]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/cpufreq/intel_pstate.c
Merge tag 'sound-fix-4.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai...
[mirror_ubuntu-artful-kernel.git] / drivers / cpufreq / intel_pstate.c
1 /*
2 * intel_pstate.c: Native P state management for Intel processors
3 *
4 * (C) Copyright 2012 Intel Corporation
5 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
10 * of the License.
11 */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/kernel.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/module.h>
18 #include <linux/ktime.h>
19 #include <linux/hrtimer.h>
20 #include <linux/tick.h>
21 #include <linux/slab.h>
22 #include <linux/sched.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25 #include <linux/cpufreq.h>
26 #include <linux/sysfs.h>
27 #include <linux/types.h>
28 #include <linux/fs.h>
29 #include <linux/debugfs.h>
30 #include <linux/acpi.h>
31 #include <linux/vmalloc.h>
32 #include <trace/events/power.h>
33
34 #include <asm/div64.h>
35 #include <asm/msr.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/cpufeature.h>
38 #include <asm/intel-family.h>
39
40 #define ATOM_RATIOS 0x66a
41 #define ATOM_VIDS 0x66b
42 #define ATOM_TURBO_RATIOS 0x66c
43 #define ATOM_TURBO_VIDS 0x66d
44
45 #ifdef CONFIG_ACPI
46 #include <acpi/processor.h>
47 #endif
48
49 #define FRAC_BITS 8
50 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
51 #define fp_toint(X) ((X) >> FRAC_BITS)
52
53 #define EXT_BITS 6
54 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
55
56 static inline int32_t mul_fp(int32_t x, int32_t y)
57 {
58 return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
59 }
60
61 static inline int32_t div_fp(s64 x, s64 y)
62 {
63 return div64_s64((int64_t)x << FRAC_BITS, y);
64 }
65
66 static inline int ceiling_fp(int32_t x)
67 {
68 int mask, ret;
69
70 ret = fp_toint(x);
71 mask = (1 << FRAC_BITS) - 1;
72 if (x & mask)
73 ret += 1;
74 return ret;
75 }
76
77 static inline u64 mul_ext_fp(u64 x, u64 y)
78 {
79 return (x * y) >> EXT_FRAC_BITS;
80 }
81
82 static inline u64 div_ext_fp(u64 x, u64 y)
83 {
84 return div64_u64(x << EXT_FRAC_BITS, y);
85 }
86
87 /**
88 * struct sample - Store performance sample
89 * @core_avg_perf: Ratio of APERF/MPERF which is the actual average
90 * performance during last sample period
91 * @busy_scaled: Scaled busy value which is used to calculate next
92 * P state. This can be different than core_avg_perf
93 * to account for cpu idle period
94 * @aperf: Difference of actual performance frequency clock count
95 * read from APERF MSR between last and current sample
96 * @mperf: Difference of maximum performance frequency clock count
97 * read from MPERF MSR between last and current sample
98 * @tsc: Difference of time stamp counter between last and
99 * current sample
100 * @time: Current time from scheduler
101 *
102 * This structure is used in the cpudata structure to store performance sample
103 * data for choosing next P State.
104 */
105 struct sample {
106 int32_t core_avg_perf;
107 int32_t busy_scaled;
108 u64 aperf;
109 u64 mperf;
110 u64 tsc;
111 u64 time;
112 };
113
114 /**
115 * struct pstate_data - Store P state data
116 * @current_pstate: Current requested P state
117 * @min_pstate: Min P state possible for this platform
118 * @max_pstate: Max P state possible for this platform
119 * @max_pstate_physical:This is physical Max P state for a processor
120 * This can be higher than the max_pstate which can
121 * be limited by platform thermal design power limits
122 * @scaling: Scaling factor to convert frequency to cpufreq
123 * frequency units
124 * @turbo_pstate: Max Turbo P state possible for this platform
125 *
126 * Stores the per cpu model P state limits and current P state.
127 */
128 struct pstate_data {
129 int current_pstate;
130 int min_pstate;
131 int max_pstate;
132 int max_pstate_physical;
133 int scaling;
134 int turbo_pstate;
135 };
136
137 /**
138 * struct vid_data - Stores voltage information data
139 * @min: VID data for this platform corresponding to
140 * the lowest P state
141 * @max: VID data corresponding to the highest P State.
142 * @turbo: VID data for turbo P state
143 * @ratio: Ratio of (vid max - vid min) /
144 * (max P state - Min P State)
145 *
146 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
147 * This data is used in Atom platforms, where in addition to target P state,
148 * the voltage data needs to be specified to select next P State.
149 */
150 struct vid_data {
151 int min;
152 int max;
153 int turbo;
154 int32_t ratio;
155 };
156
157 /**
158 * struct _pid - Stores PID data
159 * @setpoint: Target set point for busyness or performance
160 * @integral: Storage for accumulated error values
161 * @p_gain: PID proportional gain
162 * @i_gain: PID integral gain
163 * @d_gain: PID derivative gain
164 * @deadband: PID deadband
165 * @last_err: Last error storage for integral part of PID calculation
166 *
167 * Stores PID coefficients and last error for PID controller.
168 */
169 struct _pid {
170 int setpoint;
171 int32_t integral;
172 int32_t p_gain;
173 int32_t i_gain;
174 int32_t d_gain;
175 int deadband;
176 int32_t last_err;
177 };
178
179 /**
180 * struct cpudata - Per CPU instance data storage
181 * @cpu: CPU number for this instance data
182 * @update_util: CPUFreq utility callback information
183 * @update_util_set: CPUFreq utility callback is set
184 * @iowait_boost: iowait-related boost fraction
185 * @last_update: Time of the last update.
186 * @pstate: Stores P state limits for this CPU
187 * @vid: Stores VID limits for this CPU
188 * @pid: Stores PID parameters for this CPU
189 * @last_sample_time: Last Sample time
190 * @prev_aperf: Last APERF value read from APERF MSR
191 * @prev_mperf: Last MPERF value read from MPERF MSR
192 * @prev_tsc: Last timestamp counter (TSC) value
193 * @prev_cummulative_iowait: IO Wait time difference from last and
194 * current sample
195 * @sample: Storage for storing last Sample data
196 * @acpi_perf_data: Stores ACPI perf information read from _PSS
197 * @valid_pss_table: Set to true for valid ACPI _PSS entries found
198 *
199 * This structure stores per CPU instance data for all CPUs.
200 */
201 struct cpudata {
202 int cpu;
203
204 struct update_util_data update_util;
205 bool update_util_set;
206
207 struct pstate_data pstate;
208 struct vid_data vid;
209 struct _pid pid;
210
211 u64 last_update;
212 u64 last_sample_time;
213 u64 prev_aperf;
214 u64 prev_mperf;
215 u64 prev_tsc;
216 u64 prev_cummulative_iowait;
217 struct sample sample;
218 #ifdef CONFIG_ACPI
219 struct acpi_processor_performance acpi_perf_data;
220 bool valid_pss_table;
221 #endif
222 unsigned int iowait_boost;
223 };
224
225 static struct cpudata **all_cpu_data;
226
227 /**
228 * struct pstate_adjust_policy - Stores static PID configuration data
229 * @sample_rate_ms: PID calculation sample rate in ms
230 * @sample_rate_ns: Sample rate calculation in ns
231 * @deadband: PID deadband
232 * @setpoint: PID Setpoint
233 * @p_gain_pct: PID proportional gain
234 * @i_gain_pct: PID integral gain
235 * @d_gain_pct: PID derivative gain
236 * @boost_iowait: Whether or not to use iowait boosting.
