]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/cpufreq/intel_pstate.c
intel_pstate: Move intel_pstate_calc_busy() into get_target_pstate_use_performance()
[mirror_ubuntu-artful-kernel.git] / drivers / cpufreq / intel_pstate.c
1 /*
2 * intel_pstate.c: Native P state management for Intel processors
3 *
4 * (C) Copyright 2012 Intel Corporation
5 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
10 * of the License.
11 */
12
13 #include <linux/kernel.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/module.h>
16 #include <linux/ktime.h>
17 #include <linux/hrtimer.h>
18 #include <linux/tick.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/list.h>
22 #include <linux/cpu.h>
23 #include <linux/cpufreq.h>
24 #include <linux/sysfs.h>
25 #include <linux/types.h>
26 #include <linux/fs.h>
27 #include <linux/debugfs.h>
28 #include <linux/acpi.h>
29 #include <linux/vmalloc.h>
30 #include <trace/events/power.h>
31
32 #include <asm/div64.h>
33 #include <asm/msr.h>
34 #include <asm/cpu_device_id.h>
35 #include <asm/cpufeature.h>
36
37 #define ATOM_RATIOS 0x66a
38 #define ATOM_VIDS 0x66b
39 #define ATOM_TURBO_RATIOS 0x66c
40 #define ATOM_TURBO_VIDS 0x66d
41
42 #define FRAC_BITS 8
43 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
44 #define fp_toint(X) ((X) >> FRAC_BITS)
45
46 static inline int32_t mul_fp(int32_t x, int32_t y)
47 {
48 return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
49 }
50
51 static inline int32_t div_fp(s64 x, s64 y)
52 {
53 return div64_s64((int64_t)x << FRAC_BITS, y);
54 }
55
56 static inline int ceiling_fp(int32_t x)
57 {
58 int mask, ret;
59
60 ret = fp_toint(x);
61 mask = (1 << FRAC_BITS) - 1;
62 if (x & mask)
63 ret += 1;
64 return ret;
65 }
66
67 struct sample {
68 int32_t core_pct_busy;
69 int32_t busy_scaled;
70 u64 aperf;
71 u64 mperf;
72 u64 tsc;
73 int freq;
74 u64 time;
75 };
76
77 struct pstate_data {
78 int current_pstate;
79 int min_pstate;
80 int max_pstate;
81 int max_pstate_physical;
82 int scaling;
83 int turbo_pstate;
84 };
85
86 struct vid_data {
87 int min;
88 int max;
89 int turbo;
90 int32_t ratio;
91 };
92
93 struct _pid {
94 int setpoint;
95 int32_t integral;
96 int32_t p_gain;
97 int32_t i_gain;
98 int32_t d_gain;
99 int deadband;
100 int32_t last_err;
101 };
102
103 struct cpudata {
104 int cpu;
105
106 struct update_util_data update_util;
107
108 struct pstate_data pstate;
109 struct vid_data vid;
110 struct _pid pid;
111
112 u64 last_sample_time;
113 u64 prev_aperf;
114 u64 prev_mperf;
115 u64 prev_tsc;
116 u64 prev_cummulative_iowait;
117 struct sample sample;
118 };
119
120 static struct cpudata **all_cpu_data;
121 struct pstate_adjust_policy {
122 int sample_rate_ms;
123 s64 sample_rate_ns;
124 int deadband;
125 int setpoint;
126 int p_gain_pct;
127 int d_gain_pct;
128 int i_gain_pct;
129 };
130
131 struct pstate_funcs {
132 int (*get_max)(void);
133 int (*get_max_physical)(void);
134 int (*get_min)(void);
135 int (*get_turbo)(void);
136 int (*get_scaling)(void);
137 void (*set)(struct cpudata*, int pstate);
138 void (*get_vid)(struct cpudata *);
139 int32_t (*get_target_pstate)(struct cpudata *);
140 };
141
142 struct cpu_defaults {
143 struct pstate_adjust_policy pid_policy;
144 struct pstate_funcs funcs;
145 };
146
147 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
148 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
149
150 static struct pstate_adjust_policy pid_params;
151 static struct pstate_funcs pstate_funcs;
152 static int hwp_active;
153
154 struct perf_limits {
155 int no_turbo;
156 int turbo_disabled;
157 int max_perf_pct;
158 int min_perf_pct;
159 int32_t max_perf;
160 int32_t min_perf;
161 int max_policy_pct;
162 int max_sysfs_pct;
163 int min_policy_pct;
164 int min_sysfs_pct;
165 };
166
