]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/cpufreq/intel_pstate.c
Merge branch 'for-upstream/malidp-fixes' of git://linux-arm.org/linux-ld into drm...
[mirror_ubuntu-artful-kernel.git] / drivers / cpufreq / intel_pstate.c
1 /*
2 * intel_pstate.c: Native P state management for Intel processors
3 *
4 * (C) Copyright 2012 Intel Corporation
5 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
10 * of the License.
11 */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/kernel.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/module.h>
18 #include <linux/ktime.h>
19 #include <linux/hrtimer.h>
20 #include <linux/tick.h>
21 #include <linux/slab.h>
22 #include <linux/sched/cpufreq.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25 #include <linux/cpufreq.h>
26 #include <linux/sysfs.h>
27 #include <linux/types.h>
28 #include <linux/fs.h>
29 #include <linux/debugfs.h>
30 #include <linux/acpi.h>
31 #include <linux/vmalloc.h>
32 #include <trace/events/power.h>
33
34 #include <asm/div64.h>
35 #include <asm/msr.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/cpufeature.h>
38 #include <asm/intel-family.h>
39
40 #define INTEL_CPUFREQ_TRANSITION_LATENCY 20000
41
42 #ifdef CONFIG_ACPI
43 #include <acpi/processor.h>
44 #include <acpi/cppc_acpi.h>
45 #endif
46
47 #define FRAC_BITS 8
48 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
49 #define fp_toint(X) ((X) >> FRAC_BITS)
50
51 #define EXT_BITS 6
52 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
53 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
54 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
55
56 static inline int32_t mul_fp(int32_t x, int32_t y)
57 {
58 return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
59 }
60
61 static inline int32_t div_fp(s64 x, s64 y)
62 {
63 return div64_s64((int64_t)x << FRAC_BITS, y);
64 }
65
66 static inline int ceiling_fp(int32_t x)
67 {
68 int mask, ret;
69
70 ret = fp_toint(x);
71 mask = (1 << FRAC_BITS) - 1;
72 if (x & mask)
73 ret += 1;
74 return ret;
75 }
76
77 static inline u64 mul_ext_fp(u64 x, u64 y)
78 {
79 return (x * y) >> EXT_FRAC_BITS;
80 }
81
82 static inline u64 div_ext_fp(u64 x, u64 y)
83 {
84 return div64_u64(x << EXT_FRAC_BITS, y);
85 }
86
87 /**
88 * struct sample - Store performance sample
89 * @core_avg_perf: Ratio of APERF/MPERF which is the actual average
90 * performance during last sample period
91 * @busy_scaled: Scaled busy value which is used to calculate next
92 * P state. This can be different than core_avg_perf
93 * to account for cpu idle period
94 * @aperf: Difference of actual performance frequency clock count
95 * read from APERF MSR between last and current sample
96 * @mperf: Difference of maximum performance frequency clock count
97 * read from MPERF MSR between last and current sample
98 * @tsc: Difference of time stamp counter between last and
99 * current sample
100 * @time: Current time from scheduler
101 *
102 * This structure is used in the cpudata structure to store performance sample
103 * data for choosing next P State.
104 */
105 struct sample {
106 int32_t core_avg_perf;
107 int32_t busy_scaled;
108 u64 aperf;
109 u64 mperf;
110 u64 tsc;
111 u64 time;
112 };
113
114 /**
115 * struct pstate_data - Store P state data
116 * @current_pstate: Current requested P state
117 * @min_pstate: Min P state possible for this platform
118 * @max_pstate: Max P state possible for this platform
119 * @max_pstate_physical:This is physical Max P state for a processor
120 * This can be higher than the max_pstate which can
121 * be limited by platform thermal design power limits
122 * @scaling: Scaling factor to convert frequency to cpufreq
123 * frequency units
124 * @turbo_pstate: Max Turbo P state possible for this platform
125 * @max_freq: @max_pstate frequency in cpufreq units
126 * @turbo_freq: @turbo_pstate frequency in cpufreq units
127 *
128 * Stores the per cpu model P state limits and current P state.
129 */
130 struct pstate_data {
131 int current_pstate;
132 int min_pstate;
133 int max_pstate;
134 int max_pstate_physical;
135 int scaling;
136 int turbo_pstate;
137 unsigned int max_freq;
138 unsigned int turbo_freq;
139 };
140
141 /**
142 * struct vid_data - Stores voltage information data
143 * @min: VID data for this platform corresponding to
144 * the lowest P state
145 * @max: VID data corresponding to the highest P State.
146 * @turbo: VID data for turbo P state
147 * @ratio: Ratio of (vid max - vid min) /
148 * (max P state - Min P State)
149 *
150 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
151 * This data is used in Atom platforms, where in addition to target P state,
152 * the voltage data needs to be specified to select next P State.
153 */
154 struct vid_data {
155 int min;
156 int max;
157 int turbo;
158 int32_t ratio;
159 };
160
161 /**
162 * struct _pid - Stores PID data
163 * @setpoint: Target set point for busyness or performance
164 * @integral: Storage for accumulated error values
165 * @p_gain: PID proportional gain
166 * @i_gain: PID integral gain
167 * @d_gain: PID derivative gain
168 * @deadband: PID deadband
169 * @last_err: Last error storage for integral part of PID calculation
170 *
171 * Stores PID coefficients and last error for PID controller.
172 */
173 struct _pid {
174 int setpoint;
175 int32_t integral;
176 int32_t p_gain;
177 int32_t i_gain;
178 int32_t d_gain;
179 int deadband;
180 int32_t last_err;
181 };
182
183 /**
184 * struct perf_limits - Store user and policy limits
185 * @no_turbo: User requested turbo state from intel_pstate sysfs
186 * @turbo_disabled: Platform turbo status either from msr
187 * MSR_IA32_MISC_ENABLE or when maximum available pstate
188 * matches the maximum turbo pstate
189 * @max_perf_pct: Effective maximum performance limit in percentage, this
190 * is minimum of either limits enforced by cpufreq policy
191 * or limits from user set limits via intel_pstate sysfs
192 * @min_perf_pct: Effective minimum performance limit in percentage, this
193 * is maximum of either limits enforced by cpufreq policy
194 * or limits from user set limits via intel_pstate sysfs
195 * @max_perf: This is a scaled value between 0 to 255 for max_perf_pct
196 * This value is used to limit max pstate
197 * @min_perf: This is a scaled value between 0 to 255 for min_perf_pct
198 * This value is used to limit min pstate
199 * @max_policy_pct: The maximum performance in percentage enforced by
200 * cpufreq setpolicy interface
201 * @max_sysfs_pct: The maximum performance in percentage enforced by
202 * intel pstate sysfs interface, unused when per cpu
203 * controls are enforced
204 * @min_policy_pct: The minimum performance in percentage enforced by
205 * cpufreq setpolicy interface
206 * @min_sysfs_pct: The minimum performance in percentage enforced by
207 * intel pstate sysfs interface, unused when per cpu
208 * controls are enforced
209 *
210 * Storage for user and policy defined limits.
211 */
212 struct perf_limits {
213 int no_turbo;
214 int turbo_disabled;
215 int max_perf_pct;
216 int min_perf_pct;
217 int32_t max_perf;
218 int32_t min_perf;
219 int max_policy_pct;
220 int max_sysfs_pct;
221 int min_policy_pct;
222 int min_sysfs_pct;
223 };
224
225 /**
226 * struct cpudata - Per CPU instance data storage
227 * @cpu: CPU number for this instance data
228 * @policy: CPUFreq policy value
229 * @update_util: CPUFreq utility callback information
230 * @update_util_set: CPUFreq utility callback is set
231 * @iowait_boost: iowait-related boost fraction
232 * @last_update: Time of the last update.
233 * @pstate: Stores P state limits for this CPU
234 * @vid: Stores VID limits for this CPU
235 * @pid: Stores PID parameters for this CPU
236 * @last_sample_time: Last Sample time
237 * @prev_aperf: Last APERF value read from APERF MSR
238 * @prev_mperf: Last MPERF value read from MPERF MSR
239 * @prev_tsc: Last timestamp counter (TSC) value
240 * @prev_cummulative_iowait: IO Wait time difference from last and
241 * current sample
242 * @sample: Storage for storing last Sample data
243 * @perf_limits: Pointer to perf_limit unique to this CPU
244 * Not all field in the structure are applicable
245 * when per cpu controls are enforced
246 * @acpi_perf_data: Stores ACPI perf information read from _PSS
247 * @valid_pss_table: Set to true for valid ACPI _PSS entries found
248 * @epp_powersave: Last saved HWP energy performance preference
249 * (EPP) or energy performance bias (EPB),
250 * when policy switched to performance
251 * @epp_policy: Last saved policy used to set EPP/EPB
252 * @epp_default: Power on default HWP energy performance
253 * preference/bias
254 * @epp_saved: Saved EPP/EPB during system suspend or CPU offline
255 * operation
256 *
257 * This structure stores per CPU instance data for all CPUs.
258 */
259 struct cpudata {
260 int cpu;
261
262 unsigned int policy;
263 struct update_util_data update_util;
264 bool update_util_set;
265
266 struct pstate_data pstate;
267 struct vid_data vid;
268 struct _pid pid;
269
270 u64 last_update;
271 u64 last_sample_time;
272 u64 prev_aperf;
273 u64 prev_mperf;
274 u64 prev_tsc;
275 u64 prev_cummulative_iowait;
276 struct sample sample;
277 struct perf_limits *perf_limits;
278 #ifdef CONFIG_ACPI
279 struct acpi_processor_performance acpi_perf_data;
280 bool valid_pss_table;
281 #endif
282 unsigned int iowait_boost;
283 s16 epp_powersave;
284 s16 epp_policy;
285 s16 epp_default;
286 s16 epp_saved;
287 };
288
289 static struct cpudata **all_cpu_data;
290
291 /**
292 * struct pstate_adjust_policy - Stores static PID configuration data
293 * @sample_rate_ms: PID calculation sample rate in ms
294 * @sample_rate_ns: Sample rate calculation in ns
295 * @deadband: PID deadband
296 * @setpoint: PID Setpoint
297 * @p_gain_pct: PID proportional gain
298 * @i_gain_pct: PID integral gain
299 * @d_gain_pct: PID derivative gain
300 *
301 * Stores per CPU model static PID configuration data.
302 */
303 struct pstate_adjust_policy {
304 int sample_rate_ms;
305 s64 sample_rate_ns;
306 int deadband;
307 int setpoint;
308 int p_gain_pct;
309 int d_gain_pct;
310 int i_gain_pct;
311 };
312
313 /**
314 * struct pstate_funcs - Per CPU model specific callbacks
315 * @get_max: Callback to get maximum non turbo effective P state
316 * @get_max_physical: Callback to get maximum non turbo physical P state
317 * @get_min: Callback to get minimum P state
318 * @get_turbo: Callback to get turbo P state
319 * @get_scaling: Callback to get frequency scaling factor
320 * @get_val: Callback to convert P state to actual MSR write value
321 * @get_vid: Callback to get VID data for Atom platforms
322 * @get_target_pstate: Callback to a function to calculate next P state to use
323 *
324 * Core and Atom CPU models have different way to get P State limits. This
325 * structure is used to store those callbacks.