237 *
238 * Stores per CPU model static PID configuration data.
239 */
240 struct pstate_adjust_policy {
241 int sample_rate_ms;
242 s64 sample_rate_ns;
243 int deadband;
244 int setpoint;
245 int p_gain_pct;
246 int d_gain_pct;
247 int i_gain_pct;
248 bool boost_iowait;
249 };
250
251 /**
252 * struct pstate_funcs - Per CPU model specific callbacks
253 * @get_max: Callback to get maximum non turbo effective P state
254 * @get_max_physical: Callback to get maximum non turbo physical P state
255 * @get_min: Callback to get minimum P state
256 * @get_turbo: Callback to get turbo P state
257 * @get_scaling: Callback to get frequency scaling factor
258 * @get_val: Callback to convert P state to actual MSR write value
259 * @get_vid: Callback to get VID data for Atom platforms
260 * @get_target_pstate: Callback to a function to calculate next P state to use
261 *
262 * Core and Atom CPU models have different way to get P State limits. This
263 * structure is used to store those callbacks.
264 */
265 struct pstate_funcs {
266 int (*get_max)(void);
267 int (*get_max_physical)(void);
268 int (*get_min)(void);
269 int (*get_turbo)(void);
270 int (*get_scaling)(void);
271 u64 (*get_val)(struct cpudata*, int pstate);
272 void (*get_vid)(struct cpudata *);
273 int32_t (*get_target_pstate)(struct cpudata *);
274 };
275
276 /**
277 * struct cpu_defaults- Per CPU model default config data
278 * @pid_policy: PID config data
279 * @funcs: Callback function data
280 */
281 struct cpu_defaults {
282 struct pstate_adjust_policy pid_policy;
283 struct pstate_funcs funcs;
284 };
285
286 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
287 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
288
289 static struct pstate_adjust_policy pid_params __read_mostly;
290 static struct pstate_funcs pstate_funcs __read_mostly;
291 static int hwp_active __read_mostly;
292
293 #ifdef CONFIG_ACPI
294 static bool acpi_ppc;
295 #endif
296
297 /**
298 * struct perf_limits - Store user and policy limits
299 * @no_turbo: User requested turbo state from intel_pstate sysfs
300 * @turbo_disabled: Platform turbo status either from msr
301 * MSR_IA32_MISC_ENABLE or when maximum available pstate
302 * matches the maximum turbo pstate
303 * @max_perf_pct: Effective maximum performance limit in percentage, this
304 * is minimum of either limits enforced by cpufreq policy
305 * or limits from user set limits via intel_pstate sysfs
306 * @min_perf_pct: Effective minimum performance limit in percentage, this
307 * is maximum of either limits enforced by cpufreq policy
308 * or limits from user set limits via intel_pstate sysfs
309 * @max_perf: This is a scaled value between 0 to 255 for max_perf_pct
310 * This value is used to limit max pstate
311 * @min_perf: This is a scaled value between 0 to 255 for min_perf_pct
312 * This value is used to limit min pstate
313 * @max_policy_pct: The maximum performance in percentage enforced by
314 * cpufreq setpolicy interface
315 * @max_sysfs_pct: The maximum performance in percentage enforced by
316 * intel pstate sysfs interface
317 * @min_policy_pct: The minimum performance in percentage enforced by
318 * cpufreq setpolicy interface
319 * @min_sysfs_pct: The minimum performance in percentage enforced by
320 * intel pstate sysfs interface
321 *
322 * Storage for user and policy defined limits.
323 */
324 struct perf_limits {
325 int no_turbo;
326 int turbo_disabled;
327 int max_perf_pct;
328 int min_perf_pct;
329 int32_t max_perf;
330 int32_t min_perf;
331 int max_policy_pct;
332 int max_sysfs_pct;
333 int min_policy_pct;
334 int min_sysfs_pct;
335 };
336
337 static struct perf_limits performance_limits = {
338 .no_turbo = 0,
339 .turbo_disabled = 0,
340 .max_perf_pct = 100,
341 .max_perf = int_tofp(1),
342 .min_perf_pct = 100,
343 .min_perf = int_tofp(1),
344 .max_policy_pct = 100,
345 .max_sysfs_pct = 100,
346 .min_policy_pct = 0,
347 .min_sysfs_pct = 0,
348 };
349
350 static struct perf_limits powersave_limits = {
351 .no_turbo = 0,
352 .turbo_disabled = 0,
353 .max_perf_pct = 100,
354 .max_perf = int_tofp(1),
355 .min_perf_pct = 0,
356 .min_perf = 0,
357 .max_policy_pct = 100,
358 .max_sysfs_pct = 100,
359 .min_policy_pct = 0,
360 .min_sysfs_pct = 0,
361 };
362
363 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
364 static struct perf_limits *limits = &performance_limits;
365 #else
366 static struct perf_limits *limits = &powersave_limits;
367 #endif
368
369 #ifdef CONFIG_ACPI
370
371 static bool intel_pstate_get_ppc_enable_status(void)
372 {
373 if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
374 acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
375 return true;
376
377 return acpi_ppc;
378 }
379
380 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
381 {
382 struct cpudata *cpu;
383 int ret;
384 int i;
385
386 if (hwp_active)
387 return;
388
389 if (!intel_pstate_get_ppc_enable_status())
390 return;
391
392 cpu = all_cpu_data[policy->cpu];
393
394 ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
395 policy->cpu);
396 if (ret)
397 return;
398
399 /*
400 * Check if the control value in _PSS is for PERF_CTL MSR, which should
401 * guarantee that the states returned by it map to the states in our
402 * list directly.
403 */
404 if (cpu->acpi_perf_data.control_register.space_id !=
405 ACPI_ADR_SPACE_FIXED_HARDWARE)
406 goto err;
407
408 /*
409 * If there is only one entry _PSS, simply ignore _PSS and continue as
410 * usual without taking _PSS into account
411 */
412 if (cpu->acpi_perf_data.state_count < 2)
413 goto err;
414
415 pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
416 for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
417 pr_debug(" %cP%d: %u MHz, %u mW, 0x%x\n",
418 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
419 (u32) cpu->acpi_perf_data.states[i].core_frequency,
420 (u32) cpu->acpi_perf_data.states[i].power,
421 (u32) cpu->acpi_perf_data.states[i].control);
422 }
423
424 /*
425 * The _PSS table doesn't contain whole turbo frequency range.
426 * This just contains +1 MHZ above the max non turbo frequency,
427 * with control value corresponding to max turbo ratio. But
428 * when cpufreq set policy is called, it will call with this
429 * max frequency, which will cause a reduced performance as
430 * this driver uses real max turbo frequency as the max
431 * frequency. So correct this frequency in _PSS table to
432 * correct max turbo frequency based on the turbo state.
433 * Also need to convert to MHz as _PSS freq is in MHz.
