min(limits->max_policy_pct,
1596 limits->min_perf_pct);
1597 limits->max_perf_pct = min(limits->max_policy_pct,
1598 limits->max_sysfs_pct);
1599 limits->max_perf_pct = max(limits->min_policy_pct,
1600 limits->max_perf_pct);
1601
1602 /* Make sure min_perf_pct <= max_perf_pct */
1603 limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct);
1604
1605 limits->min_perf = div_fp(limits->min_perf_pct, 100);
1606 limits->max_perf = div_fp(limits->max_perf_pct, 100);
1607 limits->max_perf = round_up(limits->max_perf, FRAC_BITS);
1608 limits->min_perf = round_up(limits->min_perf, FRAC_BITS);
1609
1610 mutex_unlock(&intel_pstate_limits_lock);
1611
1612 pr_debug("cpu:%d max_perf_pct:%d min_perf_pct:%d\n", policy->cpu,
1613 limits->max_perf_pct, limits->min_perf_pct);
1614 }
1615
1616 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
1617 {
1618 struct cpudata *cpu;
1619 struct perf_limits *perf_limits = NULL;
1620
1621 if (!policy->cpuinfo.max_freq)
1622 return -ENODEV;
1623
1624 pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
1625 policy->cpuinfo.max_freq, policy->max);
1626
1627 cpu = all_cpu_data[policy->cpu];
1628 cpu->policy = policy->policy;
1629
1630 if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
1631 policy->max < policy->cpuinfo.max_freq &&
1632 policy->max > cpu->pstate.max_pstate * cpu->pstate.scaling) {
1633 pr_debug("policy->max > max non turbo frequency\n");
1634 policy->max = policy->cpuinfo.max_freq;
1635 }
1636
1637 if (per_cpu_limits)
1638 perf_limits = cpu->perf_limits;
1639
1640 if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
1641 if (!perf_limits) {
1642 limits = &performance_limits;
1643 perf_limits = limits;
1644 }
1645 if (policy->max >= policy->cpuinfo.max_freq) {
1646 pr_debug("set performance\n");
1647 intel_pstate_set_performance_limits(perf_limits);
1648 goto out;
1649 }
1650 } else {
1651 pr_debug("set powersave\n");
1652 if (!perf_limits) {
1653 limits = &powersave_limits;
1654 perf_limits = limits;
1655 }
1656
1657 }
1658
1659 intel_pstate_update_perf_limits(policy, perf_limits);
1660 out:
1661 if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
1662 /*
1663 * NOHZ_FULL CPUs need this as the governor callback may not
1664 * be invoked on them.
1665 */
1666 intel_pstate_clear_update_util_hook(policy->cpu);
1667 intel_pstate_max_within_limits(cpu);
1668 }
1669
1670 intel_pstate_set_update_util_hook(policy->cpu);
1671
1672 intel_pstate_hwp_set_policy(policy);
1673
1674 return 0;
1675 }
1676
1677 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
1678 {
1679 cpufreq_verify_within_cpu_limits(policy);
1680
1681 if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
1682 policy->policy != CPUFREQ_POLICY_PERFORMANCE)
1683 return -EINVAL;
1684
1685 return 0;
1686 }
1687
1688 static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
1689 {
1690 intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
1691 }
1692
1693 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
1694 {
1695 pr_debug("CPU %d exiting\n", policy->cpu);
1696
1697 intel_pstate_clear_update_util_hook(policy->cpu);
1698 if (!hwp_active)
1699 intel_cpufreq_stop_cpu(policy);
1700 }
1701
1702 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
1703 {
1704 intel_pstate_exit_perf_limits(policy);
1705
1706 policy->fast_switch_possible = false;
1707
1708 return 0;
1709 }
1710
1711 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
1712 {
1713 struct cpudata *cpu;
1714 int rc;
1715
1716 rc = intel_pstate_init_cpu(policy->cpu);
1717 if (rc)
1718 return rc;
1719
1720 cpu = all_cpu_data[policy->cpu];
1721
1722 /*
1723 * We need sane value in the cpu->perf_limits, so inherit from global
1724 * perf_limits limits, which are seeded with values based on the
1725 * CONFIG_CPU_FREQ_DEFAULT_GOV_*, during boot up.
