]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/cpufreq/intel_pstate.c
Merge branch 'turbostat' of git://git.kernel.org/pub/scm/linux/kernel/git/lenb/linux
[mirror_ubuntu-artful-kernel.git] / drivers / cpufreq / intel_pstate.c
1 /*
2 * intel_pstate.c: Native P state management for Intel processors
3 *
4 * (C) Copyright 2012 Intel Corporation
5 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
10 * of the License.
11 */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/kernel.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/module.h>
18 #include <linux/ktime.h>
19 #include <linux/hrtimer.h>
20 #include <linux/tick.h>
21 #include <linux/slab.h>
22 #include <linux/sched.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25 #include <linux/cpufreq.h>
26 #include <linux/sysfs.h>
27 #include <linux/types.h>
28 #include <linux/fs.h>
29 #include <linux/debugfs.h>
30 #include <linux/acpi.h>
31 #include <linux/vmalloc.h>
32 #include <trace/events/power.h>
33
34 #include <asm/div64.h>
35 #include <asm/msr.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/cpufeature.h>
38 #include <asm/intel-family.h>
39
40 #define INTEL_CPUFREQ_TRANSITION_LATENCY 20000
41
42 #ifdef CONFIG_ACPI
43 #include <acpi/processor.h>
44 #include <acpi/cppc_acpi.h>
45 #endif
46
47 #define FRAC_BITS 8
48 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
49 #define fp_toint(X) ((X) >> FRAC_BITS)
50
51 #define EXT_BITS 6
52 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
53 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
54 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
55
56 static inline int32_t mul_fp(int32_t x, int32_t y)
57 {
58 return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
59 }
60
61 static inline int32_t div_fp(s64 x, s64 y)
62 {
63 return div64_s64((int64_t)x << FRAC_BITS, y);
64 }
65
66 static inline int ceiling_fp(int32_t x)
67 {
68 int mask, ret;
69
70 ret = fp_toint(x);
71 mask = (1 << FRAC_BITS) - 1;
72 if (x & mask)
73 ret += 1;
74 return ret;
75 }
76
77 static inline u64 mul_ext_fp(u64 x, u64 y)
78 {
79 return (x * y) >> EXT_FRAC_BITS;
80 }
81
82 static inline u64 div_ext_fp(u64 x, u64 y)
83 {
84 return div64_u64(x << EXT_FRAC_BITS, y);
85 }
86
87 /**
88 * struct sample - Store performance sample
89 * @core_avg_perf: Ratio of APERF/MPERF which is the actual average
90 * performance during last sample period
91 * @busy_scaled: Scaled busy value which is used to calculate next
92 * P state. This can be different than core_avg_perf
93 * to account for cpu idle period
94 * @aperf: Difference of actual performance frequency clock count
95 * read from APERF MSR between last and current sample
96 * @mperf: Difference of maximum performance frequency clock count
97 * read from MPERF MSR between last and current sample
98 * @tsc: Difference of time stamp counter between last and
99 * current sample
100 * @time: Current time from scheduler
101 *
102 * This structure is used in the cpudata structure to store performance sample
103 * data for choosing next P State.
104 */
105 struct sample {
106 int32_t core_avg_perf;
107 int32_t busy_scaled;
108 u64 aperf;
109 u64 mperf;
110 u64 tsc;
111 u64 time;
112 };
113
114 /**
115 * struct pstate_data - Store P state data
116 * @current_pstate: Current requested P state
117 * @min_pstate: Min P state possible for this platform
118 * @max_pstate: Max P state possible for this platform
119 * @max_pstate_physical:This is physical Max P state for a processor
120 * This can be higher than the max_pstate which can
121 * be limited by platform thermal design power limits
122 * @scaling: Scaling factor to convert frequency to cpufreq
123 * frequency units
124 * @turbo_pstate: Max Turbo P state possible for this platform
125 * @max_freq: @max_pstate frequency in cpufreq units
126 * @turbo_freq: @turbo_pstate frequency in cpufreq units
127 *
128 * Stores the per cpu model P state limits and current P state.
129 */
130 struct pstate_data {
131 int current_pstate;
132 int min_pstate;
133 int max_pstate;
134 int max_pstate_physical;
135 int scaling;
136 int turbo_pstate;
137 unsigned int max_freq;
138 unsigned int turbo_freq;
139 };
140
141 /**
142 * struct vid_data - Stores voltage information data
143 * @min: VID data for this platform corresponding to
144 * the lowest P state
145 * @max: VID data corresponding to the highest P State.
146 * @turbo: VID data for turbo P state
147 * @ratio: Ratio of (vid max - vid min) /
148 * (max P state - Min P State)
149 *
150 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
151 * This data is used in Atom platforms, where in addition to target P state,
152 * the voltage data needs to be specified to select next P State.
153 */
154 struct vid_data {
155 int min;
156 int max;
157 int turbo;
158 int32_t ratio;
159 };
160
161 /**
162 * struct _pid - Stores PID data
163 * @setpoint: Target set point for busyness or performance
164 * @integral: Storage for accumulated error values
165 * @p_gain: PID proportional gain
166 * @i_gain: PID integral gain
167 * @d_gain: PID derivative gain
168 * @deadband: PID deadband
169 * @last_err: Last error storage for integral part of PID calculation
170 *
171 * Stores PID coefficients and last error for PID controller.
172 */
173 struct _pid {
174 int setpoint;
175 int32_t integral;
176 int32_t p_gain;
177 int32_t i_gain;
178 int32_t d_gain;
179 int deadband;
180 int32_t last_err;
181 };
182
183 /**
184 * struct perf_limits - Store user and policy limits
185 * @no_turbo: User requested turbo state from intel_pstate sysfs
186 * @turbo_disabled: Platform turbo status either from msr
187 * MSR_IA32_MISC_ENABLE or when maximum available pstate
188 * matches the maximum turbo pstate
189 * @max_perf_pct: Effective maximum performance limit in percentage, this
190 * is minimum of either limits enforced by cpufreq policy
191 * or limits from user set limits via intel_pstate sysfs
192 * @min_perf_pct: Effective minimum performance limit in percentage, this
193 * is maximum of either limits enforced by cpufreq policy
194 * or limits from user set limits via intel_pstate sysfs
195 * @max_perf: This is a scaled value between 0 to 255 for max_perf_pct
196 * This value is used to limit max pstate
197 * @min_perf: This is a scaled value between 0 to 255 for min_perf_pct
198 * This value is used to limit min pstate
199 * @max_policy_pct: The maximum performance in percentage enforced by
200 * cpufreq setpolicy interface
201 * @max_sysfs_pct: The maximum performance in percentage enforced by
202 * intel pstate sysfs interface, unused when per cpu
203 * controls are enforced
204 * @min_policy_pct: The minimum performance in percentage enforced by
205 * cpufreq setpolicy interface
206 * @min_sysfs_pct: The minimum performance in percentage enforced by
207 * intel pstate sysfs interface, unused when per cpu
208 * controls are enforced
209 *
210 * Storage for user and policy defined limits.
211 */
212 struct perf_limits {
213 int no_turbo;
214 int turbo_disabled;
215 int max_perf_pct;
216 int min_perf_pct;
217 int32_t max_perf;
218 int32_t min_perf;
219 int max_policy_pct;
220 int max_sysfs_pct;
221 int min_policy_pct;
222 int min_sysfs_pct;
223 };
224
225 /**
226 * struct cpudata - Per CPU instance data storage
227 * @cpu: CPU number for this instance data
228 * @policy: CPUFreq policy value
229 * @update_util: CPUFreq utility callback information
230 * @update_util_set: CPUFreq utility callback is set
231 * @iowait_boost: iowait-related boost fraction
232 * @last_update: Time of the last update.
233 * @pstate: Stores P state limits for this CPU
234 * @vid: Stores VID limits for this CPU
235 * @pid: Stores PID parameters for this CPU
236 * @last_sample_time: Last Sample time
237 * @prev_aperf: Last APERF value read from APERF MSR
238 * @prev_mperf: Last MPERF value read from MPERF MSR
239 * @prev_tsc: Last timestamp counter (TSC) value
240 * @prev_cummulative_iowait: IO Wait time difference from last and
241 * current sample
242 * @sample: Storage for storing last Sample data
243 * @perf_limits: Pointer to perf_limit unique to this CPU
244 * Not all field in the structure are applicable
245 * when per cpu controls are enforced
246 * @acpi_perf_data: Stores ACPI perf information read from _PSS
247 * @valid_pss_table: Set to true for valid ACPI _PSS entries found
248 * @epp_powersave: Last saved HWP energy performance preference
249 * (EPP) or energy performance bias (EPB),
250 * when policy switched to performance
251 * @epp_policy: Last saved policy used to set EPP/EPB
252 * @epp_default: Power on default HWP energy performance
253 * preference/bias
254 * @epp_saved: Saved EPP/EPB during system suspend or CPU offline
255 * operation
256 *
257 * This structure stores per CPU instance data for all CPUs.
258 */
259 struct cpudata {
260 int cpu;
261
262 unsigned int policy;
263 struct update_util_data update_util;
264 bool update_util_set;
265
266 struct pstate_data pstate;
267 struct vid_data vid;
268 struct _pid pid;
269
270 u64 last_update;
271 u64 last_sample_time;
272 u64 prev_aperf;
273 u64 prev_mperf;
274 u64 prev_tsc;
275 u64 prev_cummulative_iowait;
276 struct sample sample;
277 struct perf_limits *perf_limits;
278 #ifdef CONFIG_ACPI
279 struct acpi_processor_performance acpi_perf_data;
280 bool valid_pss_table;
281 #endif
282 unsigned int iowait_boost;
283 s16 epp_powersave;
284 s16 epp_policy;
285 s16 epp_default;
286 s16 epp_saved;
287 };
288
289 static struct cpudata **all_cpu_data;
290
291 /**
292 * struct pstate_adjust_policy - Stores static PID configuration data
293 * @sample_rate_ms: PID calculation sample rate in ms
294 * @sample_rate_ns: Sample rate calculation in ns
295 * @deadband: PID deadband
296 * @setpoint: PID Setpoint
297 * @p_gain_pct: PID proportional gain
298 * @i_gain_pct: PID integral gain
299 * @d_gain_pct: PID derivative gain
300 *
301 * Stores per CPU model static PID configuration data.
302 */
303 struct pstate_adjust_policy {
304 int sample_rate_ms;
305 s64 sample_rate_ns;
306 int deadband;
307 int setpoint;
308 int p_gain_pct;
309 int d_gain_pct;
310 int i_gain_pct;
311 };
312
313 /**
314 * struct pstate_funcs - Per CPU model specific callbacks
315 * @get_max: Callback to get maximum non turbo effective P state
316 * @get_max_physical: Callback to get maximum non turbo physical P state
317 * @get_min: Callback to get minimum P state
318 * @get_turbo: Callback to get turbo P state
319 * @get_scaling: Callback to get frequency scaling factor
320 * @get_val: Callback to convert P state to actual MSR write value
321 * @get_vid: Callback to get VID data for Atom platforms
322 * @get_target_pstate: Callback to a function to calculate next P state to use
323 *
324 * Core and Atom CPU models have different way to get P State limits. This
325 * structure is used to store those callbacks.