167 static struct perf_limits performance_limits = {
168 .no_turbo = 0,
169 .turbo_disabled = 0,
170 .max_perf_pct = 100,
171 .max_perf = int_tofp(1),
172 .min_perf_pct = 100,
173 .min_perf = int_tofp(1),
174 .max_policy_pct = 100,
175 .max_sysfs_pct = 100,
176 .min_policy_pct = 0,
177 .min_sysfs_pct = 0,
178 };
179
180 static struct perf_limits powersave_limits = {
181 .no_turbo = 0,
182 .turbo_disabled = 0,
183 .max_perf_pct = 100,
184 .max_perf = int_tofp(1),
185 .min_perf_pct = 0,
186 .min_perf = 0,
187 .max_policy_pct = 100,
188 .max_sysfs_pct = 100,
189 .min_policy_pct = 0,
190 .min_sysfs_pct = 0,
191 };
192
193 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
194 static struct perf_limits *limits = &performance_limits;
195 #else
196 static struct perf_limits *limits = &powersave_limits;
197 #endif
198
199 static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
200 int deadband, int integral) {
201 pid->setpoint = int_tofp(setpoint);
202 pid->deadband = int_tofp(deadband);
203 pid->integral = int_tofp(integral);
204 pid->last_err = int_tofp(setpoint) - int_tofp(busy);
205 }
206
207 static inline void pid_p_gain_set(struct _pid *pid, int percent)
208 {
209 pid->p_gain = div_fp(int_tofp(percent), int_tofp(100));
210 }
211
212 static inline void pid_i_gain_set(struct _pid *pid, int percent)
213 {
214 pid->i_gain = div_fp(int_tofp(percent), int_tofp(100));
215 }
216
217 static inline void pid_d_gain_set(struct _pid *pid, int percent)
218 {
219 pid->d_gain = div_fp(int_tofp(percent), int_tofp(100));
220 }
221
222 static signed int pid_calc(struct _pid *pid, int32_t busy)
223 {
224 signed int result;
225 int32_t pterm, dterm, fp_error;
226 int32_t integral_limit;
227
228 fp_error = pid->setpoint - busy;
229
230 if (abs(fp_error) <= pid->deadband)
231 return 0;
232
233 pterm = mul_fp(pid->p_gain, fp_error);
234
235 pid->integral += fp_error;
236
237 /*
238 * We limit the integral here so that it will never
239 * get higher than 30. This prevents it from becoming
240 * too large an input over long periods of time and allows
241 * it to get factored out sooner.
242 *
243 * The value of 30 was chosen through experimentation.
244 */
245 integral_limit = int_tofp(30);
246 if (pid->integral > integral_limit)
247 pid->integral = integral_limit;
248 if (pid->integral < -integral_limit)
249 pid->integral = -integral_limit;
250
251 dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
252 pid->last_err = fp_error;
253
254 result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
255 result = result + (1 << (FRAC_BITS-1));
256 return (signed int)fp_toint(result);
257 }
258
259 static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
260 {
261 pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
262 pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
263 pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
264
265 pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
266 }
267
268 static inline void intel_pstate_reset_all_pid(void)
269 {
270 unsigned int cpu;
271
272 for_each_online_cpu(cpu) {
273 if (all_cpu_data[cpu])
274 intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
275 }
276 }
277
278 static inline void update_turbo_state(void)
279 {
280 u64 misc_en;
281 struct cpudata *cpu;
282
283 cpu = all_cpu_data[0];
284 rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
285 limits->turbo_disabled =
286 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
287 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
288 }
289
290 static void intel_pstate_hwp_set(const struct cpumask *cpumask)
291 {
292 int min, hw_min, max, hw_max, cpu, range, adj_range;
293 u64 value, cap;
294
295 rdmsrl(MSR_HWP_CAPABILITIES, cap);
296 hw_min = HWP_LOWEST_PERF(cap);
297 hw_max = HWP_HIGHEST_PERF(cap);
