]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/cpufreq/intel_pstate.c
efi/arm: Fix boot crash with CONFIG_CPUMASK_OFFSTACK=y
[mirror_ubuntu-artful-kernel.git] / drivers / cpufreq / intel_pstate.c
1 /*
2 * intel_pstate.c: Native P state management for Intel processors
3 *
4 * (C) Copyright 2012 Intel Corporation
5 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
10 * of the License.
11 */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/kernel.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/module.h>
18 #include <linux/ktime.h>
19 #include <linux/hrtimer.h>
20 #include <linux/tick.h>
21 #include <linux/slab.h>
22 #include <linux/sched.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25 #include <linux/cpufreq.h>
26 #include <linux/sysfs.h>
27 #include <linux/types.h>
28 #include <linux/fs.h>
29 #include <linux/debugfs.h>
30 #include <linux/acpi.h>
31 #include <linux/vmalloc.h>
32 #include <trace/events/power.h>
33
34 #include <asm/div64.h>
35 #include <asm/msr.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/cpufeature.h>
38 #include <asm/intel-family.h>
39
40 #define INTEL_CPUFREQ_TRANSITION_LATENCY 20000
41
42 #define ATOM_RATIOS 0x66a
43 #define ATOM_VIDS 0x66b
44 #define ATOM_TURBO_RATIOS 0x66c
45 #define ATOM_TURBO_VIDS 0x66d
46
47 #ifdef CONFIG_ACPI
48 #include <acpi/processor.h>
49 #include <acpi/cppc_acpi.h>
50 #endif
51
52 #define FRAC_BITS 8
53 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
54 #define fp_toint(X) ((X) >> FRAC_BITS)
55
56 #define EXT_BITS 6
57 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
58 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
59 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
60
61 static inline int32_t mul_fp(int32_t x, int32_t y)
62 {
63 return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
64 }
65
66 static inline int32_t div_fp(s64 x, s64 y)
67 {
68 return div64_s64((int64_t)x << FRAC_BITS, y);
69 }
70
71 static inline int ceiling_fp(int32_t x)
72 {
73 int mask, ret;
74
75 ret = fp_toint(x);
76 mask = (1 << FRAC_BITS) - 1;
77 if (x & mask)
78 ret += 1;
79 return ret;
80 }
81
82 static inline u64 mul_ext_fp(u64 x, u64 y)
83 {
84 return (x * y) >> EXT_FRAC_BITS;
85 }
86
87 static inline u64 div_ext_fp(u64 x, u64 y)
88 {
89 return div64_u64(x << EXT_FRAC_BITS, y);
90 }
91
92 /**
93 * struct sample - Store performance sample
94 * @core_avg_perf: Ratio of APERF/MPERF which is the actual average
95 * performance during last sample period
96 * @busy_scaled: Scaled busy value which is used to calculate next
97 * P state. This can be different than core_avg_perf
98 * to account for cpu idle period
99 * @aperf: Difference of actual performance frequency clock count
100 * read from APERF MSR between last and current sample
101 * @mperf: Difference of maximum performance frequency clock count
102 * read from MPERF MSR between last and current sample
103 * @tsc: Difference of time stamp counter between last and
104 * current sample
105 * @time: Current time from scheduler
106 *
107 * This structure is used in the cpudata structure to store performance sample
108 * data for choosing next P State.
109 */
110 struct sample {
111 int32_t core_avg_perf;
112 int32_t busy_scaled;
113 u64 aperf;
114 u64 mperf;
115 u64 tsc;
116 u64 time;
117 };
118
119 /**
120 * struct pstate_data - Store P state data
121 * @current_pstate: Current requested P state
122 * @min_pstate: Min P state possible for this platform
123 * @max_pstate: Max P state possible for this platform
124 * @max_pstate_physical:This is physical Max P state for a processor
125 * This can be higher than the max_pstate which can
126 * be limited by platform thermal design power limits
127 * @scaling: Scaling factor to convert frequency to cpufreq
128 * frequency units
129 * @turbo_pstate: Max Turbo P state possible for this platform
130 * @max_freq: @max_pstate frequency in cpufreq units
131 * @turbo_freq: @turbo_pstate frequency in cpufreq units
132 *
133 * Stores the per cpu model P state limits and current P state.
134 */
135 struct pstate_data {
136 int current_pstate;
137 int min_pstate;
138 int max_pstate;
139 int max_pstate_physical;
140 int scaling;
141 int turbo_pstate;
142 unsigned int max_freq;
143 unsigned int turbo_freq;
144 };
145
146 /**
147 * struct vid_data - Stores voltage information data
148 * @min: VID data for this platform corresponding to
149 * the lowest P state
150 * @max: VID data corresponding to the highest P State.
151 * @turbo: VID data for turbo P state
152 * @ratio: Ratio of (vid max - vid min) /
153 * (max P state - Min P State)
154 *
155 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
156 * This data is used in Atom platforms, where in addition to target P state,
157 * the voltage data needs to be specified to select next P State.
158 */
159 struct vid_data {
160 int min;
161 int max;
162 int turbo;
163 int32_t ratio;
164 };
165
166 /**
167 * struct _pid - Stores PID data
168 * @setpoint: Target set point for busyness or performance
169 * @integral: Storage for accumulated error values
170 * @p_gain: PID proportional gain
171 * @i_gain: PID integral gain
172 * @d_gain: PID derivative gain
173 * @deadband: PID deadband
174 * @last_err: Last error storage for integral part of PID calculation
175 *
176 * Stores PID coefficients and last error for PID controller.
177 */
178 struct _pid {
179 int setpoint;
180 int32_t integral;
181 int32_t p_gain;
182 int32_t i_gain;
183 int32_t d_gain;
184 int deadband;
185 int32_t last_err;
186 };
187
188 /**
189 * struct perf_limits - Store user and policy limits
190 * @no_turbo: User requested turbo state from intel_pstate sysfs
191 * @turbo_disabled: Platform turbo status either from msr
192 * MSR_IA32_MISC_ENABLE or when maximum available pstate
193 * matches the maximum turbo pstate
194 * @max_perf_pct: Effective maximum performance limit in percentage, this
195 * is minimum of either limits enforced by cpufreq policy
196 * or limits from user set limits via intel_pstate sysfs
197 * @min_perf_pct: Effective minimum performance limit in percentage, this
198 * is maximum of either limits enforced by cpufreq policy
199 * or limits from user set limits via intel_pstate sysfs
200 * @max_perf: This is a scaled value between 0 to 255 for max_perf_pct
201 * This value is used to limit max pstate
202 * @min_perf: This is a scaled value between 0 to 255 for min_perf_pct
203 * This value is used to limit min pstate
204 * @max_policy_pct: The maximum performance in percentage enforced by
205 * cpufreq setpolicy interface
206 * @max_sysfs_pct: The maximum performance in percentage enforced by
207 * intel pstate sysfs interface, unused when per cpu
208 * controls are enforced
209 * @min_policy_pct: The minimum performance in percentage enforced by
210 * cpufreq setpolicy interface
211 * @min_sysfs_pct: The minimum performance in percentage enforced by
212 * intel pstate sysfs interface, unused when per cpu
213 * controls are enforced
214 *
215 * Storage for user and policy defined limits.
216 */
217 struct perf_limits {
218 int no_turbo;
219 int turbo_disabled;
220 int max_perf_pct;
221 int min_perf_pct;
222 int32_t max_perf;
223 int32_t min_perf;
224 int max_policy_pct;
225 int max_sysfs_pct;
226 int min_policy_pct;
227 int min_sysfs_pct;
228 };
229
230 /**
231 * struct cpudata - Per CPU instance data storage
232 * @cpu: CPU number for this instance data
233 * @policy: CPUFreq policy value
234 * @update_util: CPUFreq utility callback information
235 * @update_util_set: CPUFreq utility callback is set
236 * @iowait_boost: iowait-related boost fraction
237 * @last_update: Time of the last update.
238 * @pstate: Stores P state limits for this CPU
239 * @vid: Stores VID limits for this CPU
240 * @pid: Stores PID parameters for this CPU
241 * @last_sample_time: Last Sample time
242 * @prev_aperf: Last APERF value read from APERF MSR
243 * @prev_mperf: Last MPERF value read from MPERF MSR
244 * @prev_tsc: Last timestamp counter (TSC) value
245 * @prev_cummulative_iowait: IO Wait time difference from last and
246 * current sample
247 * @sample: Storage for storing last Sample data
248 * @perf_limits: Pointer to perf_limit unique to this CPU
249 * Not all field in the structure are applicable
250 * when per cpu controls are enforced
251 * @acpi_perf_data: Stores ACPI perf information read from _PSS
252 * @valid_pss_table: Set to true for valid ACPI _PSS entries found
253 * @epp_powersave: Last saved HWP energy performance preference
254 * (EPP) or energy performance bias (EPB),
255 * when policy switched to performance
256 * @epp_policy: Last saved policy used to set EPP/EPB
257 * @epp_default: Power on default HWP energy performance
258 * preference/bias
259 * @epp_saved: Saved EPP/EPB during system suspend or CPU offline
260 * operation
261 *
262 * This structure stores per CPU instance data for all CPUs.
263 */
264 struct cpudata {
265 int cpu;
266
267 unsigned int policy;
268 struct update_util_data update_util;
269 bool update_util_set;
270
271 struct pstate_data pstate;
272 struct vid_data vid;
273 struct _pid pid;
274
275 u64 last_update;
276 u64 last_sample_time;
277 u64 prev_aperf;
278 u64 prev_mperf;
279 u64 prev_tsc;
280 u64 prev_cummulative_iowait;
281 struct sample sample;
282 struct perf_limits *perf_limits;
283 #ifdef CONFIG_ACPI
284 struct acpi_processor_performance acpi_perf_data;
285 bool valid_pss_table;
286 #endif
287 unsigned int iowait_boost;
288 s16 epp_powersave;
289 s16 epp_policy;
290 s16 epp_default;
291 s16 epp_saved;
292 };
293
294 static struct cpudata **all_cpu_data;
295
296 /**
297 * struct pstate_adjust_policy - Stores static PID configuration data
298 * @sample_rate_ms: PID calculation sample rate in ms
299 * @sample_rate_ns: Sample rate calculation in ns
300 * @deadband: PID deadband
301 * @setpoint: PID Setpoint
302 * @p_gain_pct: PID proportional gain
303 * @i_gain_pct: PID integral gain
304 * @d_gain_pct: PID derivative gain
305 *
306 * Stores per CPU model static PID configuration data.
307 */
308 struct pstate_adjust_policy {
309 int sample_rate_ms;
310 s64 sample_rate_ns;
311 int deadband;
312 int setpoint;
313 int p_gain_pct;
314 int d_gain_pct;
315 int i_gain_pct;
316 };
317
318 /**
319 * struct pstate_funcs - Per CPU model specific callbacks
320 * @get_max: Callback to get maximum non turbo effective P state
321 * @get_max_physical: Callback to get maximum non turbo physical P state
322 * @get_min: Callback to get minimum P state
323 * @get_turbo: Callback to get turbo P state
324 * @get_scaling: Callback to get frequency scaling factor
325 * @get_val: Callback to convert P state to actual MSR write value
326 * @get_vid: Callback to get VID data for Atom platforms
327 * @get_target_pstate: Callback to a function to calculate next P state to use
328 *
329 * Core and Atom CPU models have different way to get P State limits. This
330 * structure is used to store those callbacks.