326 */
327 struct pstate_funcs {
328 int (*get_max)(void);
329 int (*get_max_physical)(void);
330 int (*get_min)(void);
331 int (*get_turbo)(void);
332 int (*get_scaling)(void);
333 u64 (*get_val)(struct cpudata*, int pstate);
334 void (*get_vid)(struct cpudata *);
335 int32_t (*get_target_pstate)(struct cpudata *);
336 };
337
338 /**
339 * struct cpu_defaults- Per CPU model default config data
340 * @pid_policy: PID config data
341 * @funcs: Callback function data
342 */
343 struct cpu_defaults {
344 struct pstate_adjust_policy pid_policy;
345 struct pstate_funcs funcs;
346 };
347
348 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
349 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
350
351 static struct pstate_adjust_policy pid_params __read_mostly;
352 static struct pstate_funcs pstate_funcs __read_mostly;
353 static int hwp_active __read_mostly;
354 static bool per_cpu_limits __read_mostly;
355
356 static bool driver_registered __read_mostly;
357
358 #ifdef CONFIG_ACPI
359 static bool acpi_ppc;
360 #endif
361
362 static struct perf_limits performance_limits = {
363 .no_turbo = 0,
364 .turbo_disabled = 0,
365 .max_perf_pct = 100,
366 .max_perf = int_ext_tofp(1),
367 .min_perf_pct = 100,
368 .min_perf = int_ext_tofp(1),
369 .max_policy_pct = 100,
370 .max_sysfs_pct = 100,
371 .min_policy_pct = 0,
372 .min_sysfs_pct = 0,
373 };
374
375 static struct perf_limits powersave_limits = {
376 .no_turbo = 0,
377 .turbo_disabled = 0,
378 .max_perf_pct = 100,
379 .max_perf = int_ext_tofp(1),
380 .min_perf_pct = 0,
381 .min_perf = 0,
382 .max_policy_pct = 100,
383 .max_sysfs_pct = 100,
384 .min_policy_pct = 0,
385 .min_sysfs_pct = 0,
386 };
387
388 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
389 static struct perf_limits *limits = &performance_limits;
390 #else
391 static struct perf_limits *limits = &powersave_limits;
392 #endif
393
394 static DEFINE_MUTEX(intel_pstate_driver_lock);
395 static DEFINE_MUTEX(intel_pstate_limits_lock);
396
397 #ifdef CONFIG_ACPI
398
399 static bool intel_pstate_get_ppc_enable_status(void)
400 {
401 if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
402 acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
403 return true;
404
405 return acpi_ppc;
406 }
407
408 #ifdef CONFIG_ACPI_CPPC_LIB
409
410 /* The work item is needed to avoid CPU hotplug locking issues */
411 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
412 {
413 sched_set_itmt_support();
414 }
415
416 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
417
418 static void intel_pstate_set_itmt_prio(int cpu)
419 {
420 struct cppc_perf_caps cppc_perf;
421 static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
422 int ret;
423
424 ret = cppc_get_perf_caps(cpu, &cppc_perf);
425 if (ret)
426 return;
427
428 /*
429 * The priorities can be set regardless of whether or not
430 * sched_set_itmt_support(true) has been called and it is valid to
431 * update them at any time after it has been called.
432 */
433 sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
434
435 if (max_highest_perf <= min_highest_perf) {
436 if (cppc_perf.highest_perf > max_highest_perf)
437 max_highest_perf = cppc_perf.highest_perf;
438
439 if (cppc_perf.highest_perf < min_highest_perf)
440 min_highest_perf = cppc_perf.highest_perf;
441
442 if (max_highest_perf > min_highest_perf) {
443 /*
444 * This code can be run during CPU online under the
445 * CPU hotplug locks, so sched_set_itmt_support()
446 * cannot be called from here. Queue up a work item
447 * to invoke it.
448 */
449 schedule_work(&sched_itmt_work);
450 }
451 }
452 }
453 #else
454 static void intel_pstate_set_itmt_prio(int cpu)
455 {
456 }
457 #endif
458
459 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
460 {
461 struct cpudata *cpu;
462 int ret;
463 int i;
464
465 if (hwp_active) {
466 intel_pstate_set_itmt_prio(policy->cpu);
467 return;
468 }
469
470 if (!intel_pstate_get_ppc_enable_status())
471 return;
472
473 cpu = all_cpu_data[policy->cpu];
474
475 ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
476 policy->cpu);
477 if (ret)
478 return;
479
480 /*
481 * Check if the control value in _PSS is for PERF_CTL MSR, which should
482 * guarantee that the states returned by it map to the states in our
483 * list directly.
484 */
485 if (cpu->acpi_perf_data.control_register.space_id !=
486 ACPI_ADR_SPACE_FIXED_HARDWARE)
487 goto err;
488
489 /*
490 * If there is only one entry _PSS, simply ignore _PSS and continue as
491 * usual without taking _PSS into account
492 */
493 if (cpu->acpi_perf_data.state_count < 2)
494 goto err;
495
496 pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
497 for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
498 pr_debug(" %cP%d: %u MHz, %u mW, 0x%x\n",
499 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
500 (u32) cpu->acpi_perf_data.states[i].core_frequency,
501 (u32) cpu->acpi_perf_data.states[i].power,
502 (u32) cpu->acpi_perf_data.states[i].control);
503 }
504
505 /*
506 * The _PSS table doesn't contain whole turbo frequency range.
507 * This just contains +1 MHZ above the max non turbo frequency,
508 * with control value corresponding to max turbo ratio. But
509 * when cpufreq set policy is called, it will call with this
510 * max frequency, which will cause a reduced performance as
511 * this driver uses real max turbo frequency as the max
512 * frequency. So correct this frequency in _PSS table to
513 * correct max turbo frequency based on the turbo state.
514 * Also need to convert to MHz as _PSS freq is in MHz.
515 */
516 if (!limits->turbo_disabled)
517 cpu->acpi_perf_data.states[0].core_frequency =
518 policy->cpuinfo.max_freq / 1000;
519 cpu->valid_pss_table = true;
520 pr_debug("_PPC limits will be enforced\n");
521
522 return;
523
524 err:
525 cpu->valid_pss_table = false;
526 acpi_processor_unregister_performance(policy->cpu);
527 }
528
529 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
530 {
531 struct cpudata *cpu;
532
533 cpu = all_cpu_data[policy->cpu];
534 if (!cpu->valid_pss_table)
535 return;
536
537 acpi_processor_unregister_performance(policy->cpu);
538 }
539 #else
540 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
541 {
542 }
543
544 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
545 {
546 }
547 #endif
548
549 static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
550 int deadband, int integral) {
551 pid->setpoint = int_tofp(setpoint);
552 pid->deadband = int_tofp(deadband);
553 pid->integral = int_tofp(integral);
554 pid->last_err = int_tofp(setpoint) - int_tofp(busy);
555 }
556
557 static inline void pid_p_gain_set(struct _pid *pid, int percent)
558 {
559 pid->p_gain = div_fp(percent, 100);
560 }
561
562 static inline void pid_i_gain_set(struct _pid *pid, int percent)
563 {
564 pid->i_gain = div_fp(percent, 100);
565 }
566
567 static inline void pid_d_gain_set(struct _pid *pid, int percent)
568 {
569 pid->d_gain = div_fp(percent, 100);
570 }
571
572 static signed int pid_calc(struct _pid *pid, int32_t busy)
573 {
574 signed int result;
575 int32_t pterm, dterm, fp_error;
576 int32_t integral_limit;
577
578 fp_error = pid->setpoint - busy;
579
580 if (abs(fp_error) <= pid->deadband)
581 return 0;
582
583 pterm = mul_fp(pid->p_gain, fp_error);
584
585 pid->integral += fp_error;
586
587 /*
588 * We limit the integral here so that it will never
589 * get higher than 30. This prevents it from becoming
590 * too large an input over long periods of time and allows
591 * it to get factored out sooner.
592 *
593 * The value of 30 was chosen through experimentation.
594 */
595 integral_limit = int_tofp(30);
596 if (pid->integral > integral_limit)
597 pid->integral = integral_limit;
598 if (pid->integral < -integral_limit)
599 pid->integral = -integral_limit;
600
601 dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
602 pid->last_err = fp_error;
603
604 result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
605 result = result + (1 << (FRAC_BITS-1));
606 return (signed int)fp_toint(result);
607 }
608
609 static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
610 {
611 pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
612 pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
613 pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
614
615 pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
616 }
617
618 static inline void intel_pstate_reset_all_pid(void)
619 {
620 unsigned int cpu;
621
622 for_each_online_cpu(cpu) {
623 if (all_cpu_data[cpu])
624 intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
625 }
626 }
627
628 static inline void update_turbo_state(void)
629 {
630 u64 misc_en;
631 struct cpudata *cpu;
632
633 cpu = all_cpu_data[0];
634 rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
635 limits->turbo_disabled =
636 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
637 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
638 }
639
640 static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
641 {
642 u64 epb;
643 int ret;
644
645 if (!static_cpu_has(X86_FEATURE_EPB))
646 return -ENXIO;
647
648 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
649 if (ret)
650 return (s16)ret;
651
652 return (s16)(epb & 0x0f);
653 }
654
655 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
656 {
657 s16 epp;
658
659 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
660 /*
661 * When hwp_req_data is 0, means that caller didn't read
662 * MSR_HWP_REQUEST, so need to read and get EPP.
663 */
664 if (!hwp_req_data) {
665 epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
666 &hwp_req_data);
667 if (epp)
668 return epp;
669 }
670 epp = (hwp_req_data >> 24) & 0xff;
671 } else {
672 /* When there is no EPP present, HWP uses EPB settings */
673 epp = intel_pstate_get_epb(cpu_data);
674 }
675
676 return epp;
677 }
678
679 static int intel_pstate_set_epb(int cpu, s16 pref)
680 {
681 u64 epb;
682 int ret;
683
684 if (!static_cpu_has(X86_FEATURE_EPB))
685 return -ENXIO;
686
687 ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
688 if (ret)
689 return ret;
690
691 epb = (epb & ~0x0f) | pref;
692 wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
693
694 return 0;
695 }
696
697 /*
698 * EPP/EPB display strings corresponding to EPP index in the
699 * energy_perf_strings[]
700 * index String
701 *-------------------------------------
702 * 0 default
703 * 1 performance
704 * 2 balance_performance
705 * 3 balance_power
706 * 4 power
707 */
708 static const char * const energy_perf_strings[] = {
709 "default",
710 "performance",
711 "balance_performance",
712 "balance_power",
713 "power",
714 NULL
715 };
716
717 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
718 {
719 s16 epp;
720 int index = -EINVAL;
721
722 epp = intel_pstate_get_epp(cpu_data, 0);
723 if (epp < 0)
724 return epp;
725
726 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
727 /*
728 * Range:
729 * 0x00-0x3F : Performance
730 * 0x40-0x7F : Balance performance
731 * 0x80-0xBF : Balance power
732 * 0xC0-0xFF : Power
733 * The EPP is a 8 bit value, but our ranges restrict the
734 * value which can be set. Here only using top two bits
735 * effectively.