326 */
327 struct pstate_funcs {
328 int (*get_max)(void);
329 int (*get_max_physical)(void);
330 int (*get_min)(void);
331 int (*get_turbo)(void);
332 int (*get_scaling)(void);
333 u64 (*get_val)(struct cpudata*, int pstate);
334 void (*get_vid)(struct cpudata *);
335 int32_t (*get_target_pstate)(struct cpudata *);
336 };
337
338 /**
339 * struct cpu_defaults- Per CPU model default config data
340 * @pid_policy: PID config data
341 * @funcs: Callback function data
342 */
343 struct cpu_defaults {
344 struct pstate_adjust_policy pid_policy;
345 struct pstate_funcs funcs;
346 };
347
348 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
349 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
350
351 static struct pstate_adjust_policy pid_params __read_mostly;
352 static struct pstate_funcs pstate_funcs __read_mostly;
353 static int hwp_active __read_mostly;
354 static bool per_cpu_limits __read_mostly;
355
356 static bool driver_registered __read_mostly;
357
358 #ifdef CONFIG_ACPI
359 static bool acpi_ppc;
360 #endif
361
362 static struct perf_limits performance_limits;
363 static struct perf_limits powersave_limits;
364 static struct perf_limits *limits;
365
366 static void intel_pstate_init_limits(struct perf_limits *limits)
367 {
368 memset(limits, 0, sizeof(*limits));
369 limits->max_perf_pct = 100;
370 limits->max_perf = int_ext_tofp(1);
371 limits->max_policy_pct = 100;
372 limits->max_sysfs_pct = 100;
373 }
374
375 static void intel_pstate_set_performance_limits(struct perf_limits *limits)
376 {
377 intel_pstate_init_limits(limits);
378 limits->min_perf_pct = 100;
379 limits->min_perf = int_ext_tofp(1);
380 limits->min_sysfs_pct = 100;
381 }
382
383 static DEFINE_MUTEX(intel_pstate_driver_lock);
384 static DEFINE_MUTEX(intel_pstate_limits_lock);
385
386 #ifdef CONFIG_ACPI
387
388 static bool intel_pstate_get_ppc_enable_status(void)
389 {
390 if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
391 acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
392 return true;
393
394 return acpi_ppc;
395 }
396
397 #ifdef CONFIG_ACPI_CPPC_LIB
398
399 /* The work item is needed to avoid CPU hotplug locking issues */
400 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
401 {
402 sched_set_itmt_support();
403 }
404
405 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
406
407 static void intel_pstate_set_itmt_prio(int cpu)
408 {
409 struct cppc_perf_caps cppc_perf;
410 static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
411 int ret;
412
413 ret = cppc_get_perf_caps(cpu, &cppc_perf);
414 if (ret)
415 return;
416
417 /*
418 * The priorities can be set regardless of whether or not
419 * sched_set_itmt_support(true) has been called and it is valid to
420 * update them at any time after it has been called.
421 */
422 sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
423
424 if (max_highest_perf <= min_highest_perf) {
425 if (cppc_perf.highest_perf > max_highest_perf)
426 max_highest_perf = cppc_perf.highest_perf;
427
428 if (cppc_perf.highest_perf < min_highest_perf)
429 min_highest_perf = cppc_perf.highest_perf;
430
431 if (max_highest_perf > min_highest_perf) {
432 /*
433 * This code can be run during CPU online under the
434 * CPU hotplug locks, so sched_set_itmt_support()
435 * cannot be called from here. Queue up a work item
436 * to invoke it.
437 */
438 schedule_work(&sched_itmt_work);
439 }
440 }
441 }
442 #else
443 static void intel_pstate_set_itmt_prio(int cpu)
444 {
445 }
446 #endif
447
448 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
449 {
450 struct cpudata *cpu;
451 int ret;
452 int i;
453
454 if (hwp_active) {
455 intel_pstate_set_itmt_prio(policy->cpu);
456 return;
457 }
458
459 if (!intel_pstate_get_ppc_enable_status())
460 return;
461
462 cpu = all_cpu_data[policy->cpu];
463
464 ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
465 policy->cpu);
466 if (ret)
467 return;
468
469 /*
470 * Check if the control value in _PSS is for PERF_CTL MSR, which should
471 * guarantee that the states returned by it map to the states in our
472 * list directly.
473 */
474 if (cpu->acpi_perf_data.control_register.space_id !=
475 ACPI_ADR_SPACE_FIXED_HARDWARE)
476 goto err;
477
478 /*
479 * If there is only one entry _PSS, simply ignore _PSS and continue as
480 * usual without taking _PSS into account
481 */
482 if (cpu->acpi_perf_data.state_count < 2)
483 goto err;
484
485 pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
486 for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
487 pr_debug(" %cP%d: %u MHz, %u mW, 0x%x\n",
488 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
489 (u32) cpu->acpi_perf_data.states[i].core_frequency,
490 (u32) cpu->acpi_perf_data.states[i].power,
491 (u32) cpu->acpi_perf_data.states[i].control);
492 }
493
494 /*
495 * The _PSS table doesn't contain whole turbo frequency range.
496 * This just contains +1 MHZ above the max non turbo frequency,
497 * with control value corresponding to max turbo ratio. But
498 * when cpufreq set policy is called, it will call with this
499 * max frequency, which will cause a reduced performance as
500 * this driver uses real max turbo frequency as the max
501 * frequency. So correct this frequency in _PSS table to
502 * correct max turbo frequency based on the turbo state.
503 * Also need to convert to MHz as _PSS freq is in MHz.
504 */
505 if (!limits->turbo_disabled)
506 cpu->acpi_perf_data.states[0].core_frequency =
507 policy->cpuinfo.max_freq / 1000;
508 cpu->valid_pss_table = true;
509 pr_debug("_PPC limits will be enforced\n");
510
511 return;
512
513 err:
514 cpu->valid_pss_table = false;
515 acpi_processor_unregister_performance(policy->cpu);
516 }
517
518 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
519 {
520 struct cpudata *cpu;
521
522 cpu = all_cpu_data[policy->cpu];
523 if (!cpu->valid_pss_table)
524 return;
525
526 acpi_processor_unregister_performance(policy->cpu);
527 }
528 #else
529 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
530 {
531 }
532
533 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
534 {
535 }
536 #endif
537
538 static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
539 int deadband, int integral) {
540 pid->setpoint = int_tofp(setpoint);
541 pid->deadband = int_tofp(deadband);
542 pid->integral = int_tofp(integral);
543 pid->last_err = int_tofp(setpoint) - int_tofp(busy);
544 }
545
546 static inline void pid_p_gain_set(struct _pid *pid, int percent)
547 {
548 pid->p_gain = div_fp(percent, 100);
549 }
550
551 static inline void pid_i_gain_set(struct _pid *pid, int percent)
552 {
553 pid->i_gain = div_fp(percent, 100);
554 }
555
556 static inline void pid_d_gain_set(struct _pid *pid, int percent)
557 {
558 pid->d_gain = div_fp(percent, 100);
559 }
560
561 static signed int pid_calc(struct _pid *pid, int32_t busy)
562 {
563 signed int result;
564 int32_t pterm, dterm, fp_error;
565 int32_t integral_limit;
566
567 fp_error = pid->setpoint - busy;
568
569 if (abs(fp_error) <= pid->deadband)
570 return 0;
571
572 pterm = mul_fp(pid->p_gain, fp_error);
573
574 pid->integral += fp_error;
575
576 /*
577 * We limit the integral here so that it will never
578 * get higher than 30. This prevents it from becoming
579 * too large an input over long periods of time and allows
580 * it to get factored out sooner.
581 *
582 * The value of 30 was chosen through experimentation.
583 */
584 integral_limit = int_tofp(30);
585 if (pid->integral > integral_limit)
586 pid->integral = integral_limit;
587 if (pid->integral < -integral_limit)
588 pid->integral = -integral_limit;
589
590 dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
591 pid->last_err = fp_error;
592
593 result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
594 result = result + (1 << (FRAC_BITS-1));
595 return (signed int)fp_toint(result);
596 }
597
598 static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
599 {
600 pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
601 pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
602 pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
603
604 pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
605 }
606
607 static inline void intel_pstate_reset_all_pid(void)
608 {
609 unsigned int cpu;
610
611 for_each_online_cpu(cpu) {
612 if (all_cpu_data[cpu])
613 intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
614 }
615 }
616
617 static inline void update_turbo_state(void)
618 {
619 u64 misc_en;
620 struct cpudata *cpu;
621
622 cpu = all_cpu_data[0];
623 rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
624 limits->turbo_disabled =
625 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
626 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
627 }
628
629 static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
630 {
631 u64 epb;
632 int ret;
633
634 if (!static_cpu_has(X86_FEATURE_EPB))
635 return -ENXIO;
636
637 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
638 if (ret)
639 return (s16)ret;
640
641 return (s16)(epb & 0x0f);
642 }
643
644 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
645 {
646 s16 epp;
647
648 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
649 /*
650 * When hwp_req_data is 0, means that caller didn't read
651 * MSR_HWP_REQUEST, so need to read and get EPP.
652 */
653 if (!hwp_req_data) {
654 epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
655 &hwp_req_data);
656 if (epp)
657 return epp;
658 }
659 epp = (hwp_req_data >> 24) & 0xff;
660 } else {
661 /* When there is no EPP present, HWP uses EPB settings */
662 epp = intel_pstate_get_epb(cpu_data);
663 }
664
665 return epp;
666 }
667
668 static int intel_pstate_set_epb(int cpu, s16 pref)
669 {
670 u64 epb;
671 int ret;
672
673 if (!static_cpu_has(X86_FEATURE_EPB))
674 return -ENXIO;
675
676 ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
677 if (ret)
678 return ret;
679
680 epb = (epb & ~0x0f) | pref;
681 wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
682
683 return 0;
684 }
685
686 /*
687 * EPP/EPB display strings corresponding to EPP index in the
688 * energy_perf_strings[]
689 * index String
690 *-------------------------------------
691 * 0 default
692 * 1 performance
693 * 2 balance_performance
694 * 3 balance_power
695 * 4 power
696 */
697 static const char * const energy_perf_strings[] = {
698 "default",
699 "performance",
700 "balance_performance",
701 "balance_power",
702 "power",
703 NULL
704 };
705
706 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
707 {
708 s16 epp;
709 int index = -EINVAL;
710
711 epp = intel_pstate_get_epp(cpu_data, 0);
712 if (epp < 0)
713 return epp;
714
715 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
716 /*
717 * Range:
718 * 0x00-0x3F : Performance
719 * 0x40-0x7F : Balance performance
720 * 0x80-0xBF : Balance power
721 * 0xC0-0xFF : Power
722 * The EPP is a 8 bit value, but our ranges restrict the
723 * value which can be set. Here only using top two bits
724 * effectively.