434 */
435 if (!limits->turbo_disabled)
436 cpu->acpi_perf_data.states[0].core_frequency =
437 policy->cpuinfo.max_freq / 1000;
438 cpu->valid_pss_table = true;
439 pr_debug("_PPC limits will be enforced\n");
440
441 return;
442
443 err:
444 cpu->valid_pss_table = false;
445 acpi_processor_unregister_performance(policy->cpu);
446 }
447
448 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
449 {
450 struct cpudata *cpu;
451
452 cpu = all_cpu_data[policy->cpu];
453 if (!cpu->valid_pss_table)
454 return;
455
456 acpi_processor_unregister_performance(policy->cpu);
457 }
458
459 #else
460 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
461 {
462 }
463
464 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
465 {
466 }
467 #endif
468
469 static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
470 int deadband, int integral) {
471 pid->setpoint = int_tofp(setpoint);
472 pid->deadband = int_tofp(deadband);
473 pid->integral = int_tofp(integral);
474 pid->last_err = int_tofp(setpoint) - int_tofp(busy);
475 }
476
477 static inline void pid_p_gain_set(struct _pid *pid, int percent)
478 {
479 pid->p_gain = div_fp(percent, 100);
480 }
481
482 static inline void pid_i_gain_set(struct _pid *pid, int percent)
483 {
484 pid->i_gain = div_fp(percent, 100);
485 }
486
487 static inline void pid_d_gain_set(struct _pid *pid, int percent)
488 {
489 pid->d_gain = div_fp(percent, 100);
490 }
491
492 static signed int pid_calc(struct _pid *pid, int32_t busy)
493 {
494 signed int result;
495 int32_t pterm, dterm, fp_error;
496 int32_t integral_limit;
497
498 fp_error = pid->setpoint - busy;
499
500 if (abs(fp_error) <= pid->deadband)
501 return 0;
502
503 pterm = mul_fp(pid->p_gain, fp_error);
504
505 pid->integral += fp_error;
506
507 /*
508 * We limit the integral here so that it will never
509 * get higher than 30. This prevents it from becoming
510 * too large an input over long periods of time and allows
511 * it to get factored out sooner.
512 *
513 * The value of 30 was chosen through experimentation.
514 */
515 integral_limit = int_tofp(30);
516 if (pid->integral > integral_limit)
517 pid->integral = integral_limit;
518 if (pid->integral < -integral_limit)
519 pid->integral = -integral_limit;
520
521 dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
522 pid->last_err = fp_error;
523
524 result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
525 result = result + (1 << (FRAC_BITS-1));
526 return (signed int)fp_toint(result);
527 }
528
529 static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
530 {
531 pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
532 pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
533 pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
534
535 pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
536 }
537
538 static inline void intel_pstate_reset_all_pid(void)
539 {
540 unsigned int cpu;
541
542 for_each_online_cpu(cpu) {
543 if (all_cpu_data[cpu])
544 intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
545 }
546 }
547
548 static inline void update_turbo_state(void)
549 {
550 u64 misc_en;
551 struct cpudata *cpu;
552
553 cpu = all_cpu_data[0];
554 rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
555 limits->turbo_disabled =
556 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
557 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
558 }
559
560 static void intel_pstate_hwp_set(const struct cpumask *cpumask)
561 {
562 int min, hw_min, max, hw_max, cpu, range, adj_range;
563 u64 value, cap;
564
565 for_each_cpu(cpu, cpumask) {
566 rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
567 hw_min = HWP_LOWEST_PERF(cap);
568 hw_max = HWP_HIGHEST_PERF(cap);
569 range = hw_max - hw_min;
570
571 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
572 adj_range = limits->min_perf_pct * range / 100;
573 min = hw_min + adj_range;
574 value &= ~HWP_MIN_PERF(~0L);
575 value |= HWP_MIN_PERF(min);
576
577 adj_range = limits->max_perf_pct * range / 100;
578 max = hw_min + adj_range;
579 if (limits->no_turbo) {
580 hw_max = HWP_GUARANTEED_PERF(cap);
581 if (hw_max < max)
582 max = hw_max;
583 }
584
585 value &= ~HWP_MAX_PERF(~0L);
586 value |= HWP_MAX_PERF(max);
587 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
588 }
589 }
590
591 static int intel_pstate_hwp_set_policy(struct cpufreq_policy *policy)
592 {
593 if (hwp_active)
594 intel_pstate_hwp_set(policy->cpus);
595
596 return 0;
597 }
598
599 static void intel_pstate_hwp_set_online_cpus(void)
600 {
601 get_online_cpus();
602 intel_pstate_hwp_set(cpu_online_mask);
603 put_online_cpus();
604 }
605
606 /************************** debugfs begin ************************/
607 static int pid_param_set(void *data, u64 val)
608 {
609 *(u32 *)data = val;
610 intel_pstate_reset_all_pid();
611 return 0;
612 }
613
614 static int pid_param_get(void *data, u64 *val)
615 {
616 *val = *(u32 *)data;
617 return 0;
618 }
619 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
620
621 struct pid_param {
622 char *name;
623 void *value;
624 };
625
626 static struct pid_param pid_files[] = {
627 {"sample_rate_ms", &pid_params.sample_rate_ms},
628 {"d_gain_pct", &pid_params.d_gain_pct},
629 {"i_gain_pct", &pid_params.i_gain_pct},
630 {"deadband", &pid_params.deadband},
631 {"setpoint", &pid_params.setpoint},
632 {"p_gain_pct", &pid_params.p_gain_pct},
633 {NULL, NULL}
634 };
635
636 static void __init intel_pstate_debug_expose_params(void)
637 {
638 struct dentry *debugfs_parent;
639 int i = 0;
640
641 if (hwp_active)
642 return;
643 debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
644 if (IS_ERR_OR_NULL(debugfs_parent))
645 return;
646 while (pid_files[i].name) {
647 debugfs_create_file(pid_files[i].name, 0660,
648 debugfs_parent, pid_files[i].value,
649 &fops_pid_param);
650 i++;
651 }
652 }
653
654 /************************** debugfs end ************************/
655
656 /************************** sysfs begin ************************/
657 #define show_one(file_name, object) \
658 static ssize_t show_##file_name \
659 (struct kobject *kobj, struct attribute *attr, char *buf) \
660 { \
661 return sprintf(buf, "%u\n", limits->object); \
662 }
663
664 static ssize_t show_turbo_pct(struct kobject *kobj,
665 struct attribute *attr, char *buf)
666 {
667 struct cpudata *cpu;
668 int total, no_turbo, turbo_pct;
669 uint32_t turbo_fp;
670
671 cpu = all_cpu_data[0];
672
673 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
674 no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
675 turbo_fp = div_fp(no_turbo, total);
676 turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
677 return sprintf(buf, "%u\n", turbo_pct);
678 }
679
680 static ssize_t show_num_pstates(struct kobject *kobj,
681 struct attribute *attr, char *buf)
682 {
683 struct cpudata *cpu;
684 int total;
685
686 cpu = all_cpu_data[0];
687 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
688 return sprintf(buf, "%u\n", total);