1726 */
1727 if (per_cpu_limits)
1728 memcpy(cpu->perf_limits, limits, sizeof(struct perf_limits));
1729
1730 policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
1731 policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1732
1733 /* cpuinfo and default policy values */
1734 policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
1735 update_turbo_state();
1736 policy->cpuinfo.max_freq = limits->turbo_disabled ?
1737 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1738 policy->cpuinfo.max_freq *= cpu->pstate.scaling;
1739
1740 intel_pstate_init_acpi_perf_limits(policy);
1741 cpumask_set_cpu(policy->cpu, policy->cpus);
1742
1743 policy->fast_switch_possible = true;
1744
1745 return 0;
1746 }
1747
1748 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
1749 {
1750 int ret = __intel_pstate_cpu_init(policy);
1751
1752 if (ret)
1753 return ret;
1754
1755 policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
1756 if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
1757 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
1758 else
1759 policy->policy = CPUFREQ_POLICY_POWERSAVE;
1760
1761 return 0;
1762 }
1763
1764 static struct cpufreq_driver intel_pstate = {
1765 .flags = CPUFREQ_CONST_LOOPS,
1766 .verify = intel_pstate_verify_policy,
1767 .setpolicy = intel_pstate_set_policy,
1768 .resume = intel_pstate_hwp_set_policy,
1769 .get = intel_pstate_get,
1770 .init = intel_pstate_cpu_init,
1771 .exit = intel_pstate_cpu_exit,
1772 .stop_cpu = intel_pstate_stop_cpu,
1773 .name = "intel_pstate",
1774 };
1775
1776 static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
1777 {
1778 struct cpudata *cpu = all_cpu_data[policy->cpu];
1779 struct perf_limits *perf_limits = limits;
1780
1781 update_turbo_state();
1782 policy->cpuinfo.max_freq = limits->turbo_disabled ?
1783 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
1784
1785 cpufreq_verify_within_cpu_limits(policy);
1786
1787 if (per_cpu_limits)
1788 perf_limits = cpu->perf_limits;
1789
1790 intel_pstate_update_perf_limits(policy, perf_limits);
1791
1792 return 0;
1793 }
1794
1795 static unsigned int intel_cpufreq_turbo_update(struct cpudata *cpu,
1796 struct cpufreq_policy *policy,
1797 unsigned int target_freq)
1798 {
1799 unsigned int max_freq;
1800
1801 update_turbo_state();
1802
1803 max_freq = limits->no_turbo || limits->turbo_disabled ?