736 */
737 index = (epp >> 6) + 1;
738 } else if (static_cpu_has(X86_FEATURE_EPB)) {
739 /*
740 * Range:
741 * 0x00-0x03 : Performance
742 * 0x04-0x07 : Balance performance
743 * 0x08-0x0B : Balance power
744 * 0x0C-0x0F : Power
745 * The EPB is a 4 bit value, but our ranges restrict the
746 * value which can be set. Here only using top two bits
747 * effectively.
748 */
749 index = (epp >> 2) + 1;
750 }
751
752 return index;
753 }
754
755 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
756 int pref_index)
757 {
758 int epp = -EINVAL;
759 int ret;
760
761 if (!pref_index)
762 epp = cpu_data->epp_default;
763
764 mutex_lock(&intel_pstate_limits_lock);
765
766 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
767 u64 value;
768
769 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
770 if (ret)
771 goto return_pref;
772
773 value &= ~GENMASK_ULL(31, 24);
774
775 /*
776 * If epp is not default, convert from index into
777 * energy_perf_strings to epp value, by shifting 6
778 * bits left to use only top two bits in epp.
779 * The resultant epp need to shifted by 24 bits to
780 * epp position in MSR_HWP_REQUEST.
781 */
782 if (epp == -EINVAL)
783 epp = (pref_index - 1) << 6;
784
785 value |= (u64)epp << 24;
786 ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
787 } else {
788 if (epp == -EINVAL)
789 epp = (pref_index - 1) << 2;
790 ret = intel_pstate_set_epb(cpu_data->cpu, epp);
791 }
792 return_pref:
793 mutex_unlock(&intel_pstate_limits_lock);
794
795 return ret;
796 }
797
798 static ssize_t show_energy_performance_available_preferences(
799 struct cpufreq_policy *policy, char *buf)
800 {
801 int i = 0;
802 int ret = 0;
803
804 while (energy_perf_strings[i] != NULL)
805 ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
806
807 ret += sprintf(&buf[ret], "\n");
808
809 return ret;
810 }
811
812 cpufreq_freq_attr_ro(energy_performance_available_preferences);
813
814 static ssize_t store_energy_performance_preference(
815 struct cpufreq_policy *policy, const char *buf, size_t count)
816 {
817 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
818 char str_preference[21];
819 int ret, i = 0;
820
821 ret = sscanf(buf, "%20s", str_preference);
822 if (ret != 1)
823 return -EINVAL;
824
825 while (energy_perf_strings[i] != NULL) {
826 if (!strcmp(str_preference, energy_perf_strings[i])) {
827 intel_pstate_set_energy_pref_index(cpu_data, i);
828 return count;
829 }
830 ++i;
831 }
832
833 return -EINVAL;
834 }
835
836 static ssize_t show_energy_performance_preference(
837 struct cpufreq_policy *policy, char *buf)
838 {
839 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
840 int preference;
841
842 preference = intel_pstate_get_energy_pref_index(cpu_data);
843 if (preference < 0)
844 return preference;
845
846 return sprintf(buf, "%s\n", energy_perf_strings[preference]);
847 }
848
849 cpufreq_freq_attr_rw(energy_performance_preference);
850
851 static struct freq_attr *hwp_cpufreq_attrs[] = {
852 &energy_performance_preference,
853 &energy_performance_available_preferences,
854 NULL,
855 };
856
857 static void intel_pstate_hwp_set(struct cpufreq_policy *policy)
858 {
859 int min, hw_min, max, hw_max, cpu, range, adj_range;
860 struct perf_limits *perf_limits = limits;
861 u64 value, cap;
862
863 for_each_cpu(cpu, policy->cpus) {
864 int max_perf_pct, min_perf_pct;
865 struct cpudata *cpu_data = all_cpu_data[cpu];
866 s16 epp;
867
868 if (per_cpu_limits)
869 perf_limits = all_cpu_data[cpu]->perf_limits;
870
871 rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
872 hw_min = HWP_LOWEST_PERF(cap);
873 if (limits->no_turbo)
874 hw_max = HWP_GUARANTEED_PERF(cap);
875 else
876 hw_max = HWP_HIGHEST_PERF(cap);
877 range = hw_max - hw_min;
878
879 max_perf_pct = perf_limits->max_perf_pct;
880 min_perf_pct = perf_limits->min_perf_pct;
881
882 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
883 adj_range = min_perf_pct * range / 100;
884 min = hw_min + adj_range;
885 value &= ~HWP_MIN_PERF(~0L);
886 value |= HWP_MIN_PERF(min);
887
888 adj_range = max_perf_pct * range / 100;
889 max = hw_min + adj_range;
890
891 value &= ~HWP_MAX_PERF(~0L);
892 value |= HWP_MAX_PERF(max);
893
894 if (cpu_data->epp_policy == cpu_data->policy)
895 goto skip_epp;
896
897 cpu_data->epp_policy = cpu_data->policy;
898
899 if (cpu_data->epp_saved >= 0) {
900 epp = cpu_data->epp_saved;
901 cpu_data->epp_saved = -EINVAL;
902 goto update_epp;
903 }
904
905 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
906 epp = intel_pstate_get_epp(cpu_data, value);
907 cpu_data->epp_powersave = epp;
908 /* If EPP read was failed, then don't try to write */
909 if (epp < 0)
910 goto skip_epp;
911
912
913 epp = 0;
914 } else {
915 /* skip setting EPP, when saved value is invalid */
916 if (cpu_data->epp_powersave < 0)
917 goto skip_epp;
918
919 /*
920 * No need to restore EPP when it is not zero. This
921 * means:
922 * - Policy is not changed
923 * - user has manually changed
924 * - Error reading EPB
925 */
926 epp = intel_pstate_get_epp(cpu_data, value);
927 if (epp)
928 goto skip_epp;
929
930 epp = cpu_data->epp_powersave;
931 }
932 update_epp:
933 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
934 value &= ~GENMASK_ULL(31, 24);
935 value |= (u64)epp << 24;
936 } else {
937 intel_pstate_set_epb(cpu, epp);
938 }
939 skip_epp:
940 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
941 }
942 }
943
944 static int intel_pstate_hwp_set_policy(struct cpufreq_policy *policy)
945 {
946 if (hwp_active)
947 intel_pstate_hwp_set(policy);
948
949 return 0;
950 }
951
952 static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
953 {
954 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
955
956 if (!hwp_active)
957 return 0;
958
959 cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);
960
961 return 0;
962 }
963
964 static int intel_pstate_resume(struct cpufreq_policy *policy)
965 {
966 int ret;
967
968 if (!hwp_active)
969 return 0;
970
971 mutex_lock(&intel_pstate_limits_lock);
972
973 all_cpu_data[policy->cpu]->epp_policy = 0;
974
975 ret = intel_pstate_hwp_set_policy(policy);
976
977 mutex_unlock(&intel_pstate_limits_lock);
978
979 return ret;
980 }
981
982 static void intel_pstate_update_policies(void)
983 {
984 int cpu;
985
986 for_each_possible_cpu(cpu)
987 cpufreq_update_policy(cpu);
988 }
989
990 /************************** debugfs begin ************************/
991 static int pid_param_set(void *data, u64 val)
992 {
993 *(u32 *)data = val;
994 intel_pstate_reset_all_pid();
995 return 0;
996 }
997
998 static int pid_param_get(void *data, u64 *val)
999 {
1000 *val = *(u32 *)data;
1001 return 0;
1002 }
1003 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
1004
1005 static struct dentry *debugfs_parent;
1006
1007 struct pid_param {
1008 char *name;
1009 void *value;
1010 struct dentry *dentry;
1011 };
1012
1013 static struct pid_param pid_files[] = {
1014 {"sample_rate_ms", &pid_params.sample_rate_ms, },
1015 {"d_gain_pct", &pid_params.d_gain_pct, },
1016 {"i_gain_pct", &pid_params.i_gain_pct, },
1017 {"deadband", &pid_params.deadband, },
1018 {"setpoint", &pid_params.setpoint, },
1019 {"p_gain_pct", &pid_params.p_gain_pct, },
1020 {NULL, NULL, }
1021 };
1022
1023 static void intel_pstate_debug_expose_params(void)
1024 {
1025 int i;
1026
1027 debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
1028 if (IS_ERR_OR_NULL(debugfs_parent))
1029 return;
1030
1031 for (i = 0; pid_files[i].name; i++) {
1032 struct dentry *dentry;
1033
1034 dentry = debugfs_create_file(pid_files[i].name, 0660,
1035 debugfs_parent, pid_files[i].value,
1036 &fops_pid_param);
1037 if (!IS_ERR(dentry))
1038 pid_files[i].dentry = dentry;
1039 }
1040 }
1041
1042 static void intel_pstate_debug_hide_params(void)
1043 {
1044 int i;
1045
1046 if (IS_ERR_OR_NULL(debugfs_parent))
1047 return;
1048
1049 for (i = 0; pid_files[i].name; i++) {
1050 debugfs_remove(pid_files[i].dentry);
1051 pid_files[i].dentry = NULL;
1052 }
1053
1054 debugfs_remove(debugfs_parent);
1055 debugfs_parent = NULL;
1056 }
1057
1058 /************************** debugfs end ************************/
1059
1060 /************************** sysfs begin ************************/
1061 #define show_one(file_name, object) \
1062 static ssize_t show_##file_name \
1063 (struct kobject *kobj, struct attribute *attr, char *buf) \
1064 { \
1065 return sprintf(buf, "%u\n", limits->object); \
1066 }
1067
1068 static ssize_t intel_pstate_show_status(char *buf);
1069 static int intel_pstate_update_status(const char *buf, size_t size);
1070
1071 static ssize_t show_status(struct kobject *kobj,
1072 struct attribute *attr, char *buf)
1073 {
1074 ssize_t ret;
1075
1076 mutex_lock(&intel_pstate_driver_lock);
1077 ret = intel_pstate_show_status(buf);
1078 mutex_unlock(&intel_pstate_driver_lock);
1079
1080 return ret;
1081 }
1082
1083 static ssize_t store_status(struct kobject *a, struct attribute *b,
1084 const char *buf, size_t count)
1085 {
1086 char *p = memchr(buf, '\n', count);
1087 int ret;
1088
1089 mutex_lock(&intel_pstate_driver_lock);
1090 ret = intel_pstate_update_status(buf, p ? p - buf : count);
1091 mutex_unlock(&intel_pstate_driver_lock);
1092
1093 return ret < 0 ? ret : count;
1094 }
1095
1096 static ssize_t show_turbo_pct(struct kobject *kobj,
1097 struct attribute *attr, char *buf)
1098 {
1099 struct cpudata *cpu;
1100 int total, no_turbo, turbo_pct;
1101 uint32_t turbo_fp;
1102
1103 mutex_lock(&intel_pstate_driver_lock);
1104
1105 if (!driver_registered) {
1106 mutex_unlock(&intel_pstate_driver_lock);
1107 return -EAGAIN;
1108 }
1109
1110 cpu = all_cpu_data[0];
1111
