]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/cpufreq/intel_pstate.c
f6dd07275862faff1a76b3c0d28aff6e748a6729
[mirror_ubuntu-bionic-kernel.git] / drivers / cpufreq / intel_pstate.c
1 /*
2 * intel_pstate.c: Native P state management for Intel processors
3 *
4 * (C) Copyright 2012 Intel Corporation
5 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
10 * of the License.
11 */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/kernel.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/module.h>
18 #include <linux/ktime.h>
19 #include <linux/hrtimer.h>
20 #include <linux/tick.h>
21 #include <linux/slab.h>
22 #include <linux/sched.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25 #include <linux/cpufreq.h>
26 #include <linux/sysfs.h>
27 #include <linux/types.h>
28 #include <linux/fs.h>
29 #include <linux/debugfs.h>
30 #include <linux/acpi.h>
31 #include <linux/vmalloc.h>
32 #include <trace/events/power.h>
33
34 #include <asm/div64.h>
35 #include <asm/msr.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/cpufeature.h>
38 #include <asm/intel-family.h>
39
40 #define ATOM_RATIOS 0x66a
41 #define ATOM_VIDS 0x66b
42 #define ATOM_TURBO_RATIOS 0x66c
43 #define ATOM_TURBO_VIDS 0x66d
44
45 #ifdef CONFIG_ACPI
46 #include <acpi/processor.h>
47 #endif
48
49 #define FRAC_BITS 8
50 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
51 #define fp_toint(X) ((X) >> FRAC_BITS)
52
53 #define EXT_BITS 6
54 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
55
56 static inline int32_t mul_fp(int32_t x, int32_t y)
57 {
58 return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
59 }
60
61 static inline int32_t div_fp(s64 x, s64 y)
62 {
63 return div64_s64((int64_t)x << FRAC_BITS, y);
64 }
65
66 static inline int ceiling_fp(int32_t x)
67 {
68 int mask, ret;
69
70 ret = fp_toint(x);
71 mask = (1 << FRAC_BITS) - 1;
72 if (x & mask)
73 ret += 1;
74 return ret;
75 }
76
77 static inline u64 mul_ext_fp(u64 x, u64 y)
78 {
79 return (x * y) >> EXT_FRAC_BITS;
80 }
81
82 static inline u64 div_ext_fp(u64 x, u64 y)
83 {
84 return div64_u64(x << EXT_FRAC_BITS, y);
85 }
86
87 /**
88 * struct sample - Store performance sample
89 * @core_avg_perf: Ratio of APERF/MPERF which is the actual average
90 * performance during last sample period
91 * @busy_scaled: Scaled busy value which is used to calculate next
92 * P state. This can be different than core_avg_perf
93 * to account for cpu idle period
94 * @aperf: Difference of actual performance frequency clock count
95 * read from APERF MSR between last and current sample
96 * @mperf: Difference of maximum performance frequency clock count
97 * read from MPERF MSR between last and current sample
98 * @tsc: Difference of time stamp counter between last and
99 * current sample
100 * @freq: Effective frequency calculated from APERF/MPERF
101 * @time: Current time from scheduler
102 *
103 * This structure is used in the cpudata structure to store performance sample
104 * data for choosing next P State.
105 */
106 struct sample {
107 int32_t core_avg_perf;
108 int32_t busy_scaled;
109 u64 aperf;
110 u64 mperf;
111 u64 tsc;
112 int freq;
113 u64 time;
114 };
115
116 /**
117 * struct pstate_data - Store P state data
118 * @current_pstate: Current requested P state
119 * @min_pstate: Min P state possible for this platform
120 * @max_pstate: Max P state possible for this platform
121 * @max_pstate_physical:This is physical Max P state for a processor
122 * This can be higher than the max_pstate which can
123 * be limited by platform thermal design power limits
124 * @scaling: Scaling factor to convert frequency to cpufreq
125 * frequency units
126 * @turbo_pstate: Max Turbo P state possible for this platform
127 *
128 * Stores the per cpu model P state limits and current P state.
129 */
130 struct pstate_data {
131 int current_pstate;
132 int min_pstate;
133 int max_pstate;
134 int max_pstate_physical;
135 int scaling;
136 int turbo_pstate;
137 };
138
139 /**
140 * struct vid_data - Stores voltage information data
141 * @min: VID data for this platform corresponding to
142 * the lowest P state
143 * @max: VID data corresponding to the highest P State.
144 * @turbo: VID data for turbo P state
145 * @ratio: Ratio of (vid max - vid min) /
146 * (max P state - Min P State)
147 *
148 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
149 * This data is used in Atom platforms, where in addition to target P state,
150 * the voltage data needs to be specified to select next P State.
151 */
152 struct vid_data {
153 int min;
154 int max;
155 int turbo;
156 int32_t ratio;
157 };
158
159 /**
160 * struct _pid - Stores PID data
161 * @setpoint: Target set point for busyness or performance
162 * @integral: Storage for accumulated error values
163 * @p_gain: PID proportional gain
164 * @i_gain: PID integral gain
165 * @d_gain: PID derivative gain
166 * @deadband: PID deadband
167 * @last_err: Last error storage for integral part of PID calculation
168 *
169 * Stores PID coefficients and last error for PID controller.
170 */
171 struct _pid {
172 int setpoint;
173 int32_t integral;
174 int32_t p_gain;
175 int32_t i_gain;
176 int32_t d_gain;
177 int deadband;
178 int32_t last_err;
179 };
180
181 /**
182 * struct cpudata - Per CPU instance data storage
183 * @cpu: CPU number for this instance data
184 * @update_util: CPUFreq utility callback information
185 * @update_util_set: CPUFreq utility callback is set
186 * @pstate: Stores P state limits for this CPU
187 * @vid: Stores VID limits for this CPU
188 * @pid: Stores PID parameters for this CPU
189 * @last_sample_time: Last Sample time
190 * @prev_aperf: Last APERF value read from APERF MSR
191 * @prev_mperf: Last MPERF value read from MPERF MSR
192 * @prev_tsc: Last timestamp counter (TSC) value
193 * @prev_cummulative_iowait: IO Wait time difference from last and
194 * current sample
195 * @sample: Storage for storing last Sample data
196 * @acpi_perf_data: Stores ACPI perf information read from _PSS
197 * @valid_pss_table: Set to true for valid ACPI _PSS entries found
198 *
199 * This structure stores per CPU instance data for all CPUs.
200 */
201 struct cpudata {
202 int cpu;
203
204 struct update_util_data update_util;
205 bool update_util_set;
206
207 struct pstate_data pstate;
208 struct vid_data vid;
209 struct _pid pid;
210
211 u64 last_sample_time;
212 u64 prev_aperf;
213 u64 prev_mperf;
214 u64 prev_tsc;
215 u64 prev_cummulative_iowait;
216 struct sample sample;
217 #ifdef CONFIG_ACPI
218 struct acpi_processor_performance acpi_perf_data;
219 bool valid_pss_table;
220 #endif
221 };
222
223 static struct cpudata **all_cpu_data;
224
225 /**
226 * struct pid_adjust_policy - Stores static PID configuration data
227 * @sample_rate_ms: PID calculation sample rate in ms
228 * @sample_rate_ns: Sample rate calculation in ns
229 * @deadband: PID deadband
230 * @setpoint: PID Setpoint
231 * @p_gain_pct: PID proportional gain
232 * @i_gain_pct: PID integral gain
233 * @d_gain_pct: PID derivative gain
234 *
235 * Stores per CPU model static PID configuration data.