689 }
690
691 static ssize_t show_no_turbo(struct kobject *kobj,
692 struct attribute *attr, char *buf)
693 {
694 ssize_t ret;
695
696 update_turbo_state();
697 if (limits->turbo_disabled)
698 ret = sprintf(buf, "%u\n", limits->turbo_disabled);
699 else
700 ret = sprintf(buf, "%u\n", limits->no_turbo);
701
702 return ret;
703 }
704
705 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
706 const char *buf, size_t count)
707 {
708 unsigned int input;
709 int ret;
710
711 ret = sscanf(buf, "%u", &input);
712 if (ret != 1)
713 return -EINVAL;
714
715 update_turbo_state();
716 if (limits->turbo_disabled) {
717 pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
718 return -EPERM;
719 }
720
721 limits->no_turbo = clamp_t(int, input, 0, 1);
722
723 if (hwp_active)
724 intel_pstate_hwp_set_online_cpus();
725
726 return count;
727 }
728
729 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
730 const char *buf, size_t count)
731 {
732 unsigned int input;
733 int ret;
734
735 ret = sscanf(buf, "%u", &input);
736 if (ret != 1)
737 return -EINVAL;
738
739 limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
740 limits->max_perf_pct = min(limits->max_policy_pct,
741 limits->max_sysfs_pct);
742 limits->max_perf_pct = max(limits->min_policy_pct,
743 limits->max_perf_pct);
744 limits->max_perf_pct = max(limits->min_perf_pct,
745 limits->max_perf_pct);
746 limits->max_perf = div_fp(limits->max_perf_pct, 100);
747
748 if (hwp_active)
749 intel_pstate_hwp_set_online_cpus();
750 return count;
751 }
752
753 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
754 const char *buf, size_t count)
755 {
756 unsigned int input;
757 int ret;
758
759 ret = sscanf(buf, "%u", &input);
760 if (ret != 1)
761 return -EINVAL;
762
763 limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
764 limits->min_perf_pct = max(limits->min_policy_pct,
765 limits->min_sysfs_pct);
766 limits->min_perf_pct = min(limits->max_policy_pct,
767 limits->min_perf_pct);
768 limits->min_perf_pct = min(limits->max_perf_pct,
769 limits->min_perf_pct);
770 limits->min_perf = div_fp(limits->min_perf_pct, 100);
771
772 if (hwp_active)
773 intel_pstate_hwp_set_online_cpus();
774 return count;
775 }
776
777 show_one(max_perf_pct, max_perf_pct);
778 show_one(min_perf_pct, min_perf_pct);
779
780 define_one_global_rw(no_turbo);
781 define_one_global_rw(max_perf_pct);
782 define_one_global_rw(min_perf_pct);
783 define_one_global_ro(turbo_pct);
784 define_one_global_ro(num_pstates);
785
786 static struct attribute *intel_pstate_attributes[] = {
787 &no_turbo.attr,
788 &max_perf_pct.attr,
789 &min_perf_pct.attr,
790 &turbo_pct.attr,
791 &num_pstates.attr,
792 NULL
793 };
794
795 static struct attribute_group intel_pstate_attr_group = {
796 .attrs = intel_pstate_attributes,
797 };
798
799 static void __init intel_pstate_sysfs_expose_params(void)
800 {
801 struct kobject *intel_pstate_kobject;
802 int rc;
803
804 intel_pstate_kobject = kobject_create_and_add("intel_pstate",
805 &cpu_subsys.dev_root->kobj);
806 BUG_ON(!intel_pstate_kobject);
807 rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
808 BUG_ON(rc);
809 }
810 /************************** sysfs end ************************/
811
812 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
813 {
814 /* First disable HWP notification interrupt as we don't process them */
815 if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
816 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
817
818 wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
819 }
820
821 static int atom_get_min_pstate(void)
822 {
823 u64 value;
824
825 rdmsrl(ATOM_RATIOS, value);
826 return (value >> 8) & 0x7F;
827 }
828
829 static int atom_get_max_pstate(void)
830 {
831 u64 value;
832
833 rdmsrl(ATOM_RATIOS, value);
834 return (value >> 16) & 0x7F;
835 }
836
837 static int atom_get_turbo_pstate(void)
838 {
839 u64 value;
840
841 rdmsrl(ATOM_TURBO_RATIOS, value);
842 return value & 0x7F;
843 }
844
845 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
846 {
847 u64 val;
848 int32_t vid_fp;
849 u32 vid;
850
851 val = (u64)pstate << 8;
852 if (limits->no_turbo && !limits->turbo_disabled)
853 val |= (u64)1 << 32;
854
855 vid_fp = cpudata->vid.min + mul_fp(
856 int_tofp(pstate - cpudata->pstate.min_pstate),
857 cpudata->vid.ratio);
858
859 vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
860 vid = ceiling_fp(vid_fp);
861
862 if (pstate > cpudata->pstate.max_pstate)
863 vid = cpudata->vid.turbo;
864
865 return val | vid;
866 }
867
868 static int silvermont_get_scaling(void)
869 {
870 u64 value;
871 int i;
872 /* Defined in Table 35-6 from SDM (Sept 2015) */
873 static int silvermont_freq_table[] = {
874 83300, 100000, 133300, 116700, 80000};
875
876 rdmsrl(MSR_FSB_FREQ, value);
877 i = value & 0x7;
878 WARN_ON(i > 4);
879
880 return silvermont_freq_table[i];
881 }
882
883 static int airmont_get_scaling(void)
884 {
885 u64 value;
886 int i;
887 /* Defined in Table 35-10 from SDM (Sept 2015) */
888 static int airmont_freq_table[] = {
889 83300, 100000, 133300, 116700, 80000,
890 93300, 90000, 88900, 87500};
891
892 rdmsrl(MSR_FSB_FREQ, value);
893 i = value & 0xF;
894 WARN_ON(i > 8);
895
896 return airmont_freq_table[i];
897 }
898
899 static void atom_get_vid(struct cpudata *cpudata)
900 {
901 u64 value;
902
903 rdmsrl(ATOM_VIDS, value);
904 cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
905 cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
906 cpudata->vid.ratio = div_fp(
907 cpudata->vid.max - cpudata->vid.min,
908 int_tofp(cpudata->pstate.max_pstate -
909 cpudata->pstate.min_pstate));
910
911 rdmsrl(ATOM_TURBO_VIDS, value);
912 cpudata->vid.turbo = value & 0x7f;
913 }
914
915 static int core_get_min_pstate(void)
916 {
917 u64 value;
918
919 rdmsrl(MSR_PLATFORM_INFO, value);
920 return (value >> 40) & 0xFF;
921 }
922
923 static int core_get_max_pstate_physical(void)
924 {
925 u64 value;
926
927 rdmsrl(MSR_PLATFORM_INFO, value);
928 return (value >> 8) & 0xFF;
929 }
930
931 static int core_get_max_pstate(void)
932 {
933 u64 tar;
934 u64 plat_info;
935 int max_pstate;
936 int err;
937
938 rdmsrl(MSR_PLATFORM_INFO, plat_info);
939 max_pstate = (plat_info >> 8) & 0xFF;
940
941 err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
942 if (!err) {
943 /* Do some sanity checking for safety */
944 if (plat_info & 0x600000000) {
945 u64 tdp_ctrl;
946 u64 tdp_ratio;
947 int tdp_msr;
948
949 err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
950 if (err)
951 goto skip_tar;
952
953 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x3);
954 err = rdmsrl_safe(tdp_msr, &tdp_ratio);
955 if (err)
956 goto skip_tar;
957
958 /* For level 1 and 2, bits[23:16] contain the ratio */
959 if (tdp_ctrl)
960 tdp_ratio >>= 16;
961
962 tdp_ratio &= 0xff; /* ratios are only 8 bits long */
963 if (tdp_ratio - 1 == tar) {
964 max_pstate = tar;
965 pr_debug("max_pstate=TAC %x\n", max_pstate);