725 */
726 index = (epp >> 6) + 1;
727 } else if (static_cpu_has(X86_FEATURE_EPB)) {
728 /*
729 * Range:
730 * 0x00-0x03 : Performance
731 * 0x04-0x07 : Balance performance
732 * 0x08-0x0B : Balance power
733 * 0x0C-0x0F : Power
734 * The EPB is a 4 bit value, but our ranges restrict the
735 * value which can be set. Here only using top two bits
736 * effectively.
737 */
738 index = (epp >> 2) + 1;
739 }
740
741 return index;
742 }
743
744 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
745 int pref_index)
746 {
747 int epp = -EINVAL;
748 int ret;
749
750 if (!pref_index)
751 epp = cpu_data->epp_default;
752
753 mutex_lock(&intel_pstate_limits_lock);
754
755 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
756 u64 value;
757
758 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
759 if (ret)
760 goto return_pref;
761
762 value &= ~GENMASK_ULL(31, 24);
763
764 /*
765 * If epp is not default, convert from index into
766 * energy_perf_strings to epp value, by shifting 6
767 * bits left to use only top two bits in epp.
768 * The resultant epp need to shifted by 24 bits to
769 * epp position in MSR_HWP_REQUEST.
770 */
771 if (epp == -EINVAL)
772 epp = (pref_index - 1) << 6;
773
774 value |= (u64)epp << 24;
775 ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
776 } else {
777 if (epp == -EINVAL)
778 epp = (pref_index - 1) << 2;
779 ret = intel_pstate_set_epb(cpu_data->cpu, epp);
780 }
781 return_pref:
782 mutex_unlock(&intel_pstate_limits_lock);
783
784 return ret;
785 }
786
787 static ssize_t show_energy_performance_available_preferences(
788 struct cpufreq_policy *policy, char *buf)
789 {
790 int i = 0;
791 int ret = 0;
792
793 while (energy_perf_strings[i] != NULL)
794 ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
795
796 ret += sprintf(&buf[ret], "\n");
797
798 return ret;
799 }
800
801 cpufreq_freq_attr_ro(energy_performance_available_preferences);
802
803 static ssize_t store_energy_performance_preference(
804 struct cpufreq_policy *policy, const char *buf, size_t count)
805 {
806 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
807 char str_preference[21];
808 int ret, i = 0;
809
810 ret = sscanf(buf, "%20s", str_preference);
811 if (ret != 1)
812 return -EINVAL;
813
814 while (energy_perf_strings[i] != NULL) {
815 if (!strcmp(str_preference, energy_perf_strings[i])) {
816 intel_pstate_set_energy_pref_index(cpu_data, i);
817 return count;
818 }
819 ++i;
820 }
821
822 return -EINVAL;
823 }
824
825 static ssize_t show_energy_performance_preference(
826 struct cpufreq_policy *policy, char *buf)
827 {
828 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
829 int preference;
830
831 preference = intel_pstate_get_energy_pref_index(cpu_data);
832 if (preference < 0)
833 return preference;
834
835 return sprintf(buf, "%s\n", energy_perf_strings[preference]);
836 }
837
838 cpufreq_freq_attr_rw(energy_performance_preference);
839
840 static struct freq_attr *hwp_cpufreq_attrs[] = {
841 &energy_performance_preference,
842 &energy_performance_available_preferences,
843 NULL,
844 };
845
846 static void intel_pstate_hwp_set(struct cpufreq_policy *policy)
847 {
848 int min, hw_min, max, hw_max, cpu, range, adj_range;
849 struct perf_limits *perf_limits = limits;
850 u64 value, cap;
851
852 for_each_cpu(cpu, policy->cpus) {
853 int max_perf_pct, min_perf_pct;
854 struct cpudata *cpu_data = all_cpu_data[cpu];
855 s16 epp;
856
857 if (per_cpu_limits)
858 perf_limits = all_cpu_data[cpu]->perf_limits;
859
860 rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
861 hw_min = HWP_LOWEST_PERF(cap);
862 if (limits->no_turbo)
863 hw_max = HWP_GUARANTEED_PERF(cap);
864 else
865 hw_max = HWP_HIGHEST_PERF(cap);
866 range = hw_max - hw_min;
867
868 max_perf_pct = perf_limits->max_perf_pct;
869 min_perf_pct = perf_limits->min_perf_pct;
870
871 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
872 adj_range = min_perf_pct * range / 100;
873 min = hw_min + adj_range;
874 value &= ~HWP_MIN_PERF(~0L);
875 value |= HWP_MIN_PERF(min);
876
877 adj_range = max_perf_pct * range / 100;
878 max = hw_min + adj_range;
879
880 value &= ~HWP_MAX_PERF(~0L);
881 value |= HWP_MAX_PERF(max);
882
883 if (cpu_data->epp_policy == cpu_data->policy)
884 goto skip_epp;
885
886 cpu_data->epp_policy = cpu_data->policy;
887
888 if (cpu_data->epp_saved >= 0) {
889 epp = cpu_data->epp_saved;
890 cpu_data->epp_saved = -EINVAL;
891 goto update_epp;
892 }
893
894 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
895 epp = intel_pstate_get_epp(cpu_data, value);
896 cpu_data->epp_powersave = epp;
897 /* If EPP read was failed, then don't try to write */
898 if (epp < 0)
899 goto skip_epp;
900
901
902 epp = 0;
903 } else {
904 /* skip setting EPP, when saved value is invalid */
905 if (cpu_data->epp_powersave < 0)
906 goto skip_epp;
907
908 /*
909 * No need to restore EPP when it is not zero. This
910 * means:
911 * - Policy is not changed
912 * - user has manually changed
913 * - Error reading EPB
914 */
915 epp = intel_pstate_get_epp(cpu_data, value);
916 if (epp)
917 goto skip_epp;
918
919 epp = cpu_data->epp_powersave;
920 }
921 update_epp:
922 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
923 value &= ~GENMASK_ULL(31, 24);
924 value |= (u64)epp << 24;
925 } else {
926 intel_pstate_set_epb(cpu, epp);
927 }
928 skip_epp:
929 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
930 }
931 }
932
933 static int intel_pstate_hwp_set_policy(struct cpufreq_policy *policy)
934 {
935 if (hwp_active)
936 intel_pstate_hwp_set(policy);
937
938 return 0;
939 }
940
941 static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
942 {
943 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
944
945 if (!hwp_active)
946 return 0;
947
948 cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);
949
950 return 0;
951 }
952
953 static int intel_pstate_resume(struct cpufreq_policy *policy)
954 {
955 int ret;
956
957 if (!hwp_active)
958 return 0;
959
960 mutex_lock(&intel_pstate_limits_lock);
961
962 all_cpu_data[policy->cpu]->epp_policy = 0;
963
964 ret = intel_pstate_hwp_set_policy(policy);
965
966 mutex_unlock(&intel_pstate_limits_lock);
967
968 return ret;
969 }
970
971 static void intel_pstate_update_policies(void)
972 __releases(&intel_pstate_limits_lock)
973 __acquires(&intel_pstate_limits_lock)
974 {
975 struct perf_limits *saved_limits = limits;
976 int cpu;
977
978 mutex_unlock(&intel_pstate_limits_lock);
979
980 for_each_possible_cpu(cpu)
981 cpufreq_update_policy(cpu);
982
983 mutex_lock(&intel_pstate_limits_lock);
984
985 limits = saved_limits;
986 }
987
988 /************************** debugfs begin ************************/
989 static int pid_param_set(void *data, u64 val)
990 {
991 *(u32 *)data = val;
992 intel_pstate_reset_all_pid();
993 return 0;
994 }
995
996 static int pid_param_get(void *data, u64 *val)
997 {
998 *val = *(u32 *)data;
999 return 0;
1000 }
1001 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
1002
1003 static struct dentry *debugfs_parent;
1004
1005 struct pid_param {
1006 char *name;
1007 void *value;
1008 struct dentry *dentry;
1009 };
1010
1011 static struct pid_param pid_files[] = {
1012 {"sample_rate_ms", &pid_params.sample_rate_ms, },
1013 {"d_gain_pct", &pid_params.d_gain_pct, },
1014 {"i_gain_pct", &pid_params.i_gain_pct, },
1015 {"deadband", &pid_params.deadband, },
1016 {"setpoint", &pid_params.setpoint, },
1017 {"p_gain_pct", &pid_params.p_gain_pct, },
1018 {NULL, NULL, }
1019 };
1020
1021 static void intel_pstate_debug_expose_params(void)
1022 {
1023 int i;
1024
1025 debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
1026 if (IS_ERR_OR_NULL(debugfs_parent))
1027 return;
1028
1029 for (i = 0; pid_files[i].name; i++) {
1030 struct dentry *dentry;
1031
1032 dentry = debugfs_create_file(pid_files[i].name, 0660,
1033 debugfs_parent, pid_files[i].value,
1034 &fops_pid_param);
1035 if (!IS_ERR(dentry))
1036 pid_files[i].dentry = dentry;
1037 }
1038 }
1039
1040 static void intel_pstate_debug_hide_params(void)
1041 {
1042 int i;
1043
1044 if (IS_ERR_OR_NULL(debugfs_parent))
1045 return;
1046
1047 for (i = 0; pid_files[i].name; i++) {
1048 debugfs_remove(pid_files[i].dentry);
1049 pid_files[i].dentry = NULL;
1050 }
1051
1052 debugfs_remove(debugfs_parent);
1053 debugfs_parent = NULL;
1054 }
1055
1056 /************************** debugfs end ************************/
1057
1058 /************************** sysfs begin ************************/
1059 #define show_one(file_name, object) \
1060 static ssize_t show_##file_name \
1061 (struct kobject *kobj, struct attribute *attr, char *buf) \
1062 { \
1063 return sprintf(buf, "%u\n", limits->object); \
1064 }
1065
1066 static ssize_t intel_pstate_show_status(char *buf);
1067 static int intel_pstate_update_status(const char *buf, size_t size);
1068
1069 static ssize_t show_status(struct kobject *kobj,
1070 struct attribute *attr, char *buf)
1071 {
1072 ssize_t ret;
1073
1074 mutex_lock(&intel_pstate_driver_lock);
1075 ret = intel_pstate_show_status(buf);
1076 mutex_unlock(&intel_pstate_driver_lock);
1077
1078 return ret;
1079 }
1080
1081 static ssize_t store_status(struct kobject *a, struct attribute *b,
1082 const char *buf, size_t count)
1083 {
1084 char *p = memchr(buf, '\n', count);
1085 int ret;
1086
1087 mutex_lock(&intel_pstate_driver_lock);
1088 ret = intel_pstate_update_status(buf, p ? p - buf : count);
1089 mutex_unlock(&intel_pstate_driver_lock);
1090
1091 return ret < 0 ? ret : count;
1092 }
1093
1094 static ssize_t show_turbo_pct(struct kobject *kobj,
1095 struct attribute *attr, char *buf)
1096 {
1097 struct cpudata *cpu;
1098 int total, no_turbo, turbo_pct;
1099 uint32_t turbo_fp;
1100
1101 mutex_lock(&intel_pstate_driver_lock);
1102
1103 if (!driver_registered) {
