]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/cpufreq/intel_pstate.c
Merge remote-tracking branch 'asoc/fix/component' into asoc-linus
[mirror_ubuntu-bionic-kernel.git] / drivers / cpufreq / intel_pstate.c
1 /*
2 * intel_pstate.c: Native P state management for Intel processors
3 *
4 * (C) Copyright 2012 Intel Corporation
5 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
10 * of the License.
11 */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/kernel.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/module.h>
18 #include <linux/ktime.h>
19 #include <linux/hrtimer.h>
20 #include <linux/tick.h>
21 #include <linux/slab.h>
22 #include <linux/sched.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25 #include <linux/cpufreq.h>
26 #include <linux/sysfs.h>
27 #include <linux/types.h>
28 #include <linux/fs.h>
29 #include <linux/debugfs.h>
30 #include <linux/acpi.h>
31 #include <linux/vmalloc.h>
32 #include <trace/events/power.h>
33
34 #include <asm/div64.h>
35 #include <asm/msr.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/cpufeature.h>
38 #include <asm/intel-family.h>
39
40 #define INTEL_CPUFREQ_TRANSITION_LATENCY 20000
41
42 #define ATOM_RATIOS 0x66a
43 #define ATOM_VIDS 0x66b
44 #define ATOM_TURBO_RATIOS 0x66c
45 #define ATOM_TURBO_VIDS 0x66d
46
47 #ifdef CONFIG_ACPI
48 #include <acpi/processor.h>
49 #include <acpi/cppc_acpi.h>
50 #endif
51
52 #define FRAC_BITS 8
53 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
54 #define fp_toint(X) ((X) >> FRAC_BITS)
55
56 #define EXT_BITS 6
57 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
58 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
59 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
60
61 static inline int32_t mul_fp(int32_t x, int32_t y)
62 {
63 return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
64 }
65
66 static inline int32_t div_fp(s64 x, s64 y)
67 {
68 return div64_s64((int64_t)x << FRAC_BITS, y);
69 }
70
71 static inline int ceiling_fp(int32_t x)
72 {
73 int mask, ret;
74
75 ret = fp_toint(x);
76 mask = (1 << FRAC_BITS) - 1;
77 if (x & mask)
78 ret += 1;
79 return ret;
80 }
81
82 static inline u64 mul_ext_fp(u64 x, u64 y)
83 {
84 return (x * y) >> EXT_FRAC_BITS;
85 }
86
87 static inline u64 div_ext_fp(u64 x, u64 y)
88 {
89 return div64_u64(x << EXT_FRAC_BITS, y);
90 }
91
92 /**
93 * struct sample - Store performance sample
94 * @core_avg_perf: Ratio of APERF/MPERF which is the actual average
95 * performance during last sample period
96 * @busy_scaled: Scaled busy value which is used to calculate next
97 * P state. This can be different than core_avg_perf
98 * to account for cpu idle period
99 * @aperf: Difference of actual performance frequency clock count
100 * read from APERF MSR between last and current sample
101 * @mperf: Difference of maximum performance frequency clock count
102 * read from MPERF MSR between last and current sample
103 * @tsc: Difference of time stamp counter between last and
104 * current sample
105 * @time: Current time from scheduler
106 *
107 * This structure is used in the cpudata structure to store performance sample
108 * data for choosing next P State.
109 */
110 struct sample {
111 int32_t core_avg_perf;
112 int32_t busy_scaled;
113 u64 aperf;
114 u64 mperf;
115 u64 tsc;
116 u64 time;
117 };
118
119 /**
120 * struct pstate_data - Store P state data
121 * @current_pstate: Current requested P state
122 * @min_pstate: Min P state possible for this platform
123 * @max_pstate: Max P state possible for this platform
124 * @max_pstate_physical:This is physical Max P state for a processor
125 * This can be higher than the max_pstate which can
126 * be limited by platform thermal design power limits
127 * @scaling: Scaling factor to convert frequency to cpufreq
128 * frequency units
129 * @turbo_pstate: Max Turbo P state possible for this platform
130 * @max_freq: @max_pstate frequency in cpufreq units
131 * @turbo_freq: @turbo_pstate frequency in cpufreq units
132 *
133 * Stores the per cpu model P state limits and current P state.
134 */
135 struct pstate_data {
136 int current_pstate;
137 int min_pstate;
138 int max_pstate;
139 int max_pstate_physical;
140 int scaling;
141 int turbo_pstate;
142 unsigned int max_freq;
143 unsigned int turbo_freq;
144 };
145
146 /**
147 * struct vid_data - Stores voltage information data
148 * @min: VID data for this platform corresponding to
149 * the lowest P state
150 * @max: VID data corresponding to the highest P State.
151 * @turbo: VID data for turbo P state
152 * @ratio: Ratio of (vid max - vid min) /
153 * (max P state - Min P State)
154 *
155 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
156 * This data is used in Atom platforms, where in addition to target P state,
157 * the voltage data needs to be specified to select next P State.
158 */
159 struct vid_data {
160 int min;
161 int max;
162 int turbo;
163 int32_t ratio;
164 };
165
166 /**
167 * struct _pid - Stores PID data
168 * @setpoint: Target set point for busyness or performance
169 * @integral: Storage for accumulated error values
170 * @p_gain: PID proportional gain
171 * @i_gain: PID integral gain
172 * @d_gain: PID derivative gain
173 * @deadband: PID deadband
174 * @last_err: Last error storage for integral part of PID calculation
175 *
176 * Stores PID coefficients and last error for PID controller.
177 */
178 struct _pid {
179 int setpoint;
180 int32_t integral;
181 int32_t p_gain;
182 int32_t i_gain;
183 int32_t d_gain;
184 int deadband;
185 int32_t last_err;
186 };
187
188 /**
189 * struct perf_limits - Store user and policy limits
190 * @no_turbo: User requested turbo state from intel_pstate sysfs
191 * @turbo_disabled: Platform turbo status either from msr
192 * MSR_IA32_MISC_ENABLE or when maximum available pstate
193 * matches the maximum turbo pstate
194 * @max_perf_pct: Effective maximum performance limit in percentage, this
195 * is minimum of either limits enforced by cpufreq policy
196 * or limits from user set limits via intel_pstate sysfs
197 * @min_perf_pct: Effective minimum performance limit in percentage, this
198 * is maximum of either limits enforced by cpufreq policy
199 * or limits from user set limits via intel_pstate sysfs
200 * @max_perf: This is a scaled value between 0 to 255 for max_perf_pct
201 * This value is used to limit max pstate
202 * @min_perf: This is a scaled value between 0 to 255 for min_perf_pct
203 * This value is used to limit min pstate
204 * @max_policy_pct: The maximum performance in percentage enforced by
205 * cpufreq setpolicy interface
206 * @max_sysfs_pct: The maximum performance in percentage enforced by
207 * intel pstate sysfs interface, unused when per cpu
208 * controls are enforced
209 * @min_policy_pct: The minimum performance in percentage enforced by
210 * cpufreq setpolicy interface
211 * @min_sysfs_pct: The minimum performance in percentage enforced by
212 * intel pstate sysfs interface, unused when per cpu
213 * controls are enforced
214 *
215 * Storage for user and policy defined limits.
216 */
217 struct perf_limits {
218 int no_turbo;
219 int turbo_disabled;
220 int max_perf_pct;
221 int min_perf_pct;
222 int32_t max_perf;
223 int32_t min_perf;
224 int max_policy_pct;
225 int max_sysfs_pct;
226 int min_policy_pct;
227 int min_sysfs_pct;
228 };
229
230 /**
231 * struct cpudata - Per CPU instance data storage
232 * @cpu: CPU number for this instance data
233 * @policy: CPUFreq policy value
234 * @update_util: CPUFreq utility callback information
235 * @update_util_set: CPUFreq utility callback is set
236 * @iowait_boost: iowait-related boost fraction
237 * @last_update: Time of the last update.
238 * @pstate: Stores P state limits for this CPU
239 * @vid: Stores VID limits for this CPU
240 * @pid: Stores PID parameters for this CPU
241 * @last_sample_time: Last Sample time
242 * @prev_aperf: Last APERF value read from APERF MSR
243 * @prev_mperf: Last MPERF value read from MPERF MSR
244 * @prev_tsc: Last timestamp counter (TSC) value
245 * @prev_cummulative_iowait: IO Wait time difference from last and
246 * current sample
247 * @sample: Storage for storing last Sample data
248 * @perf_limits: Pointer to perf_limit unique to this CPU
249 * Not all field in the structure are applicable
250 * when per cpu controls are enforced
251 * @acpi_perf_data: Stores ACPI perf information read from _PSS
252 * @valid_pss_table: Set to true for valid ACPI _PSS entries found
253 * @epp_powersave: Last saved HWP energy performance preference
254 * (EPP) or energy performance bias (EPB),
255 * when policy switched to performance
256 * @epp_policy: Last saved policy used to set EPP/EPB
257 * @epp_default: Power on default HWP energy performance
258 * preference/bias
259 * @epp_saved: Saved EPP/EPB during system suspend or CPU offline
260 * operation
261 *
262 * This structure stores per CPU instance data for all CPUs.
263 */
264 struct cpudata {
265 int cpu;
266
267 unsigned int policy;
268 struct update_util_data update_util;
269 bool update_util_set;
270
271 struct pstate_data pstate;
272 struct vid_data vid;
273 struct _pid pid;
274
275 u64 last_update;
276 u64 last_sample_time;
277 u64 prev_aperf;
278 u64 prev_mperf;
279 u64 prev_tsc;
280 u64 prev_cummulative_iowait;
281 struct sample sample;
282 struct perf_limits *perf_limits;
283 #ifdef CONFIG_ACPI
284 struct acpi_processor_performance acpi_perf_data;
285 bool valid_pss_table;
286 #endif
287 unsigned int iowait_boost;
288 s16 epp_powersave;
289 s16 epp_policy;
290 s16 epp_default;
291 s16 epp_saved;
292 };
293
294 static struct cpudata **all_cpu_data;
295
296 /**
297 * struct pstate_adjust_policy - Stores static PID configuration data
298 * @sample_rate_ms: PID calculation sample rate in ms
299 * @sample_rate_ns: Sample rate calculation in ns
300 * @deadband: PID deadband
301 * @setpoint: PID Setpoint
302 * @p_gain_pct: PID proportional gain
303 * @i_gain_pct: PID integral gain
304 * @d_gain_pct: PID derivative gain
305 *
306 * Stores per CPU model static PID configuration data.