331 */
332 struct pstate_funcs {
333 int (*get_max)(void);
334 int (*get_max_physical)(void);
335 int (*get_min)(void);
336 int (*get_turbo)(void);
337 int (*get_scaling)(void);
338 u64 (*get_val)(struct cpudata*, int pstate);
339 void (*get_vid)(struct cpudata *);
340 int32_t (*get_target_pstate)(struct cpudata *);
341 };
342
343 /**
344 * struct cpu_defaults- Per CPU model default config data
345 * @pid_policy: PID config data
346 * @funcs: Callback function data
347 */
348 struct cpu_defaults {
349 struct pstate_adjust_policy pid_policy;
350 struct pstate_funcs funcs;
351 };
352
353 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
354 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
355
356 static struct pstate_adjust_policy pid_params __read_mostly;
357 static struct pstate_funcs pstate_funcs __read_mostly;
358 static int hwp_active __read_mostly;
359 static bool per_cpu_limits __read_mostly;
360
361 static bool driver_registered __read_mostly;
362
363 #ifdef CONFIG_ACPI
364 static bool acpi_ppc;
365 #endif
366
367 static struct perf_limits performance_limits = {
368 .no_turbo = 0,
369 .turbo_disabled = 0,
370 .max_perf_pct = 100,
371 .max_perf = int_ext_tofp(1),
372 .min_perf_pct = 100,
373 .min_perf = int_ext_tofp(1),
374 .max_policy_pct = 100,
375 .max_sysfs_pct = 100,
376 .min_policy_pct = 0,
377 .min_sysfs_pct = 0,
378 };
379
380 static struct perf_limits powersave_limits = {
381 .no_turbo = 0,
382 .turbo_disabled = 0,
383 .max_perf_pct = 100,
384 .max_perf = int_ext_tofp(1),
385 .min_perf_pct = 0,
386 .min_perf = 0,
387 .max_policy_pct = 100,
388 .max_sysfs_pct = 100,
389 .min_policy_pct = 0,
390 .min_sysfs_pct = 0,
391 };
392
393 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
394 static struct perf_limits *limits = &performance_limits;
395 #else
396 static struct perf_limits *limits = &powersave_limits;
397 #endif
398
399 static DEFINE_MUTEX(intel_pstate_driver_lock);
400 static DEFINE_MUTEX(intel_pstate_limits_lock);
401
402 #ifdef CONFIG_ACPI
403
404 static bool intel_pstate_get_ppc_enable_status(void)
405 {
406 if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
407 acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
408 return true;
409
410 return acpi_ppc;
411 }
412
413 #ifdef CONFIG_ACPI_CPPC_LIB
414
415 /* The work item is needed to avoid CPU hotplug locking issues */
416 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
417 {
418 sched_set_itmt_support();
419 }
420
421 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
422
423 static void intel_pstate_set_itmt_prio(int cpu)
424 {
425 struct cppc_perf_caps cppc_perf;
426 static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
427 int ret;
428
429 ret = cppc_get_perf_caps(cpu, &cppc_perf);
430 if (ret)
431 return;
432
433 /*
434 * The priorities can be set regardless of whether or not
435 * sched_set_itmt_support(true) has been called and it is valid to
436 * update them at any time after it has been called.
437 */
438 sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
439
440 if (max_highest_perf <= min_highest_perf) {
441 if (cppc_perf.highest_perf > max_highest_perf)
442 max_highest_perf = cppc_perf.highest_perf;
443
444 if (cppc_perf.highest_perf < min_highest_perf)
445 min_highest_perf = cppc_perf.highest_perf;
446
447 if (max_highest_perf > min_highest_perf) {
448 /*
449 * This code can be run during CPU online under the
450 * CPU hotplug locks, so sched_set_itmt_support()
451 * cannot be called from here. Queue up a work item
452 * to invoke it.
453 */
454 schedule_work(&sched_itmt_work);
455 }
456 }
457 }
458 #else
459 static void intel_pstate_set_itmt_prio(int cpu)
460 {
461 }
462 #endif
463
464 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
465 {
466 struct cpudata *cpu;
467 int ret;
468 int i;
469
470 if (hwp_active) {
471 intel_pstate_set_itmt_prio(policy->cpu);
472 return;
473 }
474
475 if (!intel_pstate_get_ppc_enable_status())
476 return;
477
478 cpu = all_cpu_data[policy->cpu];
479
480 ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
481 policy->cpu);
482 if (ret)
483 return;
484
485 /*
486 * Check if the control value in _PSS is for PERF_CTL MSR, which should
487 * guarantee that the states returned by it map to the states in our
488 * list directly.
489 */
490 if (cpu->acpi_perf_data.control_register.space_id !=
491 ACPI_ADR_SPACE_FIXED_HARDWARE)
492 goto err;
493
494 /*
495 * If there is only one entry _PSS, simply ignore _PSS and continue as
496 * usual without taking _PSS into account
497 */
498 if (cpu->acpi_perf_data.state_count < 2)
499 goto err;
500
501 pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
502 for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
503 pr_debug(" %cP%d: %u MHz, %u mW, 0x%x\n",
504 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
505 (u32) cpu->acpi_perf_data.states[i].core_frequency,
506 (u32) cpu->acpi_perf_data.states[i].power,
507 (u32) cpu->acpi_perf_data.states[i].control);
508 }
509
510 /*
511 * The _PSS table doesn't contain whole turbo frequency range.
512 * This just contains +1 MHZ above the max non turbo frequency,
513 * with control value corresponding to max turbo ratio. But
514 * when cpufreq set policy is called, it will call with this
515 * max frequency, which will cause a reduced performance as
516 * this driver uses real max turbo frequency as the max
517 * frequency. So correct this frequency in _PSS table to
518 * correct max turbo frequency based on the turbo state.
519 * Also need to convert to MHz as _PSS freq is in MHz.
520 */
521 if (!limits->turbo_disabled)
522 cpu->acpi_perf_data.states[0].core_frequency =
523 policy->cpuinfo.max_freq / 1000;
524 cpu->valid_pss_table = true;
525 pr_debug("_PPC limits will be enforced\n");
526
527 return;
528
529 err:
530 cpu->valid_pss_table = false;
531 acpi_processor_unregister_performance(policy->cpu);
532 }
533
534 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
535 {
536 struct cpudata *cpu;
537
538 cpu = all_cpu_data[policy->cpu];
539 if (!cpu->valid_pss_table)
540 return;
541
542 acpi_processor_unregister_performance(policy->cpu);
543 }
544 #else
545 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
546 {
547 }
548
549 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
550 {
551 }
552 #endif
553
554 static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
555 int deadband, int integral) {
556 pid->setpoint = int_tofp(setpoint);
557 pid->deadband = int_tofp(deadband);
558 pid->integral = int_tofp(integral);
559 pid->last_err = int_tofp(setpoint) - int_tofp(busy);
560 }
561
562 static inline void pid_p_gain_set(struct _pid *pid, int percent)
563 {
564 pid->p_gain = div_fp(percent, 100);
565 }
566
567 static inline void pid_i_gain_set(struct _pid *pid, int percent)
568 {
569 pid->i_gain = div_fp(percent, 100);
570 }
571
572 static inline void pid_d_gain_set(struct _pid *pid, int percent)
573 {
574 pid->d_gain = div_fp(percent, 100);
575 }
576
577 static signed int pid_calc(struct _pid *pid, int32_t busy)
578 {
579 signed int result;
580 int32_t pterm, dterm, fp_error;
581 int32_t integral_limit;
582
583 fp_error = pid->setpoint - busy;
584
585 if (abs(fp_error) <= pid->deadband)
586 return 0;
587
588 pterm = mul_fp(pid->p_gain, fp_error);
589
590 pid->integral += fp_error;
591
592 /*
593 * We limit the integral here so that it will never
594 * get higher than 30. This prevents it from becoming
595 * too large an input over long periods of time and allows
596 * it to get factored out sooner.
597 *
598 * The value of 30 was chosen through experimentation.
599 */
600 integral_limit = int_tofp(30);
601 if (pid->integral > integral_limit)
602 pid->integral = integral_limit;
603 if (pid->integral < -integral_limit)
604 pid->integral = -integral_limit;
605
606 dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
607 pid->last_err = fp_error;
608
609 result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
610 result = result + (1 << (FRAC_BITS-1));
611 return (signed int)fp_toint(result);
612 }
613
614 static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
615 {
616 pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
617 pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
618 pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
619
620 pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
621 }
622
623 static inline void intel_pstate_reset_all_pid(void)
624 {
625 unsigned int cpu;
626
627 for_each_online_cpu(cpu) {
628 if (all_cpu_data[cpu])
629 intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
630 }
631 }
632
633 static inline void update_turbo_state(void)
634 {
635 u64 misc_en;
636 struct cpudata *cpu;
637
638 cpu = all_cpu_data[0];
639 rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
640 limits->turbo_disabled =
641 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
642 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
643 }
644
645 static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
646 {
647 u64 epb;
648 int ret;
649
650 if (!static_cpu_has(X86_FEATURE_EPB))
651 return -ENXIO;
652
653 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
654 if (ret)
655 return (s16)ret;
656
657 return (s16)(epb & 0x0f);
658 }
659
660 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
661 {
662 s16 epp;
663
664 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
665 /*
666 * When hwp_req_data is 0, means that caller didn't read
667 * MSR_HWP_REQUEST, so need to read and get EPP.
668 */
669 if (!hwp_req_data) {
670 epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
671 &hwp_req_data);
672 if (epp)
673 return epp;
674 }
675 epp = (hwp_req_data >> 24) & 0xff;
676 } else {
677 /* When there is no EPP present, HWP uses EPB settings */
678 epp = intel_pstate_get_epb(cpu_data);
679 }
680
681 return epp;
682 }
683
684 static int intel_pstate_set_epb(int cpu, s16 pref)
685 {
686 u64 epb;
687 int ret;
688
689 if (!static_cpu_has(X86_FEATURE_EPB))
690 return -ENXIO;
691
692 ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
693 if (ret)
694 return ret;
695
696 epb = (epb & ~0x0f) | pref;
697 wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
698
699 return 0;
700 }
701
702 /*
703 * EPP/EPB display strings corresponding to EPP index in the
704 * energy_perf_strings[]
705 * index String
706 *-------------------------------------
707 * 0 default
708 * 1 performance
709 * 2 balance_performance
710 * 3 balance_power
711 * 4 power
712 */
713 static const char * const energy_perf_strings[] = {
714 "default",
715 "performance",
716 "balance_performance",
717 "balance_power",
718 "power",
719 NULL
720 };
721
722 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
723 {
724 s16 epp;
725 int index = -EINVAL;
726
727 epp = intel_pstate_get_epp(cpu_data, 0);
728 if (epp < 0)
729 return epp;
730
731 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
732 /*
733 * Range:
734 * 0x00-0x3F : Performance
735 * 0x40-0x7F : Balance performance
736 * 0x80-0xBF : Balance power
737 * 0xC0-0xFF : Power
738 * The EPP is a 8 bit value, but our ranges restrict the
739 * value which can be set. Here only using top two bits
740 * effectively.