1112 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1113 no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1114 turbo_fp = div_fp(no_turbo, total);
1115 turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1116
1117 mutex_unlock(&intel_pstate_driver_lock);
1118
1119 return sprintf(buf, "%u\n", turbo_pct);
1120 }
1121
1122 static ssize_t show_num_pstates(struct kobject *kobj,
1123 struct attribute *attr, char *buf)
1124 {
1125 struct cpudata *cpu;
1126 int total;
1127
1128 mutex_lock(&intel_pstate_driver_lock);
1129
1130 if (!driver_registered) {
1131 mutex_unlock(&intel_pstate_driver_lock);
1132 return -EAGAIN;
1133 }
1134
1135 cpu = all_cpu_data[0];
1136 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1137
1138 mutex_unlock(&intel_pstate_driver_lock);
1139
1140 return sprintf(buf, "%u\n", total);
1141 }
1142
1143 static ssize_t show_no_turbo(struct kobject *kobj,
1144 struct attribute *attr, char *buf)
1145 {
1146 ssize_t ret;
1147
1148 mutex_lock(&intel_pstate_driver_lock);
1149
1150 if (!driver_registered) {
1151 mutex_unlock(&intel_pstate_driver_lock);
1152 return -EAGAIN;
1153 }
1154
1155 update_turbo_state();
1156 if (limits->turbo_disabled)
1157 ret = sprintf(buf, "%u\n", limits->turbo_disabled);
1158 else
1159 ret = sprintf(buf, "%u\n", limits->no_turbo);
1160
1161 mutex_unlock(&intel_pstate_driver_lock);
1162
1163 return ret;
1164 }
1165
1166 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
1167 const char *buf, size_t count)
1168 {
1169 unsigned int input;
1170 int ret;
1171
1172 ret = sscanf(buf, "%u", &input);
1173 if (ret != 1)
1174 return -EINVAL;
1175
1176 mutex_lock(&intel_pstate_driver_lock);
1177
1178 if (!driver_registered) {
1179 mutex_unlock(&intel_pstate_driver_lock);
1180 return -EAGAIN;
1181 }
1182
1183 mutex_lock(&intel_pstate_limits_lock);
1184
1185 update_turbo_state();
1186 if (limits->turbo_disabled) {
1187 pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
1188 mutex_unlock(&intel_pstate_limits_lock);
1189 mutex_unlock(&intel_pstate_driver_lock);
1190 return -EPERM;
1191 }
1192
1193 limits->no_turbo = clamp_t(int, input, 0, 1);
1194
1195 mutex_unlock(&intel_pstate_limits_lock);
1196
1197 intel_pstate_update_policies();
1198
1199 mutex_unlock(&intel_pstate_driver_lock);
1200
1201 return count;
1202 }
1203
1204 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
1205 const char *buf, size_t count)
1206 {
1207 unsigned int input;
1208 int ret;
1209
1210 ret = sscanf(buf, "%u", &input);
1211 if (ret != 1)
1212 return -EINVAL;
1213
1214 mutex_lock(&intel_pstate_driver_lock);
1215
1216 if (!driver_registered) {
1217 mutex_unlock(&intel_pstate_driver_lock);
1218 return -EAGAIN;
1219 }
1220
1221 mutex_lock(&intel_pstate_limits_lock);
1222
1223 limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
1224 limits->max_perf_pct = min(limits->max_policy_pct,
1225 limits->max_sysfs_pct);
1226 limits->max_perf_pct = max(limits->min_policy_pct,
1227 limits->max_perf_pct);
1228 limits->max_perf_pct = max(limits->min_perf_pct,
1229 limits->max_perf_pct);
1230 limits->max_perf = div_ext_fp(limits->max_perf_pct, 100);
1231
1232 mutex_unlock(&intel_pstate_limits_lock);
1233
1234 intel_pstate_update_policies();
1235
1236 mutex_unlock(&intel_pstate_driver_lock);
1237
1238 return count;
1239 }
1240
1241 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
1242 const char *buf, size_t count)
1243 {
1244 unsigned int input;
1245 int ret;
1246
1247 ret = sscanf(buf, "%u", &input);
1248 if (ret != 1)
1249 return -EINVAL;
1250
1251 mutex_lock(&intel_pstate_driver_lock);
1252
1253 if (!driver_registered) {
1254 mutex_unlock(&intel_pstate_driver_lock);
1255 return -EAGAIN;
1256 }
1257
1258 mutex_lock(&intel_pstate_limits_lock);
1259
1260 limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
1261 limits->min_perf_pct = max(limits->min_policy_pct,
1262 limits->min_sysfs_pct);
1263 limits->min_perf_pct = min(limits->max_policy_pct,
1264 limits->min_perf_pct);
1265 limits->min_perf_pct = min(limits->max_perf_pct,
1266 limits->min_perf_pct);
1267 limits->min_perf = div_ext_fp(limits->min_perf_pct, 100);
1268
1269 mutex_unlock(&intel_pstate_limits_lock);
1270
1271 intel_pstate_update_policies();
1272
1273 mutex_unlock(&intel_pstate_driver_lock);
1274
1275 return count;
1276 }
1277
1278 show_one(max_perf_pct, max_perf_pct);
1279 show_one(min_perf_pct, min_perf_pct);
1280
1281 define_one_global_rw(status);
1282 define_one_global_rw(no_turbo);
1283 define_one_global_rw(max_perf_pct);
1284 define_one_global_rw(min_perf_pct);
1285 define_one_global_ro(turbo_pct);
1286 define_one_global_ro(num_pstates);
1287
1288 static struct attribute *intel_pstate_attributes[] = {
1289 &status.attr,
1290 &no_turbo.attr,
1291 &turbo_pct.attr,
1292 &num_pstates.attr,
1293 NULL
1294 };
1295
1296 static struct attribute_group intel_pstate_attr_group = {
1297 .attrs = intel_pstate_attributes,
1298 };
1299
1300 static void __init intel_pstate_sysfs_expose_params(void)
1301 {
1302 struct kobject *intel_pstate_kobject;
1303 int rc;
1304
1305 intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1306 &cpu_subsys.dev_root->kobj);
1307 if (WARN_ON(!intel_pstate_kobject))
1308 return;
1309
1310 rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1311 if (WARN_ON(rc))
1312 return;
1313
1314 /*
1315 * If per cpu limits are enforced there are no global limits, so
1316 * return without creating max/min_perf_pct attributes
1317 */
1318 if (per_cpu_limits)
1319 return;
1320
1321 rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1322 WARN_ON(rc);
1323
1324 rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1325 WARN_ON(rc);
1326
1327 }
1328 /************************** sysfs end ************************/
1329
1330 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1331 {
1332 /* First disable HWP notification interrupt as we don't process them */
1333 if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
1334 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1335
1336 wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1337 cpudata->epp_policy = 0;
1338 if (cpudata->epp_default == -EINVAL)
1339 cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1340 }
1341
1342 #define MSR_IA32_POWER_CTL_BIT_EE 19
1343
1344 /* Disable energy efficiency optimization */
1345 static void intel_pstate_disable_ee(int cpu)
1346 {
1347 u64 power_ctl;
1348 int ret;
1349
1350 ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
1351 if (ret)
1352 return;
1353
1354 if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
1355 pr_info("Disabling energy efficiency optimization\n");
1356 power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1357 wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
1358 }
1359 }
1360
1361 static int atom_get_min_pstate(void)
1362 {
1363 u64 value;
1364
1365 rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1366 return (value >> 8) & 0x7F;
1367 }
1368
1369 static int atom_get_max_pstate(void)
1370 {
1371 u64 value;
1372
1373 rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1374 return (value >> 16) & 0x7F;
1375 }
1376
1377 static int atom_get_turbo_pstate(void)
1378 {
1379 u64 value;
1380
1381 rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
1382 return value & 0x7F;
1383 }
1384
1385 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1386 {
1387 u64 val;
1388 int32_t vid_fp;
1389 u32 vid;
1390
1391 val = (u64)pstate << 8;
1392 if (limits->no_turbo && !limits->turbo_disabled)
1393 val |= (u64)1 << 32;
1394
1395 vid_fp = cpudata->vid.min + mul_fp(
1396 int_tofp(pstate - cpudata->pstate.min_pstate),
1397 cpudata->vid.ratio);
1398
1399 vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1400 vid = ceiling_fp(vid_fp);
1401
1402 if (pstate > cpudata->pstate.max_pstate)
1403 vid = cpudata->vid.turbo;
1404
1405 return val | vid;
1406 }
1407
1408 static int silvermont_get_scaling(void)
1409 {
1410 u64 value;
1411 int i;
1412 /* Defined in Table 35-6 from SDM (Sept 2015) */
1413 static int silvermont_freq_table[] = {
1414 83300, 100000, 133300, 116700, 80000};
1415
1416 rdmsrl(MSR_FSB_FREQ, value);
1417 i = value & 0x7;
1418 WARN_ON(i > 4);
1419
1420 return silvermont_freq_table[i];
1421 }
1422
1423 static int airmont_get_scaling(void)
1424 {
1425 u64 value;
1426 int i;
1427 /* Defined in Table 35-10 from SDM (Sept 2015) */
1428 static int airmont_freq_table[] = {
1429 83300, 100000, 133300, 116700, 80000,
1430 93300, 90000, 88900, 87500};
1431
1432 rdmsrl(MSR_FSB_FREQ, value);
1433 i = value & 0xF;
1434 WARN_ON(i > 8);
1435
1436 return airmont_freq_table[i];
1437 }
1438
1439 static void atom_get_vid(struct cpudata *cpudata)
1440 {
1441 u64 value;
1442
1443 rdmsrl(MSR_ATOM_CORE_VIDS, value);
1444 cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1445 cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1446 cpudata->vid.ratio = div_fp(
1447 cpudata->vid.max - cpudata->vid.min,
1448 int_tofp(cpudata->pstate.max_pstate -
1449 cpudata->pstate.min_pstate));
1450
1451 rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1452 cpudata->vid.turbo = value & 0x7f;
1453 }
1454
1455 static int core_get_min_pstate(void)
1456 {
1457 u64 value;
1458
1459 rdmsrl(MSR_PLATFORM_INFO, value);
1460 return (value >> 40) & 0xFF;
1461 }
1462
1463 static int core_get_max_pstate_physical(void)
1464 {
1465 u64 value;
1466
1467 rdmsrl(MSR_PLATFORM_INFO, value);
1468 return (value >> 8) & 0xFF;
1469 }
1470
1471 static int core_get_tdp_ratio(u64 plat_info)
1472 {
1473 /* Check how many TDP levels present */
1474 if (plat_info & 0x600000000) {
1475 u64 tdp_ctrl;
1476 u64 tdp_ratio;
1477 int tdp_msr;
1478 int err;
1479
1480 /* Get the TDP level (0, 1, 2) to get ratios */