307 */
308 struct pstate_adjust_policy {
309 int sample_rate_ms;
310 s64 sample_rate_ns;
311 int deadband;
312 int setpoint;
313 int p_gain_pct;
314 int d_gain_pct;
315 int i_gain_pct;
316 };
317
318 /**
319 * struct pstate_funcs - Per CPU model specific callbacks
320 * @get_max: Callback to get maximum non turbo effective P state
321 * @get_max_physical: Callback to get maximum non turbo physical P state
322 * @get_min: Callback to get minimum P state
323 * @get_turbo: Callback to get turbo P state
324 * @get_scaling: Callback to get frequency scaling factor
325 * @get_val: Callback to convert P state to actual MSR write value
326 * @get_vid: Callback to get VID data for Atom platforms
327 * @get_target_pstate: Callback to a function to calculate next P state to use
328 *
329 * Core and Atom CPU models have different way to get P State limits. This
330 * structure is used to store those callbacks.
331 */
332 struct pstate_funcs {
333 int (*get_max)(void);
334 int (*get_max_physical)(void);
335 int (*get_min)(void);
336 int (*get_turbo)(void);
337 int (*get_scaling)(void);
338 u64 (*get_val)(struct cpudata*, int pstate);
339 void (*get_vid)(struct cpudata *);
340 int32_t (*get_target_pstate)(struct cpudata *);
341 };
342
343 /**
344 * struct cpu_defaults- Per CPU model default config data
345 * @pid_policy: PID config data
346 * @funcs: Callback function data
347 */
348 struct cpu_defaults {
349 struct pstate_adjust_policy pid_policy;
350 struct pstate_funcs funcs;
351 };
352
353 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
354 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
355
356 static struct pstate_adjust_policy pid_params __read_mostly;
357 static struct pstate_funcs pstate_funcs __read_mostly;
358 static int hwp_active __read_mostly;
359 static bool per_cpu_limits __read_mostly;
360
361 #ifdef CONFIG_ACPI
362 static bool acpi_ppc;
363 #endif
364
365 static struct perf_limits performance_limits = {
366 .no_turbo = 0,
367 .turbo_disabled = 0,
368 .max_perf_pct = 100,
369 .max_perf = int_ext_tofp(1),
370 .min_perf_pct = 100,
371 .min_perf = int_ext_tofp(1),
372 .max_policy_pct = 100,
373 .max_sysfs_pct = 100,
374 .min_policy_pct = 0,
375 .min_sysfs_pct = 0,
376 };
377
378 static struct perf_limits powersave_limits = {
379 .no_turbo = 0,
380 .turbo_disabled = 0,
381 .max_perf_pct = 100,
382 .max_perf = int_ext_tofp(1),
383 .min_perf_pct = 0,
384 .min_perf = 0,
385 .max_policy_pct = 100,
386 .max_sysfs_pct = 100,
387 .min_policy_pct = 0,
388 .min_sysfs_pct = 0,
389 };
390
391 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
392 static struct perf_limits *limits = &performance_limits;
393 #else
394 static struct perf_limits *limits = &powersave_limits;
395 #endif
396
397 static DEFINE_MUTEX(intel_pstate_limits_lock);
398
399 #ifdef CONFIG_ACPI
400
401 static bool intel_pstate_get_ppc_enable_status(void)
402 {
403 if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
404 acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
405 return true;
406
407 return acpi_ppc;
408 }
409
410 #ifdef CONFIG_ACPI_CPPC_LIB
411
412 /* The work item is needed to avoid CPU hotplug locking issues */
413 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
414 {
415 sched_set_itmt_support();
416 }
417
418 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
419
420 static void intel_pstate_set_itmt_prio(int cpu)
421 {
422 struct cppc_perf_caps cppc_perf;
423 static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
424 int ret;
425
426 ret = cppc_get_perf_caps(cpu, &cppc_perf);
427 if (ret)
428 return;
429
430 /*
431 * The priorities can be set regardless of whether or not
432 * sched_set_itmt_support(true) has been called and it is valid to
433 * update them at any time after it has been called.
434 */
435 sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
436
437 if (max_highest_perf <= min_highest_perf) {
438 if (cppc_perf.highest_perf > max_highest_perf)
439 max_highest_perf = cppc_perf.highest_perf;
440
441 if (cppc_perf.highest_perf < min_highest_perf)
442 min_highest_perf = cppc_perf.highest_perf;
443
444 if (max_highest_perf > min_highest_perf) {
445 /*
446 * This code can be run during CPU online under the
447 * CPU hotplug locks, so sched_set_itmt_support()
448 * cannot be called from here. Queue up a work item
449 * to invoke it.
450 */
451 schedule_work(&sched_itmt_work);
452 }
453 }
454 }
455 #else
456 static void intel_pstate_set_itmt_prio(int cpu)
457 {
458 }
459 #endif
460
461 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
462 {
463 struct cpudata *cpu;
464 int ret;
465 int i;
466
467 if (hwp_active) {
468 intel_pstate_set_itmt_prio(policy->cpu);
469 return;
470 }
471
472 if (!intel_pstate_get_ppc_enable_status())
473 return;
474
475 cpu = all_cpu_data[policy->cpu];
476
477 ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
478 policy->cpu);
479 if (ret)
480 return;
481
482 /*
483 * Check if the control value in _PSS is for PERF_CTL MSR, which should
484 * guarantee that the states returned by it map to the states in our
485 * list directly.
486 */
487 if (cpu->acpi_perf_data.control_register.space_id !=
488 ACPI_ADR_SPACE_FIXED_HARDWARE)
489 goto err;
490
491 /*
492 * If there is only one entry _PSS, simply ignore _PSS and continue as
493 * usual without taking _PSS into account
494 */
495 if (cpu->acpi_perf_data.state_count < 2)
496 goto err;
497
498 pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
499 for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
500 pr_debug(" %cP%d: %u MHz, %u mW, 0x%x\n",
501 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
502 (u32) cpu->acpi_perf_data.states[i].core_frequency,
503 (u32) cpu->acpi_perf_data.states[i].power,
504 (u32) cpu->acpi_perf_data.states[i].control);
505 }
506
507 /*
508 * The _PSS table doesn't contain whole turbo frequency range.
509 * This just contains +1 MHZ above the max non turbo frequency,
510 * with control value corresponding to max turbo ratio. But
511 * when cpufreq set policy is called, it will call with this
512 * max frequency, which will cause a reduced performance as
513 * this driver uses real max turbo frequency as the max
514 * frequency. So correct this frequency in _PSS table to
515 * correct max turbo frequency based on the turbo state.
516 * Also need to convert to MHz as _PSS freq is in MHz.
517 */
518 if (!limits->turbo_disabled)
519 cpu->acpi_perf_data.states[0].core_frequency =
520 policy->cpuinfo.max_freq / 1000;
521 cpu->valid_pss_table = true;
522 pr_debug("_PPC limits will be enforced\n");
523
524 return;
525
526 err:
527 cpu->valid_pss_table = false;
528 acpi_processor_unregister_performance(policy->cpu);
529 }
530
531 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
532 {
533 struct cpudata *cpu;
534
535 cpu = all_cpu_data[policy->cpu];
536 if (!cpu->valid_pss_table)
537 return;
538
539 acpi_processor_unregister_performance(policy->cpu);
540 }
541
542 #else
543 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
544 {
545 }
546
547 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
548 {
549 }
550 #endif
551
552 static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
553 int deadband, int integral) {
554 pid->setpoint = int_tofp(setpoint);
555 pid->deadband = int_tofp(deadband);
556 pid->integral = int_tofp(integral);
557 pid->last_err = int_tofp(setpoint) - int_tofp(busy);
558 }
559
560 static inline void pid_p_gain_set(struct _pid *pid, int percent)
561 {
562 pid->p_gain = div_fp(percent, 100);
563 }
564
565 static inline void pid_i_gain_set(struct _pid *pid, int percent)
566 {
567 pid->i_gain = div_fp(percent, 100);
568 }
569
570 static inline void pid_d_gain_set(struct _pid *pid, int percent)
571 {
572 pid->d_gain = div_fp(percent, 100);
573 }
574
575 static signed int pid_calc(struct _pid *pid, int32_t busy)
576 {
577 signed int result;
578 int32_t pterm, dterm, fp_error;
579 int32_t integral_limit;
580
581 fp_error = pid->setpoint - busy;
582
583 if (abs(fp_error) <= pid->deadband)
584 return 0;
585
586 pterm = mul_fp(pid->p_gain, fp_error);
587
588 pid->integral += fp_error;
589
590 /*
591 * We limit the integral here so that it will never
592 * get higher than 30. This prevents it from becoming
593 * too large an input over long periods of time and allows
594 * it to get factored out sooner.
595 *
596 * The value of 30 was chosen through experimentation.
597 */
598 integral_limit = int_tofp(30);
599 if (pid->integral > integral_limit)
600 pid->integral = integral_limit;
601 if (pid->integral < -integral_limit)
602 pid->integral = -integral_limit;
603
604 dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
605 pid->last_err = fp_error;
606
607 result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
608 result = result + (1 << (FRAC_BITS-1));
609 return (signed int)fp_toint(result);
610 }
611
612 static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
613 {
614 pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
615 pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
616 pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
617
618 pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
619 }
620
621 static inline void intel_pstate_reset_all_pid(void)
622 {
623 unsigned int cpu;
624
625 for_each_online_cpu(cpu) {
626 if (all_cpu_data[cpu])
627 intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
628 }
629 }
630
631 static inline void update_turbo_state(void)
632 {
633 u64 misc_en;
634 struct cpudata *cpu;
635
636 cpu = all_cpu_data[0];
637 rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
638 limits->turbo_disabled =
639 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
640 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
641 }
642
643 static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
644 {
645 u64 epb;
646 int ret;
647
648 if (!static_cpu_has(X86_FEATURE_EPB))
649 return -ENXIO;
650
651 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
652 if (ret)
653 return (s16)ret;
654
655 return (s16)(epb & 0x0f);
656 }
657
658 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
659 {
660 s16 epp;
661
662 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
663 /*
664 * When hwp_req_data is 0, means that caller didn't read
665 * MSR_HWP_REQUEST, so need to read and get EPP.