741 */
742 index = (epp >> 6) + 1;
743 } else if (static_cpu_has(X86_FEATURE_EPB)) {
744 /*
745 * Range:
746 * 0x00-0x03 : Performance
747 * 0x04-0x07 : Balance performance
748 * 0x08-0x0B : Balance power
749 * 0x0C-0x0F : Power
750 * The EPB is a 4 bit value, but our ranges restrict the
751 * value which can be set. Here only using top two bits
752 * effectively.
753 */
754 index = (epp >> 2) + 1;
755 }
756
757 return index;
758 }
759
760 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
761 int pref_index)
762 {
763 int epp = -EINVAL;
764 int ret;
765
766 if (!pref_index)
767 epp = cpu_data->epp_default;
768
769 mutex_lock(&intel_pstate_limits_lock);
770
771 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
772 u64 value;
773
774 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
775 if (ret)
776 goto return_pref;
777
778 value &= ~GENMASK_ULL(31, 24);
779
780 /*
781 * If epp is not default, convert from index into
782 * energy_perf_strings to epp value, by shifting 6
783 * bits left to use only top two bits in epp.
784 * The resultant epp need to shifted by 24 bits to
785 * epp position in MSR_HWP_REQUEST.
786 */
787 if (epp == -EINVAL)
788 epp = (pref_index - 1) << 6;
789
790 value |= (u64)epp << 24;
791 ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
792 } else {
793 if (epp == -EINVAL)
794 epp = (pref_index - 1) << 2;
795 ret = intel_pstate_set_epb(cpu_data->cpu, epp);
796 }
797 return_pref:
798 mutex_unlock(&intel_pstate_limits_lock);
799
800 return ret;
801 }
802
803 static ssize_t show_energy_performance_available_preferences(
804 struct cpufreq_policy *policy, char *buf)
805 {
806 int i = 0;
807 int ret = 0;
808
809 while (energy_perf_strings[i] != NULL)
810 ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
811
812 ret += sprintf(&buf[ret], "\n");
813
814 return ret;
815 }
816
817 cpufreq_freq_attr_ro(energy_performance_available_preferences);
818
819 static ssize_t store_energy_performance_preference(
820 struct cpufreq_policy *policy, const char *buf, size_t count)
821 {
822 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
823 char str_preference[21];
824 int ret, i = 0;
825
826 ret = sscanf(buf, "%20s", str_preference);
827 if (ret != 1)
828 return -EINVAL;
829
830 while (energy_perf_strings[i] != NULL) {
831 if (!strcmp(str_preference, energy_perf_strings[i])) {
832 intel_pstate_set_energy_pref_index(cpu_data, i);
833 return count;
834 }
835 ++i;
836 }
837
838 return -EINVAL;
839 }
840
841 static ssize_t show_energy_performance_preference(
842 struct cpufreq_policy *policy, char *buf)
843 {
844 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
845 int preference;
846
847 preference = intel_pstate_get_energy_pref_index(cpu_data);
848 if (preference < 0)
849 return preference;
850
851 return sprintf(buf, "%s\n", energy_perf_strings[preference]);
852 }
853
854 cpufreq_freq_attr_rw(energy_performance_preference);
855
856 static struct freq_attr *hwp_cpufreq_attrs[] = {
857 &energy_performance_preference,
858 &energy_performance_available_preferences,
859 NULL,
860 };
861
862 static void intel_pstate_hwp_set(struct cpufreq_policy *policy)
863 {
864 int min, hw_min, max, hw_max, cpu, range, adj_range;
865 struct perf_limits *perf_limits = limits;
866 u64 value, cap;
867
868 for_each_cpu(cpu, policy->cpus) {
869 int max_perf_pct, min_perf_pct;
870 struct cpudata *cpu_data = all_cpu_data[cpu];
871 s16 epp;
872
873 if (per_cpu_limits)
874 perf_limits = all_cpu_data[cpu]->perf_limits;
875
876 rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
877 hw_min = HWP_LOWEST_PERF(cap);
878 if (limits->no_turbo)
879 hw_max = HWP_GUARANTEED_PERF(cap);
880 else
881 hw_max = HWP_HIGHEST_PERF(cap);
882 range = hw_max - hw_min;
883
884 max_perf_pct = perf_limits->max_perf_pct;
885 min_perf_pct = perf_limits->min_perf_pct;
886
887 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
888 adj_range = min_perf_pct * range / 100;
889 min = hw_min + adj_range;
890 value &= ~HWP_MIN_PERF(~0L);
891 value |= HWP_MIN_PERF(min);
892
893 adj_range = max_perf_pct * range / 100;
894 max = hw_min + adj_range;
895
896 value &= ~HWP_MAX_PERF(~0L);
897 value |= HWP_MAX_PERF(max);
898
899 if (cpu_data->epp_policy == cpu_data->policy)
900 goto skip_epp;
901
902 cpu_data->epp_policy = cpu_data->policy;
903
904 if (cpu_data->epp_saved >= 0) {
905 epp = cpu_data->epp_saved;
906 cpu_data->epp_saved = -EINVAL;
907 goto update_epp;
908 }
909
910 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
911 epp = intel_pstate_get_epp(cpu_data, value);
912 cpu_data->epp_powersave = epp;
913 /* If EPP read was failed, then don't try to write */
914 if (epp < 0)
915 goto skip_epp;
916
917
918 epp = 0;
919 } else {
920 /* skip setting EPP, when saved value is invalid */
921 if (cpu_data->epp_powersave < 0)
922 goto skip_epp;
923
924 /*
925 * No need to restore EPP when it is not zero. This
926 * means:
927 * - Policy is not changed
928 * - user has manually changed
929 * - Error reading EPB
930 */
931 epp = intel_pstate_get_epp(cpu_data, value);
932 if (epp)
933 goto skip_epp;
934
935 epp = cpu_data->epp_powersave;
936 }
937 update_epp:
938 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
939 value &= ~GENMASK_ULL(31, 24);
940 value |= (u64)epp << 24;
941 } else {
942 intel_pstate_set_epb(cpu, epp);
943 }
944 skip_epp:
945 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
946 }
947 }
948
949 static int intel_pstate_hwp_set_policy(struct cpufreq_policy *policy)
950 {
951 if (hwp_active)
952 intel_pstate_hwp_set(policy);
953
954 return 0;
955 }
956
957 static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
958 {
959 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
960
961 if (!hwp_active)
962 return 0;
963
964 cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);
965
966 return 0;
967 }
968
969 static int intel_pstate_resume(struct cpufreq_policy *policy)
970 {
971 int ret;
972
973 if (!hwp_active)
974 return 0;
975
976 mutex_lock(&intel_pstate_limits_lock);
977
978 all_cpu_data[policy->cpu]->epp_policy = 0;
979
980 ret = intel_pstate_hwp_set_policy(policy);
981
982 mutex_unlock(&intel_pstate_limits_lock);
983
984 return ret;
985 }
986
987 static void intel_pstate_update_policies(void)
988 {
989 int cpu;
990
991 for_each_possible_cpu(cpu)
992 cpufreq_update_policy(cpu);
993 }
994
995 /************************** debugfs begin ************************/
996 static int pid_param_set(void *data, u64 val)
997 {
998 *(u32 *)data = val;
999 intel_pstate_reset_all_pid();
1000 return 0;
1001 }
1002
1003 static int pid_param_get(void *data, u64 *val)
1004 {
1005 *val = *(u32 *)data;
1006 return 0;
1007 }
1008 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
1009
1010 static struct dentry *debugfs_parent;
1011
1012 struct pid_param {
1013 char *name;
1014 void *value;
1015 struct dentry *dentry;
1016 };
1017
1018 static struct pid_param pid_files[] = {
1019 {"sample_rate_ms", &pid_params.sample_rate_ms, },
1020 {"d_gain_pct", &pid_params.d_gain_pct, },
1021 {"i_gain_pct", &pid_params.i_gain_pct, },
1022 {"deadband", &pid_params.deadband, },
1023 {"setpoint", &pid_params.setpoint, },
1024 {"p_gain_pct", &pid_params.p_gain_pct, },
1025 {NULL, NULL, }
1026 };
1027
1028 static void intel_pstate_debug_expose_params(void)
1029 {
1030 int i;
1031
1032 debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
1033 if (IS_ERR_OR_NULL(debugfs_parent))
1034 return;
1035
1036 for (i = 0; pid_files[i].name; i++) {
1037 struct dentry *dentry;
1038
1039 dentry = debugfs_create_file(pid_files[i].name, 0660,
1040 debugfs_parent, pid_files[i].value,
1041 &fops_pid_param);
1042 if (!IS_ERR(dentry))
1043 pid_files[i].dentry = dentry;
1044 }
1045 }
1046
1047 static void intel_pstate_debug_hide_params(void)
1048 {
1049 int i;
1050
1051 if (IS_ERR_OR_NULL(debugfs_parent))
1052 return;
1053
1054 for (i = 0; pid_files[i].name; i++) {
1055 debugfs_remove(pid_files[i].dentry);
1056 pid_files[i].dentry = NULL;
1057 }
1058
1059 debugfs_remove(debugfs_parent);
1060 debugfs_parent = NULL;
1061 }
1062
1063 /************************** debugfs end ************************/
1064
1065 /************************** sysfs begin ************************/
1066 #define show_one(file_name, object) \
1067 static ssize_t show_##file_name \
1068 (struct kobject *kobj, struct attribute *attr, char *buf) \
1069 { \
1070 return sprintf(buf, "%u\n", limits->object); \
1071 }
1072
1073 static ssize_t intel_pstate_show_status(char *buf);
1074 static int intel_pstate_update_status(const char *buf, size_t size);
1075
1076 static ssize_t show_status(struct kobject *kobj,
1077 struct attribute *attr, char *buf)
1078 {
1079 ssize_t ret;
1080
1081 mutex_lock(&intel_pstate_driver_lock);
1082 ret = intel_pstate_show_status(buf);
1083 mutex_unlock(&intel_pstate_driver_lock);
1084
1085 return ret;
1086 }
1087
1088 static ssize_t store_status(struct kobject *a, struct attribute *b,
1089 const char *buf, size_t count)
1090 {
1091 char *p = memchr(buf, '\n', count);
1092 int ret;
1093
1094 mutex_lock(&intel_pstate_driver_lock);
1095 ret = intel_pstate_update_status(buf, p ? p - buf : count);
1096 mutex_unlock(&intel_pstate_driver_lock);
1097
1098 return ret < 0 ? ret : count;
1099 }
1100
1101 static ssize_t show_turbo_pct(struct kobject *kobj,
1102 struct attribute *attr, char *buf)
1103 {
1104 struct cpudata *cpu;
1105 int total, no_turbo, turbo_pct;
1106 uint32_t turbo_fp;
1107
1108 mutex_lock(&intel_pstate_driver_lock);
1109
1110 if (!driver_registered) {
1111 mutex_unlock(&intel_pstate_driver_lock);
1112 return -EAGAIN;
1113 }
1114
1115 cpu = all_cpu_data[0];
1116
