]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/cpufreq/intel_pstate.c
Merge tag 'firewire-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/ieee1394...
[mirror_ubuntu-artful-kernel.git] / drivers / cpufreq / intel_pstate.c
1 /*
2 * intel_pstate.c: Native P state management for Intel processors
3 *
4 * (C) Copyright 2012 Intel Corporation
5 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
10 * of the License.
11 */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/kernel.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/module.h>
18 #include <linux/ktime.h>
19 #include <linux/hrtimer.h>
20 #include <linux/tick.h>
21 #include <linux/slab.h>
22 #include <linux/sched.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25 #include <linux/cpufreq.h>
26 #include <linux/sysfs.h>
27 #include <linux/types.h>
28 #include <linux/fs.h>
29 #include <linux/debugfs.h>
30 #include <linux/acpi.h>
31 #include <linux/vmalloc.h>
32 #include <trace/events/power.h>
33
34 #include <asm/div64.h>
35 #include <asm/msr.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/cpufeature.h>
38 #include <asm/intel-family.h>
39
40 #define ATOM_RATIOS 0x66a
41 #define ATOM_VIDS 0x66b
42 #define ATOM_TURBO_RATIOS 0x66c
43 #define ATOM_TURBO_VIDS 0x66d
44
45 #ifdef CONFIG_ACPI
46 #include <acpi/processor.h>
47 #endif
48
49 #define FRAC_BITS 8
50 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
51 #define fp_toint(X) ((X) >> FRAC_BITS)
52
53 #define EXT_BITS 6
54 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
55
56 static inline int32_t mul_fp(int32_t x, int32_t y)
57 {
58 return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
59 }
60
61 static inline int32_t div_fp(s64 x, s64 y)
62 {
63 return div64_s64((int64_t)x << FRAC_BITS, y);
64 }
65
66 static inline int ceiling_fp(int32_t x)
67 {
68 int mask, ret;
69
70 ret = fp_toint(x);
71 mask = (1 << FRAC_BITS) - 1;
72 if (x & mask)
73 ret += 1;
74 return ret;
75 }
76
77 static inline u64 mul_ext_fp(u64 x, u64 y)
78 {
79 return (x * y) >> EXT_FRAC_BITS;
80 }
81
82 static inline u64 div_ext_fp(u64 x, u64 y)
83 {
84 return div64_u64(x << EXT_FRAC_BITS, y);
85 }
86
87 /**
88 * struct sample - Store performance sample
89 * @core_avg_perf: Ratio of APERF/MPERF which is the actual average
90 * performance during last sample period
91 * @busy_scaled: Scaled busy value which is used to calculate next
92 * P state. This can be different than core_avg_perf
93 * to account for cpu idle period
94 * @aperf: Difference of actual performance frequency clock count
95 * read from APERF MSR between last and current sample
96 * @mperf: Difference of maximum performance frequency clock count
97 * read from MPERF MSR between last and current sample
98 * @tsc: Difference of time stamp counter between last and
99 * current sample
100 * @time: Current time from scheduler
101 *
102 * This structure is used in the cpudata structure to store performance sample
103 * data for choosing next P State.
104 */
105 struct sample {
106 int32_t core_avg_perf;
107 int32_t busy_scaled;
108 u64 aperf;
109 u64 mperf;
110 u64 tsc;
111 u64 time;
112 };
113
114 /**
115 * struct pstate_data - Store P state data
116 * @current_pstate: Current requested P state
117 * @min_pstate: Min P state possible for this platform
118 * @max_pstate: Max P state possible for this platform
119 * @max_pstate_physical:This is physical Max P state for a processor
120 * This can be higher than the max_pstate which can
121 * be limited by platform thermal design power limits
122 * @scaling: Scaling factor to convert frequency to cpufreq
123 * frequency units
124 * @turbo_pstate: Max Turbo P state possible for this platform
125 *
126 * Stores the per cpu model P state limits and current P state.
127 */
128 struct pstate_data {
129 int current_pstate;
130 int min_pstate;
131 int max_pstate;
132 int max_pstate_physical;
133 int scaling;
134 int turbo_pstate;
135 };
136
137 /**
138 * struct vid_data - Stores voltage information data
139 * @min: VID data for this platform corresponding to
140 * the lowest P state
141 * @max: VID data corresponding to the highest P State.
142 * @turbo: VID data for turbo P state
143 * @ratio: Ratio of (vid max - vid min) /
144 * (max P state - Min P State)
145 *
146 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
147 * This data is used in Atom platforms, where in addition to target P state,
148 * the voltage data needs to be specified to select next P State.
149 */
150 struct vid_data {
151 int min;
152 int max;
153 int turbo;
154 int32_t ratio;
155 };
156
157 /**
158 * struct _pid - Stores PID data
159 * @setpoint: Target set point for busyness or performance
160 * @integral: Storage for accumulated error values
161 * @p_gain: PID proportional gain
162 * @i_gain: PID integral gain
163 * @d_gain: PID derivative gain
164 * @deadband: PID deadband
165 * @last_err: Last error storage for integral part of PID calculation
166 *
167 * Stores PID coefficients and last error for PID controller.
168 */
169 struct _pid {
170 int setpoint;
171 int32_t integral;
172 int32_t p_gain;
173 int32_t i_gain;
174 int32_t d_gain;
175 int deadband;
176 int32_t last_err;
177 };
178
179 /**
180 * struct cpudata - Per CPU instance data storage
181 * @cpu: CPU number for this instance data
182 * @policy: CPUFreq policy value
183 * @update_util: CPUFreq utility callback information
184 * @update_util_set: CPUFreq utility callback is set
185 * @iowait_boost: iowait-related boost fraction
186 * @last_update: Time of the last update.
187 * @pstate: Stores P state limits for this CPU
188 * @vid: Stores VID limits for this CPU
189 * @pid: Stores PID parameters for this CPU
190 * @last_sample_time: Last Sample time
191 * @prev_aperf: Last APERF value read from APERF MSR
192 * @prev_mperf: Last MPERF value read from MPERF MSR
193 * @prev_tsc: Last timestamp counter (TSC) value
194 * @prev_cummulative_iowait: IO Wait time difference from last and
195 * current sample
196 * @sample: Storage for storing last Sample data
197 * @acpi_perf_data: Stores ACPI perf information read from _PSS
198 * @valid_pss_table: Set to true for valid ACPI _PSS entries found
199 *
200 * This structure stores per CPU instance data for all CPUs.
201 */
202 struct cpudata {
203 int cpu;
204
205 unsigned int policy;
206 struct update_util_data update_util;
207 bool update_util_set;
208
209 struct pstate_data pstate;
210 struct vid_data vid;
211 struct _pid pid;
212
213 u64 last_update;
214 u64 last_sample_time;
215 u64 prev_aperf;
216 u64 prev_mperf;
217 u64 prev_tsc;
218 u64 prev_cummulative_iowait;
219 struct sample sample;
220 #ifdef CONFIG_ACPI
221 struct acpi_processor_performance acpi_perf_data;
222 bool valid_pss_table;
223 #endif
224 unsigned int iowait_boost;
225 };
226
227 static struct cpudata **all_cpu_data;
228
229 /**
230 * struct pstate_adjust_policy - Stores static PID configuration data
231 * @sample_rate_ms: PID calculation sample rate in ms
232 * @sample_rate_ns: Sample rate calculation in ns
233 * @deadband: PID deadband
234 * @setpoint: PID Setpoint
235 * @p_gain_pct: PID proportional gain
236 * @i_gain_pct: PID integral gain
237 * @d_gain_pct: PID derivative gain
238 * @boost_iowait: Whether or not to use iowait boosting.