1804 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
1805 policy->cpuinfo.max_freq = max_freq;
1806 if (policy->max > max_freq)
1807 policy->max = max_freq;
1808
1809 if (target_freq > max_freq)
1810 target_freq = max_freq;
1811
1812 return target_freq;
1813 }
1814
1815 static int intel_cpufreq_target(struct cpufreq_policy *policy,
1816 unsigned int target_freq,
1817 unsigned int relation)
1818 {
1819 struct cpudata *cpu = all_cpu_data[policy->cpu];
1820 struct cpufreq_freqs freqs;
1821 int target_pstate;
1822
1823 freqs.old = policy->cur;
1824 freqs.new = intel_cpufreq_turbo_update(cpu, policy, target_freq);
1825
1826 cpufreq_freq_transition_begin(policy, &freqs);
1827 switch (relation) {
1828 case CPUFREQ_RELATION_L:
1829 target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
1830 break;
1831 case CPUFREQ_RELATION_H:
1832 target_pstate = freqs.new / cpu->pstate.scaling;
1833 break;
1834 default:
1835 target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
1836 break;
1837 }
1838 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
1839 if (target_pstate != cpu->pstate.current_pstate) {
1840 cpu->pstate.current_pstate = target_pstate;
1841 wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
1842 pstate_funcs.get_val(cpu, target_pstate));
1843 }
1844 cpufreq_freq_transition_end(policy, &freqs, false);
1845
1846 return 0;
1847 }
1848
1849 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
1850 unsigned int target_freq)
1851 {
1852 struct cpudata *cpu = all_cpu_data[policy->cpu];
1853 int target_pstate;
1854
1855 target_freq = intel_cpufreq_turbo_update(cpu, policy, target_freq);
1856 target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
1857 intel_pstate_update_pstate(cpu, target_pstate);
1858 return target_freq;
1859 }
1860
1861 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
1862 {
1863 int ret = __intel_pstate_cpu_init(policy);
1864
1865 if (ret)
1866 return ret;
1867
1868 policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
1869 /* This reflects the intel_pstate_get_cpu_pstates() setting. */
1870 policy->cur = policy->cpuinfo.min_freq;
1871
1872 return 0;
1873 }
1874
1875 static struct cpufreq_driver intel_cpufreq = {
1876 .flags = CPUFREQ_CONST_LOOPS,
1877 .verify = intel_cpufreq_verify_policy,
1878 .target = intel_cpufreq_target,
1879 .fast_switch = intel_cpufreq_fast_switch,
1880 .init = intel_cpufreq_cpu_init,
1881 .exit = intel_pstate_cpu_exit,
1882 .stop_cpu = intel_cpufreq_stop_cpu,
1883 .name = "intel_cpufreq",
1884 };
1885
1886 static struct cpufreq_driver *intel_pstate_driver = &intel_pstate;
1887
1888 static int no_load __initdata;
1889 static int no_hwp __initdata;
1890 static int hwp_only __initdata;
1891 static unsigned int force_load __initdata;
1892
1893 static int __init intel_pstate_msrs_not_valid(void)
1894 {
1895 if (!pstate_funcs.get_max() ||
1896 !pstate_funcs.get_min() ||
1897 !pstate_funcs.get_turbo())
1898 return -ENODEV;
1899
1900 return 0;
1901 }
1902
1903 static void __init copy_pid_params(struct pstate_adjust_policy *policy)
1904 {
1905 pid_params.sample_rate_ms = policy->sample_rate_ms;
1906 pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
1907 pid_params.p_gain_pct = policy->p_gain_pct;
1908 pid_params.i_gain_pct = policy->i_gain_pct;
1909 pid_params.d_gain_pct = policy->d_gain_pct;
1910 pid_params.deadband = policy->deadband;
1911 pid_params.setpoint = policy->setpoint;
1912 }
1913
1914 #ifdef CONFIG_ACPI
1915 static void intel_pstate_use_acpi_profile(void)
1916 {
1917 if (acpi_gbl_FADT.preferred_profile == PM_MOBILE)
1918 pstate_funcs.get_target_pstate =
1919 get_target_pstate_use_cpu_load;