1117 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1118 no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1119 turbo_fp = div_fp(no_turbo, total);
1120 turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1121
1122 mutex_unlock(&intel_pstate_driver_lock);
1123
1124 return sprintf(buf, "%u\n", turbo_pct);
1125 }
1126
1127 static ssize_t show_num_pstates(struct kobject *kobj,
1128 struct attribute *attr, char *buf)
1129 {
1130 struct cpudata *cpu;
1131 int total;
1132
1133 mutex_lock(&intel_pstate_driver_lock);
1134
1135 if (!driver_registered) {
1136 mutex_unlock(&intel_pstate_driver_lock);
1137 return -EAGAIN;
1138 }
1139
1140 cpu = all_cpu_data[0];
1141 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1142
1143 mutex_unlock(&intel_pstate_driver_lock);
1144
1145 return sprintf(buf, "%u\n", total);
1146 }
1147
1148 static ssize_t show_no_turbo(struct kobject *kobj,
1149 struct attribute *attr, char *buf)
1150 {
1151 ssize_t ret;
1152
1153 mutex_lock(&intel_pstate_driver_lock);
1154
1155 if (!driver_registered) {
1156 mutex_unlock(&intel_pstate_driver_lock);
1157 return -EAGAIN;
1158 }
1159
1160 update_turbo_state();
1161 if (limits->turbo_disabled)
1162 ret = sprintf(buf, "%u\n", limits->turbo_disabled);
1163 else
1164 ret = sprintf(buf, "%u\n", limits->no_turbo);
1165
1166 mutex_unlock(&intel_pstate_driver_lock);
1167
1168 return ret;
1169 }
1170
1171 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
1172 const char *buf, size_t count)
1173 {
1174 unsigned int input;
1175 int ret;
1176
1177 ret = sscanf(buf, "%u", &input);
1178 if (ret != 1)
1179 return -EINVAL;
1180
1181 mutex_lock(&intel_pstate_driver_lock);
1182
1183 if (!driver_registered) {
1184 mutex_unlock(&intel_pstate_driver_lock);
1185 return -EAGAIN;
1186 }
1187
1188 mutex_lock(&intel_pstate_limits_lock);
1189
1190 update_turbo_state();
1191 if (limits->turbo_disabled) {
1192 pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
1193 mutex_unlock(&intel_pstate_limits_lock);
1194 mutex_unlock(&intel_pstate_driver_lock);
1195 return -EPERM;
1196 }
1197
1198 limits->no_turbo = clamp_t(int, input, 0, 1);
1199
1200 mutex_unlock(&intel_pstate_limits_lock);
1201
1202 intel_pstate_update_policies();
1203
1204 mutex_unlock(&intel_pstate_driver_lock);
1205
1206 return count;
1207 }
1208
1209 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
1210 const char *buf, size_t count)
1211 {
1212 unsigned int input;
1213 int ret;
1214
1215 ret = sscanf(buf, "%u", &input);
1216 if (ret != 1)
1217 return -EINVAL;
1218
1219 mutex_lock(&intel_pstate_driver_lock);
1220
1221 if (!driver_registered) {
1222 mutex_unlock(&intel_pstate_driver_lock);
1223 return -EAGAIN;
1224 }
1225
1226 mutex_lock(&intel_pstate_limits_lock);
1227
1228 limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
1229 limits->max_perf_pct = min(limits->max_policy_pct,
1230 limits->max_sysfs_pct);
1231 limits->max_perf_pct = max(limits->min_policy_pct,
1232 limits->max_perf_pct);
1233 limits->max_perf_pct = max(limits->min_perf_pct,
1234 limits->max_perf_pct);
1235 limits->max_perf = div_ext_fp(limits->max_perf_pct, 100);
1236
1237 mutex_unlock(&intel_pstate_limits_lock);
1238
1239 intel_pstate_update_policies();
1240
1241 mutex_unlock(&intel_pstate_driver_lock);
1242
1243 return count;
1244 }
1245
1246 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
1247 const char *buf, size_t count)
1248 {
1249 unsigned int input;
1250 int ret;
1251
1252 ret = sscanf(buf, "%u", &input);
1253 if (ret != 1)
1254 return -EINVAL;
1255
1256 mutex_lock(&intel_pstate_driver_lock);
1257
1258 if (!driver_registered) {
1259 mutex_unlock(&intel_pstate_driver_lock);
1260 return -EAGAIN;
1261 }
1262
1263 mutex_lock(&intel_pstate_limits_lock);
1264
1265 limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
1266 limits->min_perf_pct = max(limits->min_policy_pct,
1267 limits->min_sysfs_pct);
1268 limits->min_perf_pct = min(limits->max_policy_pct,
1269 limits->min_perf_pct);
1270 limits->min_perf_pct = min(limits->max_perf_pct,
1271 limits->min_perf_pct);
1272 limits->min_perf = div_ext_fp(limits->min_perf_pct, 100);
1273
1274 mutex_unlock(&intel_pstate_limits_lock);
1275
1276 intel_pstate_update_policies();
1277
1278 mutex_unlock(&intel_pstate_driver_lock);
1279
1280 return count;
1281 }
1282
1283 show_one(max_perf_pct, max_perf_pct);
1284 show_one(min_perf_pct, min_perf_pct);
1285
1286 define_one_global_rw(status);
1287 define_one_global_rw(no_turbo);
1288 define_one_global_rw(max_perf_pct);
1289 define_one_global_rw(min_perf_pct);
1290 define_one_global_ro(turbo_pct);
1291 define_one_global_ro(num_pstates);
1292
1293 static struct attribute *intel_pstate_attributes[] = {
1294 &status.attr,
1295 &no_turbo.attr,
1296 &turbo_pct.attr,
1297 &num_pstates.attr,
1298 NULL
1299 };
1300
1301 static struct attribute_group intel_pstate_attr_group = {
1302 .attrs = intel_pstate_attributes,
1303 };
1304
1305 static void __init intel_pstate_sysfs_expose_params(void)
1306 {
1307 struct kobject *intel_pstate_kobject;
1308 int rc;
1309
1310 intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1311 &cpu_subsys.dev_root->kobj);
1312 if (WARN_ON(!intel_pstate_kobject))
1313 return;
1314
1315 rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1316 if (WARN_ON(rc))
1317 return;
1318
1319 /*
1320 * If per cpu limits are enforced there are no global limits, so
1321 * return without creating max/min_perf_pct attributes
1322 */
1323 if (per_cpu_limits)
1324 return;
1325
1326 rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1327 WARN_ON(rc);
1328
1329 rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1330 WARN_ON(rc);
1331
1332 }
1333 /************************** sysfs end ************************/
1334
1335 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1336 {
1337 /* First disable HWP notification interrupt as we don't process them */
1338 if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
1339 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1340
1341 wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1342 cpudata->epp_policy = 0;
1343 if (cpudata->epp_default == -EINVAL)
1344 cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1345 }
1346
1347 #define MSR_IA32_POWER_CTL_BIT_EE 19
1348
1349 /* Disable energy efficiency optimization */
1350 static void intel_pstate_disable_ee(int cpu)
1351 {
1352 u64 power_ctl;
1353 int ret;
1354
1355 ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
1356 if (ret)
1357 return;
1358
1359 if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
1360 pr_info("Disabling energy efficiency optimization\n");
1361 power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1362 wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
1363 }
1364 }
1365
1366 static int atom_get_min_pstate(void)
1367 {
1368 u64 value;
1369
1370 rdmsrl(ATOM_RATIOS, value);
1371 return (value >> 8) & 0x7F;
1372 }
1373
1374 static int atom_get_max_pstate(void)
1375 {
1376 u64 value;
1377
1378 rdmsrl(ATOM_RATIOS, value);
1379 return (value >> 16) & 0x7F;
1380 }
1381
1382 static int atom_get_turbo_pstate(void)
1383 {
1384 u64 value;
1385
1386 rdmsrl(ATOM_TURBO_RATIOS, value);
1387 return value & 0x7F;
1388 }
1389
1390 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1391 {
1392 u64 val;
1393 int32_t vid_fp;
1394 u32 vid;
1395
1396 val = (u64)pstate << 8;
1397 if (limits->no_turbo && !limits->turbo_disabled)
1398 val |= (u64)1 << 32;
1399
1400 vid_fp = cpudata->vid.min + mul_fp(
1401 int_tofp(pstate - cpudata->pstate.min_pstate),
1402 cpudata->vid.ratio);
1403
1404 vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1405 vid = ceiling_fp(vid_fp);
1406
1407 if (pstate > cpudata->pstate.max_pstate)
1408 vid = cpudata->vid.turbo;
1409
1410 return val | vid;
1411 }
1412
1413 static int silvermont_get_scaling(void)
1414 {
1415 u64 value;
1416 int i;
1417 /* Defined in Table 35-6 from SDM (Sept 2015) */
1418 static int silvermont_freq_table[] = {
1419 83300, 100000, 133300, 116700, 80000};
1420
1421 rdmsrl(MSR_FSB_FREQ, value);
1422 i = value & 0x7;
1423 WARN_ON(i > 4);
1424
1425 return silvermont_freq_table[i];
1426 }
1427
1428 static int airmont_get_scaling(void)
1429 {
1430 u64 value;
1431 int i;
1432 /* Defined in Table 35-10 from SDM (Sept 2015) */
1433 static int airmont_freq_table[] = {
1434 83300, 100000, 133300, 116700, 80000,
1435 93300, 90000, 88900, 87500};
1436
1437 rdmsrl(MSR_FSB_FREQ, value);
1438 i = value & 0xF;
1439 WARN_ON(i > 8);
1440
1441 return airmont_freq_table[i];
1442 }
1443
1444 static void atom_get_vid(struct cpudata *cpudata)
1445 {
1446 u64 value;
1447
1448 rdmsrl(ATOM_VIDS, value);
1449 cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1450 cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1451 cpudata->vid.ratio = div_fp(
1452 cpudata->vid.max - cpudata->vid.min,
1453 int_tofp(cpudata->pstate.max_pstate -
1454 cpudata->pstate.min_pstate));
1455
1456 rdmsrl(ATOM_TURBO_VIDS, value);
1457 cpudata->vid.turbo = value & 0x7f;
1458 }
1459
1460 static int core_get_min_pstate(void)
1461 {
1462 u64 value;
1463
1464 rdmsrl(MSR_PLATFORM_INFO, value);
1465 return (value >> 40) & 0xFF;
1466 }
1467
1468 static int core_get_max_pstate_physical(void)
1469 {
1470 u64 value;
1471
1472 rdmsrl(MSR_PLATFORM_INFO, value);
1473 return (value >> 8) & 0xFF;
1474 }
1475
1476 static int core_get_tdp_ratio(u64 plat_info)
1477 {
1478 /* Check how many TDP levels present */
1479 if (plat_info & 0x600000000) {
1480 u64 tdp_ctrl;
1481 u64 tdp_ratio;
1482 int tdp_msr;
1483 int err;
1484
1485 /* Get the TDP level (0, 1, 2) to get ratios */
1486 err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1487 if (err)