239 *
240 * Stores per CPU model static PID configuration data.
241 */
242 struct pstate_adjust_policy {
243 int sample_rate_ms;
244 s64 sample_rate_ns;
245 int deadband;
246 int setpoint;
247 int p_gain_pct;
248 int d_gain_pct;
249 int i_gain_pct;
250 bool boost_iowait;
251 };
252
253 /**
254 * struct pstate_funcs - Per CPU model specific callbacks
255 * @get_max: Callback to get maximum non turbo effective P state
256 * @get_max_physical: Callback to get maximum non turbo physical P state
257 * @get_min: Callback to get minimum P state
258 * @get_turbo: Callback to get turbo P state
259 * @get_scaling: Callback to get frequency scaling factor
260 * @get_val: Callback to convert P state to actual MSR write value
261 * @get_vid: Callback to get VID data for Atom platforms
262 * @get_target_pstate: Callback to a function to calculate next P state to use
263 *
264 * Core and Atom CPU models have different way to get P State limits. This
265 * structure is used to store those callbacks.
266 */
267 struct pstate_funcs {
268 int (*get_max)(void);
269 int (*get_max_physical)(void);
270 int (*get_min)(void);
271 int (*get_turbo)(void);
272 int (*get_scaling)(void);
273 u64 (*get_val)(struct cpudata*, int pstate);
274 void (*get_vid)(struct cpudata *);
275 int32_t (*get_target_pstate)(struct cpudata *);
276 };
277
278 /**
279 * struct cpu_defaults- Per CPU model default config data
280 * @pid_policy: PID config data
281 * @funcs: Callback function data
282 */
283 struct cpu_defaults {
284 struct pstate_adjust_policy pid_policy;
285 struct pstate_funcs funcs;
286 };
287
288 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
289 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
290
291 static struct pstate_adjust_policy pid_params __read_mostly;
292 static struct pstate_funcs pstate_funcs __read_mostly;
293 static int hwp_active __read_mostly;
294
295 #ifdef CONFIG_ACPI
296 static bool acpi_ppc;
297 #endif
298
299 /**
300 * struct perf_limits - Store user and policy limits
301 * @no_turbo: User requested turbo state from intel_pstate sysfs
302 * @turbo_disabled: Platform turbo status either from msr
303 * MSR_IA32_MISC_ENABLE or when maximum available pstate
304 * matches the maximum turbo pstate
305 * @max_perf_pct: Effective maximum performance limit in percentage, this
306 * is minimum of either limits enforced by cpufreq policy
307 * or limits from user set limits via intel_pstate sysfs
308 * @min_perf_pct: Effective minimum performance limit in percentage, this
309 * is maximum of either limits enforced by cpufreq policy
310 * or limits from user set limits via intel_pstate sysfs
311 * @max_perf: This is a scaled value between 0 to 255 for max_perf_pct
312 * This value is used to limit max pstate
313 * @min_perf: This is a scaled value between 0 to 255 for min_perf_pct
314 * This value is used to limit min pstate
315 * @max_policy_pct: The maximum performance in percentage enforced by
316 * cpufreq setpolicy interface
317 * @max_sysfs_pct: The maximum performance in percentage enforced by
318 * intel pstate sysfs interface
319 * @min_policy_pct: The minimum performance in percentage enforced by
320 * cpufreq setpolicy interface
321 * @min_sysfs_pct: The minimum performance in percentage enforced by
322 * intel pstate sysfs interface
323 *
324 * Storage for user and policy defined limits.
325 */
326 struct perf_limits {
327 int no_turbo;
328 int turbo_disabled;
329 int max_perf_pct;
330 int min_perf_pct;
331 int32_t max_perf;
332 int32_t min_perf;
333 int max_policy_pct;
334 int max_sysfs_pct;
335 int min_policy_pct;
336 int min_sysfs_pct;
337 };
338
339 static struct perf_limits performance_limits = {
340 .no_turbo = 0,
341 .turbo_disabled = 0,
342 .max_perf_pct = 100,
343 .max_perf = int_tofp(1),
344 .min_perf_pct = 100,
345 .min_perf = int_tofp(1),
346 .max_policy_pct = 100,
347 .max_sysfs_pct = 100,
348 .min_policy_pct = 0,
349 .min_sysfs_pct = 0,
350 };
351
352 static struct perf_limits powersave_limits = {
353 .no_turbo = 0,
354 .turbo_disabled = 0,
355 .max_perf_pct = 100,
356 .max_perf = int_tofp(1),
357 .min_perf_pct = 0,
358 .min_perf = 0,
359 .max_policy_pct = 100,
360 .max_sysfs_pct = 100,
361 .min_policy_pct = 0,
362 .min_sysfs_pct = 0,
363 };
364
365 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
366 static struct perf_limits *limits = &performance_limits;
367 #else
368 static struct perf_limits *limits = &powersave_limits;
369 #endif
370
371 #ifdef CONFIG_ACPI
372
373 static bool intel_pstate_get_ppc_enable_status(void)
374 {
375 if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
376 acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
377 return true;
378
379 return acpi_ppc;
380 }
381
382 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
383 {
384 struct cpudata *cpu;
385 int ret;
386 int i;
387
388 if (hwp_active)
389 return;
390
391 if (!intel_pstate_get_ppc_enable_status())
392 return;
393
394 cpu = all_cpu_data[policy->cpu];
395
396 ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
397 policy->cpu);
398 if (ret)
399 return;
400
401 /*
402 * Check if the control value in _PSS is for PERF_CTL MSR, which should
403 * guarantee that the states returned by it map to the states in our
404 * list directly.
405 */
406 if (cpu->acpi_perf_data.control_register.space_id !=
407 ACPI_ADR_SPACE_FIXED_HARDWARE)
408 goto err;
409
410 /*
411 * If there is only one entry _PSS, simply ignore _PSS and continue as
412 * usual without taking _PSS into account
413 */
414 if (cpu->acpi_perf_data.state_count < 2)
415 goto err;
416
417 pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
418 for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
419 pr_debug(" %cP%d: %u MHz, %u mW, 0x%x\n",
420 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
421 (u32) cpu->acpi_perf_data.states[i].core_frequency,
422 (u32) cpu->acpi_perf_data.states[i].power,
423 (u32) cpu->acpi_perf_data.states[i].control);
424 }
425
426 /*
427 * The _PSS table doesn't contain whole turbo frequency range.
428 * This just contains +1 MHZ above the max non turbo frequency,
429 * with control value corresponding to max turbo ratio. But
430 * when cpufreq set policy is called, it will call with this
431 * max frequency, which will cause a reduced performance as
432 * this driver uses real max turbo frequency as the max
433 * frequency. So correct this frequency in _PSS table to
434 * correct max turbo frequency based on the turbo state.
435 * Also need to convert to MHz as _PSS freq is in MHz.