666 */
667 if (!hwp_req_data) {
668 epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
669 &hwp_req_data);
670 if (epp)
671 return epp;
672 }
673 epp = (hwp_req_data >> 24) & 0xff;
674 } else {
675 /* When there is no EPP present, HWP uses EPB settings */
676 epp = intel_pstate_get_epb(cpu_data);
677 }
678
679 return epp;
680 }
681
682 static int intel_pstate_set_epb(int cpu, s16 pref)
683 {
684 u64 epb;
685 int ret;
686
687 if (!static_cpu_has(X86_FEATURE_EPB))
688 return -ENXIO;
689
690 ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
691 if (ret)
692 return ret;
693
694 epb = (epb & ~0x0f) | pref;
695 wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
696
697 return 0;
698 }
699
700 /*
701 * EPP/EPB display strings corresponding to EPP index in the
702 * energy_perf_strings[]
703 * index String
704 *-------------------------------------
705 * 0 default
706 * 1 performance
707 * 2 balance_performance
708 * 3 balance_power
709 * 4 power
710 */
711 static const char * const energy_perf_strings[] = {
712 "default",
713 "performance",
714 "balance_performance",
715 "balance_power",
716 "power",
717 NULL
718 };
719
720 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
721 {
722 s16 epp;
723 int index = -EINVAL;
724
725 epp = intel_pstate_get_epp(cpu_data, 0);
726 if (epp < 0)
727 return epp;
728
729 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
730 /*
731 * Range:
732 * 0x00-0x3F : Performance
733 * 0x40-0x7F : Balance performance
734 * 0x80-0xBF : Balance power
735 * 0xC0-0xFF : Power
736 * The EPP is a 8 bit value, but our ranges restrict the
737 * value which can be set. Here only using top two bits
738 * effectively.
739 */
740 index = (epp >> 6) + 1;
741 } else if (static_cpu_has(X86_FEATURE_EPB)) {
742 /*
743 * Range:
744 * 0x00-0x03 : Performance
745 * 0x04-0x07 : Balance performance
746 * 0x08-0x0B : Balance power
747 * 0x0C-0x0F : Power
748 * The EPB is a 4 bit value, but our ranges restrict the
749 * value which can be set. Here only using top two bits
750 * effectively.
751 */
752 index = (epp >> 2) + 1;
753 }
754
755 return index;
756 }
757
758 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
759 int pref_index)
760 {
761 int epp = -EINVAL;
762 int ret;
763
764 if (!pref_index)
765 epp = cpu_data->epp_default;
766
767 mutex_lock(&intel_pstate_limits_lock);
768
769 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
770 u64 value;
771
772 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
773 if (ret)
774 goto return_pref;
775
776 value &= ~GENMASK_ULL(31, 24);
777
778 /*
779 * If epp is not default, convert from index into
780 * energy_perf_strings to epp value, by shifting 6
781 * bits left to use only top two bits in epp.
782 * The resultant epp need to shifted by 24 bits to
783 * epp position in MSR_HWP_REQUEST.
784 */
785 if (epp == -EINVAL)
786 epp = (pref_index - 1) << 6;
787
788 value |= (u64)epp << 24;
789 ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
790 } else {
791 if (epp == -EINVAL)
792 epp = (pref_index - 1) << 2;
793 ret = intel_pstate_set_epb(cpu_data->cpu, epp);
794 }
795 return_pref:
796 mutex_unlock(&intel_pstate_limits_lock);
797
798 return ret;
799 }
800
801 static ssize_t show_energy_performance_available_preferences(
802 struct cpufreq_policy *policy, char *buf)
803 {
804 int i = 0;
805 int ret = 0;
806
807 while (energy_perf_strings[i] != NULL)
808 ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
809
810 ret += sprintf(&buf[ret], "\n");
811
812 return ret;
813 }
814
815 cpufreq_freq_attr_ro(energy_performance_available_preferences);
816
817 static ssize_t store_energy_performance_preference(
818 struct cpufreq_policy *policy, const char *buf, size_t count)
819 {
820 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
821 char str_preference[21];
822 int ret, i = 0;
823
824 ret = sscanf(buf, "%20s", str_preference);
825 if (ret != 1)
826 return -EINVAL;
827
828 while (energy_perf_strings[i] != NULL) {
829 if (!strcmp(str_preference, energy_perf_strings[i])) {
830 intel_pstate_set_energy_pref_index(cpu_data, i);
831 return count;
832 }
833 ++i;
834 }
835
836 return -EINVAL;
837 }
838
839 static ssize_t show_energy_performance_preference(
840 struct cpufreq_policy *policy, char *buf)
841 {
842 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
843 int preference;
844
845 preference = intel_pstate_get_energy_pref_index(cpu_data);
846 if (preference < 0)
847 return preference;
848
849 return sprintf(buf, "%s\n", energy_perf_strings[preference]);
850 }
851
852 cpufreq_freq_attr_rw(energy_performance_preference);
853
854 static struct freq_attr *hwp_cpufreq_attrs[] = {
855 &energy_performance_preference,
856 &energy_performance_available_preferences,
857 NULL,
858 };
859
860 static void intel_pstate_hwp_set(struct cpufreq_policy *policy)
861 {
862 int min, hw_min, max, hw_max, cpu, range, adj_range;
863 struct perf_limits *perf_limits = limits;
864 u64 value, cap;
865
866 for_each_cpu(cpu, policy->cpus) {
867 int max_perf_pct, min_perf_pct;
868 struct cpudata *cpu_data = all_cpu_data[cpu];
869 s16 epp;
870
871 if (per_cpu_limits)
872 perf_limits = all_cpu_data[cpu]->perf_limits;
873
874 rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
875 hw_min = HWP_LOWEST_PERF(cap);
876 hw_max = HWP_HIGHEST_PERF(cap);
877 range = hw_max - hw_min;
878
879 max_perf_pct = perf_limits->max_perf_pct;
880 min_perf_pct = perf_limits->min_perf_pct;
881
882 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
883 adj_range = min_perf_pct * range / 100;
884 min = hw_min + adj_range;
885 value &= ~HWP_MIN_PERF(~0L);
886 value |= HWP_MIN_PERF(min);
887
888 adj_range = max_perf_pct * range / 100;
889 max = hw_min + adj_range;
890 if (limits->no_turbo) {
891 hw_max = HWP_GUARANTEED_PERF(cap);
892 if (hw_max < max)
893 max = hw_max;
894 }
895
896 value &= ~HWP_MAX_PERF(~0L);
897 value |= HWP_MAX_PERF(max);
898
899 if (cpu_data->epp_policy == cpu_data->policy)
900 goto skip_epp;
901
902 cpu_data->epp_policy = cpu_data->policy;
903
904 if (cpu_data->epp_saved >= 0) {
905 epp = cpu_data->epp_saved;
906 cpu_data->epp_saved = -EINVAL;
907 goto update_epp;
908 }
909
910 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
911 epp = intel_pstate_get_epp(cpu_data, value);
912 cpu_data->epp_powersave = epp;
913 /* If EPP read was failed, then don't try to write */
914 if (epp < 0)
915 goto skip_epp;
916
917
918 epp = 0;
919 } else {
920 /* skip setting EPP, when saved value is invalid */
921 if (cpu_data->epp_powersave < 0)
922 goto skip_epp;
923
924 /*
925 * No need to restore EPP when it is not zero. This
926 * means:
927 * - Policy is not changed
928 * - user has manually changed
929 * - Error reading EPB
930 */
931 epp = intel_pstate_get_epp(cpu_data, value);
932 if (epp)
933 goto skip_epp;
934
935 epp = cpu_data->epp_powersave;
936 }
937 update_epp:
938 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
939 value &= ~GENMASK_ULL(31, 24);
940 value |= (u64)epp << 24;
941 } else {
942 intel_pstate_set_epb(cpu, epp);
943 }
944 skip_epp:
945 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
946 }
947 }
948
949 static int intel_pstate_hwp_set_policy(struct cpufreq_policy *policy)
950 {
951 if (hwp_active)
952 intel_pstate_hwp_set(policy);
953
954 return 0;
955 }
956
957 static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
958 {
959 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
960
961 if (!hwp_active)
962 return 0;
963
964 cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);
965
966 return 0;
967 }
968
969 static int intel_pstate_resume(struct cpufreq_policy *policy)
970 {
971 int ret;
972
973 if (!hwp_active)
974 return 0;
975
976 mutex_lock(&intel_pstate_limits_lock);
977
978 all_cpu_data[policy->cpu]->epp_policy = 0;
979
980 ret = intel_pstate_hwp_set_policy(policy);
981
982 mutex_unlock(&intel_pstate_limits_lock);
983
984 return ret;
985 }
986
987 static void intel_pstate_update_policies(void)
988 {
989 int cpu;
990
991 for_each_possible_cpu(cpu)
992 cpufreq_update_policy(cpu);
993 }
994
995 /************************** debugfs begin ************************/
996 static int pid_param_set(void *data, u64 val)
997 {
998 *(u32 *)data = val;
999 intel_pstate_reset_all_pid();
1000 return 0;
1001 }
1002
1003 static int pid_param_get(void *data, u64 *val)
1004 {
1005 *val = *(u32 *)data;
1006 return 0;
1007 }
1008 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
1009
1010 struct pid_param {
1011 char *name;
1012 void *value;
1013 };
1014
1015 static struct pid_param pid_files[] = {
1016 {"sample_rate_ms", &pid_params.sample_rate_ms},
1017 {"d_gain_pct", &pid_params.d_gain_pct},