1104 mutex_unlock(&intel_pstate_driver_lock);
1105 return -EAGAIN;
1106 }
1107
1108 cpu = all_cpu_data[0];
1109
1110 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1111 no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1112 turbo_fp = div_fp(no_turbo, total);
1113 turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1114
1115 mutex_unlock(&intel_pstate_driver_lock);
1116
1117 return sprintf(buf, "%u\n", turbo_pct);
1118 }
1119
1120 static ssize_t show_num_pstates(struct kobject *kobj,
1121 struct attribute *attr, char *buf)
1122 {
1123 struct cpudata *cpu;
1124 int total;
1125
1126 mutex_lock(&intel_pstate_driver_lock);
1127
1128 if (!driver_registered) {
1129 mutex_unlock(&intel_pstate_driver_lock);
1130 return -EAGAIN;
1131 }
1132
1133 cpu = all_cpu_data[0];
1134 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1135
1136 mutex_unlock(&intel_pstate_driver_lock);
1137
1138 return sprintf(buf, "%u\n", total);
1139 }
1140
1141 static ssize_t show_no_turbo(struct kobject *kobj,
1142 struct attribute *attr, char *buf)
1143 {
1144 ssize_t ret;
1145
1146 mutex_lock(&intel_pstate_driver_lock);
1147
1148 if (!driver_registered) {
1149 mutex_unlock(&intel_pstate_driver_lock);
1150 return -EAGAIN;
1151 }
1152
1153 update_turbo_state();
1154 if (limits->turbo_disabled)
1155 ret = sprintf(buf, "%u\n", limits->turbo_disabled);
1156 else
1157 ret = sprintf(buf, "%u\n", limits->no_turbo);
1158
1159 mutex_unlock(&intel_pstate_driver_lock);
1160
1161 return ret;
1162 }
1163
1164 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
1165 const char *buf, size_t count)
1166 {
1167 unsigned int input;
1168 int ret;
1169
1170 ret = sscanf(buf, "%u", &input);
1171 if (ret != 1)
1172 return -EINVAL;
1173
1174 mutex_lock(&intel_pstate_driver_lock);
1175
1176 if (!driver_registered) {
1177 mutex_unlock(&intel_pstate_driver_lock);
1178 return -EAGAIN;
1179 }
1180
1181 mutex_lock(&intel_pstate_limits_lock);
1182
1183 update_turbo_state();
1184 if (limits->turbo_disabled) {
1185 pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
1186 mutex_unlock(&intel_pstate_limits_lock);
1187 mutex_unlock(&intel_pstate_driver_lock);
1188 return -EPERM;
1189 }
1190
1191 limits->no_turbo = clamp_t(int, input, 0, 1);
1192
1193 intel_pstate_update_policies();
1194
1195 mutex_unlock(&intel_pstate_limits_lock);
1196
1197 mutex_unlock(&intel_pstate_driver_lock);
1198
1199 return count;
1200 }
1201
1202 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
1203 const char *buf, size_t count)
1204 {
1205 unsigned int input;
1206 int ret;
1207
1208 ret = sscanf(buf, "%u", &input);
1209 if (ret != 1)
1210 return -EINVAL;
1211
1212 mutex_lock(&intel_pstate_driver_lock);
1213
1214 if (!driver_registered) {
1215 mutex_unlock(&intel_pstate_driver_lock);
1216 return -EAGAIN;
1217 }
1218
1219 mutex_lock(&intel_pstate_limits_lock);
1220
1221 limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
1222 limits->max_perf_pct = min(limits->max_policy_pct,
1223 limits->max_sysfs_pct);
1224 limits->max_perf_pct = max(limits->min_policy_pct,
1225 limits->max_perf_pct);
1226 limits->max_perf_pct = max(limits->min_perf_pct,
1227 limits->max_perf_pct);
1228 limits->max_perf = div_ext_fp(limits->max_perf_pct, 100);
1229
1230 intel_pstate_update_policies();
1231
1232 mutex_unlock(&intel_pstate_limits_lock);
1233
1234 mutex_unlock(&intel_pstate_driver_lock);
1235
1236 return count;
1237 }
1238
1239 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
1240 const char *buf, size_t count)
1241 {
1242 unsigned int input;
1243 int ret;
1244
1245 ret = sscanf(buf, "%u", &input);
1246 if (ret != 1)
1247 return -EINVAL;
1248
1249 mutex_lock(&intel_pstate_driver_lock);
1250
1251 if (!driver_registered) {
1252 mutex_unlock(&intel_pstate_driver_lock);
1253 return -EAGAIN;
1254 }
1255
1256 mutex_lock(&intel_pstate_limits_lock);
1257
1258 limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
1259 limits->min_perf_pct = max(limits->min_policy_pct,
1260 limits->min_sysfs_pct);
1261 limits->min_perf_pct = min(limits->max_policy_pct,
1262 limits->min_perf_pct);
1263 limits->min_perf_pct = min(limits->max_perf_pct,
1264 limits->min_perf_pct);
1265 limits->min_perf = div_ext_fp(limits->min_perf_pct, 100);
1266
1267 intel_pstate_update_policies();
1268
1269 mutex_unlock(&intel_pstate_limits_lock);
1270
1271 mutex_unlock(&intel_pstate_driver_lock);
1272
1273 return count;
1274 }
1275
1276 show_one(max_perf_pct, max_perf_pct);
1277 show_one(min_perf_pct, min_perf_pct);
1278
1279 define_one_global_rw(status);
1280 define_one_global_rw(no_turbo);
1281 define_one_global_rw(max_perf_pct);
1282 define_one_global_rw(min_perf_pct);
1283 define_one_global_ro(turbo_pct);
1284 define_one_global_ro(num_pstates);
1285
1286 static struct attribute *intel_pstate_attributes[] = {
1287 &status.attr,
1288 &no_turbo.attr,
1289 &turbo_pct.attr,
1290 &num_pstates.attr,
1291 NULL
1292 };
1293
1294 static struct attribute_group intel_pstate_attr_group = {
1295 .attrs = intel_pstate_attributes,
1296 };
1297
1298 static void __init intel_pstate_sysfs_expose_params(void)
1299 {
1300 struct kobject *intel_pstate_kobject;
1301 int rc;
1302
1303 intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1304 &cpu_subsys.dev_root->kobj);
1305 if (WARN_ON(!intel_pstate_kobject))
1306 return;
1307
1308 rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1309 if (WARN_ON(rc))
1310 return;
1311
1312 /*
1313 * If per cpu limits are enforced there are no global limits, so
1314 * return without creating max/min_perf_pct attributes
1315 */
1316 if (per_cpu_limits)
1317 return;
1318
1319 rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1320 WARN_ON(rc);
1321
1322 rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1323 WARN_ON(rc);
1324
1325 }
1326 /************************** sysfs end ************************/
1327
1328 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1329 {
1330 /* First disable HWP notification interrupt as we don't process them */
1331 if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
1332 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1333
1334 wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1335 cpudata->epp_policy = 0;
1336 if (cpudata->epp_default == -EINVAL)
1337 cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1338 }
1339
1340 #define MSR_IA32_POWER_CTL_BIT_EE 19
1341
1342 /* Disable energy efficiency optimization */
1343 static void intel_pstate_disable_ee(int cpu)
1344 {
1345 u64 power_ctl;
1346 int ret;
1347
1348 ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
1349 if (ret)
1350 return;
1351
1352 if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
1353 pr_info("Disabling energy efficiency optimization\n");
1354 power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1355 wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
1356 }
1357 }
1358
1359 static int atom_get_min_pstate(void)
1360 {
1361 u64 value;
1362
1363 rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1364 return (value >> 8) & 0x7F;
1365 }
1366
1367 static int atom_get_max_pstate(void)
1368 {
1369 u64 value;
1370
1371 rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1372 return (value >> 16) & 0x7F;
1373 }
1374
1375 static int atom_get_turbo_pstate(void)
1376 {
1377 u64 value;
1378
1379 rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
1380 return value & 0x7F;
1381 }
1382
1383 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1384 {
1385 u64 val;
1386 int32_t vid_fp;
1387 u32 vid;
1388
1389 val = (u64)pstate << 8;
1390 if (limits->no_turbo && !limits->turbo_disabled)
1391 val |= (u64)1 << 32;
1392
1393 vid_fp = cpudata->vid.min + mul_fp(
1394 int_tofp(pstate - cpudata->pstate.min_pstate),
1395 cpudata->vid.ratio);
1396
1397 vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1398 vid = ceiling_fp(vid_fp);
1399
1400 if (pstate > cpudata->pstate.max_pstate)
1401 vid = cpudata->vid.turbo;
1402
1403 return val | vid;
1404 }
1405
1406 static int silvermont_get_scaling(void)
1407 {
1408 u64 value;
1409 int i;
1410 /* Defined in Table 35-6 from SDM (Sept 2015) */
1411 static int silvermont_freq_table[] = {
1412 83300, 100000, 133300, 116700, 80000};
1413
1414 rdmsrl(MSR_FSB_FREQ, value);
1415 i = value & 0x7;
1416 WARN_ON(i > 4);
1417
1418 return silvermont_freq_table[i];
1419 }
1420
1421 static int airmont_get_scaling(void)
1422 {
1423 u64 value;
1424 int i;
1425 /* Defined in Table 35-10 from SDM (Sept 2015) */
1426 static int airmont_freq_table[] = {
1427 83300, 100000, 133300, 116700, 80000,
1428 93300, 90000, 88900, 87500};
1429
1430 rdmsrl(MSR_FSB_FREQ, value);
1431 i = value & 0xF;
1432 WARN_ON(i > 8);
1433
1434 return airmont_freq_table[i];
1435 }
1436
1437 static void atom_get_vid(struct cpudata *cpudata)
1438 {
1439 u64 value;
1440
1441 rdmsrl(MSR_ATOM_CORE_VIDS, value);
1442 cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1443 cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1444 cpudata->vid.ratio = div_fp(
1445 cpudata->vid.max - cpudata->vid.min,
1446 int_tofp(cpudata->pstate.max_pstate -
1447 cpudata->pstate.min_pstate));
1448
1449 rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1450 cpudata->vid.turbo = value & 0x7f;
1451 }
1452
1453 static int core_get_min_pstate(void)
1454 {
1455 u64 value;
1456
1457 rdmsrl(MSR_PLATFORM_INFO, value);
1458 return (value >> 40) & 0xFF;
1459 }
1460
1461 static int core_get_max_pstate_physical(void)
1462 {
1463 u64 value;
1464
1465 rdmsrl(MSR_PLATFORM_INFO, value);
1466 return (value >> 8) & 0xFF;
1467 }
1468
1469 static int core_get_tdp_ratio(u64 plat_info)
1470 {
1471 /* Check how many TDP levels present */
1472 if (plat_info & 0x600000000) {
1473 u64 tdp_ctrl;
1474 u64 tdp_ratio;
1475 int tdp_msr;
1476 int err;