436 */
437 if (!limits->turbo_disabled)
438 cpu->acpi_perf_data.states[0].core_frequency =
439 policy->cpuinfo.max_freq / 1000;
440 cpu->valid_pss_table = true;
441 pr_debug("_PPC limits will be enforced\n");
442
443 return;
444
445 err:
446 cpu->valid_pss_table = false;
447 acpi_processor_unregister_performance(policy->cpu);
448 }
449
450 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
451 {
452 struct cpudata *cpu;
453
454 cpu = all_cpu_data[policy->cpu];
455 if (!cpu->valid_pss_table)
456 return;
457
458 acpi_processor_unregister_performance(policy->cpu);
459 }
460
461 #else
462 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
463 {
464 }
465
466 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
467 {
468 }
469 #endif
470
471 static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
472 int deadband, int integral) {
473 pid->setpoint = int_tofp(setpoint);
474 pid->deadband = int_tofp(deadband);
475 pid->integral = int_tofp(integral);
476 pid->last_err = int_tofp(setpoint) - int_tofp(busy);
477 }
478
479 static inline void pid_p_gain_set(struct _pid *pid, int percent)
480 {
481 pid->p_gain = div_fp(percent, 100);
482 }
483
484 static inline void pid_i_gain_set(struct _pid *pid, int percent)
485 {
486 pid->i_gain = div_fp(percent, 100);
487 }
488
489 static inline void pid_d_gain_set(struct _pid *pid, int percent)
490 {
491 pid->d_gain = div_fp(percent, 100);
492 }
493
494 static signed int pid_calc(struct _pid *pid, int32_t busy)
495 {
496 signed int result;
497 int32_t pterm, dterm, fp_error;
498 int32_t integral_limit;
499
500 fp_error = pid->setpoint - busy;
501
502 if (abs(fp_error) <= pid->deadband)
503 return 0;
504
505 pterm = mul_fp(pid->p_gain, fp_error);
506
507 pid->integral += fp_error;
508
509 /*
510 * We limit the integral here so that it will never
511 * get higher than 30. This prevents it from becoming
512 * too large an input over long periods of time and allows
513 * it to get factored out sooner.
514 *
515 * The value of 30 was chosen through experimentation.
516 */
517 integral_limit = int_tofp(30);
518 if (pid->integral > integral_limit)
519 pid->integral = integral_limit;
520 if (pid->integral < -integral_limit)
521 pid->integral = -integral_limit;
522
523 dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
524 pid->last_err = fp_error;
525
526 result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
527 result = result + (1 << (FRAC_BITS-1));
528 return (signed int)fp_toint(result);
529 }
530
531 static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
532 {
533 pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
534 pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
535 pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
536
537 pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
538 }
539
540 static inline void intel_pstate_reset_all_pid(void)
541 {
542 unsigned int cpu;
543
544 for_each_online_cpu(cpu) {
545 if (all_cpu_data[cpu])
546 intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
547 }
548 }
549
550 static inline void update_turbo_state(void)
551 {
552 u64 misc_en;
553 struct cpudata *cpu;
554
555 cpu = all_cpu_data[0];
556 rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
557 limits->turbo_disabled =
558 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
559 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
560 }
561
562 static void intel_pstate_hwp_set(const struct cpumask *cpumask)
563 {
564 int min, hw_min, max, hw_max, cpu, range, adj_range;
565 u64 value, cap;
566
567 for_each_cpu(cpu, cpumask) {
568 rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
569 hw_min = HWP_LOWEST_PERF(cap);
570 hw_max = HWP_HIGHEST_PERF(cap);
571 range = hw_max - hw_min;
572
573 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
574 adj_range = limits->min_perf_pct * range / 100;
575 min = hw_min + adj_range;
576 value &= ~HWP_MIN_PERF(~0L);
577 value |= HWP_MIN_PERF(min);
578
579 adj_range = limits->max_perf_pct * range / 100;
580 max = hw_min + adj_range;
581 if (limits->no_turbo) {
582 hw_max = HWP_GUARANTEED_PERF(cap);
583 if (hw_max < max)
584 max = hw_max;
585 }
586
587 value &= ~HWP_MAX_PERF(~0L);
588 value |= HWP_MAX_PERF(max);
589 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
590 }
591 }
592
593 static int intel_pstate_hwp_set_policy(struct cpufreq_policy *policy)
594 {
595 if (hwp_active)
596 intel_pstate_hwp_set(policy->cpus);
597
598 return 0;
599 }
600
601 static void intel_pstate_hwp_set_online_cpus(void)
602 {
603 get_online_cpus();
604 intel_pstate_hwp_set(cpu_online_mask);
605 put_online_cpus();
606 }
607
608 /************************** debugfs begin ************************/
609 static int pid_param_set(void *data, u64 val)
610 {
611 *(u32 *)data = val;
612 intel_pstate_reset_all_pid();
613 return 0;
614 }
615
616 static int pid_param_get(void *data, u64 *val)
617 {
618 *val = *(u32 *)data;
619 return 0;
620 }
621 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
622
623 struct pid_param {
624 char *name;
625 void *value;
626 };
627
628 static struct pid_param pid_files[] = {
629 {"sample_rate_ms", &pid_params.sample_rate_ms},
630 {"d_gain_pct", &pid_params.d_gain_pct},
631 {"i_gain_pct", &pid_params.i_gain_pct},
632 {"deadband", &pid_params.deadband},
633 {"setpoint", &pid_params.setpoint},
634 {"p_gain_pct", &pid_params.p_gain_pct},
635 {NULL, NULL}
636 };
637
638 static void __init intel_pstate_debug_expose_params(void)
639 {
640 struct dentry *debugfs_parent;
641 int i = 0;
642
643 if (hwp_active)
644 return;
645 debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
646 if (IS_ERR_OR_NULL(debugfs_parent))
647 return;
648 while (pid_files[i].name) {
649 debugfs_create_file(pid_files[i].name, 0660,
650 debugfs_parent, pid_files[i].value,
651 &fops_pid_param);
652 i++;
653 }
654 }
655
656 /************************** debugfs end ************************/
657
658 /************************** sysfs begin ************************/
659 #define show_one(file_name, object) \
660 static ssize_t show_##file_name \
661 (struct kobject *kobj, struct attribute *attr, char *buf) \
662 { \
663 return sprintf(buf, "%u\n", limits->object); \
664 }
665
666 static ssize_t show_turbo_pct(struct kobject *kobj,
667 struct attribute *attr, char *buf)
668 {
669 struct cpudata *cpu;
670 int total, no_turbo, turbo_pct;
671 uint32_t turbo_fp;
672
673 cpu = all_cpu_data[0];
674
675 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
676 no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
677 turbo_fp = div_fp(no_turbo, total);
678 turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
679 return sprintf(buf, "%u\n", turbo_pct);
680 }
681
682 static ssize_t show_num_pstates(struct kobject *kobj,
683 struct attribute *attr, char *buf)
684 {
685 struct cpudata *cpu;
686 int total;
687
688 cpu = all_cpu_data[0];
689 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
690 return sprintf(buf, "%u\n", total);
691 }
692
693 static ssize_t show_no_turbo(struct kobject *kobj,
694 struct attribute *attr, char *buf)