1481 err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1482 if (err)
1483 return err;
1484
1485 /* TDP MSR are continuous starting at 0x648 */
1486 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1487 err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1488 if (err)
1489 return err;
1490
1491 /* For level 1 and 2, bits[23:16] contain the ratio */
1492 if (tdp_ctrl & 0x03)
1493 tdp_ratio >>= 16;
1494
1495 tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1496 pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1497
1498 return (int)tdp_ratio;
1499 }
1500
1501 return -ENXIO;
1502 }
1503
1504 static int core_get_max_pstate(void)
1505 {
1506 u64 tar;
1507 u64 plat_info;
1508 int max_pstate;
1509 int tdp_ratio;
1510 int err;
1511
1512 rdmsrl(MSR_PLATFORM_INFO, plat_info);
1513 max_pstate = (plat_info >> 8) & 0xFF;
1514
1515 tdp_ratio = core_get_tdp_ratio(plat_info);
1516 if (tdp_ratio <= 0)
1517 return max_pstate;
1518
1519 if (hwp_active) {
1520 /* Turbo activation ratio is not used on HWP platforms */
1521 return tdp_ratio;
1522 }
1523
1524 err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1525 if (!err) {
1526 int tar_levels;
1527
1528 /* Do some sanity checking for safety */
1529 tar_levels = tar & 0xff;
1530 if (tdp_ratio - 1 == tar_levels) {
1531 max_pstate = tar_levels;
1532 pr_debug("max_pstate=TAC %x\n", max_pstate);
1533 }
1534 }
1535
1536 return max_pstate;
1537 }
1538
1539 static int core_get_turbo_pstate(void)
1540 {
1541 u64 value;
1542 int nont, ret;
1543
1544 rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1545 nont = core_get_max_pstate();
1546 ret = (value) & 255;
1547 if (ret <= nont)
1548 ret = nont;
1549 return ret;
1550 }
1551
1552 static inline int core_get_scaling(void)
1553 {
1554 return 100000;
1555 }
1556
1557 static u64 core_get_val(struct cpudata *cpudata, int pstate)
1558 {
1559 u64 val;
1560
1561 val = (u64)pstate << 8;
1562 if (limits->no_turbo && !limits->turbo_disabled)
1563 val |= (u64)1 << 32;
1564
1565 return val;
1566 }
1567
1568 static int knl_get_turbo_pstate(void)
1569 {
1570 u64 value;
1571 int nont, ret;
1572
1573 rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1574 nont = core_get_max_pstate();
1575 ret = (((value) >> 8) & 0xFF);
1576 if (ret <= nont)
1577 ret = nont;
1578 return ret;
1579 }
1580
1581 static struct cpu_defaults core_params = {
1582 .pid_policy = {
1583 .sample_rate_ms = 10,
1584 .deadband = 0,
1585 .setpoint = 97,
1586 .p_gain_pct = 20,
1587 .d_gain_pct = 0,
1588 .i_gain_pct = 0,
1589 },
1590 .funcs = {
1591 .get_max = core_get_max_pstate,
1592 .get_max_physical = core_get_max_pstate_physical,
1593 .get_min = core_get_min_pstate,
1594 .get_turbo = core_get_turbo_pstate,
1595 .get_scaling = core_get_scaling,
1596 .get_val = core_get_val,
1597 .get_target_pstate = get_target_pstate_use_performance,
1598 },
1599 };
1600
1601 static const struct cpu_defaults silvermont_params = {
1602 .pid_policy = {
1603 .sample_rate_ms = 10,
1604 .deadband = 0,
1605 .setpoint = 60,
1606 .p_gain_pct = 14,
1607 .d_gain_pct = 0,
1608 .i_gain_pct = 4,
1609 },
1610 .funcs = {
1611 .get_max = atom_get_max_pstate,
1612 .get_max_physical = atom_get_max_pstate,
1613 .get_min = atom_get_min_pstate,
1614 .get_turbo = atom_get_turbo_pstate,
1615 .get_val = atom_get_val,
1616 .get_scaling = silvermont_get_scaling,
1617 .get_vid = atom_get_vid,
1618 .get_target_pstate = get_target_pstate_use_cpu_load,
1619 },
1620 };
1621
1622 static const struct cpu_defaults airmont_params = {
1623 .pid_policy = {
1624 .sample_rate_ms = 10,
1625 .deadband = 0,
1626 .setpoint = 60,
1627 .p_gain_pct = 14,
1628 .d_gain_pct = 0,
1629 .i_gain_pct = 4,
1630 },
1631 .funcs = {
1632 .get_max = atom_get_max_pstate,
1633 .get_max_physical = atom_get_max_pstate,
1634 .get_min = atom_get_min_pstate,
1635 .get_turbo = atom_get_turbo_pstate,
1636 .get_val = atom_get_val,
1637 .get_scaling = airmont_get_scaling,
1638 .get_vid = atom_get_vid,
1639 .get_target_pstate = get_target_pstate_use_cpu_load,
1640 },
1641 };
1642
1643 static const struct cpu_defaults knl_params = {
1644 .pid_policy = {
1645 .sample_rate_ms = 10,
1646 .deadband = 0,
1647 .setpoint = 97,
1648 .p_gain_pct = 20,
1649 .d_gain_pct = 0,
1650 .i_gain_pct = 0,
1651 },
1652 .funcs = {
1653 .get_max = core_get_max_pstate,
1654 .get_max_physical = core_get_max_pstate_physical,
1655 .get_min = core_get_min_pstate,
1656 .get_turbo = knl_get_turbo_pstate,
1657 .get_scaling = core_get_scaling,
1658 .get_val = core_get_val,
1659 .get_target_pstate = get_target_pstate_use_performance,
1660 },
1661 };
1662
1663 static const struct cpu_defaults bxt_params = {
1664 .pid_policy = {
1665 .sample_rate_ms = 10,
1666 .deadband = 0,
1667 .setpoint = 60,
1668 .p_gain_pct = 14,
1669 .d_gain_pct = 0,
1670 .i_gain_pct = 4,
1671 },
1672 .funcs = {
1673 .get_max = core_get_max_pstate,
1674 .get_max_physical = core_get_max_pstate_physical,
1675 .get_min = core_get_min_pstate,
1676 .get_turbo = core_get_turbo_pstate,
1677 .get_scaling = core_get_scaling,
1678 .get_val = core_get_val,
1679 .get_target_pstate = get_target_pstate_use_cpu_load,
1680 },
1681 };
1682
1683 static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
1684 {
1685 int max_perf = cpu->pstate.turbo_pstate;
1686 int max_perf_adj;
1687 int min_perf;
1688 struct perf_limits *perf_limits = limits;
1689
1690 if (limits->no_turbo || limits->turbo_disabled)
1691 max_perf = cpu->pstate.max_pstate;
1692
1693 if (per_cpu_limits)
1694 perf_limits = cpu->perf_limits;
1695
1696 /*
1697 * performance can be limited by user through sysfs, by cpufreq
1698 * policy, or by cpu specific default values determined through
1699 * experimentation.
1700 */
1701 max_perf_adj = fp_ext_toint(max_perf * perf_limits->max_perf);
1702 *max = clamp_t(int, max_perf_adj,
1703 cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
1704
1705 min_perf = fp_ext_toint(max_perf * perf_limits->min_perf);
1706 *min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
1707 }
1708
1709 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1710 {
1711 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1712 cpu->pstate.current_pstate = pstate;
1713 /*
1714 * Generally, there is no guarantee that this code will always run on
1715 * the CPU being updated, so force the register update to run on the
1716 * right CPU.
1717 */
1718 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1719 pstate_funcs.get_val(cpu, pstate));
1720 }
1721
1722 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1723 {
1724 intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1725 }
1726
1727 static void intel_pstate_max_within_limits(struct cpudata *cpu)
1728 {
1729 int min_pstate, max_pstate;
1730
1731 update_turbo_state();
1732 intel_pstate_get_min_max(cpu, &min_pstate, &max_pstate);
1733 intel_pstate_set_pstate(cpu, max_pstate);
1734 }
1735
1736 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1737 {
1738 cpu->pstate.min_pstate = pstate_funcs.get_min();
1739 cpu->pstate.max_pstate = pstate_funcs.get_max();
1740 cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1741 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1742 cpu->pstate.scaling = pstate_funcs.get_scaling();
1743 cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1744 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1745
1746 if (pstate_funcs.get_vid)
1747 pstate_funcs.get_vid(cpu);
1748
1749 intel_pstate_set_min_pstate(cpu);
1750 }
1751
1752 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1753 {
1754 struct sample *sample = &cpu->sample;
1755
1756 sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1757 }
1758
1759 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1760 {
1761 u64 aperf, mperf;
1762 unsigned long flags;
1763 u64 tsc;
1764
1765 local_irq_save(flags);
1766 rdmsrl(MSR_IA32_APERF, aperf);
1767 rdmsrl(MSR_IA32_MPERF, mperf);
1768 tsc = rdtsc();
1769 if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1770 local_irq_restore(flags);
1771 return false;
1772 }
1773 local_irq_restore(flags);
1774
1775 cpu->last_sample_time = cpu->sample.time;
1776 cpu->sample.time = time;
1777 cpu->sample.aperf = aperf;
1778 cpu->sample.mperf = mperf;
1779 cpu->sample.tsc = tsc;
1780 cpu->sample.aperf -= cpu->prev_aperf;
1781 cpu->sample.mperf -= cpu->prev_mperf;
1782 cpu->sample.tsc -= cpu->prev_tsc;
1783
1784 cpu->prev_aperf = aperf;
1785 cpu->prev_mperf = mperf;
1786 cpu->prev_tsc = tsc;
1787 /*
1788 * First time this function is invoked in a given cycle, all of the
1789 * previous sample data fields are equal to zero or stale and they must
1790 * be populated with meaningful numbers for things to work, so assume
1791 * that sample.time will always be reset before setting the utilization
1792 * update hook and make the caller skip the sample then.
1793 */
1794 return !!cpu->last_sample_time;
1795 }
1796
1797 static inline int32_t get_avg_frequency(struct cpudata *cpu)
1798 {
1799 return mul_ext_fp(cpu->sample.core_avg_perf,
1800 cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
1801 }
1802
1803 static inline int32_t get_avg_pstate(struct cpudata *cpu)
1804 {
1805 return mul_ext_fp(cpu->pstate.max_pstate_physical,
1806 cpu->sample.core_avg_perf);
1807 }
1808
1809 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
1810 {
1811 struct sample *sample = &cpu->sample;
1812 int32_t busy_frac, boost;
1813 int target, avg_pstate;
1814
1815 busy_frac = div_fp(sample->mperf, sample->tsc);
1816
1817 boost = cpu->iowait_boost;
1818 cpu->iowait_boost >>= 1;
1819
1820 if (busy_frac < boost)
1821 busy_frac = boost;
1822
1823 sample->busy_scaled = busy_frac * 100;
1824
1825 target = limits->no_turbo || limits->turbo_disabled ?