966 } else {
967 goto skip_tar;
968 }
969 }
970 }
971
972 skip_tar:
973 return max_pstate;
974 }
975
976 static int core_get_turbo_pstate(void)
977 {
978 u64 value;
979 int nont, ret;
980
981 rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
982 nont = core_get_max_pstate();
983 ret = (value) & 255;
984 if (ret <= nont)
985 ret = nont;
986 return ret;
987 }
988
989 static inline int core_get_scaling(void)
990 {
991 return 100000;
992 }
993
994 static u64 core_get_val(struct cpudata *cpudata, int pstate)
995 {
996 u64 val;
997
998 val = (u64)pstate << 8;
999 if (limits->no_turbo && !limits->turbo_disabled)
1000 val |= (u64)1 << 32;
1001
1002 return val;
1003 }
1004
1005 static int knl_get_turbo_pstate(void)
1006 {
1007 u64 value;
1008 int nont, ret;
1009
1010 rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1011 nont = core_get_max_pstate();
1012 ret = (((value) >> 8) & 0xFF);
1013 if (ret <= nont)
1014 ret = nont;
1015 return ret;
1016 }
1017
1018 static struct cpu_defaults core_params = {
1019 .pid_policy = {
1020 .sample_rate_ms = 10,
1021 .deadband = 0,
1022 .setpoint = 97,
1023 .p_gain_pct = 20,
1024 .d_gain_pct = 0,
1025 .i_gain_pct = 0,
1026 },
1027 .funcs = {
1028 .get_max = core_get_max_pstate,
1029 .get_max_physical = core_get_max_pstate_physical,
1030 .get_min = core_get_min_pstate,
1031 .get_turbo = core_get_turbo_pstate,
1032 .get_scaling = core_get_scaling,
1033 .get_val = core_get_val,
1034 .get_target_pstate = get_target_pstate_use_performance,
1035 },
1036 };
1037
1038 static const struct cpu_defaults silvermont_params = {
1039 .pid_policy = {
1040 .sample_rate_ms = 10,
1041 .deadband = 0,
1042 .setpoint = 60,
1043 .p_gain_pct = 14,
1044 .d_gain_pct = 0,
1045 .i_gain_pct = 4,
1046 .boost_iowait = true,
1047 },
1048 .funcs = {
1049 .get_max = atom_get_max_pstate,
1050 .get_max_physical = atom_get_max_pstate,
1051 .get_min = atom_get_min_pstate,
1052 .get_turbo = atom_get_turbo_pstate,
1053 .get_val = atom_get_val,
1054 .get_scaling = silvermont_get_scaling,
1055 .get_vid = atom_get_vid,
1056 .get_target_pstate = get_target_pstate_use_cpu_load,
1057 },
1058 };
1059
1060 static const struct cpu_defaults airmont_params = {
1061 .pid_policy = {
1062 .sample_rate_ms = 10,
1063 .deadband = 0,
1064 .setpoint = 60,
1065 .p_gain_pct = 14,
1066 .d_gain_pct = 0,
1067 .i_gain_pct = 4,
1068 .boost_iowait = true,
1069 },
1070 .funcs = {
1071 .get_max = atom_get_max_pstate,
1072 .get_max_physical = atom_get_max_pstate,
1073 .get_min = atom_get_min_pstate,
1074 .get_turbo = atom_get_turbo_pstate,
1075 .get_val = atom_get_val,
1076 .get_scaling = airmont_get_scaling,
1077 .get_vid = atom_get_vid,
1078 .get_target_pstate = get_target_pstate_use_cpu_load,
1079 },
1080 };
1081
1082 static const struct cpu_defaults knl_params = {
1083 .pid_policy = {
1084 .sample_rate_ms = 10,
1085 .deadband = 0,
1086 .setpoint = 97,
1087 .p_gain_pct = 20,
1088 .d_gain_pct = 0,
1089 .i_gain_pct = 0,
1090 },
1091 .funcs = {
1092 .get_max = core_get_max_pstate,
1093 .get_max_physical = core_get_max_pstate_physical,
1094 .get_min = core_get_min_pstate,
1095 .get_turbo = knl_get_turbo_pstate,
1096 .get_scaling = core_get_scaling,
1097 .get_val = core_get_val,
1098 .get_target_pstate = get_target_pstate_use_performance,
1099 },
1100 };
1101
1102 static const struct cpu_defaults bxt_params = {
1103 .pid_policy = {
1104 .sample_rate_ms = 10,
1105 .deadband = 0,
1106 .setpoint = 60,
1107 .p_gain_pct = 14,
1108 .d_gain_pct = 0,
1109 .i_gain_pct = 4,
1110 .boost_iowait = true,
1111 },
1112 .funcs = {
1113 .get_max = core_get_max_pstate,
1114 .get_max_physical = core_get_max_pstate_physical,
1115 .get_min = core_get_min_pstate,
1116 .get_turbo = core_get_turbo_pstate,
1117 .get_scaling = core_get_scaling,
1118 .get_val = core_get_val,
1119 .get_target_pstate = get_target_pstate_use_cpu_load,
1120 },
1121 };
1122
1123 static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
1124 {
1125 int max_perf = cpu->pstate.turbo_pstate;
1126 int max_perf_adj;
1127 int min_perf;
1128
1129 if (limits->no_turbo || limits->turbo_disabled)
1130 max_perf = cpu->pstate.max_pstate;
1131
1132 /*
1133 * performance can be limited by user through sysfs, by cpufreq
1134 * policy, or by cpu specific default values determined through
1135 * experimentation.
1136 */
1137 max_perf_adj = fp_toint(max_perf * limits->max_perf);
1138 *max = clamp_t(int, max_perf_adj,
1139 cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
1140
1141 min_perf = fp_toint(max_perf * limits->min_perf);
1142 *min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
1143 }
1144
1145 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1146 {
1147 int pstate = cpu->pstate.min_pstate;
1148
1149 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1150 cpu->pstate.current_pstate = pstate;
1151 /*
1152 * Generally, there is no guarantee that this code will always run on
1153 * the CPU being updated, so force the register update to run on the
1154 * right CPU.
1155 */
1156 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1157 pstate_funcs.get_val(cpu, pstate));
1158 }
1159
1160 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1161 {
1162 cpu->pstate.min_pstate = pstate_funcs.get_min();
1163 cpu->pstate.max_pstate = pstate_funcs.get_max();
1164 cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1165 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1166 cpu->pstate.scaling = pstate_funcs.get_scaling();
1167
1168 if (pstate_funcs.get_vid)
1169 pstate_funcs.get_vid(cpu);
1170
1171 intel_pstate_set_min_pstate(cpu);
1172 }
1173
1174 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1175 {
1176 struct sample *sample = &cpu->sample;
1177
1178 sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1179 }
1180
1181 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1182 {
1183 u64 aperf, mperf;
1184 unsigned long flags;
1185 u64 tsc;
1186
1187 local_irq_save(flags);
1188 rdmsrl(MSR_IA32_APERF, aperf);
1189 rdmsrl(MSR_IA32_MPERF, mperf);
1190 tsc = rdtsc();
1191 if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1192 local_irq_restore(flags);
1193 return false;
1194 }
1195 local_irq_restore(flags);
1196
1197 cpu->last_sample_time = cpu->sample.time;
1198 cpu->sample.time = time;
1199 cpu->sample.aperf = aperf;
1200 cpu->sample.mperf = mperf;
1201 cpu->sample.tsc = tsc;
1202 cpu->sample.aperf -= cpu->prev_aperf;
1203 cpu->sample.mperf -= cpu->prev_mperf;
1204 cpu->sample.tsc -= cpu->prev_tsc;
1205
1206 cpu->prev_aperf = aperf;
1207 cpu->prev_mperf = mperf;
1208 cpu->prev_tsc = tsc;
1209 /*
1210 * First time this function is invoked in a given cycle, all of the
1211 * previous sample data fields are equal to zero or stale and they must
1212 * be populated with meaningful numbers for things to work, so assume
1213 * that sample.time will always be reset before setting the utilization
1214 * update hook and make the caller skip the sample then.