1018 {"i_gain_pct", &pid_params.i_gain_pct},
1019 {"deadband", &pid_params.deadband},
1020 {"setpoint", &pid_params.setpoint},
1021 {"p_gain_pct", &pid_params.p_gain_pct},
1022 {NULL, NULL}
1023 };
1024
1025 static void __init intel_pstate_debug_expose_params(void)
1026 {
1027 struct dentry *debugfs_parent;
1028 int i = 0;
1029
1030 debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
1031 if (IS_ERR_OR_NULL(debugfs_parent))
1032 return;
1033 while (pid_files[i].name) {
1034 debugfs_create_file(pid_files[i].name, 0660,
1035 debugfs_parent, pid_files[i].value,
1036 &fops_pid_param);
1037 i++;
1038 }
1039 }
1040
1041 /************************** debugfs end ************************/
1042
1043 /************************** sysfs begin ************************/
1044 #define show_one(file_name, object) \
1045 static ssize_t show_##file_name \
1046 (struct kobject *kobj, struct attribute *attr, char *buf) \
1047 { \
1048 return sprintf(buf, "%u\n", limits->object); \
1049 }
1050
1051 static ssize_t show_turbo_pct(struct kobject *kobj,
1052 struct attribute *attr, char *buf)
1053 {
1054 struct cpudata *cpu;
1055 int total, no_turbo, turbo_pct;
1056 uint32_t turbo_fp;
1057
1058 cpu = all_cpu_data[0];
1059
1060 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1061 no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1062 turbo_fp = div_fp(no_turbo, total);
1063 turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1064 return sprintf(buf, "%u\n", turbo_pct);
1065 }
1066
1067 static ssize_t show_num_pstates(struct kobject *kobj,
1068 struct attribute *attr, char *buf)
1069 {
1070 struct cpudata *cpu;
1071 int total;
1072
1073 cpu = all_cpu_data[0];
1074 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1075 return sprintf(buf, "%u\n", total);
1076 }
1077
1078 static ssize_t show_no_turbo(struct kobject *kobj,
1079 struct attribute *attr, char *buf)
1080 {
1081 ssize_t ret;
1082
1083 update_turbo_state();
1084 if (limits->turbo_disabled)
1085 ret = sprintf(buf, "%u\n", limits->turbo_disabled);
1086 else
1087 ret = sprintf(buf, "%u\n", limits->no_turbo);
1088
1089 return ret;
1090 }
1091
1092 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
1093 const char *buf, size_t count)
1094 {
1095 unsigned int input;
1096 int ret;
1097
1098 ret = sscanf(buf, "%u", &input);
1099 if (ret != 1)
1100 return -EINVAL;
1101
1102 mutex_lock(&intel_pstate_limits_lock);
1103
1104 update_turbo_state();
1105 if (limits->turbo_disabled) {
1106 pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
1107 mutex_unlock(&intel_pstate_limits_lock);
1108 return -EPERM;
1109 }
1110
1111 limits->no_turbo = clamp_t(int, input, 0, 1);
1112
1113 mutex_unlock(&intel_pstate_limits_lock);
1114
1115 intel_pstate_update_policies();
1116
1117 return count;
1118 }
1119
1120 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
1121 const char *buf, size_t count)
1122 {
1123 unsigned int input;
1124 int ret;
1125
1126 ret = sscanf(buf, "%u", &input);
1127 if (ret != 1)
1128 return -EINVAL;
1129
1130 mutex_lock(&intel_pstate_limits_lock);
1131
1132 limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
1133 limits->max_perf_pct = min(limits->max_policy_pct,
1134 limits->max_sysfs_pct);
1135 limits->max_perf_pct = max(limits->min_policy_pct,
1136 limits->max_perf_pct);
1137 limits->max_perf_pct = max(limits->min_perf_pct,
1138 limits->max_perf_pct);
1139 limits->max_perf = div_ext_fp(limits->max_perf_pct, 100);
1140
1141 mutex_unlock(&intel_pstate_limits_lock);
1142
1143 intel_pstate_update_policies();
1144
1145 return count;
1146 }
1147
1148 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
1149 const char *buf, size_t count)
1150 {
1151 unsigned int input;
1152 int ret;
1153
1154 ret = sscanf(buf, "%u", &input);
1155 if (ret != 1)
1156 return -EINVAL;
1157
1158 mutex_lock(&intel_pstate_limits_lock);
1159
1160 limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
1161 limits->min_perf_pct = max(limits->min_policy_pct,
1162 limits->min_sysfs_pct);
1163 limits->min_perf_pct = min(limits->max_policy_pct,
1164 limits->min_perf_pct);
1165 limits->min_perf_pct = min(limits->max_perf_pct,
1166 limits->min_perf_pct);
1167 limits->min_perf = div_ext_fp(limits->min_perf_pct, 100);
1168
1169 mutex_unlock(&intel_pstate_limits_lock);
1170
1171 intel_pstate_update_policies();
1172
1173 return count;
1174 }
1175
1176 show_one(max_perf_pct, max_perf_pct);
1177 show_one(min_perf_pct, min_perf_pct);
1178
1179 define_one_global_rw(no_turbo);
1180 define_one_global_rw(max_perf_pct);
1181 define_one_global_rw(min_perf_pct);
1182 define_one_global_ro(turbo_pct);
1183 define_one_global_ro(num_pstates);
1184
1185 static struct attribute *intel_pstate_attributes[] = {
1186 &no_turbo.attr,
1187 &turbo_pct.attr,
1188 &num_pstates.attr,
1189 NULL
1190 };
1191
1192 static struct attribute_group intel_pstate_attr_group = {
1193 .attrs = intel_pstate_attributes,
1194 };
1195
1196 static void __init intel_pstate_sysfs_expose_params(void)
1197 {
1198 struct kobject *intel_pstate_kobject;
1199 int rc;
1200
1201 intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1202 &cpu_subsys.dev_root->kobj);
1203 if (WARN_ON(!intel_pstate_kobject))
1204 return;
1205
1206 rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1207 if (WARN_ON(rc))
1208 return;
1209
1210 /*
1211 * If per cpu limits are enforced there are no global limits, so
1212 * return without creating max/min_perf_pct attributes
1213 */
1214 if (per_cpu_limits)
1215 return;
1216
1217 rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1218 WARN_ON(rc);
1219
1220 rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1221 WARN_ON(rc);
1222
1223 }
1224 /************************** sysfs end ************************/
1225
1226 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1227 {
1228 /* First disable HWP notification interrupt as we don't process them */
1229 if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
1230 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1231
1232 wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1233 cpudata->epp_policy = 0;
1234 if (cpudata->epp_default == -EINVAL)
1235 cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1236 }
1237
1238 static int atom_get_min_pstate(void)
1239 {
1240 u64 value;
1241
1242 rdmsrl(ATOM_RATIOS, value);
1243 return (value >> 8) & 0x7F;
1244 }
1245
1246 static int atom_get_max_pstate(void)
1247 {
1248 u64 value;
1249
1250 rdmsrl(ATOM_RATIOS, value);
1251 return (value >> 16) & 0x7F;
1252 }
1253
1254 static int atom_get_turbo_pstate(void)
1255 {
1256 u64 value;
1257
1258 rdmsrl(ATOM_TURBO_RATIOS, value);
1259 return value & 0x7F;
1260 }
1261
1262 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1263 {
1264 u64 val;
1265 int32_t vid_fp;
1266 u32 vid;
1267
1268 val = (u64)pstate << 8;
1269 if (limits->no_turbo && !limits->turbo_disabled)
1270 val |= (u64)1 << 32;
1271
1272 vid_fp = cpudata->vid.min + mul_fp(
1273 int_tofp(pstate - cpudata->pstate.min_pstate),
1274 cpudata->vid.ratio);
1275
1276 vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1277 vid = ceiling_fp(vid_fp);
1278
1279 if (pstate > cpudata->pstate.max_pstate)
1280 vid = cpudata->vid.turbo;
1281
1282 return val | vid;
1283 }
1284
1285 static int silvermont_get_scaling(void)
1286 {
1287 u64 value;
1288 int i;
1289 /* Defined in Table 35-6 from SDM (Sept 2015) */
1290 static int silvermont_freq_table[] = {
1291 83300, 100000, 133300, 116700, 80000};
1292
1293 rdmsrl(MSR_FSB_FREQ, value);
1294 i = value & 0x7;
1295 WARN_ON(i > 4);
1296
1297 return silvermont_freq_table[i];
1298 }
1299
1300 static int airmont_get_scaling(void)
1301 {
1302 u64 value;
1303 int i;
1304 /* Defined in Table 35-10 from SDM (Sept 2015) */
1305 static int airmont_freq_table[] = {
1306 83300, 100000, 133300, 116700, 80000,
1307 93300, 90000, 88900, 87500};
1308
1309 rdmsrl(MSR_FSB_FREQ, value);
1310 i = value & 0xF;
1311 WARN_ON(i > 8);
1312
1313 return airmont_freq_table[i];
1314 }
1315
1316 static void atom_get_vid(struct cpudata *cpudata)
1317 {
1318 u64 value;
1319
1320 rdmsrl(ATOM_VIDS, value);
1321 cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1322 cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1323 cpudata->vid.ratio = div_fp(
1324 cpudata->vid.max - cpudata->vid.min,
1325 int_tofp(cpudata->pstate.max_pstate -
1326 cpudata->pstate.min_pstate));
1327
1328 rdmsrl(ATOM_TURBO_VIDS, value);
1329 cpudata->vid.turbo = value & 0x7f;
1330 }
1331
1332 static int core_get_min_pstate(void)
1333 {
1334 u64 value;
1335
1336 rdmsrl(MSR_PLATFORM_INFO, value);
1337 return (value >> 40) & 0xFF;
1338 }