236 */
237 struct pstate_adjust_policy {
238 int sample_rate_ms;
239 s64 sample_rate_ns;
240 int deadband;
241 int setpoint;
242 int p_gain_pct;
243 int d_gain_pct;
244 int i_gain_pct;
245 };
246
247 /**
248 * struct pstate_funcs - Per CPU model specific callbacks
249 * @get_max: Callback to get maximum non turbo effective P state
250 * @get_max_physical: Callback to get maximum non turbo physical P state
251 * @get_min: Callback to get minimum P state
252 * @get_turbo: Callback to get turbo P state
253 * @get_scaling: Callback to get frequency scaling factor
254 * @get_val: Callback to convert P state to actual MSR write value
255 * @get_vid: Callback to get VID data for Atom platforms
256 * @get_target_pstate: Callback to a function to calculate next P state to use
257 *
258 * Core and Atom CPU models have different way to get P State limits. This
259 * structure is used to store those callbacks.
260 */
261 struct pstate_funcs {
262 int (*get_max)(void);
263 int (*get_max_physical)(void);
264 int (*get_min)(void);
265 int (*get_turbo)(void);
266 int (*get_scaling)(void);
267 u64 (*get_val)(struct cpudata*, int pstate);
268 void (*get_vid)(struct cpudata *);
269 int32_t (*get_target_pstate)(struct cpudata *);
270 };
271
272 /**
273 * struct cpu_defaults- Per CPU model default config data
274 * @pid_policy: PID config data
275 * @funcs: Callback function data
276 */
277 struct cpu_defaults {
278 struct pstate_adjust_policy pid_policy;
279 struct pstate_funcs funcs;
280 };
281
282 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
283 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
284
285 static struct pstate_adjust_policy pid_params __read_mostly;
286 static struct pstate_funcs pstate_funcs __read_mostly;
287 static int hwp_active __read_mostly;
288
289 #ifdef CONFIG_ACPI
290 static bool acpi_ppc;
291 #endif
292
293 /**
294 * struct perf_limits - Store user and policy limits
295 * @no_turbo: User requested turbo state from intel_pstate sysfs
296 * @turbo_disabled: Platform turbo status either from msr
297 * MSR_IA32_MISC_ENABLE or when maximum available pstate
298 * matches the maximum turbo pstate
299 * @max_perf_pct: Effective maximum performance limit in percentage, this
300 * is minimum of either limits enforced by cpufreq policy
301 * or limits from user set limits via intel_pstate sysfs
302 * @min_perf_pct: Effective minimum performance limit in percentage, this
303 * is maximum of either limits enforced by cpufreq policy
304 * or limits from user set limits via intel_pstate sysfs
305 * @max_perf: This is a scaled value between 0 to 255 for max_perf_pct
306 * This value is used to limit max pstate
307 * @min_perf: This is a scaled value between 0 to 255 for min_perf_pct
308 * This value is used to limit min pstate
309 * @max_policy_pct: The maximum performance in percentage enforced by
310 * cpufreq setpolicy interface
311 * @max_sysfs_pct: The maximum performance in percentage enforced by
312 * intel pstate sysfs interface
313 * @min_policy_pct: The minimum performance in percentage enforced by
314 * cpufreq setpolicy interface
315 * @min_sysfs_pct: The minimum performance in percentage enforced by
316 * intel pstate sysfs interface
317 *
318 * Storage for user and policy defined limits.
319 */
320 struct perf_limits {
321 int no_turbo;
322 int turbo_disabled;
323 int max_perf_pct;
324 int min_perf_pct;
325 int32_t max_perf;
326 int32_t min_perf;
327 int max_policy_pct;
328 int max_sysfs_pct;
329 int min_policy_pct;
330 int min_sysfs_pct;
331 };
332
333 static struct perf_limits performance_limits = {
334 .no_turbo = 0,
335 .turbo_disabled = 0,
336 .max_perf_pct = 100,
337 .max_perf = int_tofp(1),
338 .min_perf_pct = 100,
339 .min_perf = int_tofp(1),
340 .max_policy_pct = 100,
341 .max_sysfs_pct = 100,
342 .min_policy_pct = 0,
343 .min_sysfs_pct = 0,
344 };
345
346 static struct perf_limits powersave_limits = {
347 .no_turbo = 0,
348 .turbo_disabled = 0,
349 .max_perf_pct = 100,
350 .max_perf = int_tofp(1),
351 .min_perf_pct = 0,
352 .min_perf = 0,
353 .max_policy_pct = 100,
354 .max_sysfs_pct = 100,
355 .min_policy_pct = 0,
356 .min_sysfs_pct = 0,
357 };
358
359 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
360 static struct perf_limits *limits = &performance_limits;
361 #else
362 static struct perf_limits *limits = &powersave_limits;
363 #endif
364
365 #ifdef CONFIG_ACPI
366
367 static bool intel_pstate_get_ppc_enable_status(void)
368 {
369 if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
370 acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
371 return true;
372
373 return acpi_ppc;
374 }
375
376 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
377 {
378 struct cpudata *cpu;
379 int ret;
380 int i;
381
382 if (hwp_active)
383 return;
384
385 if (!intel_pstate_get_ppc_enable_status())
386 return;
387
388 cpu = all_cpu_data[policy->cpu];
389
390 ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
391 policy->cpu);
392 if (ret)
393 return;
394
395 /*
396 * Check if the control value in _PSS is for PERF_CTL MSR, which should
397 * guarantee that the states returned by it map to the states in our
398 * list directly.
399 */
400 if (cpu->acpi_perf_data.control_register.space_id !=
401 ACPI_ADR_SPACE_FIXED_HARDWARE)
402 goto err;
403
404 /*
405 * If there is only one entry _PSS, simply ignore _PSS and continue as
406 * usual without taking _PSS into account
407 */
408 if (cpu->acpi_perf_data.state_count < 2)
409 goto err;
410
411 pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
412 for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
413 pr_debug(" %cP%d: %u MHz, %u mW, 0x%x\n",
414 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
415 (u32) cpu->acpi_perf_data.states[i].core_frequency,
416 (u32) cpu->acpi_perf_data.states[i].power,
417 (u32) cpu->acpi_perf_data.states[i].control);
418 }
419
420 /*
421 * The _PSS table doesn't contain whole turbo frequency range.
422 * This just contains +1 MHZ above the max non turbo frequency,
423 * with control value corresponding to max turbo ratio. But
424 * when cpufreq set policy is called, it will call with this
425 * max frequency, which will cause a reduced performance as
426 * this driver uses real max turbo frequency as the max
427 * frequency. So correct this frequency in _PSS table to
428 * correct max turbo frequency based on the turbo state.
429 * Also need to convert to MHz as _PSS freq is in MHz.