1488 return err;
1489
1490 /* TDP MSR are continuous starting at 0x648 */
1491 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1492 err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1493 if (err)
1494 return err;
1495
1496 /* For level 1 and 2, bits[23:16] contain the ratio */
1497 if (tdp_ctrl & 0x03)
1498 tdp_ratio >>= 16;
1499
1500 tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1501 pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1502
1503 return (int)tdp_ratio;
1504 }
1505
1506 return -ENXIO;
1507 }
1508
1509 static int core_get_max_pstate(void)
1510 {
1511 u64 tar;
1512 u64 plat_info;
1513 int max_pstate;
1514 int tdp_ratio;
1515 int err;
1516
1517 rdmsrl(MSR_PLATFORM_INFO, plat_info);
1518 max_pstate = (plat_info >> 8) & 0xFF;
1519
1520 tdp_ratio = core_get_tdp_ratio(plat_info);
1521 if (tdp_ratio <= 0)
1522 return max_pstate;
1523
1524 if (hwp_active) {
1525 /* Turbo activation ratio is not used on HWP platforms */
1526 return tdp_ratio;
1527 }
1528
1529 err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1530 if (!err) {
1531 int tar_levels;
1532
1533 /* Do some sanity checking for safety */
1534 tar_levels = tar & 0xff;
1535 if (tdp_ratio - 1 == tar_levels) {
1536 max_pstate = tar_levels;
1537 pr_debug("max_pstate=TAC %x\n", max_pstate);
1538 }
1539 }
1540
1541 return max_pstate;
1542 }
1543
1544 static int core_get_turbo_pstate(void)
1545 {
1546 u64 value;
1547 int nont, ret;
1548
1549 rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1550 nont = core_get_max_pstate();
1551 ret = (value) & 255;
1552 if (ret <= nont)
1553 ret = nont;
1554 return ret;
1555 }
1556
1557 static inline int core_get_scaling(void)
1558 {
1559 return 100000;
1560 }
1561
1562 static u64 core_get_val(struct cpudata *cpudata, int pstate)
1563 {
1564 u64 val;
1565
1566 val = (u64)pstate << 8;
1567 if (limits->no_turbo && !limits->turbo_disabled)
1568 val |= (u64)1 << 32;
1569
1570 return val;
1571 }
1572
1573 static int knl_get_turbo_pstate(void)
1574 {
1575 u64 value;
1576 int nont, ret;
1577
1578 rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1579 nont = core_get_max_pstate();
1580 ret = (((value) >> 8) & 0xFF);
1581 if (ret <= nont)
1582 ret = nont;
1583 return ret;
1584 }
1585
1586 static struct cpu_defaults core_params = {
1587 .pid_policy = {
1588 .sample_rate_ms = 10,
1589 .deadband = 0,
1590 .setpoint = 97,
1591 .p_gain_pct = 20,
1592 .d_gain_pct = 0,
1593 .i_gain_pct = 0,
1594 },
1595 .funcs = {
1596 .get_max = core_get_max_pstate,
1597 .get_max_physical = core_get_max_pstate_physical,
1598 .get_min = core_get_min_pstate,
1599 .get_turbo = core_get_turbo_pstate,
1600 .get_scaling = core_get_scaling,
1601 .get_val = core_get_val,
1602 .get_target_pstate = get_target_pstate_use_performance,
1603 },
1604 };
1605
1606 static const struct cpu_defaults silvermont_params = {
1607 .pid_policy = {
1608 .sample_rate_ms = 10,
1609 .deadband = 0,
1610 .setpoint = 60,
1611 .p_gain_pct = 14,
1612 .d_gain_pct = 0,
1613 .i_gain_pct = 4,
1614 },
1615 .funcs = {
1616 .get_max = atom_get_max_pstate,
1617 .get_max_physical = atom_get_max_pstate,
1618 .get_min = atom_get_min_pstate,
1619 .get_turbo = atom_get_turbo_pstate,
1620 .get_val = atom_get_val,
1621 .get_scaling = silvermont_get_scaling,
1622 .get_vid = atom_get_vid,
1623 .get_target_pstate = get_target_pstate_use_cpu_load,
1624 },
1625 };
1626
1627 static const struct cpu_defaults airmont_params = {
1628 .pid_policy = {
1629 .sample_rate_ms = 10,
1630 .deadband = 0,
1631 .setpoint = 60,
1632 .p_gain_pct = 14,
1633 .d_gain_pct = 0,
1634 .i_gain_pct = 4,
1635 },
1636 .funcs = {
1637 .get_max = atom_get_max_pstate,
1638 .get_max_physical = atom_get_max_pstate,
1639 .get_min = atom_get_min_pstate,
1640 .get_turbo = atom_get_turbo_pstate,
1641 .get_val = atom_get_val,
1642 .get_scaling = airmont_get_scaling,
1643 .get_vid = atom_get_vid,
1644 .get_target_pstate = get_target_pstate_use_cpu_load,
1645 },
1646 };
1647
1648 static const struct cpu_defaults knl_params = {
1649 .pid_policy = {
1650 .sample_rate_ms = 10,
1651 .deadband = 0,
1652 .setpoint = 97,
1653 .p_gain_pct = 20,
1654 .d_gain_pct = 0,
1655 .i_gain_pct = 0,
1656 },
1657 .funcs = {
1658 .get_max = core_get_max_pstate,
1659 .get_max_physical = core_get_max_pstate_physical,
1660 .get_min = core_get_min_pstate,
1661 .get_turbo = knl_get_turbo_pstate,
1662 .get_scaling = core_get_scaling,
1663 .get_val = core_get_val,
1664 .get_target_pstate = get_target_pstate_use_performance,
1665 },
1666 };
1667
1668 static const struct cpu_defaults bxt_params = {
1669 .pid_policy = {
1670 .sample_rate_ms = 10,
1671 .deadband = 0,
1672 .setpoint = 60,
1673 .p_gain_pct = 14,
1674 .d_gain_pct = 0,
1675 .i_gain_pct = 4,
1676 },
1677 .funcs = {
1678 .get_max = core_get_max_pstate,
1679 .get_max_physical = core_get_max_pstate_physical,
1680 .get_min = core_get_min_pstate,
1681 .get_turbo = core_get_turbo_pstate,
1682 .get_scaling = core_get_scaling,
1683 .get_val = core_get_val,
1684 .get_target_pstate = get_target_pstate_use_cpu_load,
1685 },
1686 };
1687
1688 static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
1689 {
1690 int max_perf = cpu->pstate.turbo_pstate;
1691 int max_perf_adj;
1692 int min_perf;
1693 struct perf_limits *perf_limits = limits;
1694
1695 if (limits->no_turbo || limits->turbo_disabled)
1696 max_perf = cpu->pstate.max_pstate;
1697
1698 if (per_cpu_limits)
1699 perf_limits = cpu->perf_limits;
1700
1701 /*
1702 * performance can be limited by user through sysfs, by cpufreq
1703 * policy, or by cpu specific default values determined through
1704 * experimentation.
1705 */
1706 max_perf_adj = fp_ext_toint(max_perf * perf_limits->max_perf);
1707 *max = clamp_t(int, max_perf_adj,
1708 cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
1709
1710 min_perf = fp_ext_toint(max_perf * perf_limits->min_perf);
1711 *min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
1712 }
1713
1714 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1715 {
1716 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1717 cpu->pstate.current_pstate = pstate;
1718 /*
1719 * Generally, there is no guarantee that this code will always run on
1720 * the CPU being updated, so force the register update to run on the
1721 * right CPU.
1722 */
1723 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1724 pstate_funcs.get_val(cpu, pstate));
1725 }
1726
1727 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1728 {
1729 intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1730 }
1731
1732 static void intel_pstate_max_within_limits(struct cpudata *cpu)
1733 {
1734 int min_pstate, max_pstate;
1735
1736 update_turbo_state();
1737 intel_pstate_get_min_max(cpu, &min_pstate, &max_pstate);
1738 intel_pstate_set_pstate(cpu, max_pstate);
1739 }
1740
1741 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1742 {
1743 cpu->pstate.min_pstate = pstate_funcs.get_min();
1744 cpu->pstate.max_pstate = pstate_funcs.get_max();
1745 cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1746 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1747 cpu->pstate.scaling = pstate_funcs.get_scaling();
1748 cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1749 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1750
1751 if (pstate_funcs.get_vid)
1752 pstate_funcs.get_vid(cpu);
1753
1754 intel_pstate_set_min_pstate(cpu);
1755 }
1756
1757 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1758 {
1759 struct sample *sample = &cpu->sample;
1760
1761 sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1762 }
1763
1764 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1765 {
1766 u64 aperf, mperf;
1767 unsigned long flags;
1768 u64 tsc;
1769
1770 local_irq_save(flags);
1771 rdmsrl(MSR_IA32_APERF, aperf);
1772 rdmsrl(MSR_IA32_MPERF, mperf);
1773 tsc = rdtsc();
1774 if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1775 local_irq_restore(flags);
1776 return false;
1777 }
1778 local_irq_restore(flags);
1779
1780 cpu->last_sample_time = cpu->sample.time;
1781 cpu->sample.time = time;
1782 cpu->sample.aperf = aperf;
1783 cpu->sample.mperf = mperf;
1784 cpu->sample.tsc = tsc;
1785 cpu->sample.aperf -= cpu->prev_aperf;
1786 cpu->sample.mperf -= cpu->prev_mperf;
1787 cpu->sample.tsc -= cpu->prev_tsc;
1788
1789 cpu->prev_aperf = aperf;
1790 cpu->prev_mperf = mperf;
1791 cpu->prev_tsc = tsc;
1792 /*
1793 * First time this function is invoked in a given cycle, all of the
1794 * previous sample data fields are equal to zero or stale and they must
1795 * be populated with meaningful numbers for things to work, so assume
1796 * that sample.time will always be reset before setting the utilization
1797 * update hook and make the caller skip the sample then.
1798 */
1799 return !!cpu->last_sample_time;
1800 }
1801
1802 static inline int32_t get_avg_frequency(struct cpudata *cpu)
1803 {
1804 return mul_ext_fp(cpu->sample.core_avg_perf,
1805 cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
1806 }
1807
1808 static inline int32_t get_avg_pstate(struct cpudata *cpu)
1809 {
1810 return mul_ext_fp(cpu->pstate.max_pstate_physical,
1811 cpu->sample.core_avg_perf);
1812 }
1813
1814 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
1815 {
1816 struct sample *sample = &cpu->sample;
1817 int32_t busy_frac, boost;
1818 int target, avg_pstate;
1819
1820 busy_frac = div_fp(sample->mperf, sample->tsc);
1821
1822 boost = cpu->iowait_boost;
1823 cpu->iowait_boost >>= 1;
1824
1825 if (busy_frac < boost)
1826 busy_frac = boost;
1827
1828 sample->busy_scaled = busy_frac * 100;
1829
1830 target = limits->no_turbo || limits->turbo_disabled ?