1339
1340 static int core_get_max_pstate_physical(void)
1341 {
1342 u64 value;
1343
1344 rdmsrl(MSR_PLATFORM_INFO, value);
1345 return (value >> 8) & 0xFF;
1346 }
1347
1348 static int core_get_max_pstate(void)
1349 {
1350 u64 tar;
1351 u64 plat_info;
1352 int max_pstate;
1353 int err;
1354
1355 rdmsrl(MSR_PLATFORM_INFO, plat_info);
1356 max_pstate = (plat_info >> 8) & 0xFF;
1357
1358 err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1359 if (!err) {
1360 /* Do some sanity checking for safety */
1361 if (plat_info & 0x600000000) {
1362 u64 tdp_ctrl;
1363 u64 tdp_ratio;
1364 int tdp_msr;
1365
1366 err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1367 if (err)
1368 goto skip_tar;
1369
1370 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x3);
1371 err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1372 if (err)
1373 goto skip_tar;
1374
1375 /* For level 1 and 2, bits[23:16] contain the ratio */
1376 if (tdp_ctrl)
1377 tdp_ratio >>= 16;
1378
1379 tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1380 if (tdp_ratio - 1 == tar) {
1381 max_pstate = tar;
1382 pr_debug("max_pstate=TAC %x\n", max_pstate);
1383 } else {
1384 goto skip_tar;
1385 }
1386 }
1387 }
1388
1389 skip_tar:
1390 return max_pstate;
1391 }
1392
1393 static int core_get_turbo_pstate(void)
1394 {
1395 u64 value;
1396 int nont, ret;
1397
1398 rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1399 nont = core_get_max_pstate();
1400 ret = (value) & 255;
1401 if (ret <= nont)
1402 ret = nont;
1403 return ret;
1404 }
1405
1406 static inline int core_get_scaling(void)
1407 {
1408 return 100000;
1409 }
1410
1411 static u64 core_get_val(struct cpudata *cpudata, int pstate)
1412 {
1413 u64 val;
1414
1415 val = (u64)pstate << 8;
1416 if (limits->no_turbo && !limits->turbo_disabled)
1417 val |= (u64)1 << 32;
1418
1419 return val;
1420 }
1421
1422 static int knl_get_turbo_pstate(void)
1423 {
1424 u64 value;
1425 int nont, ret;
1426
1427 rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1428 nont = core_get_max_pstate();
1429 ret = (((value) >> 8) & 0xFF);
1430 if (ret <= nont)
1431 ret = nont;
1432 return ret;
1433 }
1434
1435 static struct cpu_defaults core_params = {
1436 .pid_policy = {
1437 .sample_rate_ms = 10,
1438 .deadband = 0,
1439 .setpoint = 97,
1440 .p_gain_pct = 20,
1441 .d_gain_pct = 0,
1442 .i_gain_pct = 0,
1443 },
1444 .funcs = {
1445 .get_max = core_get_max_pstate,
1446 .get_max_physical = core_get_max_pstate_physical,
1447 .get_min = core_get_min_pstate,
1448 .get_turbo = core_get_turbo_pstate,
1449 .get_scaling = core_get_scaling,
1450 .get_val = core_get_val,
1451 .get_target_pstate = get_target_pstate_use_performance,
1452 },
1453 };
1454
1455 static const struct cpu_defaults silvermont_params = {
1456 .pid_policy = {
1457 .sample_rate_ms = 10,
1458 .deadband = 0,
1459 .setpoint = 60,
1460 .p_gain_pct = 14,
1461 .d_gain_pct = 0,
1462 .i_gain_pct = 4,
1463 },
1464 .funcs = {
1465 .get_max = atom_get_max_pstate,
1466 .get_max_physical = atom_get_max_pstate,
1467 .get_min = atom_get_min_pstate,
1468 .get_turbo = atom_get_turbo_pstate,
1469 .get_val = atom_get_val,
1470 .get_scaling = silvermont_get_scaling,
1471 .get_vid = atom_get_vid,
1472 .get_target_pstate = get_target_pstate_use_cpu_load,
1473 },
1474 };
1475
1476 static const struct cpu_defaults airmont_params = {
1477 .pid_policy = {
1478 .sample_rate_ms = 10,
1479 .deadband = 0,
1480 .setpoint = 60,
1481 .p_gain_pct = 14,
1482 .d_gain_pct = 0,
1483 .i_gain_pct = 4,
1484 },
1485 .funcs = {
1486 .get_max = atom_get_max_pstate,
1487 .get_max_physical = atom_get_max_pstate,
1488 .get_min = atom_get_min_pstate,
1489 .get_turbo = atom_get_turbo_pstate,
1490 .get_val = atom_get_val,
1491 .get_scaling = airmont_get_scaling,
1492 .get_vid = atom_get_vid,
1493 .get_target_pstate = get_target_pstate_use_cpu_load,
1494 },
1495 };
1496
1497 static const struct cpu_defaults knl_params = {
1498 .pid_policy = {
1499 .sample_rate_ms = 10,
1500 .deadband = 0,
1501 .setpoint = 97,
1502 .p_gain_pct = 20,
1503 .d_gain_pct = 0,
1504 .i_gain_pct = 0,
1505 },
1506 .funcs = {
1507 .get_max = core_get_max_pstate,
1508 .get_max_physical = core_get_max_pstate_physical,
1509 .get_min = core_get_min_pstate,
1510 .get_turbo = knl_get_turbo_pstate,
1511 .get_scaling = core_get_scaling,
1512 .get_val = core_get_val,
1513 .get_target_pstate = get_target_pstate_use_performance,
1514 },
1515 };
1516
1517 static const struct cpu_defaults bxt_params = {
1518 .pid_policy = {
1519 .sample_rate_ms = 10,
1520 .deadband = 0,
1521 .setpoint = 60,
1522 .p_gain_pct = 14,
1523 .d_gain_pct = 0,
1524 .i_gain_pct = 4,
1525 },
1526 .funcs = {
1527 .get_max = core_get_max_pstate,
1528 .get_max_physical = core_get_max_pstate_physical,
1529 .get_min = core_get_min_pstate,
1530 .get_turbo = core_get_turbo_pstate,
1531 .get_scaling = core_get_scaling,
1532 .get_val = core_get_val,
1533 .get_target_pstate = get_target_pstate_use_cpu_load,
1534 },
1535 };
1536
1537 static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
1538 {
1539 int max_perf = cpu->pstate.turbo_pstate;
1540 int max_perf_adj;
1541 int min_perf;
1542 struct perf_limits *perf_limits = limits;
1543
1544 if (limits->no_turbo || limits->turbo_disabled)
1545 max_perf = cpu->pstate.max_pstate;
1546
1547 if (per_cpu_limits)
1548 perf_limits = cpu->perf_limits;
1549
1550 /*
1551 * performance can be limited by user through sysfs, by cpufreq
1552 * policy, or by cpu specific default values determined through
1553 * experimentation.
1554 */
1555 max_perf_adj = fp_ext_toint(max_perf * perf_limits->max_perf);
1556 *max = clamp_t(int, max_perf_adj,
1557 cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
1558
1559 min_perf = fp_ext_toint(max_perf * perf_limits->min_perf);
1560 *min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
1561 }
1562
1563 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1564 {
1565 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1566 cpu->pstate.current_pstate = pstate;
1567 /*
1568 * Generally, there is no guarantee that this code will always run on
1569 * the CPU being updated, so force the register update to run on the
1570 * right CPU.
1571 */
1572 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1573 pstate_funcs.get_val(cpu, pstate));
1574 }
1575
1576 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1577 {
1578 intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1579 }
1580
1581 static void intel_pstate_max_within_limits(struct cpudata *cpu)
1582 {
1583 int min_pstate, max_pstate;
1584
1585 update_turbo_state();
1586 intel_pstate_get_min_max(cpu, &min_pstate, &max_pstate);
1587 intel_pstate_set_pstate(cpu, max_pstate);
1588 }
1589
1590 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1591 {
1592 cpu->pstate.min_pstate = pstate_funcs.get_min();
1593 cpu->pstate.max_pstate = pstate_funcs.get_max();
1594 cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1595 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1596 cpu->pstate.scaling = pstate_funcs.get_scaling();
1597 cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1598 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1599
1600 if (pstate_funcs.get_vid)
1601 pstate_funcs.get_vid(cpu);
1602
1603 intel_pstate_set_min_pstate(cpu);
1604 }
1605
1606 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1607 {
1608 struct sample *sample = &cpu->sample;
1609
1610 sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1611 }
1612
1613 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1614 {
1615 u64 aperf, mperf;
1616 unsigned long flags;
1617 u64 tsc;
1618
1619 local_irq_save(flags);
1620 rdmsrl(MSR_IA32_APERF, aperf);
1621 rdmsrl(MSR_IA32_MPERF, mperf);
1622 tsc = rdtsc();
1623 if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1624 local_irq_restore(flags);
1625 return false;
1626 }
1627 local_irq_restore(flags);
1628
1629 cpu->last_sample_time = cpu->sample.time;
1630 cpu->sample.time = time;
1631 cpu->sample.aperf = aperf;
1632 cpu->sample.mperf = mperf;
1633 cpu->sample.tsc = tsc;
1634 cpu->sample.aperf -= cpu->prev_aperf;
1635 cpu->sample.mperf -= cpu->prev_mperf;
1636 cpu->sample.tsc -= cpu->prev_tsc;
1637
1638 cpu->prev_aperf = aperf;
1639 cpu->prev_mperf = mperf;
1640 cpu->prev_tsc = tsc;
1641 /*
1642 * First time this function is invoked in a given cycle, all of the
1643 * previous sample data fields are equal to zero or stale and they must
1644 * be populated with meaningful numbers for things to work, so assume
1645 * that sample.time will always be reset before setting the utilization
1646 * update hook and make the caller skip the sample then.