1826 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1827 target += target >> 2;
1828 target = mul_fp(target, busy_frac);
1829 if (target < cpu->pstate.min_pstate)
1830 target = cpu->pstate.min_pstate;
1831
1832 /*
1833 * If the average P-state during the previous cycle was higher than the
1834 * current target, add 50% of the difference to the target to reduce
1835 * possible performance oscillations and offset possible performance
1836 * loss related to moving the workload from one CPU to another within
1837 * a package/module.
1838 */
1839 avg_pstate = get_avg_pstate(cpu);
1840 if (avg_pstate > target)
1841 target += (avg_pstate - target) >> 1;
1842
1843 return target;
1844 }
1845
1846 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
1847 {
1848 int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
1849 u64 duration_ns;
1850
1851 /*
1852 * perf_scaled is the ratio of the average P-state during the last
1853 * sampling period to the P-state requested last time (in percent).
1854 *
1855 * That measures the system's response to the previous P-state
1856 * selection.
1857 */
1858 max_pstate = cpu->pstate.max_pstate_physical;
1859 current_pstate = cpu->pstate.current_pstate;
1860 perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
1861 div_fp(100 * max_pstate, current_pstate));
1862
1863 /*
1864 * Since our utilization update callback will not run unless we are
1865 * in C0, check if the actual elapsed time is significantly greater (3x)
1866 * than our sample interval. If it is, then we were idle for a long
1867 * enough period of time to adjust our performance metric.
1868 */
1869 duration_ns = cpu->sample.time - cpu->last_sample_time;
1870 if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
1871 sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1872 perf_scaled = mul_fp(perf_scaled, sample_ratio);
1873 } else {
1874 sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
1875 if (sample_ratio < int_tofp(1))
1876 perf_scaled = 0;
1877 }
1878
1879 cpu->sample.busy_scaled = perf_scaled;
1880 return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
1881 }
1882
1883 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1884 {
1885 int max_perf, min_perf;
1886
1887 intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
1888 pstate = clamp_t(int, pstate, min_perf, max_perf);
1889 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1890 return pstate;
1891 }
1892
1893 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1894 {
1895 pstate = intel_pstate_prepare_request(cpu, pstate);
1896 if (pstate == cpu->pstate.current_pstate)
1897 return;
1898
1899 cpu->pstate.current_pstate = pstate;
1900 wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1901 }
1902
1903 static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
1904 {
1905 int from, target_pstate;
1906 struct sample *sample;
1907
1908 from = cpu->pstate.current_pstate;
1909
1910 target_pstate = cpu->policy == CPUFREQ_POLICY_PERFORMANCE ?
1911 cpu->pstate.turbo_pstate : pstate_funcs.get_target_pstate(cpu);
1912
1913 update_turbo_state();
1914
1915 intel_pstate_update_pstate(cpu, target_pstate);
1916
1917 sample = &cpu->sample;
1918 trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1919 fp_toint(sample->busy_scaled),
1920 from,
1921 cpu->pstate.current_pstate,
1922 sample->mperf,
1923 sample->aperf,
1924 sample->tsc,
1925 get_avg_frequency(cpu),
1926 fp_toint(cpu->iowait_boost * 100));
1927 }
1928
1929 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1930 unsigned int flags)
1931 {
1932 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1933 u64 delta_ns;
1934
1935 if (pstate_funcs.get_target_pstate == get_target_pstate_use_cpu_load) {
1936 if (flags & SCHED_CPUFREQ_IOWAIT) {
1937 cpu->iowait_boost = int_tofp(1);
1938 } else if (cpu->iowait_boost) {
1939 /* Clear iowait_boost if the CPU may have been idle. */
1940 delta_ns = time - cpu->last_update;
1941 if (delta_ns > TICK_NSEC)
1942 cpu->iowait_boost = 0;
1943 }
1944 cpu->last_update = time;
1945 }
1946
1947 delta_ns = time - cpu->sample.time;
1948 if ((s64)delta_ns >= pid_params.sample_rate_ns) {
1949 bool sample_taken = intel_pstate_sample(cpu, time);
1950
1951 if (sample_taken) {
1952 intel_pstate_calc_avg_perf(cpu);
1953 if (!hwp_active)
1954 intel_pstate_adjust_busy_pstate(cpu);
1955 }
1956 }
1957 }
1958
1959 #define ICPU(model, policy) \
1960 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1961 (unsigned long)&policy }
1962
1963 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1964 ICPU(INTEL_FAM6_SANDYBRIDGE, core_params),
1965 ICPU(INTEL_FAM6_SANDYBRIDGE_X, core_params),
1966 ICPU(INTEL_FAM6_ATOM_SILVERMONT1, silvermont_params),
1967 ICPU(INTEL_FAM6_IVYBRIDGE, core_params),
1968 ICPU(INTEL_FAM6_HASWELL_CORE, core_params),
1969 ICPU(INTEL_FAM6_BROADWELL_CORE, core_params),
1970 ICPU(INTEL_FAM6_IVYBRIDGE_X, core_params),
1971 ICPU(INTEL_FAM6_HASWELL_X, core_params),
1972 ICPU(INTEL_FAM6_HASWELL_ULT, core_params),
1973 ICPU(INTEL_FAM6_HASWELL_GT3E, core_params),
1974 ICPU(INTEL_FAM6_BROADWELL_GT3E, core_params),
1975 ICPU(INTEL_FAM6_ATOM_AIRMONT, airmont_params),
1976 ICPU(INTEL_FAM6_SKYLAKE_MOBILE, core_params),
1977 ICPU(INTEL_FAM6_BROADWELL_X, core_params),
1978 ICPU(INTEL_FAM6_SKYLAKE_DESKTOP, core_params),
1979 ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
1980 ICPU(INTEL_FAM6_XEON_PHI_KNL, knl_params),
1981 ICPU(INTEL_FAM6_XEON_PHI_KNM, knl_params),
1982 ICPU(INTEL_FAM6_ATOM_GOLDMONT, bxt_params),
1983 {}
1984 };
1985 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1986
1987 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1988 ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
1989 ICPU(INTEL_FAM6_BROADWELL_X, core_params),
1990 ICPU(INTEL_FAM6_SKYLAKE_X, core_params),
1991 {}
1992 };
1993
1994 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
1995 ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_params),
1996 {}
1997 };
1998
1999 static int intel_pstate_init_cpu(unsigned int cpunum)
2000 {
2001 struct cpudata *cpu;
2002
2003 cpu = all_cpu_data[cpunum];
2004
2005 if (!cpu) {
2006 unsigned int size = sizeof(struct cpudata);
2007
2008 if (per_cpu_limits)
2009 size += sizeof(struct perf_limits);
2010
2011 cpu = kzalloc(size, GFP_KERNEL);
2012 if (!cpu)
2013 return -ENOMEM;
2014
2015 all_cpu_data[cpunum] = cpu;
2016 if (per_cpu_limits)
2017 cpu->perf_limits = (struct perf_limits *)(cpu + 1);
2018
2019 cpu->epp_default = -EINVAL;
2020 cpu->epp_powersave = -EINVAL;
2021 cpu->epp_saved = -EINVAL;
2022 }
2023
2024 cpu = all_cpu_data[cpunum];
2025
2026 cpu->cpu = cpunum;
2027
2028 if (hwp_active) {
2029 const struct x86_cpu_id *id;
2030
2031 id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
2032 if (id)
2033 intel_pstate_disable_ee(cpunum);
2034
2035 intel_pstate_hwp_enable(cpu);
2036 pid_params.sample_rate_ms = 50;
2037 pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
2038 }
2039
2040 intel_pstate_get_cpu_pstates(cpu);
2041
2042 intel_pstate_busy_pid_reset(cpu);
2043
2044 pr_debug("controlling: cpu %d\n", cpunum);
2045
2046 return 0;
2047 }
2048
2049 static unsigned int intel_pstate_get(unsigned int cpu_num)
2050 {
2051 struct cpudata *cpu = all_cpu_data[cpu_num];
2052
2053 return cpu ? get_avg_frequency(cpu) : 0;
2054 }
2055
2056 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
2057 {
2058 struct cpudata *cpu = all_cpu_data[cpu_num];
2059
2060 if (cpu->update_util_set)
2061 return;
2062
2063 /* Prevent intel_pstate_update_util() from using stale data. */
2064 cpu->sample.time = 0;
2065 cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
2066 intel_pstate_update_util);
2067 cpu->update_util_set = true;
2068 }
2069
2070 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
2071 {
2072 struct cpudata *cpu_data = all_cpu_data[cpu];
2073
2074 if (!cpu_data->update_util_set)
2075 return;
2076
2077 cpufreq_remove_update_util_hook(cpu);
2078 cpu_data->update_util_set = false;
2079 synchronize_sched();
2080 }
2081
2082 static void intel_pstate_set_performance_limits(struct perf_limits *limits)
2083 {
2084 limits->no_turbo = 0;
2085 limits->turbo_disabled = 0;
2086 limits->max_perf_pct = 100;
2087 limits->max_perf = int_ext_tofp(1);
2088 limits->min_perf_pct = 100;
2089 limits->min_perf = int_ext_tofp(1);
2090 limits->max_policy_pct = 100;
2091 limits->max_sysfs_pct = 100;
2092 limits->min_policy_pct = 0;
2093 limits->min_sysfs_pct = 0;
2094 }
2095
2096 static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
2097 struct perf_limits *limits)
2098 {
2099
2100 limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100,
2101 policy->cpuinfo.max_freq);
2102 limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0, 100);
2103 if (policy->max == policy->min) {
2104 limits->min_policy_pct = limits->max_policy_pct;
2105 } else {
2106 limits->min_policy_pct = DIV_ROUND_UP(policy->min * 100,
2107 policy->cpuinfo.max_freq);
2108 limits->min_policy_pct = clamp_t(int, limits->min_policy_pct,
2109 0, 100);
2110 }
2111
2112 /* Normalize user input to [min_policy_pct, max_policy_pct] */
2113 limits->min_perf_pct = max(limits->min_policy_pct,
2114 limits->min_sysfs_pct);
2115 limits->min_perf_pct = min(limits->max_policy_pct,
2116 limits->min_perf_pct);
2117 limits->max_perf_pct = min(limits->max_policy_pct,
2118 limits->max_sysfs_pct);
2119 limits->max_perf_pct = max(limits->min_policy_pct,
2120 limits->max_perf_pct);
2121
2122 /* Make sure min_perf_pct <= max_perf_pct */
2123 limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct);
2124
2125 limits->min_perf = div_ext_fp(limits->min_perf_pct, 100);
2126 limits->max_perf = div_ext_fp(limits->max_perf_pct, 100);
2127 limits->max_perf = round_up(limits->max_perf, EXT_FRAC_BITS);
2128 limits->min_perf = round_up(limits->min_perf, EXT_FRAC_BITS);
2129
2130 pr_debug("cpu:%d max_perf_pct:%d min_perf_pct:%d\n", policy->cpu,
2131 limits->max_perf_pct, limits->min_perf_pct);
2132 }
2133
2134 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2135 {
2136 struct cpudata *cpu;
2137 struct perf_limits *perf_limits = NULL;
2138
2139 if (!policy->cpuinfo.max_freq)
2140 return -ENODEV;
2141
2142 pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2143 policy->cpuinfo.max_freq, policy->max);
2144
2145 cpu = all_cpu_data[policy->cpu];
2146 cpu->policy = policy->policy;
2147
2148 if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2149 policy->max < policy->cpuinfo.max_freq &&
2150 policy->max > cpu->pstate.max_pstate * cpu->pstate.scaling) {
2151 pr_debug("policy->max > max non turbo frequency\n");
2152 policy->max = policy->cpuinfo.max_freq;
2153 }
2154
2155 if (per_cpu_limits)
2156 perf_limits = cpu->perf_limits;
2157
2158 mutex_lock(&intel_pstate_limits_lock);
2159
2160 if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
2161 if (!perf_limits) {
2162 limits = &performance_limits;
2163 perf_limits = limits;
2164 }
2165 if (policy->max >= policy->cpuinfo.max_freq &&
2166 !limits->no_turbo) {
2167 pr_debug("set performance\n");
2168 intel_pstate_set_performance_limits(perf_limits);
2169 goto out;
2170 }
2171 } else {
2172 pr_debug("set powersave\n");
2173 if (!perf_limits) {
2174 limits = &powersave_limits;
2175 perf_limits = limits;
2176 }
2177
2178 }
2179
2180 intel_pstate_update_perf_limits(policy, perf_limits);
2181 out:
2182 if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2183 /*
2184 * NOHZ_FULL CPUs need this as the governor callback may not
2185 * be invoked on them.