1477
1478 /* Get the TDP level (0, 1, 2) to get ratios */
1479 err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1480 if (err)
1481 return err;
1482
1483 /* TDP MSR are continuous starting at 0x648 */
1484 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1485 err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1486 if (err)
1487 return err;
1488
1489 /* For level 1 and 2, bits[23:16] contain the ratio */
1490 if (tdp_ctrl & 0x03)
1491 tdp_ratio >>= 16;
1492
1493 tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1494 pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1495
1496 return (int)tdp_ratio;
1497 }
1498
1499 return -ENXIO;
1500 }
1501
1502 static int core_get_max_pstate(void)
1503 {
1504 u64 tar;
1505 u64 plat_info;
1506 int max_pstate;
1507 int tdp_ratio;
1508 int err;
1509
1510 rdmsrl(MSR_PLATFORM_INFO, plat_info);
1511 max_pstate = (plat_info >> 8) & 0xFF;
1512
1513 tdp_ratio = core_get_tdp_ratio(plat_info);
1514 if (tdp_ratio <= 0)
1515 return max_pstate;
1516
1517 if (hwp_active) {
1518 /* Turbo activation ratio is not used on HWP platforms */
1519 return tdp_ratio;
1520 }
1521
1522 err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1523 if (!err) {
1524 int tar_levels;
1525
1526 /* Do some sanity checking for safety */
1527 tar_levels = tar & 0xff;
1528 if (tdp_ratio - 1 == tar_levels) {
1529 max_pstate = tar_levels;
1530 pr_debug("max_pstate=TAC %x\n", max_pstate);
1531 }
1532 }
1533
1534 return max_pstate;
1535 }
1536
1537 static int core_get_turbo_pstate(void)
1538 {
1539 u64 value;
1540 int nont, ret;
1541
1542 rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1543 nont = core_get_max_pstate();
1544 ret = (value) & 255;
1545 if (ret <= nont)
1546 ret = nont;
1547 return ret;
1548 }
1549
1550 static inline int core_get_scaling(void)
1551 {
1552 return 100000;
1553 }
1554
1555 static u64 core_get_val(struct cpudata *cpudata, int pstate)
1556 {
1557 u64 val;
1558
1559 val = (u64)pstate << 8;
1560 if (limits->no_turbo && !limits->turbo_disabled)
1561 val |= (u64)1 << 32;
1562
1563 return val;
1564 }
1565
1566 static int knl_get_turbo_pstate(void)
1567 {
1568 u64 value;
1569 int nont, ret;
1570
1571 rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1572 nont = core_get_max_pstate();
1573 ret = (((value) >> 8) & 0xFF);
1574 if (ret <= nont)
1575 ret = nont;
1576 return ret;
1577 }
1578
1579 static struct cpu_defaults core_params = {
1580 .pid_policy = {
1581 .sample_rate_ms = 10,
1582 .deadband = 0,
1583 .setpoint = 97,
1584 .p_gain_pct = 20,
1585 .d_gain_pct = 0,
1586 .i_gain_pct = 0,
1587 },
1588 .funcs = {
1589 .get_max = core_get_max_pstate,
1590 .get_max_physical = core_get_max_pstate_physical,
1591 .get_min = core_get_min_pstate,
1592 .get_turbo = core_get_turbo_pstate,
1593 .get_scaling = core_get_scaling,
1594 .get_val = core_get_val,
1595 .get_target_pstate = get_target_pstate_use_performance,
1596 },
1597 };
1598
1599 static const struct cpu_defaults silvermont_params = {
1600 .pid_policy = {
1601 .sample_rate_ms = 10,
1602 .deadband = 0,
1603 .setpoint = 60,
1604 .p_gain_pct = 14,
1605 .d_gain_pct = 0,
1606 .i_gain_pct = 4,
1607 },
1608 .funcs = {
1609 .get_max = atom_get_max_pstate,
1610 .get_max_physical = atom_get_max_pstate,
1611 .get_min = atom_get_min_pstate,
1612 .get_turbo = atom_get_turbo_pstate,
1613 .get_val = atom_get_val,
1614 .get_scaling = silvermont_get_scaling,
1615 .get_vid = atom_get_vid,
1616 .get_target_pstate = get_target_pstate_use_cpu_load,
1617 },
1618 };
1619
1620 static const struct cpu_defaults airmont_params = {
1621 .pid_policy = {
1622 .sample_rate_ms = 10,
1623 .deadband = 0,
1624 .setpoint = 60,
1625 .p_gain_pct = 14,
1626 .d_gain_pct = 0,
1627 .i_gain_pct = 4,
1628 },
1629 .funcs = {
1630 .get_max = atom_get_max_pstate,
1631 .get_max_physical = atom_get_max_pstate,
1632 .get_min = atom_get_min_pstate,
1633 .get_turbo = atom_get_turbo_pstate,
1634 .get_val = atom_get_val,
1635 .get_scaling = airmont_get_scaling,
1636 .get_vid = atom_get_vid,
1637 .get_target_pstate = get_target_pstate_use_cpu_load,
1638 },
1639 };
1640
1641 static const struct cpu_defaults knl_params = {
1642 .pid_policy = {
1643 .sample_rate_ms = 10,
1644 .deadband = 0,
1645 .setpoint = 97,
1646 .p_gain_pct = 20,
1647 .d_gain_pct = 0,
1648 .i_gain_pct = 0,
1649 },
1650 .funcs = {
1651 .get_max = core_get_max_pstate,
1652 .get_max_physical = core_get_max_pstate_physical,
1653 .get_min = core_get_min_pstate,
1654 .get_turbo = knl_get_turbo_pstate,
1655 .get_scaling = core_get_scaling,
1656 .get_val = core_get_val,
1657 .get_target_pstate = get_target_pstate_use_performance,
1658 },
1659 };
1660
1661 static const struct cpu_defaults bxt_params = {
1662 .pid_policy = {
1663 .sample_rate_ms = 10,
1664 .deadband = 0,
1665 .setpoint = 60,
1666 .p_gain_pct = 14,
1667 .d_gain_pct = 0,
1668 .i_gain_pct = 4,
1669 },
1670 .funcs = {
1671 .get_max = core_get_max_pstate,
1672 .get_max_physical = core_get_max_pstate_physical,
1673 .get_min = core_get_min_pstate,
1674 .get_turbo = core_get_turbo_pstate,
1675 .get_scaling = core_get_scaling,
1676 .get_val = core_get_val,
1677 .get_target_pstate = get_target_pstate_use_cpu_load,
1678 },
1679 };
1680
1681 static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
1682 {
1683 int max_perf = cpu->pstate.turbo_pstate;
1684 int max_perf_adj;
1685 int min_perf;
1686 struct perf_limits *perf_limits = limits;
1687
1688 if (limits->no_turbo || limits->turbo_disabled)
1689 max_perf = cpu->pstate.max_pstate;
1690
1691 if (per_cpu_limits)
1692 perf_limits = cpu->perf_limits;
1693
1694 /*
1695 * performance can be limited by user through sysfs, by cpufreq
1696 * policy, or by cpu specific default values determined through
1697 * experimentation.
1698 */
1699 max_perf_adj = fp_ext_toint(max_perf * perf_limits->max_perf);
1700 *max = clamp_t(int, max_perf_adj,
1701 cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
1702
1703 min_perf = fp_ext_toint(max_perf * perf_limits->min_perf);
1704 *min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
1705 }
1706
1707 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1708 {
1709 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1710 cpu->pstate.current_pstate = pstate;
1711 /*
1712 * Generally, there is no guarantee that this code will always run on
1713 * the CPU being updated, so force the register update to run on the
1714 * right CPU.
1715 */
1716 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1717 pstate_funcs.get_val(cpu, pstate));
1718 }
1719
1720 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1721 {
1722 intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1723 }
1724
1725 static void intel_pstate_max_within_limits(struct cpudata *cpu)
1726 {
1727 int min_pstate, max_pstate;
1728
1729 update_turbo_state();
1730 intel_pstate_get_min_max(cpu, &min_pstate, &max_pstate);
1731 intel_pstate_set_pstate(cpu, max_pstate);
1732 }
1733
1734 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1735 {
1736 cpu->pstate.min_pstate = pstate_funcs.get_min();
1737 cpu->pstate.max_pstate = pstate_funcs.get_max();
1738 cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1739 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1740 cpu->pstate.scaling = pstate_funcs.get_scaling();
1741 cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1742 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1743
1744 if (pstate_funcs.get_vid)
1745 pstate_funcs.get_vid(cpu);
1746
1747 intel_pstate_set_min_pstate(cpu);
1748 }
1749
1750 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1751 {
1752 struct sample *sample = &cpu->sample;
1753
1754 sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1755 }
1756
1757 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1758 {
1759 u64 aperf, mperf;
1760 unsigned long flags;
1761 u64 tsc;
1762
1763 local_irq_save(flags);
1764 rdmsrl(MSR_IA32_APERF, aperf);
1765 rdmsrl(MSR_IA32_MPERF, mperf);
1766 tsc = rdtsc();
1767 if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1768 local_irq_restore(flags);
1769 return false;
1770 }
1771 local_irq_restore(flags);
1772
1773 cpu->last_sample_time = cpu->sample.time;
1774 cpu->sample.time = time;
1775 cpu->sample.aperf = aperf;
1776 cpu->sample.mperf = mperf;
1777 cpu->sample.tsc = tsc;
1778 cpu->sample.aperf -= cpu->prev_aperf;
1779 cpu->sample.mperf -= cpu->prev_mperf;
1780 cpu->sample.tsc -= cpu->prev_tsc;
1781
1782 cpu->prev_aperf = aperf;
1783 cpu->prev_mperf = mperf;
1784 cpu->prev_tsc = tsc;
1785 /*
1786 * First time this function is invoked in a given cycle, all of the
1787 * previous sample data fields are equal to zero or stale and they must
1788 * be populated with meaningful numbers for things to work, so assume
1789 * that sample.time will always be reset before setting the utilization
1790 * update hook and make the caller skip the sample then.
1791 */
1792 return !!cpu->last_sample_time;
1793 }
1794
1795 static inline int32_t get_avg_frequency(struct cpudata *cpu)
1796 {
1797 return mul_ext_fp(cpu->sample.core_avg_perf,
1798 cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
1799 }
1800
1801 static inline int32_t get_avg_pstate(struct cpudata *cpu)
1802 {
1803 return mul_ext_fp(cpu->pstate.max_pstate_physical,
1804 cpu->sample.core_avg_perf);
1805 }
1806
1807 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
1808 {
1809 struct sample *sample = &cpu->sample;
1810 int32_t busy_frac, boost;
1811 int target, avg_pstate;
1812
1813 busy_frac = div_fp(sample->mperf, sample->tsc);
1814
1815 boost = cpu->iowait_boost;
1816 cpu->iowait_boost >>= 1;
1817
1818 if (busy_frac < boost)
1819 busy_frac = boost;
1820
1821 sample->busy_scaled = busy_frac * 100;
1822
1823 target = limits->no_turbo || limits->turbo_disabled ?