1920 }
1921 #else
1922 static void intel_pstate_use_acpi_profile(void)
1923 {
1924 }
1925 #endif
1926
1927 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
1928 {
1929 pstate_funcs.get_max = funcs->get_max;
1930 pstate_funcs.get_max_physical = funcs->get_max_physical;
1931 pstate_funcs.get_min = funcs->get_min;
1932 pstate_funcs.get_turbo = funcs->get_turbo;
1933 pstate_funcs.get_scaling = funcs->get_scaling;
1934 pstate_funcs.get_val = funcs->get_val;
1935 pstate_funcs.get_vid = funcs->get_vid;
1936 pstate_funcs.get_target_pstate = funcs->get_target_pstate;
1937
1938 intel_pstate_use_acpi_profile();
1939 }
1940
1941 #ifdef CONFIG_ACPI
1942
1943 static bool __init intel_pstate_no_acpi_pss(void)
1944 {
1945 int i;
1946
1947 for_each_possible_cpu(i) {
1948 acpi_status status;
1949 union acpi_object *pss;
1950 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1951 struct acpi_processor *pr = per_cpu(processors, i);
1952
1953 if (!pr)
1954 continue;
1955
1956 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
1957 if (ACPI_FAILURE(status))
1958 continue;
1959
1960 pss = buffer.pointer;
1961 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
1962 kfree(pss);
1963 return false;
1964 }
1965
1966 kfree(pss);
1967 }
1968
1969 return true;
1970 }
1971
1972 static bool __init intel_pstate_has_acpi_ppc(void)
1973 {
1974 int i;
1975
1976 for_each_possible_cpu(i) {
1977 struct acpi_processor *pr = per_cpu(processors, i);
1978
1979 if (!pr)
1980 continue;
1981 if (acpi_has_method(pr->handle, "_PPC"))
1982 return true;
1983 }
1984 return false;
1985 }
1986
1987 enum {
1988 PSS,
1989 PPC,
1990 };
1991
1992 struct hw_vendor_info {
1993 u16 valid;
1994 char oem_id[ACPI_OEM_ID_SIZE];
1995 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
1996 int oem_pwr_table;
1997 };
1998
1999 /* Hardware vendor-specific info that has its own power management modes */
2000 static struct hw_vendor_info vendor_info[] __initdata = {
2001 {1, "HP ", "ProLiant", PSS},
2002 {1, "ORACLE", "X4-2 ", PPC},
2003 {1, "ORACLE", "X4-2L ", PPC},
2004 {1, "ORACLE", "X4-2B ", PPC},
2005 {1, "ORACLE", "X3-2 ", PPC},
2006 {1, "ORACLE", "X3-2L ", PPC},
2007 {1, "ORACLE", "X3-2B ", PPC},
2008 {1, "ORACLE", "X4470M2 ", PPC},
2009 {1, "ORACLE", "X4270M3 ", PPC},
2010 {1, "ORACLE", "X4270M2 ", PPC},
2011 {1, "ORACLE", "X4170M2 ", PPC},
2012 {1, "ORACLE", "X4170 M3", PPC},
2013 {1, "ORACLE", "X4275 M3", PPC},
2014 {1, "ORACLE", "X6-2 ", PPC},
2015 {1, "ORACLE", "Sudbury ", PPC},
2016 {0, "", ""},
2017 };
2018
2019 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2020 {
2021 struct acpi_table_header hdr;
2022 struct hw_vendor_info *v_info;
2023 const struct x86_cpu_id *id;
2024 u64 misc_pwr;
2025
2026 id = x86_match_cpu(intel_pstate_cpu_oob_ids);
2027 if (id) {
2028 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2029 if ( misc_pwr & (1 << 8))
2030 return true;
2031 }
2032
2033 if (acpi_disabled ||
2034 ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
2035 return false;
2036
2037 for (v_info = vendor_info; v_info->valid; v_info++) {
2038 if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
2039 !strncmp(hdr.oem_table_id, v_info->oem_table_id,
2040 ACPI_OEM_TABLE_ID_SIZE))
2041 switch (v_info->oem_pwr_table) {
2042 case PSS:
2043 return intel_pstate_no_acpi_pss();
2044 case PPC:
2045 return intel_pstate_has_acpi_ppc() &&
2046 (!force_load);
2047 }
2048 }
2049
2050 return false;
2051 }
2052
2053 static void intel_pstate_request_control_from_smm(void)
2054 {
2055 /*
2056 * It may be unsafe to request P-states control from SMM if _PPC support
2057 * has not been enabled.