695 {
696 ssize_t ret;
697
698 update_turbo_state();
699 if (limits->turbo_disabled)
700 ret = sprintf(buf, "%u\n", limits->turbo_disabled);
701 else
702 ret = sprintf(buf, "%u\n", limits->no_turbo);
703
704 return ret;
705 }
706
707 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
708 const char *buf, size_t count)
709 {
710 unsigned int input;
711 int ret;
712
713 ret = sscanf(buf, "%u", &input);
714 if (ret != 1)
715 return -EINVAL;
716
717 update_turbo_state();
718 if (limits->turbo_disabled) {
719 pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
720 return -EPERM;
721 }
722
723 limits->no_turbo = clamp_t(int, input, 0, 1);
724
725 if (hwp_active)
726 intel_pstate_hwp_set_online_cpus();
727
728 return count;
729 }
730
731 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
732 const char *buf, size_t count)
733 {
734 unsigned int input;
735 int ret;
736
737 ret = sscanf(buf, "%u", &input);
738 if (ret != 1)
739 return -EINVAL;
740
741 limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
742 limits->max_perf_pct = min(limits->max_policy_pct,
743 limits->max_sysfs_pct);
744 limits->max_perf_pct = max(limits->min_policy_pct,
745 limits->max_perf_pct);
746 limits->max_perf_pct = max(limits->min_perf_pct,
747 limits->max_perf_pct);
748 limits->max_perf = div_fp(limits->max_perf_pct, 100);
749
750 if (hwp_active)
751 intel_pstate_hwp_set_online_cpus();
752 return count;
753 }
754
755 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
756 const char *buf, size_t count)
757 {
758 unsigned int input;
759 int ret;
760
761 ret = sscanf(buf, "%u", &input);
762 if (ret != 1)
763 return -EINVAL;
764
765 limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
766 limits->min_perf_pct = max(limits->min_policy_pct,
767 limits->min_sysfs_pct);
768 limits->min_perf_pct = min(limits->max_policy_pct,
769 limits->min_perf_pct);
770 limits->min_perf_pct = min(limits->max_perf_pct,
771 limits->min_perf_pct);
772 limits->min_perf = div_fp(limits->min_perf_pct, 100);
773
774 if (hwp_active)
775 intel_pstate_hwp_set_online_cpus();
776 return count;
777 }
778
779 show_one(max_perf_pct, max_perf_pct);
780 show_one(min_perf_pct, min_perf_pct);
781
782 define_one_global_rw(no_turbo);
783 define_one_global_rw(max_perf_pct);
784 define_one_global_rw(min_perf_pct);
785 define_one_global_ro(turbo_pct);
786 define_one_global_ro(num_pstates);
787
788 static struct attribute *intel_pstate_attributes[] = {
789 &no_turbo.attr,
790 &max_perf_pct.attr,
791 &min_perf_pct.attr,
792 &turbo_pct.attr,
793 &num_pstates.attr,
794 NULL
795 };
796
797 static struct attribute_group intel_pstate_attr_group = {
798 .attrs = intel_pstate_attributes,
799 };
800
801 static void __init intel_pstate_sysfs_expose_params(void)
802 {
803 struct kobject *intel_pstate_kobject;
804 int rc;
805
806 intel_pstate_kobject = kobject_create_and_add("intel_pstate",
807 &cpu_subsys.dev_root->kobj);
808 BUG_ON(!intel_pstate_kobject);
809 rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
810 BUG_ON(rc);
811 }
812 /************************** sysfs end ************************/
813
814 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
815 {
816 /* First disable HWP notification interrupt as we don't process them */
817 if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
818 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
819
820 wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
821 }
822
823 static int atom_get_min_pstate(void)
824 {
825 u64 value;
826
827 rdmsrl(ATOM_RATIOS, value);
828 return (value >> 8) & 0x7F;
829 }
830
831 static int atom_get_max_pstate(void)
832 {
833 u64 value;
834
835 rdmsrl(ATOM_RATIOS, value);
836 return (value >> 16) & 0x7F;
837 }
838
839 static int atom_get_turbo_pstate(void)
840 {
841 u64 value;
842
843 rdmsrl(ATOM_TURBO_RATIOS, value);
844 return value & 0x7F;
845 }
846
847 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
848 {
849 u64 val;
850 int32_t vid_fp;
851 u32 vid;
852
853 val = (u64)pstate << 8;
854 if (limits->no_turbo && !limits->turbo_disabled)
855 val |= (u64)1 << 32;
856
857 vid_fp = cpudata->vid.min + mul_fp(
858 int_tofp(pstate - cpudata->pstate.min_pstate),
859 cpudata->vid.ratio);
860
861 vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
862 vid = ceiling_fp(vid_fp);
863
864 if (pstate > cpudata->pstate.max_pstate)
865 vid = cpudata->vid.turbo;
866
867 return val | vid;
868 }
869
870 static int silvermont_get_scaling(void)
871 {
872 u64 value;
873 int i;
874 /* Defined in Table 35-6 from SDM (Sept 2015) */
875 static int silvermont_freq_table[] = {
876 83300, 100000, 133300, 116700, 80000};
877
878 rdmsrl(MSR_FSB_FREQ, value);
879 i = value & 0x7;
880 WARN_ON(i > 4);
881
882 return silvermont_freq_table[i];
883 }
884
885 static int airmont_get_scaling(void)
886 {
887 u64 value;
888 int i;
889 /* Defined in Table 35-10 from SDM (Sept 2015) */
890 static int airmont_freq_table[] = {
891 83300, 100000, 133300, 116700, 80000,
892 93300, 90000, 88900, 87500};
893
894 rdmsrl(MSR_FSB_FREQ, value);
895 i = value & 0xF;
896 WARN_ON(i > 8);
897
898 return airmont_freq_table[i];
899 }
900
901 static void atom_get_vid(struct cpudata *cpudata)
902 {
903 u64 value;
904
905 rdmsrl(ATOM_VIDS, value);
906 cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
907 cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
908 cpudata->vid.ratio = div_fp(
909 cpudata->vid.max - cpudata->vid.min,
910 int_tofp(cpudata->pstate.max_pstate -
911 cpudata->pstate.min_pstate));
912
913 rdmsrl(ATOM_TURBO_VIDS, value);
914 cpudata->vid.turbo = value & 0x7f;
915 }
916
917 static int core_get_min_pstate(void)
918 {
919 u64 value;
920
921 rdmsrl(MSR_PLATFORM_INFO, value);
922 return (value >> 40) & 0xFF;
923 }
924
925 static int core_get_max_pstate_physical(void)
926 {
927 u64 value;
928
929 rdmsrl(MSR_PLATFORM_INFO, value);
930 return (value >> 8) & 0xFF;
931 }
932
933 static int core_get_max_pstate(void)
934 {
935 u64 tar;
936 u64 plat_info;
937 int max_pstate;
938 int err;
939
940 rdmsrl(MSR_PLATFORM_INFO, plat_info);
941 max_pstate = (plat_info >> 8) & 0xFF;
942
943 err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
944 if (!err) {
945 /* Do some sanity checking for safety */
946 if (plat_info & 0x600000000) {
947 u64 tdp_ctrl;
948 u64 tdp_ratio;
949 int tdp_msr;
950
951 err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
952 if (err)
953 goto skip_tar;
954
955 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x3);
956 err = rdmsrl_safe(tdp_msr, &tdp_ratio);
957 if (err)
958 goto skip_tar;
959
960 /* For level 1 and 2, bits[23:16] contain the ratio */
961 if (tdp_ctrl)
962 tdp_ratio >>= 16;
963
964 tdp_ratio &= 0xff; /* ratios are only 8 bits long */
965 if (tdp_ratio - 1 == tar) {
966 max_pstate = tar;
967 pr_debug("max_pstate=TAC %x\n", max_pstate);
968 } else {
969 goto skip_tar;
970 }
971 }
972 }
973
974 skip_tar:
975 return max_pstate;
976 }
977
978 static int core_get_turbo_pstate(void)
979 {
980 u64 value;
981 int nont, ret;
982
983 rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