430 */
431 if (!limits->turbo_disabled)
432 cpu->acpi_perf_data.states[0].core_frequency =
433 policy->cpuinfo.max_freq / 1000;
434 cpu->valid_pss_table = true;
435 pr_debug("_PPC limits will be enforced\n");
436
437 return;
438
439 err:
440 cpu->valid_pss_table = false;
441 acpi_processor_unregister_performance(policy->cpu);
442 }
443
444 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
445 {
446 struct cpudata *cpu;
447
448 cpu = all_cpu_data[policy->cpu];
449 if (!cpu->valid_pss_table)
450 return;
451
452 acpi_processor_unregister_performance(policy->cpu);
453 }
454
455 #else
456 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
457 {
458 }
459
460 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
461 {
462 }
463 #endif
464
465 static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
466 int deadband, int integral) {
467 pid->setpoint = int_tofp(setpoint);
468 pid->deadband = int_tofp(deadband);
469 pid->integral = int_tofp(integral);
470 pid->last_err = int_tofp(setpoint) - int_tofp(busy);
471 }
472
473 static inline void pid_p_gain_set(struct _pid *pid, int percent)
474 {
475 pid->p_gain = div_fp(percent, 100);
476 }
477
478 static inline void pid_i_gain_set(struct _pid *pid, int percent)
479 {
480 pid->i_gain = div_fp(percent, 100);
481 }
482
483 static inline void pid_d_gain_set(struct _pid *pid, int percent)
484 {
485 pid->d_gain = div_fp(percent, 100);
486 }
487
488 static signed int pid_calc(struct _pid *pid, int32_t busy)
489 {
490 signed int result;
491 int32_t pterm, dterm, fp_error;
492 int32_t integral_limit;
493
494 fp_error = pid->setpoint - busy;
495
496 if (abs(fp_error) <= pid->deadband)
497 return 0;
498
499 pterm = mul_fp(pid->p_gain, fp_error);
500
501 pid->integral += fp_error;
502
503 /*
504 * We limit the integral here so that it will never
505 * get higher than 30. This prevents it from becoming
506 * too large an input over long periods of time and allows
507 * it to get factored out sooner.
508 *
509 * The value of 30 was chosen through experimentation.
510 */
511 integral_limit = int_tofp(30);
512 if (pid->integral > integral_limit)
513 pid->integral = integral_limit;
514 if (pid->integral < -integral_limit)
515 pid->integral = -integral_limit;
516
517 dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
518 pid->last_err = fp_error;
519
520 result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
521 result = result + (1 << (FRAC_BITS-1));
522 return (signed int)fp_toint(result);
523 }
524
525 static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
526 {
527 pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
528 pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
529 pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
530
531 pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
532 }
533
534 static inline void intel_pstate_reset_all_pid(void)
535 {
536 unsigned int cpu;
537
538 for_each_online_cpu(cpu) {
539 if (all_cpu_data[cpu])
540 intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
541 }
542 }
543
544 static inline void update_turbo_state(void)
545 {
546 u64 misc_en;
547 struct cpudata *cpu;
548
549 cpu = all_cpu_data[0];
550 rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
551 limits->turbo_disabled =
552 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
553 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
554 }
555
556 static void intel_pstate_hwp_set(const struct cpumask *cpumask)
557 {
558 int min, hw_min, max, hw_max, cpu, range, adj_range;
559 u64 value, cap;
560
561 rdmsrl(MSR_HWP_CAPABILITIES, cap);
562 hw_min = HWP_LOWEST_PERF(cap);
563 hw_max = HWP_HIGHEST_PERF(cap);
564 range = hw_max - hw_min;
565
566 for_each_cpu(cpu, cpumask) {
567 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
568 adj_range = limits->min_perf_pct * range / 100;
569 min = hw_min + adj_range;
570 value &= ~HWP_MIN_PERF(~0L);
571 value |= HWP_MIN_PERF(min);
572
573 adj_range = limits->max_perf_pct * range / 100;
574 max = hw_min + adj_range;
575 if (limits->no_turbo) {
576 hw_max = HWP_GUARANTEED_PERF(cap);
577 if (hw_max < max)
578 max = hw_max;
579 }
580
581 value &= ~HWP_MAX_PERF(~0L);
582 value |= HWP_MAX_PERF(max);
583 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
584 }
585 }
586
587 static int intel_pstate_hwp_set_policy(struct cpufreq_policy *policy)
588 {
589 if (hwp_active)
590 intel_pstate_hwp_set(policy->cpus);
591
592 return 0;
593 }
594
595 static void intel_pstate_hwp_set_online_cpus(void)
596 {
597 get_online_cpus();
598 intel_pstate_hwp_set(cpu_online_mask);
599 put_online_cpus();
600 }
601
602 /************************** debugfs begin ************************/
603 static int pid_param_set(void *data, u64 val)
604 {
605 *(u32 *)data = val;
606 intel_pstate_reset_all_pid();
607 return 0;
608 }
609
610 static int pid_param_get(void *data, u64 *val)
611 {
612 *val = *(u32 *)data;
613 return 0;
614 }
615 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
616
617 struct pid_param {
618 char *name;
619 void *value;
620 };
621
622 static struct pid_param pid_files[] = {
623 {"sample_rate_ms", &pid_params.sample_rate_ms},
624 {"d_gain_pct", &pid_params.d_gain_pct},
625 {"i_gain_pct", &pid_params.i_gain_pct},
626 {"deadband", &pid_params.deadband},
627 {"setpoint", &pid_params.setpoint},
628 {"p_gain_pct", &pid_params.p_gain_pct},
629 {NULL, NULL}
630 };
631
632 static void __init intel_pstate_debug_expose_params(void)
633 {
634 struct dentry *debugfs_parent;
635 int i = 0;
636
637 if (hwp_active)
638 return;
639 debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
640 if (IS_ERR_OR_NULL(debugfs_parent))
641 return;
642 while (pid_files[i].name) {
643 debugfs_create_file(pid_files[i].name, 0660,
644 debugfs_parent, pid_files[i].value,
645 &fops_pid_param);
646 i++;
647 }
648 }
649
650 /************************** debugfs end ************************/
651
652 /************************** sysfs begin ************************/
653 #define show_one(file_name, object) \
654 static ssize_t show_##file_name \
655 (struct kobject *kobj, struct attribute *attr, char *buf) \
656 { \
657 return sprintf(buf, "%u\n", limits->object); \
658 }
659
660 static ssize_t show_turbo_pct(struct kobject *kobj,
661 struct attribute *attr, char *buf)
662 {
663 struct cpudata *cpu;
664 int total, no_turbo, turbo_pct;
665 uint32_t turbo_fp;
666
667 cpu = all_cpu_data[0];
668
669 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
670 no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
671 turbo_fp = div_fp(no_turbo, total);
672 turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
673 return sprintf(buf, "%u\n", turbo_pct);
674 }
675
676 static ssize_t show_num_pstates(struct kobject *kobj,
677 struct attribute *attr, char *buf)
678 {
679 struct cpudata *cpu;
680 int total;
681
682 cpu = all_cpu_data[0];
683 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
684 return sprintf(buf, "%u\n", total);