1831 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1832 target += target >> 2;
1833 target = mul_fp(target, busy_frac);
1834 if (target < cpu->pstate.min_pstate)
1835 target = cpu->pstate.min_pstate;
1836
1837 /*
1838 * If the average P-state during the previous cycle was higher than the
1839 * current target, add 50% of the difference to the target to reduce
1840 * possible performance oscillations and offset possible performance
1841 * loss related to moving the workload from one CPU to another within
1842 * a package/module.
1843 */
1844 avg_pstate = get_avg_pstate(cpu);
1845 if (avg_pstate > target)
1846 target += (avg_pstate - target) >> 1;
1847
1848 return target;
1849 }
1850
1851 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
1852 {
1853 int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
1854 u64 duration_ns;
1855
1856 /*
1857 * perf_scaled is the ratio of the average P-state during the last
1858 * sampling period to the P-state requested last time (in percent).
1859 *
1860 * That measures the system's response to the previous P-state
1861 * selection.
1862 */
1863 max_pstate = cpu->pstate.max_pstate_physical;
1864 current_pstate = cpu->pstate.current_pstate;
1865 perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
1866 div_fp(100 * max_pstate, current_pstate));
1867
1868 /*
1869 * Since our utilization update callback will not run unless we are
1870 * in C0, check if the actual elapsed time is significantly greater (3x)
1871 * than our sample interval. If it is, then we were idle for a long
1872 * enough period of time to adjust our performance metric.
1873 */
1874 duration_ns = cpu->sample.time - cpu->last_sample_time;
1875 if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
1876 sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1877 perf_scaled = mul_fp(perf_scaled, sample_ratio);
1878 } else {
1879 sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
1880 if (sample_ratio < int_tofp(1))
1881 perf_scaled = 0;
1882 }
1883
1884 cpu->sample.busy_scaled = perf_scaled;
1885 return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
1886 }
1887
1888 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1889 {
1890 int max_perf, min_perf;
1891
1892 intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
1893 pstate = clamp_t(int, pstate, min_perf, max_perf);
1894 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1895 return pstate;
1896 }
1897
1898 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1899 {
1900 pstate = intel_pstate_prepare_request(cpu, pstate);
1901 if (pstate == cpu->pstate.current_pstate)
1902 return;
1903
1904 cpu->pstate.current_pstate = pstate;
1905 wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1906 }
1907
1908 static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
1909 {
1910 int from, target_pstate;
1911 struct sample *sample;
1912
1913 from = cpu->pstate.current_pstate;
1914
1915 target_pstate = cpu->policy == CPUFREQ_POLICY_PERFORMANCE ?
1916 cpu->pstate.turbo_pstate : pstate_funcs.get_target_pstate(cpu);
1917
1918 update_turbo_state();
1919
1920 intel_pstate_update_pstate(cpu, target_pstate);
1921
1922 sample = &cpu->sample;
1923 trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1924 fp_toint(sample->busy_scaled),
1925 from,
1926 cpu->pstate.current_pstate,
1927 sample->mperf,
1928 sample->aperf,
1929 sample->tsc,
1930 get_avg_frequency(cpu),
1931 fp_toint(cpu->iowait_boost * 100));
1932 }
1933
1934 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1935 unsigned int flags)
1936 {
1937 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1938 u64 delta_ns;
1939
1940 if (pstate_funcs.get_target_pstate == get_target_pstate_use_cpu_load) {
1941 if (flags & SCHED_CPUFREQ_IOWAIT) {
1942 cpu->iowait_boost = int_tofp(1);
1943 } else if (cpu->iowait_boost) {
1944 /* Clear iowait_boost if the CPU may have been idle. */
1945 delta_ns = time - cpu->last_update;
1946 if (delta_ns > TICK_NSEC)
1947 cpu->iowait_boost = 0;
1948 }
1949 cpu->last_update = time;
1950 }
1951
1952 delta_ns = time - cpu->sample.time;
1953 if ((s64)delta_ns >= pid_params.sample_rate_ns) {
1954 bool sample_taken = intel_pstate_sample(cpu, time);
1955
1956 if (sample_taken) {
1957 intel_pstate_calc_avg_perf(cpu);
1958 if (!hwp_active)
1959 intel_pstate_adjust_busy_pstate(cpu);
1960 }
1961 }
1962 }
1963
1964 #define ICPU(model, policy) \
1965 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1966 (unsigned long)&policy }
1967
1968 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1969 ICPU(INTEL_FAM6_SANDYBRIDGE, core_params),
1970 ICPU(INTEL_FAM6_SANDYBRIDGE_X, core_params),
1971 ICPU(INTEL_FAM6_ATOM_SILVERMONT1, silvermont_params),
1972 ICPU(INTEL_FAM6_IVYBRIDGE, core_params),
1973 ICPU(INTEL_FAM6_HASWELL_CORE, core_params),
1974 ICPU(INTEL_FAM6_BROADWELL_CORE, core_params),
1975 ICPU(INTEL_FAM6_IVYBRIDGE_X, core_params),
1976 ICPU(INTEL_FAM6_HASWELL_X, core_params),
1977 ICPU(INTEL_FAM6_HASWELL_ULT, core_params),
1978 ICPU(INTEL_FAM6_HASWELL_GT3E, core_params),
1979 ICPU(INTEL_FAM6_BROADWELL_GT3E, core_params),
1980 ICPU(INTEL_FAM6_ATOM_AIRMONT, airmont_params),
1981 ICPU(INTEL_FAM6_SKYLAKE_MOBILE, core_params),
1982 ICPU(INTEL_FAM6_BROADWELL_X, core_params),
1983 ICPU(INTEL_FAM6_SKYLAKE_DESKTOP, core_params),
1984 ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
1985 ICPU(INTEL_FAM6_XEON_PHI_KNL, knl_params),
1986 ICPU(INTEL_FAM6_XEON_PHI_KNM, knl_params),
1987 ICPU(INTEL_FAM6_ATOM_GOLDMONT, bxt_params),
1988 {}
1989 };
1990 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1991
1992 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1993 ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
1994 ICPU(INTEL_FAM6_BROADWELL_X, core_params),
1995 ICPU(INTEL_FAM6_SKYLAKE_X, core_params),
1996 {}
1997 };
1998
1999 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
2000 ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_params),
2001 {}
2002 };
2003
2004 static int intel_pstate_init_cpu(unsigned int cpunum)
2005 {
2006 struct cpudata *cpu;
2007
2008 cpu = all_cpu_data[cpunum];
2009
2010 if (!cpu) {
2011 unsigned int size = sizeof(struct cpudata);
2012
2013 if (per_cpu_limits)
2014 size += sizeof(struct perf_limits);
2015
2016 cpu = kzalloc(size, GFP_KERNEL);
2017 if (!cpu)
2018 return -ENOMEM;
2019
2020 all_cpu_data[cpunum] = cpu;
2021 if (per_cpu_limits)
2022 cpu->perf_limits = (struct perf_limits *)(cpu + 1);
2023
2024 cpu->epp_default = -EINVAL;
2025 cpu->epp_powersave = -EINVAL;
2026 cpu->epp_saved = -EINVAL;
2027 }
2028
2029 cpu = all_cpu_data[cpunum];
2030
2031 cpu->cpu = cpunum;
2032
2033 if (hwp_active) {
2034 const struct x86_cpu_id *id;
2035
2036 id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
2037 if (id)
2038 intel_pstate_disable_ee(cpunum);
2039
2040 intel_pstate_hwp_enable(cpu);
2041 pid_params.sample_rate_ms = 50;
2042 pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
2043 }
2044
2045 intel_pstate_get_cpu_pstates(cpu);
2046
2047 intel_pstate_busy_pid_reset(cpu);
2048
2049 pr_debug("controlling: cpu %d\n", cpunum);
2050
2051 return 0;
2052 }
2053
2054 static unsigned int intel_pstate_get(unsigned int cpu_num)
2055 {
2056 struct cpudata *cpu = all_cpu_data[cpu_num];
2057
2058 return cpu ? get_avg_frequency(cpu) : 0;
2059 }
2060
2061 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
2062 {
2063 struct cpudata *cpu = all_cpu_data[cpu_num];
2064
2065 if (cpu->update_util_set)
2066 return;
2067
2068 /* Prevent intel_pstate_update_util() from using stale data. */
2069 cpu->sample.time = 0;
2070 cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
2071 intel_pstate_update_util);
2072 cpu->update_util_set = true;
2073 }
2074
2075 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
2076 {
2077 struct cpudata *cpu_data = all_cpu_data[cpu];
2078
2079 if (!cpu_data->update_util_set)
2080 return;
2081
2082 cpufreq_remove_update_util_hook(cpu);
2083 cpu_data->update_util_set = false;
2084 synchronize_sched();
2085 }
2086
2087 static void intel_pstate_set_performance_limits(struct perf_limits *limits)
2088 {
2089 limits->no_turbo = 0;
2090 limits->turbo_disabled = 0;
2091 limits->max_perf_pct = 100;
2092 limits->max_perf = int_ext_tofp(1);
2093 limits->min_perf_pct = 100;
2094 limits->min_perf = int_ext_tofp(1);
2095 limits->max_policy_pct = 100;
2096 limits->max_sysfs_pct = 100;
2097 limits->min_policy_pct = 0;
2098 limits->min_sysfs_pct = 0;
2099 }
2100
2101 static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
2102 struct perf_limits *limits)
2103 {
2104
2105 limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100,
2106 policy->cpuinfo.max_freq);
2107 limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0, 100);
2108 if (policy->max == policy->min) {
2109 limits->min_policy_pct = limits->max_policy_pct;
2110 } else {
2111 limits->min_policy_pct = DIV_ROUND_UP(policy->min * 100,
2112 policy->cpuinfo.max_freq);
2113 limits->min_policy_pct = clamp_t(int, limits->min_policy_pct,
2114 0, 100);
2115 }
2116
2117 /* Normalize user input to [min_policy_pct, max_policy_pct] */
2118 limits->min_perf_pct = max(limits->min_policy_pct,
2119 limits->min_sysfs_pct);
2120 limits->min_perf_pct = min(limits->max_policy_pct,
2121 limits->min_perf_pct);
2122 limits->max_perf_pct = min(limits->max_policy_pct,
2123 limits->max_sysfs_pct);
2124 limits->max_perf_pct = max(limits->min_policy_pct,
2125 limits->max_perf_pct);
2126
2127 /* Make sure min_perf_pct <= max_perf_pct */
2128 limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct);
2129
2130 limits->min_perf = div_ext_fp(limits->min_perf_pct, 100);
2131 limits->max_perf = div_ext_fp(limits->max_perf_pct, 100);
2132 limits->max_perf = round_up(limits->max_perf, EXT_FRAC_BITS);
2133 limits->min_perf = round_up(limits->min_perf, EXT_FRAC_BITS);
2134
2135 pr_debug("cpu:%d max_perf_pct:%d min_perf_pct:%d\n", policy->cpu,
2136 limits->max_perf_pct, limits->min_perf_pct);
2137 }
2138
2139 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2140 {
2141 struct cpudata *cpu;
2142 struct perf_limits *perf_limits = NULL;
2143
2144 if (!policy->cpuinfo.max_freq)
2145 return -ENODEV;
2146
2147 pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2148 policy->cpuinfo.max_freq, policy->max);
2149
2150 cpu = all_cpu_data[policy->cpu];
2151 cpu->policy = policy->policy;
2152
2153 if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2154 policy->max < policy->cpuinfo.max_freq &&
2155 policy->max > cpu->pstate.max_pstate * cpu->pstate.scaling) {
2156 pr_debug("policy->max > max non turbo frequency\n");
2157 policy->max = policy->cpuinfo.max_freq;
2158 }
2159
2160 if (per_cpu_limits)
2161 perf_limits = cpu->perf_limits;
2162
2163 mutex_lock(&intel_pstate_limits_lock);
2164
2165 if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
2166 if (!perf_limits) {
2167 limits = &performance_limits;
2168 perf_limits = limits;
2169 }
2170 if (policy->max >= policy->cpuinfo.max_freq &&
2171 !limits->no_turbo) {
2172 pr_debug("set performance\n");
2173 intel_pstate_set_performance_limits(perf_limits);
2174 goto out;
2175 }
2176 } else {
2177 pr_debug("set powersave\n");
2178 if (!perf_limits) {
2179 limits = &powersave_limits;
2180 perf_limits = limits;
2181 }
2182
2183 }
2184
2185 intel_pstate_update_perf_limits(policy, perf_limits);
2186 out:
2187 if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2188 /*
2189 * NOHZ_FULL CPUs need this as the governor callback may not
2190 * be invoked on them.