984 nont = core_get_max_pstate();
985 ret = (value) & 255;
986 if (ret <= nont)
987 ret = nont;
988 return ret;
989 }
990
991 static inline int core_get_scaling(void)
992 {
993 return 100000;
994 }
995
996 static u64 core_get_val(struct cpudata *cpudata, int pstate)
997 {
998 u64 val;
999
1000 val = (u64)pstate << 8;
1001 if (limits->no_turbo && !limits->turbo_disabled)
1002 val |= (u64)1 << 32;
1003
1004 return val;
1005 }
1006
1007 static int knl_get_turbo_pstate(void)
1008 {
1009 u64 value;
1010 int nont, ret;
1011
1012 rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1013 nont = core_get_max_pstate();
1014 ret = (((value) >> 8) & 0xFF);
1015 if (ret <= nont)
1016 ret = nont;
1017 return ret;
1018 }
1019
1020 static struct cpu_defaults core_params = {
1021 .pid_policy = {
1022 .sample_rate_ms = 10,
1023 .deadband = 0,
1024 .setpoint = 97,
1025 .p_gain_pct = 20,
1026 .d_gain_pct = 0,
1027 .i_gain_pct = 0,
1028 },
1029 .funcs = {
1030 .get_max = core_get_max_pstate,
1031 .get_max_physical = core_get_max_pstate_physical,
1032 .get_min = core_get_min_pstate,
1033 .get_turbo = core_get_turbo_pstate,
1034 .get_scaling = core_get_scaling,
1035 .get_val = core_get_val,
1036 .get_target_pstate = get_target_pstate_use_performance,
1037 },
1038 };
1039
1040 static const struct cpu_defaults silvermont_params = {
1041 .pid_policy = {
1042 .sample_rate_ms = 10,
1043 .deadband = 0,
1044 .setpoint = 60,
1045 .p_gain_pct = 14,
1046 .d_gain_pct = 0,
1047 .i_gain_pct = 4,
1048 .boost_iowait = true,
1049 },
1050 .funcs = {
1051 .get_max = atom_get_max_pstate,
1052 .get_max_physical = atom_get_max_pstate,
1053 .get_min = atom_get_min_pstate,
1054 .get_turbo = atom_get_turbo_pstate,
1055 .get_val = atom_get_val,
1056 .get_scaling = silvermont_get_scaling,
1057 .get_vid = atom_get_vid,
1058 .get_target_pstate = get_target_pstate_use_cpu_load,
1059 },
1060 };
1061
1062 static const struct cpu_defaults airmont_params = {
1063 .pid_policy = {
1064 .sample_rate_ms = 10,
1065 .deadband = 0,
1066 .setpoint = 60,
1067 .p_gain_pct = 14,
1068 .d_gain_pct = 0,
1069 .i_gain_pct = 4,
1070 .boost_iowait = true,
1071 },
1072 .funcs = {
1073 .get_max = atom_get_max_pstate,
1074 .get_max_physical = atom_get_max_pstate,
1075 .get_min = atom_get_min_pstate,
1076 .get_turbo = atom_get_turbo_pstate,
1077 .get_val = atom_get_val,
1078 .get_scaling = airmont_get_scaling,
1079 .get_vid = atom_get_vid,
1080 .get_target_pstate = get_target_pstate_use_cpu_load,
1081 },
1082 };
1083
1084 static const struct cpu_defaults knl_params = {
1085 .pid_policy = {
1086 .sample_rate_ms = 10,
1087 .deadband = 0,
1088 .setpoint = 97,
1089 .p_gain_pct = 20,
1090 .d_gain_pct = 0,
1091 .i_gain_pct = 0,
1092 },
1093 .funcs = {
1094 .get_max = core_get_max_pstate,
1095 .get_max_physical = core_get_max_pstate_physical,
1096 .get_min = core_get_min_pstate,
1097 .get_turbo = knl_get_turbo_pstate,
1098 .get_scaling = core_get_scaling,
1099 .get_val = core_get_val,
1100 .get_target_pstate = get_target_pstate_use_performance,
1101 },
1102 };
1103
1104 static const struct cpu_defaults bxt_params = {
1105 .pid_policy = {
1106 .sample_rate_ms = 10,
1107 .deadband = 0,
1108 .setpoint = 60,
1109 .p_gain_pct = 14,
1110 .d_gain_pct = 0,
1111 .i_gain_pct = 4,
1112 .boost_iowait = true,
1113 },
1114 .funcs = {
1115 .get_max = core_get_max_pstate,
1116 .get_max_physical = core_get_max_pstate_physical,
1117 .get_min = core_get_min_pstate,
1118 .get_turbo = core_get_turbo_pstate,
1119 .get_scaling = core_get_scaling,
1120 .get_val = core_get_val,
1121 .get_target_pstate = get_target_pstate_use_cpu_load,
1122 },
1123 };
1124
1125 static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
1126 {
1127 int max_perf = cpu->pstate.turbo_pstate;
1128 int max_perf_adj;
1129 int min_perf;
1130
1131 if (limits->no_turbo || limits->turbo_disabled)
1132 max_perf = cpu->pstate.max_pstate;
1133
1134 /*
1135 * performance can be limited by user through sysfs, by cpufreq
1136 * policy, or by cpu specific default values determined through
1137 * experimentation.
1138 */
1139 max_perf_adj = fp_toint(max_perf * limits->max_perf);
1140 *max = clamp_t(int, max_perf_adj,
1141 cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
1142
1143 min_perf = fp_toint(max_perf * limits->min_perf);
1144 *min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
1145 }
1146
1147 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1148 {
1149 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1150 cpu->pstate.current_pstate = pstate;
1151 /*
1152 * Generally, there is no guarantee that this code will always run on
1153 * the CPU being updated, so force the register update to run on the
1154 * right CPU.
1155 */
1156 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1157 pstate_funcs.get_val(cpu, pstate));
1158 }
1159
1160 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1161 {
1162 intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1163 }
1164
1165 static void intel_pstate_max_within_limits(struct cpudata *cpu)
1166 {
1167 int min_pstate, max_pstate;
1168
1169 update_turbo_state();
1170 intel_pstate_get_min_max(cpu, &min_pstate, &max_pstate);
1171 intel_pstate_set_pstate(cpu, max_pstate);
1172 }
1173
1174 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1175 {
1176 cpu->pstate.min_pstate = pstate_funcs.get_min();
1177 cpu->pstate.max_pstate = pstate_funcs.get_max();
1178 cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1179 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1180 cpu->pstate.scaling = pstate_funcs.get_scaling();
1181
1182 if (pstate_funcs.get_vid)
1183 pstate_funcs.get_vid(cpu);
1184
1185 intel_pstate_set_min_pstate(cpu);
1186 }
1187
1188 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1189 {
1190 struct sample *sample = &cpu->sample;
1191
1192 sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1193 }
1194
1195 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1196 {
1197 u64 aperf, mperf;
1198 unsigned long flags;
1199 u64 tsc;
1200
1201 local_irq_save(flags);
1202 rdmsrl(MSR_IA32_APERF, aperf);
1203 rdmsrl(MSR_IA32_MPERF, mperf);
1204 tsc = rdtsc();
1205 if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1206 local_irq_restore(flags);
1207 return false;
1208 }
1209 local_irq_restore(flags);
1210
1211 cpu->last_sample_time = cpu->sample.time;
1212 cpu->sample.time = time;
1213 cpu->sample.aperf = aperf;
1214 cpu->sample.mperf = mperf;
1215 cpu->sample.tsc = tsc;
1216 cpu->sample.aperf -= cpu->prev_aperf;
1217 cpu->sample.mperf -= cpu->prev_mperf;
1218 cpu->sample.tsc -= cpu->prev_tsc;
1219
1220 cpu->prev_aperf = aperf;
1221 cpu->prev_mperf = mperf;
1222 cpu->prev_tsc = tsc;
1223 /*
1224 * First time this function is invoked in a given cycle, all of the
1225 * previous sample data fields are equal to zero or stale and they must
1226 * be populated with meaningful numbers for things to work, so assume
1227 * that sample.time will always be reset before setting the utilization
1228 * update hook and make the caller skip the sample then.