685 }
686
687 static ssize_t show_no_turbo(struct kobject *kobj,
688 struct attribute *attr, char *buf)
689 {
690 ssize_t ret;
691
692 update_turbo_state();
693 if (limits->turbo_disabled)
694 ret = sprintf(buf, "%u\n", limits->turbo_disabled);
695 else
696 ret = sprintf(buf, "%u\n", limits->no_turbo);
697
698 return ret;
699 }
700
701 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
702 const char *buf, size_t count)
703 {
704 unsigned int input;
705 int ret;
706
707 ret = sscanf(buf, "%u", &input);
708 if (ret != 1)
709 return -EINVAL;
710
711 update_turbo_state();
712 if (limits->turbo_disabled) {
713 pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
714 return -EPERM;
715 }
716
717 limits->no_turbo = clamp_t(int, input, 0, 1);
718
719 if (hwp_active)
720 intel_pstate_hwp_set_online_cpus();
721
722 return count;
723 }
724
725 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
726 const char *buf, size_t count)
727 {
728 unsigned int input;
729 int ret;
730
731 ret = sscanf(buf, "%u", &input);
732 if (ret != 1)
733 return -EINVAL;
734
735 limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
736 limits->max_perf_pct = min(limits->max_policy_pct,
737 limits->max_sysfs_pct);
738 limits->max_perf_pct = max(limits->min_policy_pct,
739 limits->max_perf_pct);
740 limits->max_perf_pct = max(limits->min_perf_pct,
741 limits->max_perf_pct);
742 limits->max_perf = div_fp(limits->max_perf_pct, 100);
743
744 if (hwp_active)
745 intel_pstate_hwp_set_online_cpus();
746 return count;
747 }
748
749 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
750 const char *buf, size_t count)
751 {
752 unsigned int input;
753 int ret;
754
755 ret = sscanf(buf, "%u", &input);
756 if (ret != 1)
757 return -EINVAL;
758
759 limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
760 limits->min_perf_pct = max(limits->min_policy_pct,
761 limits->min_sysfs_pct);
762 limits->min_perf_pct = min(limits->max_policy_pct,
763 limits->min_perf_pct);
764 limits->min_perf_pct = min(limits->max_perf_pct,
765 limits->min_perf_pct);
766 limits->min_perf = div_fp(limits->min_perf_pct, 100);
767
768 if (hwp_active)
769 intel_pstate_hwp_set_online_cpus();
770 return count;
771 }
772
773 show_one(max_perf_pct, max_perf_pct);
774 show_one(min_perf_pct, min_perf_pct);
775
776 define_one_global_rw(no_turbo);
777 define_one_global_rw(max_perf_pct);
778 define_one_global_rw(min_perf_pct);
779 define_one_global_ro(turbo_pct);
780 define_one_global_ro(num_pstates);
781
782 static struct attribute *intel_pstate_attributes[] = {
783 &no_turbo.attr,
784 &max_perf_pct.attr,
785 &min_perf_pct.attr,
786 &turbo_pct.attr,
787 &num_pstates.attr,
788 NULL
789 };
790
791 static struct attribute_group intel_pstate_attr_group = {
792 .attrs = intel_pstate_attributes,
793 };
794
795 static void __init intel_pstate_sysfs_expose_params(void)
796 {
797 struct kobject *intel_pstate_kobject;
798 int rc;
799
800 intel_pstate_kobject = kobject_create_and_add("intel_pstate",
801 &cpu_subsys.dev_root->kobj);
802 BUG_ON(!intel_pstate_kobject);
803 rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
804 BUG_ON(rc);
805 }
806 /************************** sysfs end ************************/
807
808 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
809 {
810 /* First disable HWP notification interrupt as we don't process them */
811 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
812
813 wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
814 }
815
816 static int atom_get_min_pstate(void)
817 {
818 u64 value;
819
820 rdmsrl(ATOM_RATIOS, value);
821 return (value >> 8) & 0x7F;
822 }
823
824 static int atom_get_max_pstate(void)
825 {
826 u64 value;
827
828 rdmsrl(ATOM_RATIOS, value);
829 return (value >> 16) & 0x7F;
830 }
831
832 static int atom_get_turbo_pstate(void)
833 {
834 u64 value;
835
836 rdmsrl(ATOM_TURBO_RATIOS, value);
837 return value & 0x7F;
838 }
839
840 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
841 {
842 u64 val;
843 int32_t vid_fp;
844 u32 vid;
845
846 val = (u64)pstate << 8;
847 if (limits->no_turbo && !limits->turbo_disabled)
848 val |= (u64)1 << 32;
849
850 vid_fp = cpudata->vid.min + mul_fp(
851 int_tofp(pstate - cpudata->pstate.min_pstate),
852 cpudata->vid.ratio);
853
854 vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
855 vid = ceiling_fp(vid_fp);
856
857 if (pstate > cpudata->pstate.max_pstate)
858 vid = cpudata->vid.turbo;
859
860 return val | vid;
861 }
862
863 static int silvermont_get_scaling(void)
864 {
865 u64 value;
866 int i;
867 /* Defined in Table 35-6 from SDM (Sept 2015) */
868 static int silvermont_freq_table[] = {
869 83300, 100000, 133300, 116700, 80000};
870
871 rdmsrl(MSR_FSB_FREQ, value);
872 i = value & 0x7;
873 WARN_ON(i > 4);
874
875 return silvermont_freq_table[i];
876 }
877
878 static int airmont_get_scaling(void)
879 {
880 u64 value;
881 int i;
882 /* Defined in Table 35-10 from SDM (Sept 2015) */
883 static int airmont_freq_table[] = {
884 83300, 100000, 133300, 116700, 80000,
885 93300, 90000, 88900, 87500};
886
887 rdmsrl(MSR_FSB_FREQ, value);
888 i = value & 0xF;
889 WARN_ON(i > 8);
890
891 return airmont_freq_table[i];
892 }
893
894 static void atom_get_vid(struct cpudata *cpudata)
895 {
896 u64 value;
897
898 rdmsrl(ATOM_VIDS, value);
899 cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
900 cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
901 cpudata->vid.ratio = div_fp(
902 cpudata->vid.max - cpudata->vid.min,
903 int_tofp(cpudata->pstate.max_pstate -
904 cpudata->pstate.min_pstate));
905
906 rdmsrl(ATOM_TURBO_VIDS, value);
907 cpudata->vid.turbo = value & 0x7f;
908 }
909
910 static int core_get_min_pstate(void)
911 {
912 u64 value;
913
914 rdmsrl(MSR_PLATFORM_INFO, value);
915 return (value >> 40) & 0xFF;
916 }
917
918 static int core_get_max_pstate_physical(void)
919 {
920 u64 value;
921
922 rdmsrl(MSR_PLATFORM_INFO, value);
923 return (value >> 8) & 0xFF;
924 }
925
926 static int core_get_max_pstate(void)
927 {
928 u64 tar;
929 u64 plat_info;
930 int max_pstate;
931 int err;
932
933 rdmsrl(MSR_PLATFORM_INFO, plat_info);
934 max_pstate = (plat_info >> 8) & 0xFF;
935
936 err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
937 if (!err) {
938 /* Do some sanity checking for safety */
939 if (plat_info & 0x600000000) {
940 u64 tdp_ctrl;
941 u64 tdp_ratio;
942 int tdp_msr;
943
944 err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
945 if (err)
946 goto skip_tar;
947
948 tdp_msr = MSR_CONFIG_TDP_NOMINAL + tdp_ctrl;
949 err = rdmsrl_safe(tdp_msr, &tdp_ratio);
950 if (err)
951 goto skip_tar;
952
953 /* For level 1 and 2, bits[23:16] contain the ratio */
954 if (tdp_ctrl)
955 tdp_ratio >>= 16;
956
957 tdp_ratio &= 0xff; /* ratios are only 8 bits long */
958 if (tdp_ratio - 1 == tar) {
959 max_pstate = tar;
960 pr_debug("max_pstate=TAC %x\n", max_pstate);
961 } else {
962 goto skip_tar;
963 }
964 }
965 }
966