1215 */
1216 return !!cpu->last_sample_time;
1217 }
1218
1219 static inline int32_t get_avg_frequency(struct cpudata *cpu)
1220 {
1221 return mul_ext_fp(cpu->sample.core_avg_perf,
1222 cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
1223 }
1224
1225 static inline int32_t get_avg_pstate(struct cpudata *cpu)
1226 {
1227 return mul_ext_fp(cpu->pstate.max_pstate_physical,
1228 cpu->sample.core_avg_perf);
1229 }
1230
1231 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
1232 {
1233 struct sample *sample = &cpu->sample;
1234 int32_t busy_frac, boost;
1235 int target, avg_pstate;
1236
1237 busy_frac = div_fp(sample->mperf, sample->tsc);
1238
1239 boost = cpu->iowait_boost;
1240 cpu->iowait_boost >>= 1;
1241
1242 if (busy_frac < boost)
1243 busy_frac = boost;
1244
1245 sample->busy_scaled = busy_frac * 100;
1246
1247 target = limits->no_turbo || limits->turbo_disabled ?
1248 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1249 target += target >> 2;
1250 target = mul_fp(target, busy_frac);
1251 if (target < cpu->pstate.min_pstate)
1252 target = cpu->pstate.min_pstate;
1253
1254 /*
1255 * If the average P-state during the previous cycle was higher than the
1256 * current target, add 50% of the difference to the target to reduce
1257 * possible performance oscillations and offset possible performance
1258 * loss related to moving the workload from one CPU to another within
1259 * a package/module.
1260 */
1261 avg_pstate = get_avg_pstate(cpu);
1262 if (avg_pstate > target)
1263 target += (avg_pstate - target) >> 1;
1264
1265 return target;
1266 }
1267
1268 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
1269 {
1270 int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
1271 u64 duration_ns;
1272
1273 /*
1274 * perf_scaled is the ratio of the average P-state during the last
1275 * sampling period to the P-state requested last time (in percent).
1276 *
1277 * That measures the system's response to the previous P-state
1278 * selection.
1279 */
1280 max_pstate = cpu->pstate.max_pstate_physical;
1281 current_pstate = cpu->pstate.current_pstate;
1282 perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
1283 div_fp(100 * max_pstate, current_pstate));
1284
1285 /*
1286 * Since our utilization update callback will not run unless we are
1287 * in C0, check if the actual elapsed time is significantly greater (3x)
1288 * than our sample interval. If it is, then we were idle for a long
1289 * enough period of time to adjust our performance metric.
1290 */
1291 duration_ns = cpu->sample.time - cpu->last_sample_time;
1292 if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
1293 sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1294 perf_scaled = mul_fp(perf_scaled, sample_ratio);
1295 } else {
1296 sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
1297 if (sample_ratio < int_tofp(1))
1298 perf_scaled = 0;
1299 }
1300
1301 cpu->sample.busy_scaled = perf_scaled;
1302 return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
1303 }
1304
1305 static inline void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1306 {
1307 int max_perf, min_perf;
1308
1309 update_turbo_state();
1310
1311 intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
1312 pstate = clamp_t(int, pstate, min_perf, max_perf);
1313 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1314 if (pstate == cpu->pstate.current_pstate)
1315 return;
1316
1317 cpu->pstate.current_pstate = pstate;
1318 wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1319 }
1320
1321 static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
1322 {
1323 int from, target_pstate;
1324 struct sample *sample;
1325
1326 from = cpu->pstate.current_pstate;
1327
1328 target_pstate = pstate_funcs.get_target_pstate(cpu);
1329
1330 intel_pstate_update_pstate(cpu, target_pstate);
1331
1332 sample = &cpu->sample;
1333 trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1334 fp_toint(sample->busy_scaled),
1335 from,
1336 cpu->pstate.current_pstate,
1337 sample->mperf,
1338 sample->aperf,
1339 sample->tsc,
1340 get_avg_frequency(cpu),
1341 fp_toint(cpu->iowait_boost * 100));
1342 }
1343
1344 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1345 unsigned int flags)
1346 {
1347 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1348 u64 delta_ns;
1349
1350 if (pid_params.boost_iowait) {
1351 if (flags & SCHED_CPUFREQ_IOWAIT) {
1352 cpu->iowait_boost = int_tofp(1);
1353 } else if (cpu->iowait_boost) {
1354 /* Clear iowait_boost if the CPU may have been idle. */
1355 delta_ns = time - cpu->last_update;
1356 if (delta_ns > TICK_NSEC)
1357 cpu->iowait_boost = 0;
1358 }
1359 cpu->last_update = time;
1360 }
1361
1362 delta_ns = time - cpu->sample.time;
1363 if ((s64)delta_ns >= pid_params.sample_rate_ns) {
1364 bool sample_taken = intel_pstate_sample(cpu, time);
1365
1366 if (sample_taken) {
1367 intel_pstate_calc_avg_perf(cpu);
1368 if (!hwp_active)
1369 intel_pstate_adjust_busy_pstate(cpu);
1370 }
1371 }
1372 }
1373
1374 #define ICPU(model, policy) \
1375 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1376 (unsigned long)&policy }
1377
1378 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1379 ICPU(INTEL_FAM6_SANDYBRIDGE, core_params),
1380 ICPU(INTEL_FAM6_SANDYBRIDGE_X, core_params),
1381 ICPU(INTEL_FAM6_ATOM_SILVERMONT1, silvermont_params),
1382 ICPU(INTEL_FAM6_IVYBRIDGE, core_params),
1383 ICPU(INTEL_FAM6_HASWELL_CORE, core_params),
1384 ICPU(INTEL_FAM6_BROADWELL_CORE, core_params),
1385 ICPU(INTEL_FAM6_IVYBRIDGE_X, core_params),
1386 ICPU(INTEL_FAM6_HASWELL_X, core_params),
1387 ICPU(INTEL_FAM6_HASWELL_ULT, core_params),
1388 ICPU(INTEL_FAM6_HASWELL_GT3E, core_params),
1389 ICPU(INTEL_FAM6_BROADWELL_GT3E, core_params),
1390 ICPU(INTEL_FAM6_ATOM_AIRMONT, airmont_params),
1391 ICPU(INTEL_FAM6_SKYLAKE_MOBILE, core_params),
1392 ICPU(INTEL_FAM6_BROADWELL_X, core_params),
1393 ICPU(INTEL_FAM6_SKYLAKE_DESKTOP, core_params),