1229 */
1230 return !!cpu->last_sample_time;
1231 }
1232
1233 static inline int32_t get_avg_frequency(struct cpudata *cpu)
1234 {
1235 return mul_ext_fp(cpu->sample.core_avg_perf,
1236 cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
1237 }
1238
1239 static inline int32_t get_avg_pstate(struct cpudata *cpu)
1240 {
1241 return mul_ext_fp(cpu->pstate.max_pstate_physical,
1242 cpu->sample.core_avg_perf);
1243 }
1244
1245 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
1246 {
1247 struct sample *sample = &cpu->sample;
1248 int32_t busy_frac, boost;
1249 int target, avg_pstate;
1250
1251 busy_frac = div_fp(sample->mperf, sample->tsc);
1252
1253 boost = cpu->iowait_boost;
1254 cpu->iowait_boost >>= 1;
1255
1256 if (busy_frac < boost)
1257 busy_frac = boost;
1258
1259 sample->busy_scaled = busy_frac * 100;
1260
1261 target = limits->no_turbo || limits->turbo_disabled ?
1262 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1263 target += target >> 2;
1264 target = mul_fp(target, busy_frac);
1265 if (target < cpu->pstate.min_pstate)
1266 target = cpu->pstate.min_pstate;
1267
1268 /*
1269 * If the average P-state during the previous cycle was higher than the
1270 * current target, add 50% of the difference to the target to reduce
1271 * possible performance oscillations and offset possible performance
1272 * loss related to moving the workload from one CPU to another within
1273 * a package/module.
1274 */
1275 avg_pstate = get_avg_pstate(cpu);
1276 if (avg_pstate > target)
1277 target += (avg_pstate - target) >> 1;
1278
1279 return target;
1280 }
1281
1282 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
1283 {
1284 int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
1285 u64 duration_ns;
1286
1287 /*
1288 * perf_scaled is the ratio of the average P-state during the last
1289 * sampling period to the P-state requested last time (in percent).
1290 *
1291 * That measures the system's response to the previous P-state
1292 * selection.
1293 */
1294 max_pstate = cpu->pstate.max_pstate_physical;
1295 current_pstate = cpu->pstate.current_pstate;
1296 perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
1297 div_fp(100 * max_pstate, current_pstate));
1298
1299 /*
1300 * Since our utilization update callback will not run unless we are
1301 * in C0, check if the actual elapsed time is significantly greater (3x)
1302 * than our sample interval. If it is, then we were idle for a long
1303 * enough period of time to adjust our performance metric.
1304 */
1305 duration_ns = cpu->sample.time - cpu->last_sample_time;
1306 if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
1307 sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1308 perf_scaled = mul_fp(perf_scaled, sample_ratio);
1309 } else {
1310 sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
1311 if (sample_ratio < int_tofp(1))
1312 perf_scaled = 0;
1313 }
1314
1315 cpu->sample.busy_scaled = perf_scaled;
1316 return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
1317 }
1318
1319 static inline void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1320 {
1321 int max_perf, min_perf;
1322
1323 update_turbo_state();
1324
1325 intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
1326 pstate = clamp_t(int, pstate, min_perf, max_perf);
1327 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1328 if (pstate == cpu->pstate.current_pstate)
1329 return;
1330
1331 cpu->pstate.current_pstate = pstate;
1332 wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1333 }
1334
1335 static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
1336 {
1337 int from, target_pstate;
1338 struct sample *sample;
1339
1340 from = cpu->pstate.current_pstate;
1341
1342 target_pstate = cpu->policy == CPUFREQ_POLICY_PERFORMANCE ?
1343 cpu->pstate.turbo_pstate : pstate_funcs.get_target_pstate(cpu);
1344
1345 intel_pstate_update_pstate(cpu, target_pstate);
1346
1347 sample = &cpu->sample;
1348 trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1349 fp_toint(sample->busy_scaled),
1350 from,
1351 cpu->pstate.current_pstate,
1352 sample->mperf,
1353 sample->aperf,
1354 sample->tsc,
1355 get_avg_frequency(cpu),
1356 fp_toint(cpu->iowait_boost * 100));
1357 }
1358
1359 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1360 unsigned int flags)
1361 {
1362 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1363 u64 delta_ns;
1364
1365 if (pid_params.boost_iowait) {
1366 if (flags & SCHED_CPUFREQ_IOWAIT) {
1367 cpu->iowait_boost = int_tofp(1);
1368 } else if (cpu->iowait_boost) {
1369 /* Clear iowait_boost if the CPU may have been idle. */
1370 delta_ns = time - cpu->last_update;
1371 if (delta_ns > TICK_NSEC)
1372 cpu->iowait_boost = 0;
1373 }
1374 cpu->last_update = time;
1375 }
1376
1377 delta_ns = time - cpu->sample.time;
1378 if ((s64)delta_ns >= pid_params.sample_rate_ns) {
1379 bool sample_taken = intel_pstate_sample(cpu, time);
1380
1381 if (sample_taken) {
1382 intel_pstate_calc_avg_perf(cpu);
1383 if (!hwp_active)
1384 intel_pstate_adjust_busy_pstate(cpu);
1385 }
1386 }
1387 }
1388
1389 #define ICPU(model, policy) \
1390 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1391 (unsigned long)&policy }
1392
1393 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1394 ICPU(INTEL_FAM6_SANDYBRIDGE, core_params),
1395 ICPU(INTEL_FAM6_SANDYBRIDGE_X, core_params),
1396 ICPU(INTEL_FAM6_ATOM_SILVERMONT1, silvermont_params),
1397 ICPU(INTEL_FAM6_IVYBRIDGE, core_params),
1398 ICPU(INTEL_FAM6_HASWELL_CORE, core_params),
1399 ICPU(INTEL_FAM6_BROADWELL_CORE, core_params),
1400 ICPU(INTEL_FAM6_IVYBRIDGE_X, core_params),
1401 ICPU(INTEL_FAM6_HASWELL_X, core_params),
1402 ICPU(INTEL_FAM6_HASWELL_ULT, core_params),
1403 ICPU(INTEL_FAM6_HASWELL_GT3E, core_params),
1404 ICPU(INTEL_FAM6_BROADWELL_GT3E, core_params),
1405 ICPU(INTEL_FAM6_ATOM_AIRMONT, airmont_params),
1406 ICPU(INTEL_FAM6_SKYLAKE_MOBILE, core_params),
1407 ICPU(INTEL_FAM6_BROADWELL_X, core_params),
1408 ICPU(INTEL_FAM6_SKYLAKE_DESKTOP, core_params),
1409 ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
1410 ICPU(INTEL_FAM6_XEON_PHI_KNL, knl_params),
1411 ICPU(INTEL_FAM6_ATOM_GOLDMONT, bxt_params),