967 skip_tar:
968 return max_pstate;
969 }
970
971 static int core_get_turbo_pstate(void)
972 {
973 u64 value;
974 int nont, ret;
975
976 rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
977 nont = core_get_max_pstate();
978 ret = (value) & 255;
979 if (ret <= nont)
980 ret = nont;
981 return ret;
982 }
983
984 static inline int core_get_scaling(void)
985 {
986 return 100000;
987 }
988
989 static u64 core_get_val(struct cpudata *cpudata, int pstate)
990 {
991 u64 val;
992
993 val = (u64)pstate << 8;
994 if (limits->no_turbo && !limits->turbo_disabled)
995 val |= (u64)1 << 32;
996
997 return val;
998 }
999
1000 static int knl_get_turbo_pstate(void)
1001 {
1002 u64 value;
1003 int nont, ret;
1004
1005 rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
1006 nont = core_get_max_pstate();
1007 ret = (((value) >> 8) & 0xFF);
1008 if (ret <= nont)
1009 ret = nont;
1010 return ret;
1011 }
1012
1013 static struct cpu_defaults core_params = {
1014 .pid_policy = {
1015 .sample_rate_ms = 10,
1016 .deadband = 0,
1017 .setpoint = 97,
1018 .p_gain_pct = 20,
1019 .d_gain_pct = 0,
1020 .i_gain_pct = 0,
1021 },
1022 .funcs = {
1023 .get_max = core_get_max_pstate,
1024 .get_max_physical = core_get_max_pstate_physical,
1025 .get_min = core_get_min_pstate,
1026 .get_turbo = core_get_turbo_pstate,
1027 .get_scaling = core_get_scaling,
1028 .get_val = core_get_val,
1029 .get_target_pstate = get_target_pstate_use_performance,
1030 },
1031 };
1032
1033 static struct cpu_defaults silvermont_params = {
1034 .pid_policy = {
1035 .sample_rate_ms = 10,
1036 .deadband = 0,
1037 .setpoint = 60,
1038 .p_gain_pct = 14,
1039 .d_gain_pct = 0,
1040 .i_gain_pct = 4,
1041 },
1042 .funcs = {
1043 .get_max = atom_get_max_pstate,
1044 .get_max_physical = atom_get_max_pstate,
1045 .get_min = atom_get_min_pstate,
1046 .get_turbo = atom_get_turbo_pstate,
1047 .get_val = atom_get_val,
1048 .get_scaling = silvermont_get_scaling,
1049 .get_vid = atom_get_vid,
1050 .get_target_pstate = get_target_pstate_use_cpu_load,
1051 },
1052 };
1053
1054 static struct cpu_defaults airmont_params = {
1055 .pid_policy = {
1056 .sample_rate_ms = 10,
1057 .deadband = 0,
1058 .setpoint = 60,
1059 .p_gain_pct = 14,
1060 .d_gain_pct = 0,
1061 .i_gain_pct = 4,
1062 },
1063 .funcs = {
1064 .get_max = atom_get_max_pstate,
1065 .get_max_physical = atom_get_max_pstate,
1066 .get_min = atom_get_min_pstate,
1067 .get_turbo = atom_get_turbo_pstate,
1068 .get_val = atom_get_val,
1069 .get_scaling = airmont_get_scaling,
1070 .get_vid = atom_get_vid,
1071 .get_target_pstate = get_target_pstate_use_cpu_load,
1072 },
1073 };
1074
1075 static struct cpu_defaults knl_params = {
1076 .pid_policy = {
1077 .sample_rate_ms = 10,
1078 .deadband = 0,
1079 .setpoint = 97,
1080 .p_gain_pct = 20,
1081 .d_gain_pct = 0,
1082 .i_gain_pct = 0,
1083 },
1084 .funcs = {
1085 .get_max = core_get_max_pstate,
1086 .get_max_physical = core_get_max_pstate_physical,
1087 .get_min = core_get_min_pstate,
1088 .get_turbo = knl_get_turbo_pstate,
1089 .get_scaling = core_get_scaling,
1090 .get_val = core_get_val,
1091 .get_target_pstate = get_target_pstate_use_performance,
1092 },
1093 };
1094
1095 static struct cpu_defaults bxt_params = {
1096 .pid_policy = {
1097 .sample_rate_ms = 10,
1098 .deadband = 0,
1099 .setpoint = 60,
1100 .p_gain_pct = 14,
1101 .d_gain_pct = 0,
1102 .i_gain_pct = 4,
1103 },
1104 .funcs = {
1105 .get_max = core_get_max_pstate,
1106 .get_max_physical = core_get_max_pstate_physical,
1107 .get_min = core_get_min_pstate,
1108 .get_turbo = core_get_turbo_pstate,
1109 .get_scaling = core_get_scaling,
1110 .get_val = core_get_val,
1111 .get_target_pstate = get_target_pstate_use_cpu_load,
1112 },
1113 };
1114
1115 static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
1116 {
1117 int max_perf = cpu->pstate.turbo_pstate;
1118 int max_perf_adj;
1119 int min_perf;
1120
1121 if (limits->no_turbo || limits->turbo_disabled)
1122 max_perf = cpu->pstate.max_pstate;
1123
1124 /*
1125 * performance can be limited by user through sysfs, by cpufreq
1126 * policy, or by cpu specific default values determined through
1127 * experimentation.
1128 */
1129 max_perf_adj = fp_toint(max_perf * limits->max_perf);
1130 *max = clamp_t(int, max_perf_adj,
1131 cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
1132
1133 min_perf = fp_toint(max_perf * limits->min_perf);
1134 *min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
1135 }
1136
1137 static inline void intel_pstate_record_pstate(struct cpudata *cpu, int pstate)
1138 {
1139 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1140 cpu->pstate.current_pstate = pstate;
1141 }
1142
1143 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1144 {
1145 int pstate = cpu->pstate.min_pstate;
1146
1147 intel_pstate_record_pstate(cpu, pstate);
1148 /*
1149 * Generally, there is no guarantee that this code will always run on
1150 * the CPU being updated, so force the register update to run on the
1151 * right CPU.
1152 */
1153 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1154 pstate_funcs.get_val(cpu, pstate));
1155 }
1156
1157 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1158 {
1159 cpu->pstate.min_pstate = pstate_funcs.get_min();
1160 cpu->pstate.max_pstate = pstate_funcs.get_max();
1161 cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1162 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1163 cpu->pstate.scaling = pstate_funcs.get_scaling();
1164
1165 if (pstate_funcs.get_vid)
1166 pstate_funcs.get_vid(cpu);
1167
1168 intel_pstate_set_min_pstate(cpu);
1169 }
1170
1171 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1172 {
1173 struct sample *sample = &cpu->sample;
1174
1175 sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1176 }
1177
1178 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1179 {
1180 u64 aperf, mperf;
1181 unsigned long flags;
1182 u64 tsc;
1183
1184 local_irq_save(flags);
1185 rdmsrl(MSR_IA32_APERF, aperf);
1186 rdmsrl(MSR_IA32_MPERF, mperf);
1187 tsc = rdtsc();
1188 if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1189 local_irq_restore(flags);
1190 return false;
1191 }
1192 local_irq_restore(flags);
1193
1194 cpu->last_sample_time = cpu->sample.time;
1195 cpu->sample.time = time;
1196 cpu->sample.aperf = aperf;
1197 cpu->sample.mperf = mperf;
1198 cpu->sample.tsc = tsc;
1199 cpu->sample.aperf -= cpu->prev_aperf;
1200 cpu->sample.mperf -= cpu->prev_mperf;
1201 cpu->sample.tsc -= cpu->prev_tsc;
1202
1203 cpu->prev_aperf = aperf;
1204 cpu->prev_mperf = mperf;
1205 cpu->prev_tsc = tsc;
1206 /*
1207 * First time this function is invoked in a given cycle, all of the
1208 * previous sample data fields are equal to zero or stale and they must
1209 * be populated with meaningful numbers for things to work, so assume
1210 * that sample.time will always be reset before setting the utilization
1211 * update hook and make the caller skip the sample then.