1824 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1825 target += target >> 2;
1826 target = mul_fp(target, busy_frac);
1827 if (target < cpu->pstate.min_pstate)
1828 target = cpu->pstate.min_pstate;
1829
1830 /*
1831 * If the average P-state during the previous cycle was higher than the
1832 * current target, add 50% of the difference to the target to reduce
1833 * possible performance oscillations and offset possible performance
1834 * loss related to moving the workload from one CPU to another within
1835 * a package/module.
1836 */
1837 avg_pstate = get_avg_pstate(cpu);
1838 if (avg_pstate > target)
1839 target += (avg_pstate - target) >> 1;
1840
1841 return target;
1842 }
1843
1844 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
1845 {
1846 int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
1847 u64 duration_ns;
1848
1849 /*
1850 * perf_scaled is the ratio of the average P-state during the last
1851 * sampling period to the P-state requested last time (in percent).
1852 *
1853 * That measures the system's response to the previous P-state
1854 * selection.
1855 */
1856 max_pstate = cpu->pstate.max_pstate_physical;
1857 current_pstate = cpu->pstate.current_pstate;
1858 perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
1859 div_fp(100 * max_pstate, current_pstate));
1860
1861 /*
1862 * Since our utilization update callback will not run unless we are
1863 * in C0, check if the actual elapsed time is significantly greater (3x)
1864 * than our sample interval. If it is, then we were idle for a long
1865 * enough period of time to adjust our performance metric.
1866 */
1867 duration_ns = cpu->sample.time - cpu->last_sample_time;
1868 if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
1869 sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1870 perf_scaled = mul_fp(perf_scaled, sample_ratio);
1871 } else {
1872 sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
1873 if (sample_ratio < int_tofp(1))
1874 perf_scaled = 0;
1875 }
1876
1877 cpu->sample.busy_scaled = perf_scaled;
1878 return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
1879 }
1880
1881 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1882 {
1883 int max_perf, min_perf;
1884
1885 intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
1886 pstate = clamp_t(int, pstate, min_perf, max_perf);
1887 return pstate;
1888 }
1889
1890 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1891 {
1892 if (pstate == cpu->pstate.current_pstate)
1893 return;
1894
1895 cpu->pstate.current_pstate = pstate;
1896 wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1897 }
1898
1899 static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
1900 {
1901 int from, target_pstate;
1902 struct sample *sample;
1903
1904 from = cpu->pstate.current_pstate;
1905
1906 target_pstate = cpu->policy == CPUFREQ_POLICY_PERFORMANCE ?
1907 cpu->pstate.turbo_pstate : pstate_funcs.get_target_pstate(cpu);
1908
1909 update_turbo_state();
1910
1911 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
1912 trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1913 intel_pstate_update_pstate(cpu, target_pstate);
1914
1915 sample = &cpu->sample;
1916 trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1917 fp_toint(sample->busy_scaled),
1918 from,
1919 cpu->pstate.current_pstate,
1920 sample->mperf,
1921 sample->aperf,
1922 sample->tsc,
1923 get_avg_frequency(cpu),
1924 fp_toint(cpu->iowait_boost * 100));
1925 }
1926
1927 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1928 unsigned int flags)
1929 {
1930 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1931 u64 delta_ns;
1932
1933 if (pstate_funcs.get_target_pstate == get_target_pstate_use_cpu_load) {
1934 if (flags & SCHED_CPUFREQ_IOWAIT) {
1935 cpu->iowait_boost = int_tofp(1);
1936 } else if (cpu->iowait_boost) {
1937 /* Clear iowait_boost if the CPU may have been idle. */
1938 delta_ns = time - cpu->last_update;
1939 if (delta_ns > TICK_NSEC)
1940 cpu->iowait_boost = 0;
1941 }
1942 cpu->last_update = time;
1943 }
1944
1945 delta_ns = time - cpu->sample.time;
1946 if ((s64)delta_ns >= pid_params.sample_rate_ns) {
1947 bool sample_taken = intel_pstate_sample(cpu, time);
1948
1949 if (sample_taken) {
1950 intel_pstate_calc_avg_perf(cpu);
1951 if (!hwp_active)
1952 intel_pstate_adjust_busy_pstate(cpu);
1953 }
1954 }
1955 }
1956
1957 #define ICPU(model, policy) \
1958 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1959 (unsigned long)&policy }
1960
1961 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1962 ICPU(INTEL_FAM6_SANDYBRIDGE, core_params),
1963 ICPU(INTEL_FAM6_SANDYBRIDGE_X, core_params),
1964 ICPU(INTEL_FAM6_ATOM_SILVERMONT1, silvermont_params),
1965 ICPU(INTEL_FAM6_IVYBRIDGE, core_params),
1966 ICPU(INTEL_FAM6_HASWELL_CORE, core_params),
1967 ICPU(INTEL_FAM6_BROADWELL_CORE, core_params),
1968 ICPU(INTEL_FAM6_IVYBRIDGE_X, core_params),
1969 ICPU(INTEL_FAM6_HASWELL_X, core_params),
1970 ICPU(INTEL_FAM6_HASWELL_ULT, core_params),
1971 ICPU(INTEL_FAM6_HASWELL_GT3E, core_params),
1972 ICPU(INTEL_FAM6_BROADWELL_GT3E, core_params),
1973 ICPU(INTEL_FAM6_ATOM_AIRMONT, airmont_params),
1974 ICPU(INTEL_FAM6_SKYLAKE_MOBILE, core_params),
1975 ICPU(INTEL_FAM6_BROADWELL_X, core_params),
1976 ICPU(INTEL_FAM6_SKYLAKE_DESKTOP, core_params),
1977 ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
1978 ICPU(INTEL_FAM6_XEON_PHI_KNL, knl_params),
1979 ICPU(INTEL_FAM6_XEON_PHI_KNM, knl_params),
1980 ICPU(INTEL_FAM6_ATOM_GOLDMONT, bxt_params),
1981 {}
1982 };
1983 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1984
1985 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1986 ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
1987 ICPU(INTEL_FAM6_BROADWELL_X, core_params),
1988 ICPU(INTEL_FAM6_SKYLAKE_X, core_params),
1989 {}
1990 };
1991
1992 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
1993 ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_params),
1994 {}
1995 };
1996
1997 static int intel_pstate_init_cpu(unsigned int cpunum)
1998 {
1999 struct cpudata *cpu;
2000
2001 cpu = all_cpu_data[cpunum];
2002
2003 if (!cpu) {
2004 unsigned int size = sizeof(struct cpudata);
2005
2006 if (per_cpu_limits)
2007 size += sizeof(struct perf_limits);
2008
2009 cpu = kzalloc(size, GFP_KERNEL);
2010 if (!cpu)
2011 return -ENOMEM;
2012
2013 all_cpu_data[cpunum] = cpu;
2014 if (per_cpu_limits)
2015 cpu->perf_limits = (struct perf_limits *)(cpu + 1);
2016
2017 cpu->epp_default = -EINVAL;
2018 cpu->epp_powersave = -EINVAL;
2019 cpu->epp_saved = -EINVAL;
2020 }
2021
2022 cpu = all_cpu_data[cpunum];
2023
2024 cpu->cpu = cpunum;
2025
2026 if (hwp_active) {
2027 const struct x86_cpu_id *id;
2028
2029 id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
2030 if (id)
2031 intel_pstate_disable_ee(cpunum);
2032
2033 intel_pstate_hwp_enable(cpu);
2034 pid_params.sample_rate_ms = 50;
2035 pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
2036 }
2037
2038 intel_pstate_get_cpu_pstates(cpu);
2039
2040 intel_pstate_busy_pid_reset(cpu);
2041
2042 pr_debug("controlling: cpu %d\n", cpunum);
2043
2044 return 0;
2045 }
2046
2047 static unsigned int intel_pstate_get(unsigned int cpu_num)
2048 {
2049 struct cpudata *cpu = all_cpu_data[cpu_num];
2050
2051 return cpu ? get_avg_frequency(cpu) : 0;
2052 }
2053
2054 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
2055 {
2056 struct cpudata *cpu = all_cpu_data[cpu_num];
2057
2058 if (cpu->update_util_set)
2059 return;
2060
2061 /* Prevent intel_pstate_update_util() from using stale data. */
2062 cpu->sample.time = 0;
2063 cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
2064 intel_pstate_update_util);
2065 cpu->update_util_set = true;
2066 }
2067
2068 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
2069 {
2070 struct cpudata *cpu_data = all_cpu_data[cpu];
2071
2072 if (!cpu_data->update_util_set)
2073 return;
2074
2075 cpufreq_remove_update_util_hook(cpu);
2076 cpu_data->update_util_set = false;
2077 synchronize_sched();
2078 }
2079
2080 static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
2081 struct perf_limits *limits)
2082 {
2083
2084 limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100,
2085 policy->cpuinfo.max_freq);
2086 limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0, 100);
2087 if (policy->max == policy->min) {
2088 limits->min_policy_pct = limits->max_policy_pct;
2089 } else {
2090 limits->min_policy_pct = DIV_ROUND_UP(policy->min * 100,
2091 policy->cpuinfo.max_freq);
2092 limits->min_policy_pct = clamp_t(int, limits->min_policy_pct,
2093 0, 100);
2094 }
2095
2096 /* Normalize user input to [min_policy_pct, max_policy_pct] */
2097 limits->min_perf_pct = max(limits->min_policy_pct,
2098 limits->min_sysfs_pct);
2099 limits->min_perf_pct = min(limits->max_policy_pct,
2100 limits->min_perf_pct);
2101 limits->max_perf_pct = min(limits->max_policy_pct,
2102 limits->max_sysfs_pct);
2103 limits->max_perf_pct = max(limits->min_policy_pct,
2104 limits->max_perf_pct);
2105
2106 /* Make sure min_perf_pct <= max_perf_pct */
2107 limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct);
2108
2109 limits->min_perf = div_ext_fp(limits->min_perf_pct, 100);
2110 limits->max_perf = div_ext_fp(limits->max_perf_pct, 100);
2111 limits->max_perf = round_up(limits->max_perf, EXT_FRAC_BITS);
2112 limits->min_perf = round_up(limits->min_perf, EXT_FRAC_BITS);
2113
2114 pr_debug("cpu:%d max_perf_pct:%d min_perf_pct:%d\n", policy->cpu,
2115 limits->max_perf_pct, limits->min_perf_pct);
2116 }
2117
2118 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2119 {
2120 struct cpudata *cpu;
2121 struct perf_limits *perf_limits = NULL;
2122
2123 if (!policy->cpuinfo.max_freq)
2124 return -ENODEV;
2125
2126 pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2127 policy->cpuinfo.max_freq, policy->max);
2128
2129 cpu = all_cpu_data[policy->cpu];
2130 cpu->policy = policy->policy;
2131
2132 if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2133 policy->max < policy->cpuinfo.max_freq &&
2134 policy->max > cpu->pstate.max_pstate * cpu->pstate.scaling) {
2135 pr_debug("policy->max > max non turbo frequency\n");
2136 policy->max = policy->cpuinfo.max_freq;
2137 }
2138
2139 if (per_cpu_limits)
2140 perf_limits = cpu->perf_limits;
2141
2142 mutex_lock(&intel_pstate_limits_lock);
2143
2144 if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
2145 pr_debug("set performance\n");
2146 if (!perf_limits) {
2147 limits = &performance_limits;
2148 perf_limits = limits;
2149 }
2150 } else {
2151 pr_debug("set powersave\n");
2152 if (!perf_limits) {
2153 limits = &powersave_limits;
2154 perf_limits = limits;
2155 }
2156
2157 }
2158
2159 intel_pstate_update_perf_limits(policy, perf_limits);
2160
2161 if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2162 /*
2163 * NOHZ_FULL CPUs need this as the governor callback may not
2164 * be invoked on them.