2186 */
2187 intel_pstate_clear_update_util_hook(policy->cpu);
2188 intel_pstate_max_within_limits(cpu);
2189 }
2190
2191 intel_pstate_set_update_util_hook(policy->cpu);
2192
2193 intel_pstate_hwp_set_policy(policy);
2194
2195 mutex_unlock(&intel_pstate_limits_lock);
2196
2197 return 0;
2198 }
2199
2200 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
2201 {
2202 struct cpudata *cpu = all_cpu_data[policy->cpu];
2203 struct perf_limits *perf_limits;
2204
2205 if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
2206 perf_limits = &performance_limits;
2207 else
2208 perf_limits = &powersave_limits;
2209
2210 update_turbo_state();
2211 policy->cpuinfo.max_freq = perf_limits->turbo_disabled ||
2212 perf_limits->no_turbo ?
2213 cpu->pstate.max_freq :
2214 cpu->pstate.turbo_freq;
2215
2216 cpufreq_verify_within_cpu_limits(policy);
2217
2218 if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
2219 policy->policy != CPUFREQ_POLICY_PERFORMANCE)
2220 return -EINVAL;
2221
2222 /* When per-CPU limits are used, sysfs limits are not used */
2223 if (!per_cpu_limits) {
2224 unsigned int max_freq, min_freq;
2225
2226 max_freq = policy->cpuinfo.max_freq *
2227 limits->max_sysfs_pct / 100;
2228 min_freq = policy->cpuinfo.max_freq *
2229 limits->min_sysfs_pct / 100;
2230 cpufreq_verify_within_limits(policy, min_freq, max_freq);
2231 }
2232
2233 return 0;
2234 }
2235
2236 static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
2237 {
2238 intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
2239 }
2240
2241 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2242 {
2243 pr_debug("CPU %d exiting\n", policy->cpu);
2244
2245 intel_pstate_clear_update_util_hook(policy->cpu);
2246 if (hwp_active)
2247 intel_pstate_hwp_save_state(policy);
2248 else
2249 intel_cpufreq_stop_cpu(policy);
2250 }
2251
2252 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2253 {
2254 intel_pstate_exit_perf_limits(policy);
2255
2256 policy->fast_switch_possible = false;
2257
2258 return 0;
2259 }
2260
2261 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2262 {
2263 struct cpudata *cpu;
2264 int rc;
2265
2266 rc = intel_pstate_init_cpu(policy->cpu);
2267 if (rc)
2268 return rc;
2269
2270 cpu = all_cpu_data[policy->cpu];
2271
2272 /*
2273 * We need sane value in the cpu->perf_limits, so inherit from global
2274 * perf_limits limits, which are seeded with values based on the
2275 * CONFIG_CPU_FREQ_DEFAULT_GOV_*, during boot up.
2276 */
2277 if (per_cpu_limits)
2278 memcpy(cpu->perf_limits, limits, sizeof(struct perf_limits));
2279
2280 policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
2281 policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2282
2283 /* cpuinfo and default policy values */
2284 policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2285 update_turbo_state();
2286 policy->cpuinfo.max_freq = limits->turbo_disabled ?
2287 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2288 policy->cpuinfo.max_freq *= cpu->pstate.scaling;
2289
2290 intel_pstate_init_acpi_perf_limits(policy);
2291 cpumask_set_cpu(policy->cpu, policy->cpus);
2292
2293 policy->fast_switch_possible = true;
2294
2295 return 0;
2296 }
2297
2298 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2299 {
2300 int ret = __intel_pstate_cpu_init(policy);
2301
2302 if (ret)
2303 return ret;
2304
2305 policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
2306 if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
2307 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
2308 else
2309 policy->policy = CPUFREQ_POLICY_POWERSAVE;
2310
2311 return 0;
2312 }
2313
2314 static struct cpufreq_driver intel_pstate = {
2315 .flags = CPUFREQ_CONST_LOOPS,
2316 .verify = intel_pstate_verify_policy,
2317 .setpolicy = intel_pstate_set_policy,
2318 .suspend = intel_pstate_hwp_save_state,
2319 .resume = intel_pstate_resume,
2320 .get = intel_pstate_get,
2321 .init = intel_pstate_cpu_init,
2322 .exit = intel_pstate_cpu_exit,
2323 .stop_cpu = intel_pstate_stop_cpu,
2324 .name = "intel_pstate",
2325 };
2326
2327 static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
2328 {
2329 struct cpudata *cpu = all_cpu_data[policy->cpu];
2330 struct perf_limits *perf_limits = limits;
2331
2332 update_turbo_state();
2333 policy->cpuinfo.max_freq = limits->turbo_disabled ?
2334 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2335
2336 cpufreq_verify_within_cpu_limits(policy);
2337
2338 if (per_cpu_limits)
2339 perf_limits = cpu->perf_limits;
2340
2341 mutex_lock(&intel_pstate_limits_lock);
2342
2343 intel_pstate_update_perf_limits(policy, perf_limits);
2344
2345 mutex_unlock(&intel_pstate_limits_lock);
2346
2347 return 0;
2348 }
2349
2350 static unsigned int intel_cpufreq_turbo_update(struct cpudata *cpu,
2351 struct cpufreq_policy *policy,
2352 unsigned int target_freq)
2353 {
2354 unsigned int max_freq;
2355
2356 update_turbo_state();
2357
2358 max_freq = limits->no_turbo || limits->turbo_disabled ?
2359 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2360 policy->cpuinfo.max_freq = max_freq;
2361 if (policy->max > max_freq)
2362 policy->max = max_freq;
2363
2364 if (target_freq > max_freq)
2365 target_freq = max_freq;
2366
2367 return target_freq;
2368 }
2369
2370 static int intel_cpufreq_target(struct cpufreq_policy *policy,
2371 unsigned int target_freq,
2372 unsigned int relation)
2373 {
2374 struct cpudata *cpu = all_cpu_data[policy->cpu];
2375 struct cpufreq_freqs freqs;
2376 int target_pstate;
2377
2378 freqs.old = policy->cur;
2379 freqs.new = intel_cpufreq_turbo_update(cpu, policy, target_freq);
2380
2381 cpufreq_freq_transition_begin(policy, &freqs);
2382 switch (relation) {
2383 case CPUFREQ_RELATION_L:
2384 target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2385 break;
2386 case CPUFREQ_RELATION_H:
2387 target_pstate = freqs.new / cpu->pstate.scaling;
2388 break;
2389 default:
2390 target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2391 break;
2392 }
2393 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2394 if (target_pstate != cpu->pstate.current_pstate) {
2395 cpu->pstate.current_pstate = target_pstate;
2396 wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
2397 pstate_funcs.get_val(cpu, target_pstate));
2398 }
2399 cpufreq_freq_transition_end(policy, &freqs, false);
2400
2401 return 0;
2402 }
2403
2404 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2405 unsigned int target_freq)
2406 {
2407 struct cpudata *cpu = all_cpu_data[policy->cpu];
2408 int target_pstate;
2409
2410 target_freq = intel_cpufreq_turbo_update(cpu, policy, target_freq);
2411 target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2412 intel_pstate_update_pstate(cpu, target_pstate);
2413 return target_freq;
2414 }
2415
2416 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2417 {
2418 int ret = __intel_pstate_cpu_init(policy);
2419
2420 if (ret)
2421 return ret;
2422
2423 policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2424 /* This reflects the intel_pstate_get_cpu_pstates() setting. */
2425 policy->cur = policy->cpuinfo.min_freq;
2426
2427 return 0;
2428 }
2429
2430 static struct cpufreq_driver intel_cpufreq = {
2431 .flags = CPUFREQ_CONST_LOOPS,
2432 .verify = intel_cpufreq_verify_policy,
2433 .target = intel_cpufreq_target,
2434 .fast_switch = intel_cpufreq_fast_switch,
2435 .init = intel_cpufreq_cpu_init,
2436 .exit = intel_pstate_cpu_exit,
2437 .stop_cpu = intel_cpufreq_stop_cpu,
2438 .name = "intel_cpufreq",
2439 };
2440
2441 static struct cpufreq_driver *intel_pstate_driver = &intel_pstate;
2442
2443 static void intel_pstate_driver_cleanup(void)
2444 {
2445 unsigned int cpu;
2446
2447 get_online_cpus();
2448 for_each_online_cpu(cpu) {
2449 if (all_cpu_data[cpu]) {
2450 if (intel_pstate_driver == &intel_pstate)
2451 intel_pstate_clear_update_util_hook(cpu);
2452
2453 kfree(all_cpu_data[cpu]);
2454 all_cpu_data[cpu] = NULL;
2455 }
2456 }
2457 put_online_cpus();
2458 }
2459
2460 static int intel_pstate_register_driver(void)
2461 {
2462 int ret;
2463
2464 ret = cpufreq_register_driver(intel_pstate_driver);
2465 if (ret) {
2466 intel_pstate_driver_cleanup();
2467 return ret;
2468 }
2469
2470 mutex_lock(&intel_pstate_limits_lock);
2471 driver_registered = true;
2472 mutex_unlock(&intel_pstate_limits_lock);
2473
2474 if (intel_pstate_driver == &intel_pstate && !hwp_active &&
2475 pstate_funcs.get_target_pstate != get_target_pstate_use_cpu_load)
2476 intel_pstate_debug_expose_params();
2477
2478 return 0;
2479 }
2480
2481 static int intel_pstate_unregister_driver(void)
2482 {
2483 if (hwp_active)
2484 return -EBUSY;
2485
2486 if (intel_pstate_driver == &intel_pstate && !hwp_active &&
2487 pstate_funcs.get_target_pstate != get_target_pstate_use_cpu_load)
2488 intel_pstate_debug_hide_params();
2489
2490 mutex_lock(&intel_pstate_limits_lock);
2491 driver_registered = false;
2492 mutex_unlock(&intel_pstate_limits_lock);
2493
2494 cpufreq_unregister_driver(intel_pstate_driver);
2495 intel_pstate_driver_cleanup();
2496
2497 return 0;
2498 }
2499
2500 static ssize_t intel_pstate_show_status(char *buf)
2501 {
2502 if (!driver_registered)
2503 return sprintf(buf, "off\n");
2504
2505 return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
2506 "active" : "passive");
2507 }
2508
2509 static int intel_pstate_update_status(const char *buf, size_t size)
2510 {
2511 int ret;
2512
2513 if (size == 3 && !strncmp(buf, "off", size))
2514 return driver_registered ?