2191 */
2192 intel_pstate_clear_update_util_hook(policy->cpu);
2193 intel_pstate_max_within_limits(cpu);
2194 }
2195
2196 intel_pstate_set_update_util_hook(policy->cpu);
2197
2198 intel_pstate_hwp_set_policy(policy);
2199
2200 mutex_unlock(&intel_pstate_limits_lock);
2201
2202 return 0;
2203 }
2204
2205 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
2206 {
2207 struct cpudata *cpu = all_cpu_data[policy->cpu];
2208 struct perf_limits *perf_limits;
2209
2210 if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
2211 perf_limits = &performance_limits;
2212 else
2213 perf_limits = &powersave_limits;
2214
2215 update_turbo_state();
2216 policy->cpuinfo.max_freq = perf_limits->turbo_disabled ||
2217 perf_limits->no_turbo ?
2218 cpu->pstate.max_freq :
2219 cpu->pstate.turbo_freq;
2220
2221 cpufreq_verify_within_cpu_limits(policy);
2222
2223 if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
2224 policy->policy != CPUFREQ_POLICY_PERFORMANCE)
2225 return -EINVAL;
2226
2227 /* When per-CPU limits are used, sysfs limits are not used */
2228 if (!per_cpu_limits) {
2229 unsigned int max_freq, min_freq;
2230
2231 max_freq = policy->cpuinfo.max_freq *
2232 limits->max_sysfs_pct / 100;
2233 min_freq = policy->cpuinfo.max_freq *
2234 limits->min_sysfs_pct / 100;
2235 cpufreq_verify_within_limits(policy, min_freq, max_freq);
2236 }
2237
2238 return 0;
2239 }
2240
2241 static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
2242 {
2243 intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
2244 }
2245
2246 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2247 {
2248 pr_debug("CPU %d exiting\n", policy->cpu);
2249
2250 intel_pstate_clear_update_util_hook(policy->cpu);
2251 if (hwp_active)
2252 intel_pstate_hwp_save_state(policy);
2253 else
2254 intel_cpufreq_stop_cpu(policy);
2255 }
2256
2257 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2258 {
2259 intel_pstate_exit_perf_limits(policy);
2260
2261 policy->fast_switch_possible = false;
2262
2263 return 0;
2264 }
2265
2266 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2267 {
2268 struct cpudata *cpu;
2269 int rc;
2270
2271 rc = intel_pstate_init_cpu(policy->cpu);
2272 if (rc)
2273 return rc;
2274
2275 cpu = all_cpu_data[policy->cpu];
2276
2277 /*
2278 * We need sane value in the cpu->perf_limits, so inherit from global
2279 * perf_limits limits, which are seeded with values based on the
2280 * CONFIG_CPU_FREQ_DEFAULT_GOV_*, during boot up.
2281 */
2282 if (per_cpu_limits)
2283 memcpy(cpu->perf_limits, limits, sizeof(struct perf_limits));
2284
2285 policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
2286 policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2287
2288 /* cpuinfo and default policy values */
2289 policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2290 update_turbo_state();
2291 policy->cpuinfo.max_freq = limits->turbo_disabled ?
2292 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2293 policy->cpuinfo.max_freq *= cpu->pstate.scaling;
2294
2295 intel_pstate_init_acpi_perf_limits(policy);
2296 cpumask_set_cpu(policy->cpu, policy->cpus);
2297
2298 policy->fast_switch_possible = true;
2299
2300 return 0;
2301 }
2302
2303 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2304 {
2305 int ret = __intel_pstate_cpu_init(policy);
2306
2307 if (ret)
2308 return ret;
2309
2310 policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
2311 if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
2312 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
2313 else
2314 policy->policy = CPUFREQ_POLICY_POWERSAVE;
2315
2316 return 0;
2317 }
2318
2319 static struct cpufreq_driver intel_pstate = {
2320 .flags = CPUFREQ_CONST_LOOPS,
2321 .verify = intel_pstate_verify_policy,
2322 .setpolicy = intel_pstate_set_policy,
2323 .suspend = intel_pstate_hwp_save_state,
2324 .resume = intel_pstate_resume,
2325 .get = intel_pstate_get,
2326 .init = intel_pstate_cpu_init,
2327 .exit = intel_pstate_cpu_exit,
2328 .stop_cpu = intel_pstate_stop_cpu,
2329 .name = "intel_pstate",
2330 };
2331
2332 static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
2333 {
2334 struct cpudata *cpu = all_cpu_data[policy->cpu];
2335 struct perf_limits *perf_limits = limits;
2336
2337 update_turbo_state();
2338 policy->cpuinfo.max_freq = limits->turbo_disabled ?
2339 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2340
2341 cpufreq_verify_within_cpu_limits(policy);
2342
2343 if (per_cpu_limits)
2344 perf_limits = cpu->perf_limits;
2345
2346 mutex_lock(&intel_pstate_limits_lock);
2347
2348 intel_pstate_update_perf_limits(policy, perf_limits);
2349
2350 mutex_unlock(&intel_pstate_limits_lock);
2351
2352 return 0;
2353 }
2354
2355 static unsigned int intel_cpufreq_turbo_update(struct cpudata *cpu,
2356 struct cpufreq_policy *policy,
2357 unsigned int target_freq)
2358 {
2359 unsigned int max_freq;
2360
2361 update_turbo_state();
2362
2363 max_freq = limits->no_turbo || limits->turbo_disabled ?
2364 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2365 policy->cpuinfo.max_freq = max_freq;
2366 if (policy->max > max_freq)
2367 policy->max = max_freq;
2368
2369 if (target_freq > max_freq)
2370 target_freq = max_freq;
2371
2372 return target_freq;
2373 }
2374
2375 static int intel_cpufreq_target(struct cpufreq_policy *policy,
2376 unsigned int target_freq,
2377 unsigned int relation)
2378 {
2379 struct cpudata *cpu = all_cpu_data[policy->cpu];
2380 struct cpufreq_freqs freqs;
2381 int target_pstate;
2382
2383 freqs.old = policy->cur;
2384 freqs.new = intel_cpufreq_turbo_update(cpu, policy, target_freq);
2385
2386 cpufreq_freq_transition_begin(policy, &freqs);
2387 switch (relation) {
2388 case CPUFREQ_RELATION_L:
2389 target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2390 break;
2391 case CPUFREQ_RELATION_H:
2392 target_pstate = freqs.new / cpu->pstate.scaling;
2393 break;
2394 default:
2395 target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2396 break;
2397 }
2398 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2399 if (target_pstate != cpu->pstate.current_pstate) {
2400 cpu->pstate.current_pstate = target_pstate;
2401 wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
2402 pstate_funcs.get_val(cpu, target_pstate));
2403 }
2404 cpufreq_freq_transition_end(policy, &freqs, false);
2405
2406 return 0;
2407 }
2408
2409 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2410 unsigned int target_freq)
2411 {
2412 struct cpudata *cpu = all_cpu_data[policy->cpu];
2413 int target_pstate;
2414
2415 target_freq = intel_cpufreq_turbo_update(cpu, policy, target_freq);
2416 target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2417 intel_pstate_update_pstate(cpu, target_pstate);
2418 return target_freq;
2419 }
2420
2421 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2422 {
2423 int ret = __intel_pstate_cpu_init(policy);
2424
2425 if (ret)
2426 return ret;
2427
2428 policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2429 /* This reflects the intel_pstate_get_cpu_pstates() setting. */
2430 policy->cur = policy->cpuinfo.min_freq;
2431
2432 return 0;
2433 }
2434
2435 static struct cpufreq_driver intel_cpufreq = {
2436 .flags = CPUFREQ_CONST_LOOPS,
2437 .verify = intel_cpufreq_verify_policy,
2438 .target = intel_cpufreq_target,
2439 .fast_switch = intel_cpufreq_fast_switch,
2440 .init = intel_cpufreq_cpu_init,
2441 .exit = intel_pstate_cpu_exit,
2442 .stop_cpu = intel_cpufreq_stop_cpu,
2443 .name = "intel_cpufreq",
2444 };
2445
2446 static struct cpufreq_driver *intel_pstate_driver = &intel_pstate;
2447
2448 static void intel_pstate_driver_cleanup(void)
2449 {
2450 unsigned int cpu;
2451
2452 get_online_cpus();
2453 for_each_online_cpu(cpu) {
2454 if (all_cpu_data[cpu]) {
2455 if (intel_pstate_driver == &intel_pstate)
2456 intel_pstate_clear_update_util_hook(cpu);
2457
2458 kfree(all_cpu_data[cpu]);
2459 all_cpu_data[cpu] = NULL;
2460 }
2461 }
2462 put_online_cpus();
2463 }
2464
2465 static int intel_pstate_register_driver(void)
2466 {
2467 int ret;
2468
2469 ret = cpufreq_register_driver(intel_pstate_driver);
2470 if (ret) {
2471 intel_pstate_driver_cleanup();
2472 return ret;
2473 }
2474
2475 mutex_lock(&intel_pstate_limits_lock);
2476 driver_registered = true;
2477 mutex_unlock(&intel_pstate_limits_lock);
2478
2479 if (intel_pstate_driver == &intel_pstate && !hwp_active &&
2480 pstate_funcs.get_target_pstate != get_target_pstate_use_cpu_load)
2481 intel_pstate_debug_expose_params();
2482
2483 return 0;
2484 }
2485
2486 static int intel_pstate_unregister_driver(void)
2487 {
2488 if (hwp_active)
2489 return -EBUSY;
2490
2491 if (intel_pstate_driver == &intel_pstate && !hwp_active &&
2492 pstate_funcs.get_target_pstate != get_target_pstate_use_cpu_load)
2493 intel_pstate_debug_hide_params();
2494
2495 mutex_lock(&intel_pstate_limits_lock);
2496 driver_registered = false;
2497 mutex_unlock(&intel_pstate_limits_lock);
2498
2499 cpufreq_unregister_driver(intel_pstate_driver);
2500 intel_pstate_driver_cleanup();
2501
2502 return 0;
2503 }
2504
2505 static ssize_t intel_pstate_show_status(char *buf)
2506 {
2507 if (!driver_registered)
2508 return sprintf(buf, "off\n");
2509
2510 return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
2511 "active" : "passive");
2512 }
2513
2514 static int intel_pstate_update_status(const char *buf, size_t size)
2515 {
2516 int ret;
2517
2518 if (size == 3 && !strncmp(buf, "off", size))
2519 return driver_registered ?