2165 */
2166 intel_pstate_clear_update_util_hook(policy->cpu);
2167 intel_pstate_max_within_limits(cpu);
2168 }
2169
2170 intel_pstate_set_update_util_hook(policy->cpu);
2171
2172 intel_pstate_hwp_set_policy(policy);
2173
2174 mutex_unlock(&intel_pstate_limits_lock);
2175
2176 return 0;
2177 }
2178
2179 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
2180 {
2181 struct cpudata *cpu = all_cpu_data[policy->cpu];
2182 struct perf_limits *perf_limits;
2183
2184 if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
2185 perf_limits = &performance_limits;
2186 else
2187 perf_limits = &powersave_limits;
2188
2189 update_turbo_state();
2190 policy->cpuinfo.max_freq = perf_limits->turbo_disabled ||
2191 perf_limits->no_turbo ?
2192 cpu->pstate.max_freq :
2193 cpu->pstate.turbo_freq;
2194
2195 cpufreq_verify_within_cpu_limits(policy);
2196
2197 if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
2198 policy->policy != CPUFREQ_POLICY_PERFORMANCE)
2199 return -EINVAL;
2200
2201 /* When per-CPU limits are used, sysfs limits are not used */
2202 if (!per_cpu_limits) {
2203 unsigned int max_freq, min_freq;
2204
2205 max_freq = policy->cpuinfo.max_freq *
2206 perf_limits->max_sysfs_pct / 100;
2207 min_freq = policy->cpuinfo.max_freq *
2208 perf_limits->min_sysfs_pct / 100;
2209 cpufreq_verify_within_limits(policy, min_freq, max_freq);
2210 }
2211
2212 return 0;
2213 }
2214
2215 static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
2216 {
2217 intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
2218 }
2219
2220 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2221 {
2222 pr_debug("CPU %d exiting\n", policy->cpu);
2223
2224 intel_pstate_clear_update_util_hook(policy->cpu);
2225 if (hwp_active)
2226 intel_pstate_hwp_save_state(policy);
2227 else
2228 intel_cpufreq_stop_cpu(policy);
2229 }
2230
2231 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2232 {
2233 intel_pstate_exit_perf_limits(policy);
2234
2235 policy->fast_switch_possible = false;
2236
2237 return 0;
2238 }
2239
2240 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2241 {
2242 struct cpudata *cpu;
2243 int rc;
2244
2245 rc = intel_pstate_init_cpu(policy->cpu);
2246 if (rc)
2247 return rc;
2248
2249 cpu = all_cpu_data[policy->cpu];
2250
2251 if (per_cpu_limits)
2252 intel_pstate_init_limits(cpu->perf_limits);
2253
2254 policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
2255 policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2256
2257 /* cpuinfo and default policy values */
2258 policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2259 update_turbo_state();
2260 policy->cpuinfo.max_freq = limits->turbo_disabled ?
2261 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2262 policy->cpuinfo.max_freq *= cpu->pstate.scaling;
2263
2264 intel_pstate_init_acpi_perf_limits(policy);
2265 cpumask_set_cpu(policy->cpu, policy->cpus);
2266
2267 policy->fast_switch_possible = true;
2268
2269 return 0;
2270 }
2271
2272 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2273 {
2274 int ret = __intel_pstate_cpu_init(policy);
2275
2276 if (ret)
2277 return ret;
2278
2279 policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
2280 if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
2281 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
2282 else
2283 policy->policy = CPUFREQ_POLICY_POWERSAVE;
2284
2285 return 0;
2286 }
2287
2288 static struct cpufreq_driver intel_pstate = {
2289 .flags = CPUFREQ_CONST_LOOPS,
2290 .verify = intel_pstate_verify_policy,
2291 .setpolicy = intel_pstate_set_policy,
2292 .suspend = intel_pstate_hwp_save_state,
2293 .resume = intel_pstate_resume,
2294 .get = intel_pstate_get,
2295 .init = intel_pstate_cpu_init,
2296 .exit = intel_pstate_cpu_exit,
2297 .stop_cpu = intel_pstate_stop_cpu,
2298 .name = "intel_pstate",
2299 };
2300
2301 static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
2302 {
2303 struct cpudata *cpu = all_cpu_data[policy->cpu];
2304
2305 update_turbo_state();
2306 policy->cpuinfo.max_freq = limits->turbo_disabled ?
2307 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2308
2309 cpufreq_verify_within_cpu_limits(policy);
2310
2311 return 0;
2312 }
2313
2314 static unsigned int intel_cpufreq_turbo_update(struct cpudata *cpu,
2315 struct cpufreq_policy *policy,
2316 unsigned int target_freq)
2317 {
2318 unsigned int max_freq;
2319
2320 update_turbo_state();
2321
2322 max_freq = limits->no_turbo || limits->turbo_disabled ?
2323 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2324 policy->cpuinfo.max_freq = max_freq;
2325 if (policy->max > max_freq)
2326 policy->max = max_freq;
2327
2328 if (target_freq > max_freq)
2329 target_freq = max_freq;
2330
2331 return target_freq;
2332 }
2333
2334 static int intel_cpufreq_target(struct cpufreq_policy *policy,
2335 unsigned int target_freq,
2336 unsigned int relation)
2337 {
2338 struct cpudata *cpu = all_cpu_data[policy->cpu];
2339 struct cpufreq_freqs freqs;
2340 int target_pstate;
2341
2342 freqs.old = policy->cur;
2343 freqs.new = intel_cpufreq_turbo_update(cpu, policy, target_freq);
2344
2345 cpufreq_freq_transition_begin(policy, &freqs);
2346 switch (relation) {
2347 case CPUFREQ_RELATION_L:
2348 target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2349 break;
2350 case CPUFREQ_RELATION_H:
2351 target_pstate = freqs.new / cpu->pstate.scaling;
2352 break;
2353 default:
2354 target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2355 break;
2356 }
2357 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2358 if (target_pstate != cpu->pstate.current_pstate) {
2359 cpu->pstate.current_pstate = target_pstate;
2360 wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
2361 pstate_funcs.get_val(cpu, target_pstate));
2362 }
2363 freqs.new = target_pstate * cpu->pstate.scaling;
2364 cpufreq_freq_transition_end(policy, &freqs, false);
2365
2366 return 0;
2367 }
2368
2369 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2370 unsigned int target_freq)
2371 {
2372 struct cpudata *cpu = all_cpu_data[policy->cpu];
2373 int target_pstate;
2374
2375 target_freq = intel_cpufreq_turbo_update(cpu, policy, target_freq);
2376 target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2377 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2378 intel_pstate_update_pstate(cpu, target_pstate);
2379 return target_pstate * cpu->pstate.scaling;
2380 }
2381
2382 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2383 {
2384 int ret = __intel_pstate_cpu_init(policy);
2385
2386 if (ret)
2387 return ret;
2388
2389 policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2390 /* This reflects the intel_pstate_get_cpu_pstates() setting. */
2391 policy->cur = policy->cpuinfo.min_freq;
2392
2393 return 0;
2394 }
2395
2396 static struct cpufreq_driver intel_cpufreq = {
2397 .flags = CPUFREQ_CONST_LOOPS,
2398 .verify = intel_cpufreq_verify_policy,
2399 .target = intel_cpufreq_target,
2400 .fast_switch = intel_cpufreq_fast_switch,
2401 .init = intel_cpufreq_cpu_init,
2402 .exit = intel_pstate_cpu_exit,
2403 .stop_cpu = intel_cpufreq_stop_cpu,
2404 .name = "intel_cpufreq",
2405 };
2406
2407 static struct cpufreq_driver *intel_pstate_driver = &intel_pstate;
2408
2409 static void intel_pstate_driver_cleanup(void)
2410 {
2411 unsigned int cpu;
2412
2413 get_online_cpus();
2414 for_each_online_cpu(cpu) {
2415 if (all_cpu_data[cpu]) {
2416 if (intel_pstate_driver == &intel_pstate)
2417 intel_pstate_clear_update_util_hook(cpu);
2418
2419 kfree(all_cpu_data[cpu]);
2420 all_cpu_data[cpu] = NULL;
2421 }
2422 }
2423 put_online_cpus();
2424 }
2425
2426 static int intel_pstate_register_driver(void)
2427 {
2428 int ret;
2429
2430 intel_pstate_init_limits(&powersave_limits);
2431 intel_pstate_set_performance_limits(&performance_limits);
2432 if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE) &&
2433 intel_pstate_driver == &intel_pstate)
2434 limits = &performance_limits;
2435 else
2436 limits = &powersave_limits;
2437
2438 ret = cpufreq_register_driver(intel_pstate_driver);
2439 if (ret) {
2440 intel_pstate_driver_cleanup();
2441 return ret;
2442 }
2443
2444 mutex_lock(&intel_pstate_limits_lock);
2445 driver_registered = true;
2446 mutex_unlock(&intel_pstate_limits_lock);
2447
2448 if (intel_pstate_driver == &intel_pstate && !hwp_active &&
2449 pstate_funcs.get_target_pstate != get_target_pstate_use_cpu_load)
2450 intel_pstate_debug_expose_params();
2451
2452 return 0;
2453 }
2454
2455 static int intel_pstate_unregister_driver(void)
2456 {
2457 if (hwp_active)
2458 return -EBUSY;
2459
2460 if (intel_pstate_driver == &intel_pstate && !hwp_active &&
2461 pstate_funcs.get_target_pstate != get_target_pstate_use_cpu_load)
2462 intel_pstate_debug_hide_params();
2463
2464 mutex_lock(&intel_pstate_limits_lock);
2465 driver_registered = false;
2466 mutex_unlock(&intel_pstate_limits_lock);
2467
2468 cpufreq_unregister_driver(intel_pstate_driver);
2469 intel_pstate_driver_cleanup();
2470
2471 return 0;
2472 }
2473
2474 static ssize_t intel_pstate_show_status(char *buf)
2475 {
2476 if (!driver_registered)
2477 return sprintf(buf, "off\n");
2478
2479 return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
2480 "active" : "passive");
2481 }
2482
2483 static int intel_pstate_update_status(const char *buf, size_t size)
2484 {
2485 int ret;
2486
2487 if (size == 3 && !strncmp(buf, "off", size))
2488 return driver_registered ?