1412 {}
1413 };
1414 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1415
1416 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1417 ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
1418 ICPU(INTEL_FAM6_BROADWELL_X, core_params),
1419 ICPU(INTEL_FAM6_SKYLAKE_X, core_params),
1420 {}
1421 };
1422
1423 static int intel_pstate_init_cpu(unsigned int cpunum)
1424 {
1425 struct cpudata *cpu;
1426
1427 if (!all_cpu_data[cpunum])
1428 all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata),
1429 GFP_KERNEL);
1430 if (!all_cpu_data[cpunum])
1431 return -ENOMEM;
1432
1433 cpu = all_cpu_data[cpunum];
1434
1435 cpu->cpu = cpunum;
1436
1437 if (hwp_active) {
1438 intel_pstate_hwp_enable(cpu);
1439 pid_params.sample_rate_ms = 50;
1440 pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
1441 }
1442
1443 intel_pstate_get_cpu_pstates(cpu);
1444
1445 intel_pstate_busy_pid_reset(cpu);
1446
1447 pr_debug("controlling: cpu %d\n", cpunum);
1448
1449 return 0;
1450 }
1451
1452 static unsigned int intel_pstate_get(unsigned int cpu_num)
1453 {
1454 struct cpudata *cpu = all_cpu_data[cpu_num];
1455
1456 return cpu ? get_avg_frequency(cpu) : 0;
1457 }
1458
1459 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1460 {
1461 struct cpudata *cpu = all_cpu_data[cpu_num];
1462
1463 if (cpu->update_util_set)
1464 return;
1465
1466 /* Prevent intel_pstate_update_util() from using stale data. */
1467 cpu->sample.time = 0;
1468 cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1469 intel_pstate_update_util);
1470 cpu->update_util_set = true;
1471 }
1472
1473 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1474 {
1475 struct cpudata *cpu_data = all_cpu_data[cpu];
1476
1477 if (!cpu_data->update_util_set)
1478 return;
1479
1480 cpufreq_remove_update_util_hook(cpu);
1481 cpu_data->update_util_set = false;
1482 synchronize_sched();
1483 }
1484
1485 static void intel_pstate_set_performance_limits(struct perf_limits *limits)
1486 {
1487 limits->no_turbo = 0;
1488 limits->turbo_disabled = 0;
1489 limits->max_perf_pct = 100;
1490 limits->max_perf = int_tofp(1);
1491 limits->min_perf_pct = 100;
1492 limits->min_perf = int_tofp(1);
1493 limits->max_policy_pct = 100;
1494 limits->max_sysfs_pct = 100;
1495 limits->min_policy_pct = 0;
1496 limits->min_sysfs_pct = 0;
1497 }
1498
1499 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
1500 {
1501 struct cpudata *cpu;
1502
1503 if (!policy->cpuinfo.max_freq)
1504 return -ENODEV;
1505
1506 pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
1507 policy->cpuinfo.max_freq, policy->max);
1508
1509 cpu = all_cpu_data[policy->cpu];
1510 cpu->policy = policy->policy;
1511
1512 if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
1513 policy->max < policy->cpuinfo.max_freq &&
1514 policy->max > cpu->pstate.max_pstate * cpu->pstate.scaling) {
1515 pr_debug("policy->max > max non turbo frequency\n");
1516 policy->max = policy->cpuinfo.max_freq;
1517 }
1518
1519 if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
1520 limits = &performance_limits;
1521 if (policy->max >= policy->cpuinfo.max_freq) {
1522 pr_debug("set performance\n");
1523 intel_pstate_set_performance_limits(limits);
1524 goto out;
1525 }
1526 } else {
1527 pr_debug("set powersave\n");
1528 limits = &powersave_limits;
1529 }
1530
1531 limits->min_policy_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
1532 limits->min_policy_pct = clamp_t(int, limits->min_policy_pct, 0 , 100);
1533 limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100,
1534 policy->cpuinfo.max_freq);
1535 limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0 , 100);
1536
1537 /* Normalize user input to [min_policy_pct, max_policy_pct] */
1538 limits->min_perf_pct = max(limits->min_policy_pct,
1539 limits->min_sysfs_pct);
1540 limits->min_perf_pct = min(limits->max_policy_pct,
1541 limits->min_perf_pct);
1542 limits->max_perf_pct = min(limits->max_policy_pct,
1543 limits->max_sysfs_pct);
1544 limits->max_perf_pct = max(limits->min_policy_pct,
1545 limits->max_perf_pct);
1546
1547 /* Make sure min_perf_pct <= max_perf_pct */
1548 limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct);
1549
1550 limits->min_perf = div_fp(limits->min_perf_pct, 100);
1551 limits->max_perf = div_fp(limits->max_perf_pct, 100);
1552 limits->max_perf = round_up(limits->max_perf, FRAC_BITS);
1553
1554 out:
1555 if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
1556 /*
1557 * NOHZ_FULL CPUs need this as the governor callback may not
1558 * be invoked on them.
1559 */
1560 intel_pstate_clear_update_util_hook(policy->cpu);
1561 intel_pstate_max_within_limits(cpu);
1562 }
1563
1564 intel_pstate_set_update_util_hook(policy->cpu);
1565
1566 intel_pstate_hwp_set_policy(policy);
1567
1568 return 0;
1569 }
1570
1571 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
1572 {
1573 cpufreq_verify_within_cpu_limits(policy);
1574
1575 if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
1576 policy->policy != CPUFREQ_POLICY_PERFORMANCE)
1577 return -EINVAL;
1578
1579 return 0;
1580 }
1581
1582 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
1583 {
1584 int cpu_num = policy->cpu;
1585 struct cpudata *cpu = all_cpu_data[cpu_num];
1586
1587 pr_debug("CPU %d exiting\n", cpu_num);
1588
1589 intel_pstate_clear_update_util_hook(cpu_num);
1590
1591 if (hwp_active)
1592 return;
1593
1594 intel_pstate_set_min_pstate(cpu);
1595 }
1596
1597 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
1598 {
1599 struct cpudata *cpu;
1600 int rc;
1601
1602 rc = intel_pstate_init_cpu(policy->cpu);
1603 if (rc)
1604 return rc;
1605
1606 cpu = all_cpu_data[policy->cpu];
1607
1608 if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
1609 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
1610 else
1611 policy->policy = CPUFREQ_POLICY_POWERSAVE;
1612
1613 policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
1614 policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1615
1616 /* cpuinfo and default policy values */
1617 policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
1618 update_turbo_state();
1619 policy->cpuinfo.max_freq = limits->turbo_disabled ?