2515 intel_pstate_unregister_driver() : -EINVAL;
2516
2517 if (size == 6 && !strncmp(buf, "active", size)) {
2518 if (driver_registered) {
2519 if (intel_pstate_driver == &intel_pstate)
2520 return 0;
2521
2522 ret = intel_pstate_unregister_driver();
2523 if (ret)
2524 return ret;
2525 }
2526
2527 intel_pstate_driver = &intel_pstate;
2528 return intel_pstate_register_driver();
2529 }
2530
2531 if (size == 7 && !strncmp(buf, "passive", size)) {
2532 if (driver_registered) {
2533 if (intel_pstate_driver != &intel_pstate)
2534 return 0;
2535
2536 ret = intel_pstate_unregister_driver();
2537 if (ret)
2538 return ret;
2539 }
2540
2541 intel_pstate_driver = &intel_cpufreq;
2542 return intel_pstate_register_driver();
2543 }
2544
2545 return -EINVAL;
2546 }
2547
2548 static int no_load __initdata;
2549 static int no_hwp __initdata;
2550 static int hwp_only __initdata;
2551 static unsigned int force_load __initdata;
2552
2553 static int __init intel_pstate_msrs_not_valid(void)
2554 {
2555 if (!pstate_funcs.get_max() ||
2556 !pstate_funcs.get_min() ||
2557 !pstate_funcs.get_turbo())
2558 return -ENODEV;
2559
2560 return 0;
2561 }
2562
2563 static void __init copy_pid_params(struct pstate_adjust_policy *policy)
2564 {
2565 pid_params.sample_rate_ms = policy->sample_rate_ms;
2566 pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
2567 pid_params.p_gain_pct = policy->p_gain_pct;
2568 pid_params.i_gain_pct = policy->i_gain_pct;
2569 pid_params.d_gain_pct = policy->d_gain_pct;
2570 pid_params.deadband = policy->deadband;
2571 pid_params.setpoint = policy->setpoint;
2572 }
2573
2574 #ifdef CONFIG_ACPI
2575 static void intel_pstate_use_acpi_profile(void)
2576 {
2577 if (acpi_gbl_FADT.preferred_profile == PM_MOBILE)
2578 pstate_funcs.get_target_pstate =
2579 get_target_pstate_use_cpu_load;
2580 }
2581 #else
2582 static void intel_pstate_use_acpi_profile(void)
2583 {
2584 }
2585 #endif
2586
2587 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2588 {
2589 pstate_funcs.get_max = funcs->get_max;
2590 pstate_funcs.get_max_physical = funcs->get_max_physical;
2591 pstate_funcs.get_min = funcs->get_min;
2592 pstate_funcs.get_turbo = funcs->get_turbo;
2593 pstate_funcs.get_scaling = funcs->get_scaling;
2594 pstate_funcs.get_val = funcs->get_val;
2595 pstate_funcs.get_vid = funcs->get_vid;
2596 pstate_funcs.get_target_pstate = funcs->get_target_pstate;
2597
2598 intel_pstate_use_acpi_profile();
2599 }
2600
2601 #ifdef CONFIG_ACPI
2602
2603 static bool __init intel_pstate_no_acpi_pss(void)
2604 {
2605 int i;
2606
2607 for_each_possible_cpu(i) {
2608 acpi_status status;
2609 union acpi_object *pss;
2610 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
2611 struct acpi_processor *pr = per_cpu(processors, i);
2612
2613 if (!pr)
2614 continue;
2615
2616 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
2617 if (ACPI_FAILURE(status))
2618 continue;
2619
2620 pss = buffer.pointer;
2621 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
2622 kfree(pss);
2623 return false;
2624 }
2625
2626 kfree(pss);
2627 }
2628
2629 return true;
2630 }
2631
2632 static bool __init intel_pstate_has_acpi_ppc(void)
2633 {
2634 int i;
2635
2636 for_each_possible_cpu(i) {
2637 struct acpi_processor *pr = per_cpu(processors, i);
2638
2639 if (!pr)
2640 continue;
2641 if (acpi_has_method(pr->handle, "_PPC"))
2642 return true;
2643 }
2644 return false;
2645 }
2646
2647 enum {
2648 PSS,
2649 PPC,
2650 };
2651
2652 struct hw_vendor_info {
2653 u16 valid;
2654 char oem_id[ACPI_OEM_ID_SIZE];
2655 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
2656 int oem_pwr_table;
2657 };
2658
2659 /* Hardware vendor-specific info that has its own power management modes */
2660 static struct hw_vendor_info vendor_info[] __initdata = {
2661 {1, "HP ", "ProLiant", PSS},
2662 {1, "ORACLE", "X4-2 ", PPC},
2663 {1, "ORACLE", "X4-2L ", PPC},
2664 {1, "ORACLE", "X4-2B ", PPC},
2665 {1, "ORACLE", "X3-2 ", PPC},
2666 {1, "ORACLE", "X3-2L ", PPC},
2667 {1, "ORACLE", "X3-2B ", PPC},
2668 {1, "ORACLE", "X4470M2 ", PPC},
2669 {1, "ORACLE", "X4270M3 ", PPC},
2670 {1, "ORACLE", "X4270M2 ", PPC},
2671 {1, "ORACLE", "X4170M2 ", PPC},
2672 {1, "ORACLE", "X4170 M3", PPC},
2673 {1, "ORACLE", "X4275 M3", PPC},
2674 {1, "ORACLE", "X6-2 ", PPC},
2675 {1, "ORACLE", "Sudbury ", PPC},
2676 {0, "", ""},
2677 };
2678
2679 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2680 {
2681 struct acpi_table_header hdr;
2682 struct hw_vendor_info *v_info;
2683 const struct x86_cpu_id *id;
2684 u64 misc_pwr;
2685
2686 id = x86_match_cpu(intel_pstate_cpu_oob_ids);
2687 if (id) {
2688 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2689 if ( misc_pwr & (1 << 8))
2690 return true;
2691 }
2692
2693 if (acpi_disabled ||
2694 ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
2695 return false;
2696
2697 for (v_info = vendor_info; v_info->valid; v_info++) {
2698 if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
2699 !strncmp(hdr.oem_table_id, v_info->oem_table_id,
2700 ACPI_OEM_TABLE_ID_SIZE))
2701 switch (v_info->oem_pwr_table) {
2702 case PSS:
2703 return intel_pstate_no_acpi_pss();
2704 case PPC:
2705 return intel_pstate_has_acpi_ppc() &&
2706 (!force_load);
2707 }
2708 }
2709
2710 return false;
2711 }
2712
2713 static void intel_pstate_request_control_from_smm(void)
2714 {
2715 /*
2716 * It may be unsafe to request P-states control from SMM if _PPC support
2717 * has not been enabled.
2718 */
2719 if (acpi_ppc)
2720 acpi_processor_pstate_control();
2721 }
2722 #else /* CONFIG_ACPI not enabled */
2723 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2724 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2725 static inline void intel_pstate_request_control_from_smm(void) {}
2726 #endif /* CONFIG_ACPI */
2727
2728 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2729 { X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
2730 {}
2731 };
2732
2733 static int __init intel_pstate_init(void)
2734 {
2735 const struct x86_cpu_id *id;
2736 struct cpu_defaults *cpu_def;
2737 int rc = 0;
2738
2739 if (no_load)
2740 return -ENODEV;
2741
2742 if (x86_match_cpu(hwp_support_ids) && !no_hwp) {
2743 copy_cpu_funcs(&core_params.funcs);
2744 hwp_active++;
2745 intel_pstate.attr = hwp_cpufreq_attrs;
2746 goto hwp_cpu_matched;
2747 }
2748
2749 id = x86_match_cpu(intel_pstate_cpu_ids);
2750 if (!id)
2751 return -ENODEV;
2752
2753 cpu_def = (struct cpu_defaults *)id->driver_data;
2754
2755 copy_pid_params(&cpu_def->pid_policy);
2756 copy_cpu_funcs(&cpu_def->funcs);
2757
2758 if (intel_pstate_msrs_not_valid())
2759 return -ENODEV;
2760
2761 hwp_cpu_matched:
2762 /*
2763 * The Intel pstate driver will be ignored if the platform
2764 * firmware has its own power management modes.
2765 */
2766 if (intel_pstate_platform_pwr_mgmt_exists())
2767 return -ENODEV;
2768
2769 if (!hwp_active && hwp_only)
2770 return -ENOTSUPP;
2771
2772 pr_info("Intel P-state driver initializing\n");
2773
2774 all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
2775 if (!all_cpu_data)
2776 return -ENOMEM;
2777
2778 intel_pstate_request_control_from_smm();
2779
2780 intel_pstate_sysfs_expose_params();
2781
2782 mutex_lock(&intel_pstate_driver_lock);
2783 rc = intel_pstate_register_driver();
2784 mutex_unlock(&intel_pstate_driver_lock);
2785 if (rc)
2786 return rc;
2787
2788 if (hwp_active)
2789 pr_info("HWP enabled\n");
2790
2791 return 0;
2792 }
2793 device_initcall(intel_pstate_init);
2794
2795 static int __init intel_pstate_setup(char *str)
2796 {
2797 if (!str)
2798 return -EINVAL;
2799
2800 if (!strcmp(str, "disable")) {
2801 no_load = 1;
2802 } else if (!strcmp(str, "passive")) {
2803 pr_info("Passive mode enabled\n");
2804 intel_pstate_driver = &intel_cpufreq;
2805 no_hwp = 1;
2806 }
2807 if (!strcmp(str, "no_hwp")) {
2808 pr_info("HWP disabled\n");
2809 no_hwp = 1;
2810 }
2811 if (!strcmp(str, "force"))
2812 force_load = 1;
2813 if (!strcmp(str, "hwp_only"))
2814 hwp_only = 1;
2815 if (!strcmp(str, "per_cpu_perf_limits"))
2816 per_cpu_limits = true;
2817
2818 #ifdef CONFIG_ACPI
2819 if (!strcmp(str, "support_acpi_ppc"))
2820 acpi_ppc = true;
2821 #endif
2822
2823 return 0;
2824 }
2825 early_param("intel_pstate", intel_pstate_setup);
2826
2827 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
2828 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
2829 MODULE_LICENSE("GPL");