2058 */
2059 if (acpi_ppc)
2060 acpi_processor_pstate_control();
2061 }
2062 #else /* CONFIG_ACPI not enabled */
2063 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2064 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2065 static inline void intel_pstate_request_control_from_smm(void) {}
2066 #endif /* CONFIG_ACPI */
2067
2068 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2069 { X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
2070 {}
2071 };
2072
2073 static int __init intel_pstate_init(void)
2074 {
2075 int cpu, rc = 0;
2076 const struct x86_cpu_id *id;
2077 struct cpu_defaults *cpu_def;
2078
2079 if (no_load)
2080 return -ENODEV;
2081
2082 if (x86_match_cpu(hwp_support_ids) && !no_hwp) {
2083 copy_cpu_funcs(&core_params.funcs);
2084 hwp_active++;
2085 goto hwp_cpu_matched;
2086 }
2087
2088 id = x86_match_cpu(intel_pstate_cpu_ids);
2089 if (!id)
2090 return -ENODEV;
2091
2092 cpu_def = (struct cpu_defaults *)id->driver_data;
2093
2094 copy_pid_params(&cpu_def->pid_policy);
2095 copy_cpu_funcs(&cpu_def->funcs);
2096
2097 if (intel_pstate_msrs_not_valid())
2098 return -ENODEV;
2099
2100 hwp_cpu_matched:
2101 /*
2102 * The Intel pstate driver will be ignored if the platform
2103 * firmware has its own power management modes.
2104 */
2105 if (intel_pstate_platform_pwr_mgmt_exists())
2106 return -ENODEV;
2107
2108 pr_info("Intel P-state driver initializing\n");
2109
2110 all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
2111 if (!all_cpu_data)
2112 return -ENOMEM;
2113
2114 if (!hwp_active && hwp_only)
2115 goto out;
2116
2117 intel_pstate_request_control_from_smm();
2118
2119 rc = cpufreq_register_driver(intel_pstate_driver);
2120 if (rc)
2121 goto out;
2122
2123 intel_pstate_debug_expose_params();
2124 intel_pstate_sysfs_expose_params();
2125
2126 if (hwp_active)
2127 pr_info("HWP enabled\n");
2128
2129 return rc;
2130 out:
2131 get_online_cpus();
2132 for_each_online_cpu(cpu) {
2133 if (all_cpu_data[cpu]) {
2134 if (intel_pstate_driver == &intel_pstate)
2135 intel_pstate_clear_update_util_hook(cpu);
2136
2137 kfree(all_cpu_data[cpu]);
2138 }
2139 }
2140
2141 put_online_cpus();
2142 vfree(all_cpu_data);
2143 return -ENODEV;
2144 }
2145 device_initcall(intel_pstate_init);
2146
2147 static int __init intel_pstate_setup(char *str)
2148 {
2149 if (!str)
2150 return -EINVAL;
2151
2152 if (!strcmp(str, "disable")) {
2153 no_load = 1;
2154 } else if (!strcmp(str, "passive")) {
2155 pr_info("Passive mode enabled\n");
2156 intel_pstate_driver = &intel_cpufreq;
2157 no_hwp = 1;
2158 }
2159 if (!strcmp(str, "no_hwp")) {
2160 pr_info("HWP disabled\n");
2161 no_hwp = 1;
2162 }
2163 if (!strcmp(str, "force"))
2164 force_load = 1;
2165 if (!strcmp(str, "hwp_only"))
2166 hwp_only = 1;
2167 if (!strcmp(str, "per_cpu_perf_limits"))
2168 per_cpu_limits = true;
2169
2170 #ifdef CONFIG_ACPI
2171 if (!strcmp(str, "support_acpi_ppc"))
2172 acpi_ppc = true;
2173 #endif
2174
2175 return 0;
2176 }
2177 early_param("intel_pstate", intel_pstate_setup);
2178
2179 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
2180 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
2181 MODULE_LICENSE("GPL");