1212 */
1213 return !!cpu->last_sample_time;
1214 }
1215
1216 static inline int32_t get_avg_frequency(struct cpudata *cpu)
1217 {
1218 return mul_ext_fp(cpu->sample.core_avg_perf,
1219 cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
1220 }
1221
1222 static inline int32_t get_avg_pstate(struct cpudata *cpu)
1223 {
1224 return mul_ext_fp(cpu->pstate.max_pstate_physical,
1225 cpu->sample.core_avg_perf);
1226 }
1227
1228 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
1229 {
1230 struct sample *sample = &cpu->sample;
1231 u64 cummulative_iowait, delta_iowait_us;
1232 u64 delta_iowait_mperf;
1233 u64 mperf, now;
1234 int32_t cpu_load;
1235
1236 cummulative_iowait = get_cpu_iowait_time_us(cpu->cpu, &now);
1237
1238 /*
1239 * Convert iowait time into number of IO cycles spent at max_freq.
1240 * IO is considered as busy only for the cpu_load algorithm. For
1241 * performance this is not needed since we always try to reach the
1242 * maximum P-State, so we are already boosting the IOs.
1243 */
1244 delta_iowait_us = cummulative_iowait - cpu->prev_cummulative_iowait;
1245 delta_iowait_mperf = div64_u64(delta_iowait_us * cpu->pstate.scaling *
1246 cpu->pstate.max_pstate, MSEC_PER_SEC);
1247
1248 mperf = cpu->sample.mperf + delta_iowait_mperf;
1249 cpu->prev_cummulative_iowait = cummulative_iowait;
1250
1251 /*
1252 * The load can be estimated as the ratio of the mperf counter
1253 * running at a constant frequency during active periods
1254 * (C0) and the time stamp counter running at the same frequency
1255 * also during C-states.
1256 */
1257 cpu_load = div64_u64(int_tofp(100) * mperf, sample->tsc);
1258 cpu->sample.busy_scaled = cpu_load;
1259
1260 return get_avg_pstate(cpu) - pid_calc(&cpu->pid, cpu_load);
1261 }
1262
1263 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
1264 {
1265 int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
1266 u64 duration_ns;
1267
1268 /*
1269 * perf_scaled is the average performance during the last sampling
1270 * period scaled by the ratio of the maximum P-state to the P-state
1271 * requested last time (in percent). That measures the system's
1272 * response to the previous P-state selection.
1273 */
1274 max_pstate = cpu->pstate.max_pstate_physical;
1275 current_pstate = cpu->pstate.current_pstate;
1276 perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
1277 div_fp(100 * max_pstate, current_pstate));
1278
1279 /*
1280 * Since our utilization update callback will not run unless we are
1281 * in C0, check if the actual elapsed time is significantly greater (3x)
1282 * than our sample interval. If it is, then we were idle for a long
1283 * enough period of time to adjust our performance metric.
1284 */
1285 duration_ns = cpu->sample.time - cpu->last_sample_time;
1286 if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
1287 sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1288 perf_scaled = mul_fp(perf_scaled, sample_ratio);
1289 } else {
1290 sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
1291 if (sample_ratio < int_tofp(1))
1292 perf_scaled = 0;
1293 }
1294
1295 cpu->sample.busy_scaled = perf_scaled;
1296 return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
1297 }
1298
1299 static inline void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1300 {
1301 int max_perf, min_perf;
1302
1303 update_turbo_state();
1304
1305 intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
1306 pstate = clamp_t(int, pstate, min_perf, max_perf);
1307 if (pstate == cpu->pstate.current_pstate)
1308 return;
1309
1310 intel_pstate_record_pstate(cpu, pstate);
1311 wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1312 }
1313
1314 static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
1315 {
1316 int from, target_pstate;
1317 struct sample *sample;
1318
1319 from = cpu->pstate.current_pstate;
1320
1321 target_pstate = pstate_funcs.get_target_pstate(cpu);
1322
1323 intel_pstate_update_pstate(cpu, target_pstate);
1324
1325 sample = &cpu->sample;
1326 trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1327 fp_toint(sample->busy_scaled),
1328 from,
1329 cpu->pstate.current_pstate,
1330 sample->mperf,
1331 sample->aperf,
1332 sample->tsc,
1333 get_avg_frequency(cpu));
1334 }
1335
1336 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1337 unsigned long util, unsigned long max)
1338 {
1339 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1340 u64 delta_ns = time - cpu->sample.time;
1341
1342 if ((s64)delta_ns >= pid_params.sample_rate_ns) {
1343 bool sample_taken = intel_pstate_sample(cpu, time);
1344
1345 if (sample_taken) {
1346 intel_pstate_calc_avg_perf(cpu);
1347 if (!hwp_active)
1348 intel_pstate_adjust_busy_pstate(cpu);
1349 }
1350 }
1351 }
1352
1353 #define ICPU(model, policy) \
1354 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1355 (unsigned long)&policy }
1356
1357 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1358 ICPU(INTEL_FAM6_SANDYBRIDGE, core_params),
1359 ICPU(INTEL_FAM6_SANDYBRIDGE_X, core_params),
1360 ICPU(INTEL_FAM6_ATOM_SILVERMONT1, silvermont_params),
1361 ICPU(INTEL_FAM6_IVYBRIDGE, core_params),
1362 ICPU(INTEL_FAM6_HASWELL_CORE, core_params),
1363 ICPU(INTEL_FAM6_BROADWELL_CORE, core_params),
1364 ICPU(INTEL_FAM6_IVYBRIDGE_X, core_params),
1365 ICPU(INTEL_FAM6_HASWELL_X, core_params),
1366 ICPU(INTEL_FAM6_HASWELL_ULT, core_params),
1367 ICPU(INTEL_FAM6_HASWELL_GT3E, core_params),
1368 ICPU(INTEL_FAM6_BROADWELL_GT3E, core_params),
1369 ICPU(INTEL_FAM6_ATOM_AIRMONT, airmont_params),
1370 ICPU(INTEL_FAM6_SKYLAKE_MOBILE, core_params),
1371 ICPU(INTEL_FAM6_BROADWELL_X, core_params),
1372 ICPU(INTEL_FAM6_SKYLAKE_DESKTOP, core_params),
1373 ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
1374 ICPU(INTEL_FAM6_XEON_PHI_KNL, knl_params),