2520 intel_pstate_unregister_driver() : -EINVAL;
2521
2522 if (size == 6 && !strncmp(buf, "active", size)) {
2523 if (driver_registered) {
2524 if (intel_pstate_driver == &intel_pstate)
2525 return 0;
2526
2527 ret = intel_pstate_unregister_driver();
2528 if (ret)
2529 return ret;
2530 }
2531
2532 intel_pstate_driver = &intel_pstate;
2533 return intel_pstate_register_driver();
2534 }
2535
2536 if (size == 7 && !strncmp(buf, "passive", size)) {
2537 if (driver_registered) {
2538 if (intel_pstate_driver != &intel_pstate)
2539 return 0;
2540
2541 ret = intel_pstate_unregister_driver();
2542 if (ret)
2543 return ret;
2544 }
2545
2546 intel_pstate_driver = &intel_cpufreq;
2547 return intel_pstate_register_driver();
2548 }
2549
2550 return -EINVAL;
2551 }
2552
2553 static int no_load __initdata;
2554 static int no_hwp __initdata;
2555 static int hwp_only __initdata;
2556 static unsigned int force_load __initdata;
2557
2558 static int __init intel_pstate_msrs_not_valid(void)
2559 {
2560 if (!pstate_funcs.get_max() ||
2561 !pstate_funcs.get_min() ||
2562 !pstate_funcs.get_turbo())
2563 return -ENODEV;
2564
2565 return 0;
2566 }
2567
2568 static void __init copy_pid_params(struct pstate_adjust_policy *policy)
2569 {
2570 pid_params.sample_rate_ms = policy->sample_rate_ms;
2571 pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
2572 pid_params.p_gain_pct = policy->p_gain_pct;
2573 pid_params.i_gain_pct = policy->i_gain_pct;
2574 pid_params.d_gain_pct = policy->d_gain_pct;
2575 pid_params.deadband = policy->deadband;
2576 pid_params.setpoint = policy->setpoint;
2577 }
2578
2579 #ifdef CONFIG_ACPI
2580 static void intel_pstate_use_acpi_profile(void)
2581 {
2582 if (acpi_gbl_FADT.preferred_profile == PM_MOBILE)
2583 pstate_funcs.get_target_pstate =
2584 get_target_pstate_use_cpu_load;
2585 }
2586 #else
2587 static void intel_pstate_use_acpi_profile(void)
2588 {
2589 }
2590 #endif
2591
2592 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2593 {
2594 pstate_funcs.get_max = funcs->get_max;
2595 pstate_funcs.get_max_physical = funcs->get_max_physical;
2596 pstate_funcs.get_min = funcs->get_min;
2597 pstate_funcs.get_turbo = funcs->get_turbo;
2598 pstate_funcs.get_scaling = funcs->get_scaling;
2599 pstate_funcs.get_val = funcs->get_val;
2600 pstate_funcs.get_vid = funcs->get_vid;
2601 pstate_funcs.get_target_pstate = funcs->get_target_pstate;
2602
2603 intel_pstate_use_acpi_profile();
2604 }
2605
2606 #ifdef CONFIG_ACPI
2607
2608 static bool __init intel_pstate_no_acpi_pss(void)
2609 {
2610 int i;
2611
2612 for_each_possible_cpu(i) {
2613 acpi_status status;
2614 union acpi_object *pss;
2615 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
2616 struct acpi_processor *pr = per_cpu(processors, i);
2617
2618 if (!pr)
2619 continue;
2620
2621 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
2622 if (ACPI_FAILURE(status))
2623 continue;
2624
2625 pss = buffer.pointer;
2626 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
2627 kfree(pss);
2628 return false;
2629 }
2630
2631 kfree(pss);
2632 }
2633
2634 return true;
2635 }
2636
2637 static bool __init intel_pstate_has_acpi_ppc(void)
2638 {
2639 int i;
2640
2641 for_each_possible_cpu(i) {
2642 struct acpi_processor *pr = per_cpu(processors, i);
2643
2644 if (!pr)
2645 continue;
2646 if (acpi_has_method(pr->handle, "_PPC"))
2647 return true;
2648 }
2649 return false;
2650 }
2651
2652 enum {
2653 PSS,
2654 PPC,
2655 };
2656
2657 struct hw_vendor_info {
2658 u16 valid;
2659 char oem_id[ACPI_OEM_ID_SIZE];
2660 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
2661 int oem_pwr_table;
2662 };
2663
2664 /* Hardware vendor-specific info that has its own power management modes */
2665 static struct hw_vendor_info vendor_info[] __initdata = {
2666 {1, "HP ", "ProLiant", PSS},
2667 {1, "ORACLE", "X4-2 ", PPC},
2668 {1, "ORACLE", "X4-2L ", PPC},
2669 {1, "ORACLE", "X4-2B ", PPC},
2670 {1, "ORACLE", "X3-2 ", PPC},
2671 {1, "ORACLE", "X3-2L ", PPC},
2672 {1, "ORACLE", "X3-2B ", PPC},
2673 {1, "ORACLE", "X4470M2 ", PPC},
2674 {1, "ORACLE", "X4270M3 ", PPC},
2675 {1, "ORACLE", "X4270M2 ", PPC},
2676 {1, "ORACLE", "X4170M2 ", PPC},
2677 {1, "ORACLE", "X4170 M3", PPC},
2678 {1, "ORACLE", "X4275 M3", PPC},
2679 {1, "ORACLE", "X6-2 ", PPC},
2680 {1, "ORACLE", "Sudbury ", PPC},
2681 {0, "", ""},
2682 };
2683
2684 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2685 {
2686 struct acpi_table_header hdr;
2687 struct hw_vendor_info *v_info;
2688 const struct x86_cpu_id *id;
2689 u64 misc_pwr;
2690
2691 id = x86_match_cpu(intel_pstate_cpu_oob_ids);
2692 if (id) {
2693 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2694 if ( misc_pwr & (1 << 8))
2695 return true;
2696 }
2697
2698 if (acpi_disabled ||
2699 ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
2700 return false;
2701
2702 for (v_info = vendor_info; v_info->valid; v_info++) {
2703 if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
2704 !strncmp(hdr.oem_table_id, v_info->oem_table_id,
2705 ACPI_OEM_TABLE_ID_SIZE))
2706 switch (v_info->oem_pwr_table) {
2707 case PSS:
2708 return intel_pstate_no_acpi_pss();
2709 case PPC:
2710 return intel_pstate_has_acpi_ppc() &&
2711 (!force_load);
2712 }
2713 }
2714
2715 return false;
2716 }
2717
2718 static void intel_pstate_request_control_from_smm(void)
2719 {
2720 /*
2721 * It may be unsafe to request P-states control from SMM if _PPC support
2722 * has not been enabled.
2723 */
2724 if (acpi_ppc)
2725 acpi_processor_pstate_control();
2726 }
2727 #else /* CONFIG_ACPI not enabled */
2728 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2729 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2730 static inline void intel_pstate_request_control_from_smm(void) {}
2731 #endif /* CONFIG_ACPI */
2732
2733 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2734 { X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
2735 {}
2736 };
2737
2738 static int __init intel_pstate_init(void)
2739 {
2740 const struct x86_cpu_id *id;
2741 struct cpu_defaults *cpu_def;
2742 int rc = 0;
2743
2744 if (no_load)
2745 return -ENODEV;
2746
2747 if (x86_match_cpu(hwp_support_ids) && !no_hwp) {
2748 copy_cpu_funcs(&core_params.funcs);
2749 hwp_active++;
2750 intel_pstate.attr = hwp_cpufreq_attrs;
2751 goto hwp_cpu_matched;
2752 }
2753
2754 id = x86_match_cpu(intel_pstate_cpu_ids);
2755 if (!id)
2756 return -ENODEV;
2757
2758 cpu_def = (struct cpu_defaults *)id->driver_data;
2759
2760 copy_pid_params(&cpu_def->pid_policy);
2761 copy_cpu_funcs(&cpu_def->funcs);
2762
2763 if (intel_pstate_msrs_not_valid())
2764 return -ENODEV;
2765
2766 hwp_cpu_matched:
2767 /*
2768 * The Intel pstate driver will be ignored if the platform
2769 * firmware has its own power management modes.
2770 */
2771 if (intel_pstate_platform_pwr_mgmt_exists())
2772 return -ENODEV;
2773
2774 if (!hwp_active && hwp_only)
2775 return -ENOTSUPP;
2776
2777 pr_info("Intel P-state driver initializing\n");
2778
2779 all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
2780 if (!all_cpu_data)
2781 return -ENOMEM;
2782
2783 intel_pstate_request_control_from_smm();
2784
2785 intel_pstate_sysfs_expose_params();
2786
2787 mutex_lock(&intel_pstate_driver_lock);
2788 rc = intel_pstate_register_driver();
2789 mutex_unlock(&intel_pstate_driver_lock);
2790 if (rc)
2791 return rc;
2792
2793 if (hwp_active)
2794 pr_info("HWP enabled\n");
2795
2796 return 0;
2797 }
2798 device_initcall(intel_pstate_init);
2799
2800 static int __init intel_pstate_setup(char *str)
2801 {
2802 if (!str)
2803 return -EINVAL;
2804
2805 if (!strcmp(str, "disable")) {
2806 no_load = 1;
2807 } else if (!strcmp(str, "passive")) {
2808 pr_info("Passive mode enabled\n");
2809 intel_pstate_driver = &intel_cpufreq;
2810 no_hwp = 1;
2811 }
2812 if (!strcmp(str, "no_hwp")) {
2813 pr_info("HWP disabled\n");
2814 no_hwp = 1;
2815 }
2816 if (!strcmp(str, "force"))
2817 force_load = 1;
2818 if (!strcmp(str, "hwp_only"))
2819 hwp_only = 1;
2820 if (!strcmp(str, "per_cpu_perf_limits"))
2821 per_cpu_limits = true;
2822
2823 #ifdef CONFIG_ACPI
2824 if (!strcmp(str, "support_acpi_ppc"))
2825 acpi_ppc = true;
2826 #endif
2827
2828 return 0;
2829 }
2830 early_param("intel_pstate", intel_pstate_setup);
2831
2832 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
2833 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
2834 MODULE_LICENSE("GPL");