1620 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1621 policy->cpuinfo.max_freq *= cpu->pstate.scaling;
1622
1623 intel_pstate_init_acpi_perf_limits(policy);
1624 policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
1625 cpumask_set_cpu(policy->cpu, policy->cpus);
1626
1627 return 0;
1628 }
1629
1630 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
1631 {
1632 intel_pstate_exit_perf_limits(policy);
1633
1634 return 0;
1635 }
1636
1637 static struct cpufreq_driver intel_pstate_driver = {
1638 .flags = CPUFREQ_CONST_LOOPS,
1639 .verify = intel_pstate_verify_policy,
1640 .setpolicy = intel_pstate_set_policy,
1641 .resume = intel_pstate_hwp_set_policy,
1642 .get = intel_pstate_get,
1643 .init = intel_pstate_cpu_init,
1644 .exit = intel_pstate_cpu_exit,
1645 .stop_cpu = intel_pstate_stop_cpu,
1646 .name = "intel_pstate",
1647 };
1648
1649 static int no_load __initdata;
1650 static int no_hwp __initdata;
1651 static int hwp_only __initdata;
1652 static unsigned int force_load __initdata;
1653
1654 static int __init intel_pstate_msrs_not_valid(void)
1655 {
1656 if (!pstate_funcs.get_max() ||
1657 !pstate_funcs.get_min() ||
1658 !pstate_funcs.get_turbo())
1659 return -ENODEV;
1660
1661 return 0;
1662 }
1663
1664 static void __init copy_pid_params(struct pstate_adjust_policy *policy)
1665 {
1666 pid_params.sample_rate_ms = policy->sample_rate_ms;
1667 pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
1668 pid_params.p_gain_pct = policy->p_gain_pct;
1669 pid_params.i_gain_pct = policy->i_gain_pct;
1670 pid_params.d_gain_pct = policy->d_gain_pct;
1671 pid_params.deadband = policy->deadband;
1672 pid_params.setpoint = policy->setpoint;
1673 }
1674
1675 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
1676 {
1677 pstate_funcs.get_max = funcs->get_max;
1678 pstate_funcs.get_max_physical = funcs->get_max_physical;
1679 pstate_funcs.get_min = funcs->get_min;
1680 pstate_funcs.get_turbo = funcs->get_turbo;
1681 pstate_funcs.get_scaling = funcs->get_scaling;
1682 pstate_funcs.get_val = funcs->get_val;
1683 pstate_funcs.get_vid = funcs->get_vid;
1684 pstate_funcs.get_target_pstate = funcs->get_target_pstate;
1685
1686 }
1687
1688 #ifdef CONFIG_ACPI
1689
1690 static bool __init intel_pstate_no_acpi_pss(void)
1691 {
1692 int i;
1693
1694 for_each_possible_cpu(i) {
1695 acpi_status status;
1696 union acpi_object *pss;
1697 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1698 struct acpi_processor *pr = per_cpu(processors, i);
1699
1700 if (!pr)
1701 continue;
1702
1703 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
1704 if (ACPI_FAILURE(status))
1705 continue;
1706
1707 pss = buffer.pointer;
1708 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
1709 kfree(pss);
1710 return false;
1711 }
1712
1713 kfree(pss);
1714 }
1715
1716 return true;
1717 }
1718
1719 static bool __init intel_pstate_has_acpi_ppc(void)
1720 {
1721 int i;
1722
1723 for_each_possible_cpu(i) {
1724 struct acpi_processor *pr = per_cpu(processors, i);
1725
1726 if (!pr)
1727 continue;
1728 if (acpi_has_method(pr->handle, "_PPC"))
1729 return true;
1730 }
1731 return false;
1732 }
1733
1734 enum {
1735 PSS,
1736 PPC,
1737 };
1738
1739 struct hw_vendor_info {
1740 u16 valid;
1741 char oem_id[ACPI_OEM_ID_SIZE];
1742 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
1743 int oem_pwr_table;
1744 };
1745
1746 /* Hardware vendor-specific info that has its own power management modes */
1747 static struct hw_vendor_info vendor_info[] __initdata = {
1748 {1, "HP ", "ProLiant", PSS},
1749 {1, "ORACLE", "X4-2 ", PPC},
1750 {1, "ORACLE", "X4-2L ", PPC},
1751 {1, "ORACLE", "X4-2B ", PPC},
1752 {1, "ORACLE", "X3-2 ", PPC},
1753 {1, "ORACLE", "X3-2L ", PPC},
1754 {1, "ORACLE", "X3-2B ", PPC},
1755 {1, "ORACLE", "X4470M2 ", PPC},
1756 {1, "ORACLE", "X4270M3 ", PPC},
1757 {1, "ORACLE", "X4270M2 ", PPC},
1758 {1, "ORACLE", "X4170M2 ", PPC},
1759 {1, "ORACLE", "X4170 M3", PPC},
1760 {1, "ORACLE", "X4275 M3", PPC},
1761 {1, "ORACLE", "X6-2 ", PPC},
1762 {1, "ORACLE", "Sudbury ", PPC},
1763 {0, "", ""},
1764 };
1765
1766 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
1767 {
1768 struct acpi_table_header hdr;
1769 struct hw_vendor_info *v_info;
1770 const struct x86_cpu_id *id;
1771 u64 misc_pwr;
1772
1773 id = x86_match_cpu(intel_pstate_cpu_oob_ids);
1774 if (id) {
1775 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
1776 if ( misc_pwr & (1 << 8))
1777 return true;
1778 }
1779
1780 if (acpi_disabled ||
1781 ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
1782 return false;
1783
1784 for (v_info = vendor_info; v_info->valid; v_info++) {
1785 if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
1786 !strncmp(hdr.oem_table_id, v_info->oem_table_id,
1787 ACPI_OEM_TABLE_ID_SIZE))
1788 switch (v_info->oem_pwr_table) {
1789 case PSS:
1790 return intel_pstate_no_acpi_pss();
1791 case PPC:
1792 return intel_pstate_has_acpi_ppc() &&
1793 (!force_load);
1794 }
1795 }
1796
1797 return false;
1798 }
1799 #else /* CONFIG_ACPI not enabled */
1800 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
1801 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
1802 #endif /* CONFIG_ACPI */
1803
1804 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
1805 { X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
1806 {}
1807 };
1808
1809 static int __init intel_pstate_init(void)
1810 {
1811 int cpu, rc = 0;
1812 const struct x86_cpu_id *id;
1813 struct cpu_defaults *cpu_def;
1814
1815 if (no_load)
1816 return -ENODEV;
1817
1818 if (x86_match_cpu(hwp_support_ids) && !no_hwp) {
1819 copy_cpu_funcs(&core_params.funcs);
1820 hwp_active++;
1821 goto hwp_cpu_matched;
1822 }
1823
1824 id = x86_match_cpu(intel_pstate_cpu_ids);
1825 if (!id)
1826 return -ENODEV;
1827
1828 cpu_def = (struct cpu_defaults *)id->driver_data;
1829
1830 copy_pid_params(&cpu_def->pid_policy);
1831 copy_cpu_funcs(&cpu_def->funcs);
1832
1833 if (intel_pstate_msrs_not_valid())
1834 return -ENODEV;
1835
1836 hwp_cpu_matched:
1837 /*
1838 * The Intel pstate driver will be ignored if the platform
1839 * firmware has its own power management modes.
1840 */
1841 if (intel_pstate_platform_pwr_mgmt_exists())
1842 return -ENODEV;
1843
1844 pr_info("Intel P-state driver initializing\n");
1845
1846 all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
1847 if (!all_cpu_data)
1848 return -ENOMEM;
1849
1850 if (!hwp_active && hwp_only)
1851 goto out;
1852
1853 rc = cpufreq_register_driver(&intel_pstate_driver);
1854 if (rc)
1855 goto out;
1856
1857 intel_pstate_debug_expose_params();
1858 intel_pstate_sysfs_expose_params();
1859
1860 if (hwp_active)
1861 pr_info("HWP enabled\n");
1862
1863 return rc;
1864 out:
1865 get_online_cpus();
1866 for_each_online_cpu(cpu) {
1867 if (all_cpu_data[cpu]) {
1868 intel_pstate_clear_update_util_hook(cpu);
1869 kfree(all_cpu_data[cpu]);
1870 }
1871 }
1872
1873 put_online_cpus();
1874 vfree(all_cpu_data);
1875 return -ENODEV;
1876 }
1877 device_initcall(intel_pstate_init);
1878
1879 static int __init intel_pstate_setup(char *str)
1880 {
1881 if (!str)
1882 return -EINVAL;
1883
1884 if (!strcmp(str, "disable"))
1885 no_load = 1;
1886 if (!strcmp(str, "no_hwp")) {
1887 pr_info("HWP disabled\n");
1888 no_hwp = 1;
1889 }
1890 if (!strcmp(str, "force"))
1891 force_load = 1;
1892 if (!strcmp(str, "hwp_only"))
1893 hwp_only = 1;
1894
1895 #ifdef CONFIG_ACPI
1896 if (!strcmp(str, "support_acpi_ppc"))
1897 acpi_ppc = true;
1898 #endif
1899
1900 return 0;
1901 }
1902 early_param("intel_pstate", intel_pstate_setup);
1903
1904 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
1905 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
1906 MODULE_LICENSE("GPL");