2489 intel_pstate_unregister_driver() : -EINVAL;
2490
2491 if (size == 6 && !strncmp(buf, "active", size)) {
2492 if (driver_registered) {
2493 if (intel_pstate_driver == &intel_pstate)
2494 return 0;
2495
2496 ret = intel_pstate_unregister_driver();
2497 if (ret)
2498 return ret;
2499 }
2500
2501 intel_pstate_driver = &intel_pstate;
2502 return intel_pstate_register_driver();
2503 }
2504
2505 if (size == 7 && !strncmp(buf, "passive", size)) {
2506 if (driver_registered) {
2507 if (intel_pstate_driver != &intel_pstate)
2508 return 0;
2509
2510 ret = intel_pstate_unregister_driver();
2511 if (ret)
2512 return ret;
2513 }
2514
2515 intel_pstate_driver = &intel_cpufreq;
2516 return intel_pstate_register_driver();
2517 }
2518
2519 return -EINVAL;
2520 }
2521
2522 static int no_load __initdata;
2523 static int no_hwp __initdata;
2524 static int hwp_only __initdata;
2525 static unsigned int force_load __initdata;
2526
2527 static int __init intel_pstate_msrs_not_valid(void)
2528 {
2529 if (!pstate_funcs.get_max() ||
2530 !pstate_funcs.get_min() ||
2531 !pstate_funcs.get_turbo())
2532 return -ENODEV;
2533
2534 return 0;
2535 }
2536
2537 static void __init copy_pid_params(struct pstate_adjust_policy *policy)
2538 {
2539 pid_params.sample_rate_ms = policy->sample_rate_ms;
2540 pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
2541 pid_params.p_gain_pct = policy->p_gain_pct;
2542 pid_params.i_gain_pct = policy->i_gain_pct;
2543 pid_params.d_gain_pct = policy->d_gain_pct;
2544 pid_params.deadband = policy->deadband;
2545 pid_params.setpoint = policy->setpoint;
2546 }
2547
2548 #ifdef CONFIG_ACPI
2549 static void intel_pstate_use_acpi_profile(void)
2550 {
2551 if (acpi_gbl_FADT.preferred_profile == PM_MOBILE)
2552 pstate_funcs.get_target_pstate =
2553 get_target_pstate_use_cpu_load;
2554 }
2555 #else
2556 static void intel_pstate_use_acpi_profile(void)
2557 {
2558 }
2559 #endif
2560
2561 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2562 {
2563 pstate_funcs.get_max = funcs->get_max;
2564 pstate_funcs.get_max_physical = funcs->get_max_physical;
2565 pstate_funcs.get_min = funcs->get_min;
2566 pstate_funcs.get_turbo = funcs->get_turbo;
2567 pstate_funcs.get_scaling = funcs->get_scaling;
2568 pstate_funcs.get_val = funcs->get_val;
2569 pstate_funcs.get_vid = funcs->get_vid;
2570 pstate_funcs.get_target_pstate = funcs->get_target_pstate;
2571
2572 intel_pstate_use_acpi_profile();
2573 }
2574
2575 #ifdef CONFIG_ACPI
2576
2577 static bool __init intel_pstate_no_acpi_pss(void)
2578 {
2579 int i;
2580
2581 for_each_possible_cpu(i) {
2582 acpi_status status;
2583 union acpi_object *pss;
2584 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
2585 struct acpi_processor *pr = per_cpu(processors, i);
2586
2587 if (!pr)
2588 continue;
2589
2590 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
2591 if (ACPI_FAILURE(status))
2592 continue;
2593
2594 pss = buffer.pointer;
2595 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
2596 kfree(pss);
2597 return false;
2598 }
2599
2600 kfree(pss);
2601 }
2602
2603 return true;
2604 }
2605
2606 static bool __init intel_pstate_has_acpi_ppc(void)
2607 {
2608 int i;
2609
2610 for_each_possible_cpu(i) {
2611 struct acpi_processor *pr = per_cpu(processors, i);
2612
2613 if (!pr)
2614 continue;
2615 if (acpi_has_method(pr->handle, "_PPC"))
2616 return true;
2617 }
2618 return false;
2619 }
2620
2621 enum {
2622 PSS,
2623 PPC,
2624 };
2625
2626 struct hw_vendor_info {
2627 u16 valid;
2628 char oem_id[ACPI_OEM_ID_SIZE];
2629 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
2630 int oem_pwr_table;
2631 };
2632
2633 /* Hardware vendor-specific info that has its own power management modes */
2634 static struct hw_vendor_info vendor_info[] __initdata = {
2635 {1, "HP ", "ProLiant", PSS},
2636 {1, "ORACLE", "X4-2 ", PPC},
2637 {1, "ORACLE", "X4-2L ", PPC},
2638 {1, "ORACLE", "X4-2B ", PPC},
2639 {1, "ORACLE", "X3-2 ", PPC},
2640 {1, "ORACLE", "X3-2L ", PPC},
2641 {1, "ORACLE", "X3-2B ", PPC},
2642 {1, "ORACLE", "X4470M2 ", PPC},
2643 {1, "ORACLE", "X4270M3 ", PPC},
2644 {1, "ORACLE", "X4270M2 ", PPC},
2645 {1, "ORACLE", "X4170M2 ", PPC},
2646 {1, "ORACLE", "X4170 M3", PPC},
2647 {1, "ORACLE", "X4275 M3", PPC},
2648 {1, "ORACLE", "X6-2 ", PPC},
2649 {1, "ORACLE", "Sudbury ", PPC},
2650 {0, "", ""},
2651 };
2652
2653 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2654 {
2655 struct acpi_table_header hdr;
2656 struct hw_vendor_info *v_info;
2657 const struct x86_cpu_id *id;
2658 u64 misc_pwr;
2659
2660 id = x86_match_cpu(intel_pstate_cpu_oob_ids);
2661 if (id) {
2662 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2663 if ( misc_pwr & (1 << 8))
2664 return true;
2665 }
2666
2667 if (acpi_disabled ||
2668 ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
2669 return false;
2670
2671 for (v_info = vendor_info; v_info->valid; v_info++) {
2672 if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
2673 !strncmp(hdr.oem_table_id, v_info->oem_table_id,
2674 ACPI_OEM_TABLE_ID_SIZE))
2675 switch (v_info->oem_pwr_table) {
2676 case PSS:
2677 return intel_pstate_no_acpi_pss();
2678 case PPC:
2679 return intel_pstate_has_acpi_ppc() &&
2680 (!force_load);
2681 }
2682 }
2683
2684 return false;
2685 }
2686
2687 static void intel_pstate_request_control_from_smm(void)
2688 {
2689 /*
2690 * It may be unsafe to request P-states control from SMM if _PPC support
2691 * has not been enabled.
2692 */
2693 if (acpi_ppc)
2694 acpi_processor_pstate_control();
2695 }
2696 #else /* CONFIG_ACPI not enabled */
2697 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2698 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2699 static inline void intel_pstate_request_control_from_smm(void) {}
2700 #endif /* CONFIG_ACPI */
2701
2702 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2703 { X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
2704 {}
2705 };
2706
2707 static int __init intel_pstate_init(void)
2708 {
2709 const struct x86_cpu_id *id;
2710 struct cpu_defaults *cpu_def;
2711 int rc = 0;
2712
2713 if (no_load)
2714 return -ENODEV;
2715
2716 if (x86_match_cpu(hwp_support_ids) && !no_hwp) {
2717 copy_cpu_funcs(&core_params.funcs);
2718 hwp_active++;
2719 intel_pstate.attr = hwp_cpufreq_attrs;
2720 goto hwp_cpu_matched;
2721 }
2722
2723 id = x86_match_cpu(intel_pstate_cpu_ids);
2724 if (!id)
2725 return -ENODEV;
2726
2727 cpu_def = (struct cpu_defaults *)id->driver_data;
2728
2729 copy_pid_params(&cpu_def->pid_policy);
2730 copy_cpu_funcs(&cpu_def->funcs);
2731
2732 if (intel_pstate_msrs_not_valid())
2733 return -ENODEV;
2734
2735 hwp_cpu_matched:
2736 /*
2737 * The Intel pstate driver will be ignored if the platform
2738 * firmware has its own power management modes.
2739 */
2740 if (intel_pstate_platform_pwr_mgmt_exists())
2741 return -ENODEV;
2742
2743 if (!hwp_active && hwp_only)
2744 return -ENOTSUPP;
2745
2746 pr_info("Intel P-state driver initializing\n");
2747
2748 all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
2749 if (!all_cpu_data)
2750 return -ENOMEM;
2751
2752 intel_pstate_request_control_from_smm();
2753
2754 intel_pstate_sysfs_expose_params();
2755
2756 mutex_lock(&intel_pstate_driver_lock);
2757 rc = intel_pstate_register_driver();
2758 mutex_unlock(&intel_pstate_driver_lock);
2759 if (rc)
2760 return rc;
2761
2762 if (hwp_active)
2763 pr_info("HWP enabled\n");
2764
2765 return 0;
2766 }
2767 device_initcall(intel_pstate_init);
2768
2769 static int __init intel_pstate_setup(char *str)
2770 {
2771 if (!str)
2772 return -EINVAL;
2773
2774 if (!strcmp(str, "disable")) {
2775 no_load = 1;
2776 } else if (!strcmp(str, "passive")) {
2777 pr_info("Passive mode enabled\n");
2778 intel_pstate_driver = &intel_cpufreq;
2779 no_hwp = 1;
2780 }
2781 if (!strcmp(str, "no_hwp")) {
2782 pr_info("HWP disabled\n");
2783 no_hwp = 1;
2784 }
2785 if (!strcmp(str, "force"))
2786 force_load = 1;
2787 if (!strcmp(str, "hwp_only"))
2788 hwp_only = 1;
2789 if (!strcmp(str, "per_cpu_perf_limits"))
2790 per_cpu_limits = true;
2791
2792 #ifdef CONFIG_ACPI
2793 if (!strcmp(str, "support_acpi_ppc"))
2794 acpi_ppc = true;
2795 #endif
2796
2797 return 0;
2798 }
2799 early_param("intel_pstate", intel_pstate_setup);
2800
2801 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
2802 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
2803 MODULE_LICENSE("GPL");