1647 */
1648 return !!cpu->last_sample_time;
1649 }
1650
1651 static inline int32_t get_avg_frequency(struct cpudata *cpu)
1652 {
1653 return mul_ext_fp(cpu->sample.core_avg_perf,
1654 cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
1655 }
1656
1657 static inline int32_t get_avg_pstate(struct cpudata *cpu)
1658 {
1659 return mul_ext_fp(cpu->pstate.max_pstate_physical,
1660 cpu->sample.core_avg_perf);
1661 }
1662
1663 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
1664 {
1665 struct sample *sample = &cpu->sample;
1666 int32_t busy_frac, boost;
1667 int target, avg_pstate;
1668
1669 busy_frac = div_fp(sample->mperf, sample->tsc);
1670
1671 boost = cpu->iowait_boost;
1672 cpu->iowait_boost >>= 1;
1673
1674 if (busy_frac < boost)
1675 busy_frac = boost;
1676
1677 sample->busy_scaled = busy_frac * 100;
1678
1679 target = limits->no_turbo || limits->turbo_disabled ?
1680 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1681 target += target >> 2;
1682 target = mul_fp(target, busy_frac);
1683 if (target < cpu->pstate.min_pstate)
1684 target = cpu->pstate.min_pstate;
1685
1686 /*
1687 * If the average P-state during the previous cycle was higher than the
1688 * current target, add 50% of the difference to the target to reduce
1689 * possible performance oscillations and offset possible performance
1690 * loss related to moving the workload from one CPU to another within
1691 * a package/module.
1692 */
1693 avg_pstate = get_avg_pstate(cpu);
1694 if (avg_pstate > target)
1695 target += (avg_pstate - target) >> 1;
1696
1697 return target;
1698 }
1699
1700 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
1701 {
1702 int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
1703 u64 duration_ns;
1704
1705 /*
1706 * perf_scaled is the ratio of the average P-state during the last
1707 * sampling period to the P-state requested last time (in percent).
1708 *
1709 * That measures the system's response to the previous P-state
1710 * selection.
1711 */
1712 max_pstate = cpu->pstate.max_pstate_physical;
1713 current_pstate = cpu->pstate.current_pstate;
1714 perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
1715 div_fp(100 * max_pstate, current_pstate));
1716
1717 /*
1718 * Since our utilization update callback will not run unless we are
1719 * in C0, check if the actual elapsed time is significantly greater (3x)
1720 * than our sample interval. If it is, then we were idle for a long
1721 * enough period of time to adjust our performance metric.
1722 */
1723 duration_ns = cpu->sample.time - cpu->last_sample_time;
1724 if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
1725 sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1726 perf_scaled = mul_fp(perf_scaled, sample_ratio);
1727 } else {
1728 sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
1729 if (sample_ratio < int_tofp(1))
1730 perf_scaled = 0;
1731 }
1732
1733 cpu->sample.busy_scaled = perf_scaled;
1734 return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
1735 }
1736
1737 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1738 {
1739 int max_perf, min_perf;
1740
1741 intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
1742 pstate = clamp_t(int, pstate, min_perf, max_perf);
1743 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1744 return pstate;
1745 }
1746
1747 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1748 {
1749 pstate = intel_pstate_prepare_request(cpu, pstate);
1750 if (pstate == cpu->pstate.current_pstate)
1751 return;
1752
1753 cpu->pstate.current_pstate = pstate;
1754 wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1755 }
1756
1757 static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
1758 {
1759 int from, target_pstate;
1760 struct sample *sample;
1761
1762 from = cpu->pstate.current_pstate;
1763
1764 target_pstate = cpu->policy == CPUFREQ_POLICY_PERFORMANCE ?
1765 cpu->pstate.turbo_pstate : pstate_funcs.get_target_pstate(cpu);
1766
1767 update_turbo_state();
1768
1769 intel_pstate_update_pstate(cpu, target_pstate);
1770
1771 sample = &cpu->sample;
1772 trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1773 fp_toint(sample->busy_scaled),
1774 from,
1775 cpu->pstate.current_pstate,
1776 sample->mperf,
1777 sample->aperf,
1778 sample->tsc,
1779 get_avg_frequency(cpu),
1780 fp_toint(cpu->iowait_boost * 100));
1781 }
1782
1783 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1784 unsigned int flags)
1785 {
1786 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1787 u64 delta_ns;
1788
1789 if (pstate_funcs.get_target_pstate == get_target_pstate_use_cpu_load) {
1790 if (flags & SCHED_CPUFREQ_IOWAIT) {
1791 cpu->iowait_boost = int_tofp(1);
1792 } else if (cpu->iowait_boost) {
1793 /* Clear iowait_boost if the CPU may have been idle. */
1794 delta_ns = time - cpu->last_update;
1795 if (delta_ns > TICK_NSEC)
1796 cpu->iowait_boost = 0;
1797 }
1798 cpu->last_update = time;
1799 }
1800
1801 delta_ns = time - cpu->sample.time;
1802 if ((s64)delta_ns >= pid_params.sample_rate_ns) {
1803 bool sample_taken = intel_pstate_sample(cpu, time);
1804
1805 if (sample_taken) {
1806 intel_pstate_calc_avg_perf(cpu);
1807 if (!hwp_active)
1808 intel_pstate_adjust_busy_pstate(cpu);
1809 }
1810 }
1811 }
1812
1813 #define ICPU(model, policy) \
1814 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1815 (unsigned long)&policy }
1816
1817 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1818 ICPU(INTEL_FAM6_SANDYBRIDGE, core_params),
1819 ICPU(INTEL_FAM6_SANDYBRIDGE_X, core_params),
1820 ICPU(INTEL_FAM6_ATOM_SILVERMONT1, silvermont_params),
1821 ICPU(INTEL_FAM6_IVYBRIDGE, core_params),
1822 ICPU(INTEL_FAM6_HASWELL_CORE, core_params),
1823 ICPU(INTEL_FAM6_BROADWELL_CORE, core_params),
1824 ICPU(INTEL_FAM6_IVYBRIDGE_X, core_params),
1825 ICPU(INTEL_FAM6_HASWELL_X, core_params),
1826 ICPU(INTEL_FAM6_HASWELL_ULT, core_params),
1827 ICPU(INTEL_FAM6_HASWELL_GT3E, core_params),
1828 ICPU(INTEL_FAM6_BROADWELL_GT3E, core_params),
1829 ICPU(INTEL_FAM6_ATOM_AIRMONT, airmont_params),
1830 ICPU(INTEL_FAM6_SKYLAKE_MOBILE, core_params),
1831 ICPU(INTEL_FAM6_BROADWELL_X, core_params),
1832 ICPU(INTEL_FAM6_SKYLAKE_DESKTOP, core_params),
1833 ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
1834 ICPU(INTEL_FAM6_XEON_PHI_KNL, knl_params),
1835 ICPU(INTEL_FAM6_XEON_PHI_KNM, knl_params),
1836 ICPU(INTEL_FAM6_ATOM_GOLDMONT, bxt_params),
1837 {}
1838 };
1839 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1840
1841 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1842 ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
1843 ICPU(INTEL_FAM6_BROADWELL_X, core_params),
1844 ICPU(INTEL_FAM6_SKYLAKE_X, core_params),
1845 {}
1846 };
1847
1848 static int intel_pstate_init_cpu(unsigned int cpunum)
1849 {
1850 struct cpudata *cpu;
1851
1852 cpu = all_cpu_data[cpunum];
1853
1854 if (!cpu) {
1855 unsigned int size = sizeof(struct cpudata);
1856
1857 if (per_cpu_limits)
1858 size += sizeof(struct perf_limits);
1859
1860 cpu = kzalloc(size, GFP_KERNEL);
1861 if (!cpu)
1862 return -ENOMEM;
1863
1864 all_cpu_data[cpunum] = cpu;
1865 if (per_cpu_limits)
1866 cpu->perf_limits = (struct perf_limits *)(cpu + 1);
1867
1868 cpu->epp_default = -EINVAL;
1869 cpu->epp_powersave = -EINVAL;
1870 cpu->epp_saved = -EINVAL;
1871 }
1872
1873 cpu = all_cpu_data[cpunum];
1874
1875 cpu->cpu = cpunum;
1876
1877 if (hwp_active) {
1878 intel_pstate_hwp_enable(cpu);
1879 pid_params.sample_rate_ms = 50;
1880 pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
1881 }
1882
1883 intel_pstate_get_cpu_pstates(cpu);
1884
1885 intel_pstate_busy_pid_reset(cpu);
1886
1887 pr_debug("controlling: cpu %d\n", cpunum);
1888
1889 return 0;
1890 }
1891
1892 static unsigned int intel_pstate_get(unsigned int cpu_num)
1893 {
1894 struct cpudata *cpu = all_cpu_data[cpu_num];
1895
1896 return cpu ? get_avg_frequency(cpu) : 0;
1897 }
1898
1899 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1900 {
1901 struct cpudata *cpu = all_cpu_data[cpu_num];
1902
1903 if (cpu->update_util_set)
1904 return;
1905
1906 /* Prevent intel_pstate_update_util() from using stale data. */