1375 ICPU(INTEL_FAM6_ATOM_GOLDMONT, bxt_params),
1376 {}
1377 };
1378 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1379
1380 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1381 ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
1382 {}
1383 };
1384
1385 static int intel_pstate_init_cpu(unsigned int cpunum)
1386 {
1387 struct cpudata *cpu;
1388
1389 if (!all_cpu_data[cpunum])
1390 all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata),
1391 GFP_KERNEL);
1392 if (!all_cpu_data[cpunum])
1393 return -ENOMEM;
1394
1395 cpu = all_cpu_data[cpunum];
1396
1397 cpu->cpu = cpunum;
1398
1399 if (hwp_active) {
1400 intel_pstate_hwp_enable(cpu);
1401 pid_params.sample_rate_ms = 50;
1402 pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
1403 }
1404
1405 intel_pstate_get_cpu_pstates(cpu);
1406
1407 intel_pstate_busy_pid_reset(cpu);
1408
1409 pr_debug("controlling: cpu %d\n", cpunum);
1410
1411 return 0;
1412 }
1413
1414 static unsigned int intel_pstate_get(unsigned int cpu_num)
1415 {
1416 struct cpudata *cpu = all_cpu_data[cpu_num];
1417
1418 return cpu ? get_avg_frequency(cpu) : 0;
1419 }
1420
1421 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1422 {
1423 struct cpudata *cpu = all_cpu_data[cpu_num];
1424
1425 if (cpu->update_util_set)
1426 return;
1427
1428 /* Prevent intel_pstate_update_util() from using stale data. */
1429 cpu->sample.time = 0;
1430 cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1431 intel_pstate_update_util);
1432 cpu->update_util_set = true;
1433 }
1434
1435 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1436 {
1437 struct cpudata *cpu_data = all_cpu_data[cpu];
1438
1439 if (!cpu_data->update_util_set)
1440 return;
1441
1442 cpufreq_remove_update_util_hook(cpu);
1443 cpu_data->update_util_set = false;
1444 synchronize_sched();
1445 }
1446
1447 static void intel_pstate_set_performance_limits(struct perf_limits *limits)
1448 {
1449 limits->no_turbo = 0;
1450 limits->turbo_disabled = 0;
1451 limits->max_perf_pct = 100;
1452 limits->max_perf = int_tofp(1);
1453 limits->min_perf_pct = 100;
1454 limits->min_perf = int_tofp(1);
1455 limits->max_policy_pct = 100;
1456 limits->max_sysfs_pct = 100;
1457 limits->min_policy_pct = 0;
1458 limits->min_sysfs_pct = 0;
1459 }
1460
1461 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
1462 {
1463 struct cpudata *cpu;
1464
1465 if (!policy->cpuinfo.max_freq)
1466 return -ENODEV;
1467
1468 pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
1469 policy->cpuinfo.max_freq, policy->max);
1470
1471 cpu = all_cpu_data[0];
1472 if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
1473 policy->max < policy->cpuinfo.max_freq &&
1474 policy->max > cpu->pstate.max_pstate * cpu->pstate.scaling) {
1475 pr_debug("policy->max > max non turbo frequency\n");
1476 policy->max = policy->cpuinfo.max_freq;
1477 }
1478
1479 if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
1480 limits = &performance_limits;
1481 if (policy->max >= policy->cpuinfo.max_freq) {
1482 pr_debug("set performance\n");
1483 intel_pstate_set_performance_limits(limits);
1484 goto out;
1485 }
1486 } else {
1487 pr_debug("set powersave\n");
1488 limits = &powersave_limits;
1489 }
1490
1491 limits->min_policy_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
1492 limits->min_policy_pct = clamp_t(int, limits->min_policy_pct, 0 , 100);
1493 limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100,
1494 policy->cpuinfo.max_freq);
1495 limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0 , 100);
1496
1497 /* Normalize user input to [min_policy_pct, max_policy_pct] */
1498 limits->min_perf_pct = max(limits->min_policy_pct,
1499 limits->min_sysfs_pct);
1500 limits->min_perf_pct = min(limits->max_policy_pct,
1501 limits->min_perf_pct);
1502 limits->max_perf_pct = min(limits->max_policy_pct,
1503 limits->max_sysfs_pct);
1504 limits->max_perf_pct = max(limits->min_policy_pct,
1505 limits->max_perf_pct);
1506
1507 /* Make sure min_perf_pct <= max_perf_pct */
1508 limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct);
1509
1510 limits->min_perf = div_fp(limits->min_perf_pct, 100);
1511 limits->max_perf = div_fp(limits->max_perf_pct, 100);
1512 limits->max_perf = round_up(limits->max_perf, FRAC_BITS);
1513
1514 out:
1515 intel_pstate_set_update_util_hook(policy->cpu);
1516
1517 intel_pstate_hwp_set_policy(policy);
1518
1519 return 0;
1520 }
1521
1522 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
1523 {
1524 cpufreq_verify_within_cpu_limits(policy);
1525
1526 if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
1527 policy->policy != CPUFREQ_POLICY_PERFORMANCE)
1528 return -EINVAL;
1529
1530 return 0;
1531 }
1532
1533 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
1534 {
1535 int cpu_num = policy->cpu;
1536 struct cpudata *cpu = all_cpu_data[cpu_num];
1537
1538 pr_debug("CPU %d exiting\n", cpu_num);
1539
1540 intel_pstate_clear_update_util_hook(cpu_num);
1541
1542 if (hwp_active)
1543 return;
1544
1545 intel_pstate_set_min_pstate(cpu);
1546 }
1547
1548 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
1549 {
1550 struct cpudata *cpu;
1551 int rc;
1552
1553 rc = intel_pstate_init_cpu(policy->cpu);
1554 if (rc)
1555 return rc;
1556
1557 cpu = all_cpu_data[policy->cpu];
1558
1559 if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
1560 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
1561 else
1562 policy->policy = CPUFREQ_POLICY_POWERSAVE;
1563
1564 policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
1565 policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1566
1567 /* cpuinfo and default policy values */
1568 policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
1569 update_turbo_state();
1570 policy->cpuinfo.max_freq = limits->turbo_disabled ?