1394 ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
1395 ICPU(INTEL_FAM6_XEON_PHI_KNL, knl_params),
1396 ICPU(INTEL_FAM6_ATOM_GOLDMONT, bxt_params),
1397 {}
1398 };
1399 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1400
1401 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1402 ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
1403 ICPU(INTEL_FAM6_BROADWELL_X, core_params),
1404 ICPU(INTEL_FAM6_SKYLAKE_X, core_params),
1405 {}
1406 };
1407
1408 static int intel_pstate_init_cpu(unsigned int cpunum)
1409 {
1410 struct cpudata *cpu;
1411
1412 if (!all_cpu_data[cpunum])
1413 all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata),
1414 GFP_KERNEL);
1415 if (!all_cpu_data[cpunum])
1416 return -ENOMEM;
1417
1418 cpu = all_cpu_data[cpunum];
1419
1420 cpu->cpu = cpunum;
1421
1422 if (hwp_active) {
1423 intel_pstate_hwp_enable(cpu);
1424 pid_params.sample_rate_ms = 50;
1425 pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
1426 }
1427
1428 intel_pstate_get_cpu_pstates(cpu);
1429
1430 intel_pstate_busy_pid_reset(cpu);
1431
1432 pr_debug("controlling: cpu %d\n", cpunum);
1433
1434 return 0;
1435 }
1436
1437 static unsigned int intel_pstate_get(unsigned int cpu_num)
1438 {
1439 struct cpudata *cpu = all_cpu_data[cpu_num];
1440
1441 return cpu ? get_avg_frequency(cpu) : 0;
1442 }
1443
1444 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1445 {
1446 struct cpudata *cpu = all_cpu_data[cpu_num];
1447
1448 if (cpu->update_util_set)
1449 return;
1450
1451 /* Prevent intel_pstate_update_util() from using stale data. */
1452 cpu->sample.time = 0;
1453 cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1454 intel_pstate_update_util);
1455 cpu->update_util_set = true;
1456 }
1457
1458 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1459 {
1460 struct cpudata *cpu_data = all_cpu_data[cpu];
1461
1462 if (!cpu_data->update_util_set)
1463 return;
1464
1465 cpufreq_remove_update_util_hook(cpu);
1466 cpu_data->update_util_set = false;
1467 synchronize_sched();
1468 }
1469
1470 static void intel_pstate_set_performance_limits(struct perf_limits *limits)
1471 {
1472 limits->no_turbo = 0;
1473 limits->turbo_disabled = 0;
1474 limits->max_perf_pct = 100;
1475 limits->max_perf = int_tofp(1);
1476 limits->min_perf_pct = 100;
1477 limits->min_perf = int_tofp(1);
1478 limits->max_policy_pct = 100;
1479 limits->max_sysfs_pct = 100;
1480 limits->min_policy_pct = 0;
1481 limits->min_sysfs_pct = 0;
1482 }
1483
1484 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
1485 {
1486 struct cpudata *cpu;
1487
1488 if (!policy->cpuinfo.max_freq)
1489 return -ENODEV;
1490
1491 pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
1492 policy->cpuinfo.max_freq, policy->max);
1493
1494 cpu = all_cpu_data[0];
1495 if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
1496 policy->max < policy->cpuinfo.max_freq &&
1497 policy->max > cpu->pstate.max_pstate * cpu->pstate.scaling) {
1498 pr_debug("policy->max > max non turbo frequency\n");
1499 policy->max = policy->cpuinfo.max_freq;
1500 }
1501
1502 if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
1503 limits = &performance_limits;
1504 if (policy->max >= policy->cpuinfo.max_freq) {
1505 pr_debug("set performance\n");
1506 intel_pstate_set_performance_limits(limits);
1507 goto out;
1508 }
1509 } else {
1510 pr_debug("set powersave\n");
1511 limits = &powersave_limits;
1512 }
1513
1514 limits->min_policy_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
1515 limits->min_policy_pct = clamp_t(int, limits->min_policy_pct, 0 , 100);
1516 limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100,
1517 policy->cpuinfo.max_freq);
1518 limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0 , 100);
1519
1520 /* Normalize user input to [min_policy_pct, max_policy_pct] */
1521 limits->min_perf_pct = max(limits->min_policy_pct,
1522 limits->min_sysfs_pct);
1523 limits->min_perf_pct = min(limits->max_policy_pct,
1524 limits->min_perf_pct);
1525 limits->max_perf_pct = min(limits->max_policy_pct,
1526 limits->max_sysfs_pct);
1527 limits->max_perf_pct = max(limits->min_policy_pct,
1528 limits->max_perf_pct);
1529
1530 /* Make sure min_perf_pct <= max_perf_pct */
1531 limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct);
1532
1533 limits->min_perf = div_fp(limits->min_perf_pct, 100);
1534 limits->max_perf = div_fp(limits->max_perf_pct, 100);
1535 limits->max_perf = round_up(limits->max_perf, FRAC_BITS);
1536
1537 out:
1538 intel_pstate_set_update_util_hook(policy->cpu);
1539
1540 intel_pstate_hwp_set_policy(policy);
1541
1542 return 0;
1543 }
1544
1545 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
1546 {
1547 cpufreq_verify_within_cpu_limits(policy);
1548
1549 if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
1550 policy->policy != CPUFREQ_POLICY_PERFORMANCE)
1551 return -EINVAL;
1552
1553 return 0;
1554 }
1555
1556 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
1557 {
1558 int cpu_num = policy->cpu;
1559 struct cpudata *cpu = all_cpu_data[cpu_num];
1560
1561 pr_debug("CPU %d exiting\n", cpu_num);
1562
1563 intel_pstate_clear_update_util_hook(cpu_num);
1564
1565 if (hwp_active)
1566 return;
1567
1568 intel_pstate_set_min_pstate(cpu);
1569 }
1570
1571 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
1572 {
1573 struct cpudata *cpu;
1574 int rc;
1575
1576 rc = intel_pstate_init_cpu(policy->cpu);
1577 if (rc)
1578 return rc;
1579
1580 cpu = all_cpu_data[policy->cpu];
1581
1582 if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
1583 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
1584 else
1585 policy->policy = CPUFREQ_POLICY_POWERSAVE;
1586
1587 policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
1588 policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1589
1590 /* cpuinfo and default policy values */
1591 policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
1592 update_turbo_state();
1593 policy->cpuinfo.max_freq = limits->turbo_disabled ?