1907 cpu->sample.time = 0;
1908 cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1909 intel_pstate_update_util);
1910 cpu->update_util_set = true;
1911 }
1912
1913 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1914 {
1915 struct cpudata *cpu_data = all_cpu_data[cpu];
1916
1917 if (!cpu_data->update_util_set)
1918 return;
1919
1920 cpufreq_remove_update_util_hook(cpu);
1921 cpu_data->update_util_set = false;
1922 synchronize_sched();
1923 }
1924
1925 static void intel_pstate_set_performance_limits(struct perf_limits *limits)
1926 {
1927 limits->no_turbo = 0;
1928 limits->turbo_disabled = 0;
1929 limits->max_perf_pct = 100;
1930 limits->max_perf = int_ext_tofp(1);
1931 limits->min_perf_pct = 100;
1932 limits->min_perf = int_ext_tofp(1);
1933 limits->max_policy_pct = 100;
1934 limits->max_sysfs_pct = 100;
1935 limits->min_policy_pct = 0;
1936 limits->min_sysfs_pct = 0;
1937 }
1938
1939 static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
1940 struct perf_limits *limits)
1941 {
1942
1943 limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100,
1944 policy->cpuinfo.max_freq);
1945 limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0, 100);
1946 if (policy->max == policy->min) {
1947 limits->min_policy_pct = limits->max_policy_pct;
1948 } else {
1949 limits->min_policy_pct = DIV_ROUND_UP(policy->min * 100,
1950 policy->cpuinfo.max_freq);
1951 limits->min_policy_pct = clamp_t(int, limits->min_policy_pct,
1952 0, 100);
1953 }
1954
1955 /* Normalize user input to [min_policy_pct, max_policy_pct] */
1956 limits->min_perf_pct = max(limits->min_policy_pct,
1957 limits->min_sysfs_pct);
1958 limits->min_perf_pct = min(limits->max_policy_pct,
1959 limits->min_perf_pct);
1960 limits->max_perf_pct = min(limits->max_policy_pct,
1961 limits->max_sysfs_pct);
1962 limits->max_perf_pct = max(limits->min_policy_pct,
1963 limits->max_perf_pct);
1964
1965 /* Make sure min_perf_pct <= max_perf_pct */
1966 limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct);
1967
1968 limits->min_perf = div_ext_fp(limits->min_perf_pct, 100);
1969 limits->max_perf = div_ext_fp(limits->max_perf_pct, 100);
1970 limits->max_perf = round_up(limits->max_perf, EXT_FRAC_BITS);
1971 limits->min_perf = round_up(limits->min_perf, EXT_FRAC_BITS);
1972
1973 pr_debug("cpu:%d max_perf_pct:%d min_perf_pct:%d\n", policy->cpu,
1974 limits->max_perf_pct, limits->min_perf_pct);
1975 }
1976
1977 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
1978 {
1979 struct cpudata *cpu;
1980 struct perf_limits *perf_limits = NULL;
1981
1982 if (!policy->cpuinfo.max_freq)
1983 return -ENODEV;
1984
1985 pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
1986 policy->cpuinfo.max_freq, policy->max);
1987
1988 cpu = all_cpu_data[policy->cpu];
1989 cpu->policy = policy->policy;
1990
1991 if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
1992 policy->max < policy->cpuinfo.max_freq &&
1993 policy->max > cpu->pstate.max_pstate * cpu->pstate.scaling) {
1994 pr_debug("policy->max > max non turbo frequency\n");
1995 policy->max = policy->cpuinfo.max_freq;
1996 }
1997
1998 if (per_cpu_limits)
1999 perf_limits = cpu->perf_limits;
2000
2001 mutex_lock(&intel_pstate_limits_lock);
2002
2003 if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
2004 if (!perf_limits) {
2005 limits = &performance_limits;
2006 perf_limits = limits;
2007 }
2008 if (policy->max >= policy->cpuinfo.max_freq) {
2009 pr_debug("set performance\n");
2010 intel_pstate_set_performance_limits(perf_limits);
2011 goto out;
2012 }
2013 } else {
2014 pr_debug("set powersave\n");
2015 if (!perf_limits) {
2016 limits = &powersave_limits;
2017 perf_limits = limits;
2018 }
2019
2020 }
2021
2022 intel_pstate_update_perf_limits(policy, perf_limits);
2023 out:
2024 if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2025 /*
2026 * NOHZ_FULL CPUs need this as the governor callback may not
2027 * be invoked on them.
2028 */
2029 intel_pstate_clear_update_util_hook(policy->cpu);
2030 intel_pstate_max_within_limits(cpu);
2031 }
2032
2033 intel_pstate_set_update_util_hook(policy->cpu);
2034
2035 intel_pstate_hwp_set_policy(policy);
2036
2037 mutex_unlock(&intel_pstate_limits_lock);
2038
2039 return 0;
2040 }
2041
2042 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
2043 {
2044 cpufreq_verify_within_cpu_limits(policy);
2045
2046 if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
2047 policy->policy != CPUFREQ_POLICY_PERFORMANCE)
2048 return -EINVAL;
2049
2050 return 0;
2051 }
2052
2053 static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
2054 {
2055 intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
2056 }
2057
2058 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2059 {
2060 pr_debug("CPU %d exiting\n", policy->cpu);
2061
2062 intel_pstate_clear_update_util_hook(policy->cpu);
2063 if (hwp_active)
2064 intel_pstate_hwp_save_state(policy);
2065 else
2066 intel_cpufreq_stop_cpu(policy);
2067 }
2068
2069 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2070 {
2071 intel_pstate_exit_perf_limits(policy);
2072
2073 policy->fast_switch_possible = false;
2074
2075 return 0;
2076 }
2077
2078 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2079 {
2080 struct cpudata *cpu;
2081 int rc;
2082
2083 rc = intel_pstate_init_cpu(policy->cpu);
2084 if (rc)
2085 return rc;
2086
2087 cpu = all_cpu_data[policy->cpu];
2088
2089 /*
2090 * We need sane value in the cpu->perf_limits, so inherit from global
2091 * perf_limits limits, which are seeded with values based on the
2092 * CONFIG_CPU_FREQ_DEFAULT_GOV_*, during boot up.
2093 */
2094 if (per_cpu_limits)
2095 memcpy(cpu->perf_limits, limits, sizeof(struct perf_limits));
2096
2097 policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
2098 policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2099
2100 /* cpuinfo and default policy values */
2101 policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2102 update_turbo_state();
2103 policy->cpuinfo.max_freq = limits->turbo_disabled ?
2104 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2105 policy->cpuinfo.max_freq *= cpu->pstate.scaling;
2106
2107 intel_pstate_init_acpi_perf_limits(policy);
2108 cpumask_set_cpu(policy->cpu, policy->cpus);
2109
2110 policy->fast_switch_possible = true;
2111
2112 return 0;
2113 }
2114
2115 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2116 {
2117 int ret = __intel_pstate_cpu_init(policy);
2118
2119 if (ret)
2120 return ret;
2121
2122 policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
2123 if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
2124 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
2125 else
2126 policy->policy = CPUFREQ_POLICY_POWERSAVE;
2127
2128 return 0;
2129 }
2130
2131 static struct cpufreq_driver intel_pstate = {
2132 .flags = CPUFREQ_CONST_LOOPS,
2133 .verify = intel_pstate_verify_policy,
2134 .setpolicy = intel_pstate_set_policy,
2135 .suspend = intel_pstate_hwp_save_state,
2136 .resume = intel_pstate_resume,
2137 .get = intel_pstate_get,
2138 .init = intel_pstate_cpu_init,
2139 .exit = intel_pstate_cpu_exit,
2140 .stop_cpu = intel_pstate_stop_cpu,
2141 .name = "intel_pstate",
2142 };
2143
2144 static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
2145 {
2146 struct cpudata *cpu = all_cpu_data[policy->cpu];
2147 struct perf_limits *perf_limits = limits;
2148
2149 update_turbo_state();
2150 policy->cpuinfo.max_freq = limits->turbo_disabled ?
2151 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2152
2153 cpufreq_verify_within_cpu_limits(policy);
2154
2155 if (per_cpu_limits)
2156 perf_limits = cpu->perf_limits;
2157
2158 mutex_lock(&intel_pstate_limits_lock);
2159
2160 intel_pstate_update_perf_limits(policy, perf_limits);
2161
2162 mutex_unlock(&intel_pstate_limits_lock);
2163
2164 return 0;
2165 }
2166
2167 static unsigned int intel_cpufreq_turbo_update(struct cpudata *cpu,
2168 struct cpufreq_policy *policy,
2169 unsigned int target_freq)
2170 {
2171 unsigned int max_freq;
2172
2173 update_turbo_state();
2174
2175 max_freq = limits->no_turbo || limits->turbo_disabled ?