1571 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1572 policy->cpuinfo.max_freq *= cpu->pstate.scaling;
1573
1574 intel_pstate_init_acpi_perf_limits(policy);
1575 policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
1576 cpumask_set_cpu(policy->cpu, policy->cpus);
1577
1578 return 0;
1579 }
1580
1581 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
1582 {
1583 intel_pstate_exit_perf_limits(policy);
1584
1585 return 0;
1586 }
1587
1588 static struct cpufreq_driver intel_pstate_driver = {
1589 .flags = CPUFREQ_CONST_LOOPS,
1590 .verify = intel_pstate_verify_policy,
1591 .setpolicy = intel_pstate_set_policy,
1592 .resume = intel_pstate_hwp_set_policy,
1593 .get = intel_pstate_get,
1594 .init = intel_pstate_cpu_init,
1595 .exit = intel_pstate_cpu_exit,
1596 .stop_cpu = intel_pstate_stop_cpu,
1597 .name = "intel_pstate",
1598 };
1599
1600 static int no_load __initdata;
1601 static int no_hwp __initdata;
1602 static int hwp_only __initdata;
1603 static unsigned int force_load __initdata;
1604
1605 static int __init intel_pstate_msrs_not_valid(void)
1606 {
1607 if (!pstate_funcs.get_max() ||
1608 !pstate_funcs.get_min() ||
1609 !pstate_funcs.get_turbo())
1610 return -ENODEV;
1611
1612 return 0;
1613 }
1614
1615 static void __init copy_pid_params(struct pstate_adjust_policy *policy)
1616 {
1617 pid_params.sample_rate_ms = policy->sample_rate_ms;
1618 pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
1619 pid_params.p_gain_pct = policy->p_gain_pct;
1620 pid_params.i_gain_pct = policy->i_gain_pct;
1621 pid_params.d_gain_pct = policy->d_gain_pct;
1622 pid_params.deadband = policy->deadband;
1623 pid_params.setpoint = policy->setpoint;
1624 }
1625
1626 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
1627 {
1628 pstate_funcs.get_max = funcs->get_max;
1629 pstate_funcs.get_max_physical = funcs->get_max_physical;
1630 pstate_funcs.get_min = funcs->get_min;
1631 pstate_funcs.get_turbo = funcs->get_turbo;
1632 pstate_funcs.get_scaling = funcs->get_scaling;
1633 pstate_funcs.get_val = funcs->get_val;
1634 pstate_funcs.get_vid = funcs->get_vid;
1635 pstate_funcs.get_target_pstate = funcs->get_target_pstate;
1636
1637 }
1638
1639 #ifdef CONFIG_ACPI
1640
1641 static bool __init intel_pstate_no_acpi_pss(void)
1642 {
1643 int i;
1644
1645 for_each_possible_cpu(i) {
1646 acpi_status status;
1647 union acpi_object *pss;
1648 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1649 struct acpi_processor *pr = per_cpu(processors, i);
1650
1651 if (!pr)
1652 continue;
1653
1654 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
1655 if (ACPI_FAILURE(status))
1656 continue;
1657
1658 pss = buffer.pointer;
1659 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
1660 kfree(pss);
1661 return false;
1662 }
1663
1664 kfree(pss);
1665 }
1666
1667 return true;
1668 }
1669
1670 static bool __init intel_pstate_has_acpi_ppc(void)
1671 {
1672 int i;
1673
1674 for_each_possible_cpu(i) {
1675 struct acpi_processor *pr = per_cpu(processors, i);
1676
1677 if (!pr)
1678 continue;
1679 if (acpi_has_method(pr->handle, "_PPC"))
1680 return true;
1681 }
1682 return false;
1683 }
1684
1685 enum {
1686 PSS,
1687 PPC,
1688 };
1689
1690 struct hw_vendor_info {
1691 u16 valid;
1692 char oem_id[ACPI_OEM_ID_SIZE];
1693 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
1694 int oem_pwr_table;
1695 };
1696
1697 /* Hardware vendor-specific info that has its own power management modes */
1698 static struct hw_vendor_info vendor_info[] __initdata = {
1699 {1, "HP ", "ProLiant", PSS},
1700 {1, "ORACLE", "X4-2 ", PPC},
1701 {1, "ORACLE", "X4-2L ", PPC},
1702 {1, "ORACLE", "X4-2B ", PPC},
1703 {1, "ORACLE", "X3-2 ", PPC},
1704 {1, "ORACLE", "X3-2L ", PPC},
1705 {1, "ORACLE", "X3-2B ", PPC},
1706 {1, "ORACLE", "X4470M2 ", PPC},
1707 {1, "ORACLE", "X4270M3 ", PPC},
1708 {1, "ORACLE", "X4270M2 ", PPC},
1709 {1, "ORACLE", "X4170M2 ", PPC},
1710 {1, "ORACLE", "X4170 M3", PPC},
1711 {1, "ORACLE", "X4275 M3", PPC},
1712 {1, "ORACLE", "X6-2 ", PPC},
1713 {1, "ORACLE", "Sudbury ", PPC},
1714 {0, "", ""},
1715 };
1716
1717 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
1718 {
1719 struct acpi_table_header hdr;
1720 struct hw_vendor_info *v_info;
1721 const struct x86_cpu_id *id;
1722 u64 misc_pwr;
1723
1724 id = x86_match_cpu(intel_pstate_cpu_oob_ids);
1725 if (id) {
1726 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
1727 if ( misc_pwr & (1 << 8))
1728 return true;
1729 }
1730
1731 if (acpi_disabled ||
1732 ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
1733 return false;
1734
1735 for (v_info = vendor_info; v_info->valid; v_info++) {
1736 if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
1737 !strncmp(hdr.oem_table_id, v_info->oem_table_id,
1738 ACPI_OEM_TABLE_ID_SIZE))
1739 switch (v_info->oem_pwr_table) {
1740 case PSS:
1741 return intel_pstate_no_acpi_pss();
1742 case PPC:
1743 return intel_pstate_has_acpi_ppc() &&
1744 (!force_load);
1745 }
1746 }
1747
1748 return false;
1749 }
1750 #else /* CONFIG_ACPI not enabled */
1751 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
1752 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
1753 #endif /* CONFIG_ACPI */
1754
1755 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
1756 { X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
1757 {}
1758 };
1759
1760 static int __init intel_pstate_init(void)
1761 {
1762 int cpu, rc = 0;
1763 const struct x86_cpu_id *id;
1764 struct cpu_defaults *cpu_def;
1765
1766 if (no_load)
1767 return -ENODEV;
1768
1769 if (x86_match_cpu(hwp_support_ids) && !no_hwp) {
1770 copy_cpu_funcs(&core_params.funcs);
1771 hwp_active++;
1772 goto hwp_cpu_matched;
1773 }
1774
1775 id = x86_match_cpu(intel_pstate_cpu_ids);
1776 if (!id)
1777 return -ENODEV;
1778
1779 cpu_def = (struct cpu_defaults *)id->driver_data;
1780
1781 copy_pid_params(&cpu_def->pid_policy);
1782 copy_cpu_funcs(&cpu_def->funcs);
1783
1784 if (intel_pstate_msrs_not_valid())
1785 return -ENODEV;
1786
1787 hwp_cpu_matched:
1788 /*
1789 * The Intel pstate driver will be ignored if the platform
1790 * firmware has its own power management modes.
1791 */
1792 if (intel_pstate_platform_pwr_mgmt_exists())
1793 return -ENODEV;
1794
1795 pr_info("Intel P-state driver initializing\n");
1796
1797 all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
1798 if (!all_cpu_data)
1799 return -ENOMEM;
1800
1801 if (!hwp_active && hwp_only)
1802 goto out;
1803
1804 rc = cpufreq_register_driver(&intel_pstate_driver);
1805 if (rc)
1806 goto out;
1807
1808 intel_pstate_debug_expose_params();
1809 intel_pstate_sysfs_expose_params();
1810
1811 if (hwp_active)
1812 pr_info("HWP enabled\n");
1813
1814 return rc;
1815 out:
1816 get_online_cpus();
1817 for_each_online_cpu(cpu) {
1818 if (all_cpu_data[cpu]) {
1819 intel_pstate_clear_update_util_hook(cpu);
1820 kfree(all_cpu_data[cpu]);
1821 }
1822 }
1823
1824 put_online_cpus();
1825 vfree(all_cpu_data);
1826 return -ENODEV;
1827 }
1828 device_initcall(intel_pstate_init);
1829
1830 static int __init intel_pstate_setup(char *str)
1831 {
1832 if (!str)
1833 return -EINVAL;
1834
1835 if (!strcmp(str, "disable"))
1836 no_load = 1;
1837 if (!strcmp(str, "no_hwp")) {
1838 pr_info("HWP disabled\n");
1839 no_hwp = 1;
1840 }
1841 if (!strcmp(str, "force"))
1842 force_load = 1;
1843 if (!strcmp(str, "hwp_only"))
1844 hwp_only = 1;
1845
1846 #ifdef CONFIG_ACPI
1847 if (!strcmp(str, "support_acpi_ppc"))
1848 acpi_ppc = true;
1849 #endif
1850
1851 return 0;
1852 }
1853 early_param("intel_pstate", intel_pstate_setup);
1854
1855 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
1856 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
1857 MODULE_LICENSE("GPL");