1594 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1595 policy->cpuinfo.max_freq *= cpu->pstate.scaling;
1596
1597 intel_pstate_init_acpi_perf_limits(policy);
1598 policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
1599 cpumask_set_cpu(policy->cpu, policy->cpus);
1600
1601 return 0;
1602 }
1603
1604 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
1605 {
1606 intel_pstate_exit_perf_limits(policy);
1607
1608 return 0;
1609 }
1610
1611 static struct cpufreq_driver intel_pstate_driver = {
1612 .flags = CPUFREQ_CONST_LOOPS,
1613 .verify = intel_pstate_verify_policy,
1614 .setpolicy = intel_pstate_set_policy,
1615 .resume = intel_pstate_hwp_set_policy,
1616 .get = intel_pstate_get,
1617 .init = intel_pstate_cpu_init,
1618 .exit = intel_pstate_cpu_exit,
1619 .stop_cpu = intel_pstate_stop_cpu,
1620 .name = "intel_pstate",
1621 };
1622
1623 static int no_load __initdata;
1624 static int no_hwp __initdata;
1625 static int hwp_only __initdata;
1626 static unsigned int force_load __initdata;
1627
1628 static int __init intel_pstate_msrs_not_valid(void)
1629 {
1630 if (!pstate_funcs.get_max() ||
1631 !pstate_funcs.get_min() ||
1632 !pstate_funcs.get_turbo())
1633 return -ENODEV;
1634
1635 return 0;
1636 }
1637
1638 static void __init copy_pid_params(struct pstate_adjust_policy *policy)
1639 {
1640 pid_params.sample_rate_ms = policy->sample_rate_ms;
1641 pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
1642 pid_params.p_gain_pct = policy->p_gain_pct;
1643 pid_params.i_gain_pct = policy->i_gain_pct;
1644 pid_params.d_gain_pct = policy->d_gain_pct;
1645 pid_params.deadband = policy->deadband;
1646 pid_params.setpoint = policy->setpoint;
1647 }
1648
1649 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
1650 {
1651 pstate_funcs.get_max = funcs->get_max;
1652 pstate_funcs.get_max_physical = funcs->get_max_physical;
1653 pstate_funcs.get_min = funcs->get_min;
1654 pstate_funcs.get_turbo = funcs->get_turbo;
1655 pstate_funcs.get_scaling = funcs->get_scaling;
1656 pstate_funcs.get_val = funcs->get_val;
1657 pstate_funcs.get_vid = funcs->get_vid;
1658 pstate_funcs.get_target_pstate = funcs->get_target_pstate;
1659
1660 }
1661
1662 #ifdef CONFIG_ACPI
1663
1664 static bool __init intel_pstate_no_acpi_pss(void)
1665 {
1666 int i;
1667
1668 for_each_possible_cpu(i) {
1669 acpi_status status;
1670 union acpi_object *pss;
1671 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1672 struct acpi_processor *pr = per_cpu(processors, i);
1673
1674 if (!pr)
1675 continue;
1676
1677 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
1678 if (ACPI_FAILURE(status))
1679 continue;
1680
1681 pss = buffer.pointer;
1682 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
1683 kfree(pss);
1684 return false;
1685 }
1686
1687 kfree(pss);
1688 }
1689
1690 return true;
1691 }
1692
1693 static bool __init intel_pstate_has_acpi_ppc(void)
1694 {
1695 int i;
1696
1697 for_each_possible_cpu(i) {
1698 struct acpi_processor *pr = per_cpu(processors, i);
1699
1700 if (!pr)
1701 continue;
1702 if (acpi_has_method(pr->handle, "_PPC"))
1703 return true;
1704 }
1705 return false;
1706 }
1707
1708 enum {
1709 PSS,
1710 PPC,
1711 };
1712
1713 struct hw_vendor_info {
1714 u16 valid;
1715 char oem_id[ACPI_OEM_ID_SIZE];
1716 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
1717 int oem_pwr_table;
1718 };
1719
1720 /* Hardware vendor-specific info that has its own power management modes */
1721 static struct hw_vendor_info vendor_info[] __initdata = {
1722 {1, "HP ", "ProLiant", PSS},
1723 {1, "ORACLE", "X4-2 ", PPC},
1724 {1, "ORACLE", "X4-2L ", PPC},
1725 {1, "ORACLE", "X4-2B ", PPC},
1726 {1, "ORACLE", "X3-2 ", PPC},
1727 {1, "ORACLE", "X3-2L ", PPC},
1728 {1, "ORACLE", "X3-2B ", PPC},
1729 {1, "ORACLE", "X4470M2 ", PPC},
1730 {1, "ORACLE", "X4270M3 ", PPC},
1731 {1, "ORACLE", "X4270M2 ", PPC},
1732 {1, "ORACLE", "X4170M2 ", PPC},
1733 {1, "ORACLE", "X4170 M3", PPC},
1734 {1, "ORACLE", "X4275 M3", PPC},
1735 {1, "ORACLE", "X6-2 ", PPC},
1736 {1, "ORACLE", "Sudbury ", PPC},
1737 {0, "", ""},
1738 };
1739
1740 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
1741 {
1742 struct acpi_table_header hdr;
1743 struct hw_vendor_info *v_info;
1744 const struct x86_cpu_id *id;
1745 u64 misc_pwr;
1746
1747 id = x86_match_cpu(intel_pstate_cpu_oob_ids);
1748 if (id) {
1749 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
1750 if ( misc_pwr & (1 << 8))
1751 return true;
1752 }
1753
1754 if (acpi_disabled ||
1755 ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
1756 return false;
1757
1758 for (v_info = vendor_info; v_info->valid; v_info++) {
1759 if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
1760 !strncmp(hdr.oem_table_id, v_info->oem_table_id,
1761 ACPI_OEM_TABLE_ID_SIZE))
1762 switch (v_info->oem_pwr_table) {
1763 case PSS:
1764 return intel_pstate_no_acpi_pss();
1765 case PPC:
1766 return intel_pstate_has_acpi_ppc() &&
1767 (!force_load);
1768 }
1769 }
1770
1771 return false;
1772 }
1773 #else /* CONFIG_ACPI not enabled */
1774 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
1775 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
1776 #endif /* CONFIG_ACPI */
1777
1778 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
1779 { X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
1780 {}
1781 };
1782
1783 static int __init intel_pstate_init(void)
1784 {
1785 int cpu, rc = 0;
1786 const struct x86_cpu_id *id;
1787 struct cpu_defaults *cpu_def;
1788
1789 if (no_load)
1790 return -ENODEV;
1791
1792 if (x86_match_cpu(hwp_support_ids) && !no_hwp) {
1793 copy_cpu_funcs(&core_params.funcs);
1794 hwp_active++;
1795 goto hwp_cpu_matched;
1796 }
1797
1798 id = x86_match_cpu(intel_pstate_cpu_ids);
1799 if (!id)
1800 return -ENODEV;
1801
1802 cpu_def = (struct cpu_defaults *)id->driver_data;
1803
1804 copy_pid_params(&cpu_def->pid_policy);
1805 copy_cpu_funcs(&cpu_def->funcs);
1806
1807 if (intel_pstate_msrs_not_valid())
1808 return -ENODEV;
1809
1810 hwp_cpu_matched:
1811 /*
1812 * The Intel pstate driver will be ignored if the platform
1813 * firmware has its own power management modes.
1814 */
1815 if (intel_pstate_platform_pwr_mgmt_exists())
1816 return -ENODEV;
1817
1818 pr_info("Intel P-state driver initializing\n");
1819
1820 all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
1821 if (!all_cpu_data)
1822 return -ENOMEM;
1823
1824 if (!hwp_active && hwp_only)
1825 goto out;
1826
1827 rc = cpufreq_register_driver(&intel_pstate_driver);
1828 if (rc)
1829 goto out;
1830
1831 intel_pstate_debug_expose_params();
1832 intel_pstate_sysfs_expose_params();
1833
1834 if (hwp_active)
1835 pr_info("HWP enabled\n");
1836
1837 return rc;
1838 out:
1839 get_online_cpus();
1840 for_each_online_cpu(cpu) {
1841 if (all_cpu_data[cpu]) {
1842 intel_pstate_clear_update_util_hook(cpu);
1843 kfree(all_cpu_data[cpu]);
1844 }
1845 }
1846
1847 put_online_cpus();
1848 vfree(all_cpu_data);
1849 return -ENODEV;
1850 }
1851 device_initcall(intel_pstate_init);
1852
1853 static int __init intel_pstate_setup(char *str)
1854 {
1855 if (!str)
1856 return -EINVAL;
1857
1858 if (!strcmp(str, "disable"))
1859 no_load = 1;
1860 if (!strcmp(str, "no_hwp")) {
1861 pr_info("HWP disabled\n");
1862 no_hwp = 1;
1863 }
1864 if (!strcmp(str, "force"))
1865 force_load = 1;
1866 if (!strcmp(str, "hwp_only"))
1867 hwp_only = 1;
1868
1869 #ifdef CONFIG_ACPI
1870 if (!strcmp(str, "support_acpi_ppc"))
1871 acpi_ppc = true;
1872 #endif
1873
1874 return 0;
1875 }
1876 early_param("intel_pstate", intel_pstate_setup);
1877
1878 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
1879 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
1880 MODULE_LICENSE("GPL");