2176 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2177 policy->cpuinfo.max_freq = max_freq;
2178 if (policy->max > max_freq)
2179 policy->max = max_freq;
2180
2181 if (target_freq > max_freq)
2182 target_freq = max_freq;
2183
2184 return target_freq;
2185 }
2186
2187 static int intel_cpufreq_target(struct cpufreq_policy *policy,
2188 unsigned int target_freq,
2189 unsigned int relation)
2190 {
2191 struct cpudata *cpu = all_cpu_data[policy->cpu];
2192 struct cpufreq_freqs freqs;
2193 int target_pstate;
2194
2195 freqs.old = policy->cur;
2196 freqs.new = intel_cpufreq_turbo_update(cpu, policy, target_freq);
2197
2198 cpufreq_freq_transition_begin(policy, &freqs);
2199 switch (relation) {
2200 case CPUFREQ_RELATION_L:
2201 target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2202 break;
2203 case CPUFREQ_RELATION_H:
2204 target_pstate = freqs.new / cpu->pstate.scaling;
2205 break;
2206 default:
2207 target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2208 break;
2209 }
2210 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2211 if (target_pstate != cpu->pstate.current_pstate) {
2212 cpu->pstate.current_pstate = target_pstate;
2213 wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
2214 pstate_funcs.get_val(cpu, target_pstate));
2215 }
2216 cpufreq_freq_transition_end(policy, &freqs, false);
2217
2218 return 0;
2219 }
2220
2221 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2222 unsigned int target_freq)
2223 {
2224 struct cpudata *cpu = all_cpu_data[policy->cpu];
2225 int target_pstate;
2226
2227 target_freq = intel_cpufreq_turbo_update(cpu, policy, target_freq);
2228 target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2229 intel_pstate_update_pstate(cpu, target_pstate);
2230 return target_freq;
2231 }
2232
2233 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2234 {
2235 int ret = __intel_pstate_cpu_init(policy);
2236
2237 if (ret)
2238 return ret;
2239
2240 policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2241 /* This reflects the intel_pstate_get_cpu_pstates() setting. */
2242 policy->cur = policy->cpuinfo.min_freq;
2243
2244 return 0;
2245 }
2246
2247 static struct cpufreq_driver intel_cpufreq = {
2248 .flags = CPUFREQ_CONST_LOOPS,
2249 .verify = intel_cpufreq_verify_policy,
2250 .target = intel_cpufreq_target,
2251 .fast_switch = intel_cpufreq_fast_switch,
2252 .init = intel_cpufreq_cpu_init,
2253 .exit = intel_pstate_cpu_exit,
2254 .stop_cpu = intel_cpufreq_stop_cpu,
2255 .name = "intel_cpufreq",
2256 };
2257
2258 static struct cpufreq_driver *intel_pstate_driver = &intel_pstate;
2259
2260 static int no_load __initdata;
2261 static int no_hwp __initdata;
2262 static int hwp_only __initdata;
2263 static unsigned int force_load __initdata;
2264
2265 static int __init intel_pstate_msrs_not_valid(void)
2266 {
2267 if (!pstate_funcs.get_max() ||
2268 !pstate_funcs.get_min() ||
2269 !pstate_funcs.get_turbo())
2270 return -ENODEV;
2271
2272 return 0;
2273 }
2274
2275 static void __init copy_pid_params(struct pstate_adjust_policy *policy)
2276 {
2277 pid_params.sample_rate_ms = policy->sample_rate_ms;
2278 pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
2279 pid_params.p_gain_pct = policy->p_gain_pct;
2280 pid_params.i_gain_pct = policy->i_gain_pct;
2281 pid_params.d_gain_pct = policy->d_gain_pct;
2282 pid_params.deadband = policy->deadband;
2283 pid_params.setpoint = policy->setpoint;
2284 }
2285
2286 #ifdef CONFIG_ACPI
2287 static void intel_pstate_use_acpi_profile(void)
2288 {
2289 if (acpi_gbl_FADT.preferred_profile == PM_MOBILE)
2290 pstate_funcs.get_target_pstate =
2291 get_target_pstate_use_cpu_load;
2292 }
2293 #else
2294 static void intel_pstate_use_acpi_profile(void)
2295 {
2296 }
2297 #endif
2298
2299 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2300 {
2301 pstate_funcs.get_max = funcs->get_max;
2302 pstate_funcs.get_max_physical = funcs->get_max_physical;
2303 pstate_funcs.get_min = funcs->get_min;
2304 pstate_funcs.get_turbo = funcs->get_turbo;
2305 pstate_funcs.get_scaling = funcs->get_scaling;
2306 pstate_funcs.get_val = funcs->get_val;
2307 pstate_funcs.get_vid = funcs->get_vid;
2308 pstate_funcs.get_target_pstate = funcs->get_target_pstate;
2309
2310 intel_pstate_use_acpi_profile();
2311 }
2312
2313 #ifdef CONFIG_ACPI
2314
2315 static bool __init intel_pstate_no_acpi_pss(void)
2316 {
2317 int i;
2318
2319 for_each_possible_cpu(i) {
2320 acpi_status status;
2321 union acpi_object *pss;
2322 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
2323 struct acpi_processor *pr = per_cpu(processors, i);
2324
2325 if (!pr)
2326 continue;
2327
2328 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
2329 if (ACPI_FAILURE(status))
2330 continue;
2331
2332 pss = buffer.pointer;
2333 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
2334 kfree(pss);
2335 return false;
2336 }
2337
2338 kfree(pss);
2339 }
2340
2341 return true;
2342 }
2343
2344 static bool __init intel_pstate_has_acpi_ppc(void)
2345 {
2346 int i;
2347
2348 for_each_possible_cpu(i) {
2349 struct acpi_processor *pr = per_cpu(processors, i);
2350
2351 if (!pr)
2352 continue;
2353 if (acpi_has_method(pr->handle, "_PPC"))
2354 return true;
2355 }
2356 return false;
2357 }
2358
2359 enum {
2360 PSS,
2361 PPC,
2362 };
2363
2364 struct hw_vendor_info {
2365 u16 valid;
2366 char oem_id[ACPI_OEM_ID_SIZE];
2367 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
2368 int oem_pwr_table;
2369 };
2370
2371 /* Hardware vendor-specific info that has its own power management modes */
2372 static struct hw_vendor_info vendor_info[] __initdata = {
2373 {1, "HP ", "ProLiant", PSS},
2374 {1, "ORACLE", "X4-2 ", PPC},
2375 {1, "ORACLE", "X4-2L ", PPC},
2376 {1, "ORACLE", "X4-2B ", PPC},
2377 {1, "ORACLE", "X3-2 ", PPC},
2378 {1, "ORACLE", "X3-2L ", PPC},
2379 {1, "ORACLE", "X3-2B ", PPC},
2380 {1, "ORACLE", "X4470M2 ", PPC},
2381 {1, "ORACLE", "X4270M3 ", PPC},
2382 {1, "ORACLE", "X4270M2 ", PPC},
2383 {1, "ORACLE", "X4170M2 ", PPC},
2384 {1, "ORACLE", "X4170 M3", PPC},
2385 {1, "ORACLE", "X4275 M3", PPC},
2386 {1, "ORACLE", "X6-2 ", PPC},
2387 {1, "ORACLE", "Sudbury ", PPC},
2388 {0, "", ""},
2389 };
2390
2391 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2392 {
2393 struct acpi_table_header hdr;
2394 struct hw_vendor_info *v_info;
2395 const struct x86_cpu_id *id;
2396 u64 misc_pwr;
2397
2398 id = x86_match_cpu(intel_pstate_cpu_oob_ids);
2399 if (id) {
2400 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2401 if ( misc_pwr & (1 << 8))
2402 return true;
2403 }
2404
2405 if (acpi_disabled ||
2406 ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
2407 return false;
2408
2409 for (v_info = vendor_info; v_info->valid; v_info++) {
2410 if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
2411 !strncmp(hdr.oem_table_id, v_info->oem_table_id,
2412 ACPI_OEM_TABLE_ID_SIZE))
2413 switch (v_info->oem_pwr_table) {
2414 case PSS:
2415 return intel_pstate_no_acpi_pss();
2416 case PPC:
2417 return intel_pstate_has_acpi_ppc() &&
2418 (!force_load);
2419 }
2420 }
2421
2422 return false;
2423 }
2424
2425 static void intel_pstate_request_control_from_smm(void)
2426 {
2427 /*
2428 * It may be unsafe to request P-states control from SMM if _PPC support
2429 * has not been enabled.
2430 */
2431 if (acpi_ppc)
2432 acpi_processor_pstate_control();
2433 }
2434 #else /* CONFIG_ACPI not enabled */
2435 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2436 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2437 static inline void intel_pstate_request_control_from_smm(void) {}
2438 #endif /* CONFIG_ACPI */
2439
2440 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2441 { X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
2442 {}
2443 };
2444
2445 static int __init intel_pstate_init(void)
2446 {
2447 int cpu, rc = 0;
2448 const struct x86_cpu_id *id;
2449 struct cpu_defaults *cpu_def;
2450
2451 if (no_load)
2452 return -ENODEV;
2453
2454 if (x86_match_cpu(hwp_support_ids) && !no_hwp) {
2455 copy_cpu_funcs(&core_params.funcs);
2456 hwp_active++;
2457 intel_pstate.attr = hwp_cpufreq_attrs;
2458 goto hwp_cpu_matched;
2459 }
2460
2461 id = x86_match_cpu(intel_pstate_cpu_ids);
2462 if (!id)
2463 return -ENODEV;
2464
2465 cpu_def = (struct cpu_defaults *)id->driver_data;
2466
2467 copy_pid_params(&cpu_def->pid_policy);
2468 copy_cpu_funcs(&cpu_def->funcs);
2469
2470 if (intel_pstate_msrs_not_valid())
2471 return -ENODEV;
2472
2473 hwp_cpu_matched:
2474 /*
2475 * The Intel pstate driver will be ignored if the platform
2476 * firmware has its own power management modes.
2477 */
2478 if (intel_pstate_platform_pwr_mgmt_exists())
2479 return -ENODEV;
2480
2481 pr_info("Intel P-state driver initializing\n");
2482
2483 all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
2484 if (!all_cpu_data)
2485 return -ENOMEM;
2486
2487 if (!hwp_active && hwp_only)
2488 goto out;
2489
2490 intel_pstate_request_control_from_smm();
2491
2492 rc = cpufreq_register_driver(intel_pstate_driver);
2493 if (rc)
2494 goto out;
2495
2496 if (intel_pstate_driver == &intel_pstate && !hwp_active &&
2497 pstate_funcs.get_target_pstate != get_target_pstate_use_cpu_load)
2498 intel_pstate_debug_expose_params();
2499
2500 intel_pstate_sysfs_expose_params();
2501
2502 if (hwp_active)
2503 pr_info("HWP enabled\n");
2504
2505 return rc;
2506 out:
2507 get_online_cpus();
2508 for_each_online_cpu(cpu) {
2509 if (all_cpu_data[cpu]) {
2510 if (intel_pstate_driver == &intel_pstate)
2511 intel_pstate_clear_update_util_hook(cpu);
2512
2513 kfree(all_cpu_data[cpu]);
2514 }
2515 }
2516
2517 put_online_cpus();
2518 vfree(all_cpu_data);
2519 return -ENODEV;
2520 }
2521 device_initcall(intel_pstate_init);
2522
2523 static int __init intel_pstate_setup(char *str)
2524 {
2525 if (!str)
2526 return -EINVAL;
2527
2528 if (!strcmp(str, "disable")) {
2529 no_load = 1;
2530 } else if (!strcmp(str, "passive")) {
2531 pr_info("Passive mode enabled\n");
2532 intel_pstate_driver = &intel_cpufreq;
2533 no_hwp = 1;
2534 }
2535 if (!strcmp(str, "no_hwp")) {
2536 pr_info("HWP disabled\n");
2537 no_hwp = 1;
2538 }
2539 if (!strcmp(str, "force"))
2540 force_load = 1;
2541 if (!strcmp(str, "hwp_only"))
2542 hwp_only = 1;
2543 if (!strcmp(str, "per_cpu_perf_limits"))
2544 per_cpu_limits = true;
2545
2546 #ifdef CONFIG_ACPI
2547 if (!strcmp(str, "support_acpi_ppc"))
2548 acpi_ppc = true;
2549 #endif
2550
2551 return 0;
2552 }
2553 early_param("intel_pstate", intel_pstate_setup);
2554
2555 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
2556 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
2557 MODULE_LICENSE("GPL");