298 range = hw_max - hw_min;
299
300 for_each_cpu(cpu, cpumask) {
301 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
302 adj_range = limits->min_perf_pct * range / 100;
303 min = hw_min + adj_range;
304 value &= ~HWP_MIN_PERF(~0L);
305 value |= HWP_MIN_PERF(min);
306
307 adj_range = limits->max_perf_pct * range / 100;
308 max = hw_min + adj_range;
309 if (limits->no_turbo) {
310 hw_max = HWP_GUARANTEED_PERF(cap);
311 if (hw_max < max)
312 max = hw_max;
313 }
314
315 value &= ~HWP_MAX_PERF(~0L);
316 value |= HWP_MAX_PERF(max);
317 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
318 }
319 }
320
321 static void intel_pstate_hwp_set_online_cpus(void)
322 {
323 get_online_cpus();
324 intel_pstate_hwp_set(cpu_online_mask);
325 put_online_cpus();
326 }
327
328 /************************** debugfs begin ************************/
329 static int pid_param_set(void *data, u64 val)
330 {
331 *(u32 *)data = val;
332 intel_pstate_reset_all_pid();
333 return 0;
334 }
335
336 static int pid_param_get(void *data, u64 *val)
337 {
338 *val = *(u32 *)data;
339 return 0;
340 }
341 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
342
343 struct pid_param {
344 char *name;
345 void *value;
346 };
347
348 static struct pid_param pid_files[] = {
349 {"sample_rate_ms", &pid_params.sample_rate_ms},
350 {"d_gain_pct", &pid_params.d_gain_pct},
351 {"i_gain_pct", &pid_params.i_gain_pct},
352 {"deadband", &pid_params.deadband},
353 {"setpoint", &pid_params.setpoint},
354 {"p_gain_pct", &pid_params.p_gain_pct},
355 {NULL, NULL}
356 };
357
358 static void __init intel_pstate_debug_expose_params(void)
359 {
360 struct dentry *debugfs_parent;
361 int i = 0;
362
363 if (hwp_active)
364 return;
365 debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
366 if (IS_ERR_OR_NULL(debugfs_parent))
367 return;
368 while (pid_files[i].name) {
369 debugfs_create_file(pid_files[i].name, 0660,
370 debugfs_parent, pid_files[i].value,
371 &fops_pid_param);
372 i++;
373 }
374 }
375
376 /************************** debugfs end ************************/
377
378 /************************** sysfs begin ************************/
379 #define show_one(file_name, object) \
380 static ssize_t show_##file_name \
381 (struct kobject *kobj, struct attribute *attr, char *buf) \
382 { \
383 return sprintf(buf, "%u\n", limits->object); \
384 }
385
386 static ssize_t show_turbo_pct(struct kobject *kobj,
387 struct attribute *attr, char *buf)
388 {
389 struct cpudata *cpu;
390 int total, no_turbo, turbo_pct;
391 uint32_t turbo_fp;
392
393 cpu = all_cpu_data[0];
394
395 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
396 no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
397 turbo_fp = div_fp(int_tofp(no_turbo), int_tofp(total));
398 turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
399 return sprintf(buf, "%u\n", turbo_pct);
400 }
401
402 static ssize_t show_num_pstates(struct kobject *kobj,
403 struct attribute *attr, char *buf)
404 {
405 struct cpudata *cpu;
406 int total;
407
408 cpu = all_cpu_data[0];
409 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
410 return sprintf(buf, "%u\n", total);
411 }
412
413 static ssize_t show_no_turbo(struct kobject *kobj,
414 struct attribute *attr, char *buf)
415 {
416 ssize_t ret;
417
418 update_turbo_state();
419 if (limits->turbo_disabled)
420 ret = sprintf(buf, "%u\n", limits->turbo_disabled);
421 else
422 ret = sprintf(buf, "%u\n", limits->no_turbo);
423
424 return ret;
425 }
426
427 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
428 const char *buf, size_t count)
429 {
430 unsigned int input;
431 int ret;
432
433 ret = sscanf(buf, "%u", &input);
434 if (ret != 1)
435 return -EINVAL;
436
437 update_turbo_state();
438 if (limits->turbo_disabled) {
439 pr_warn("intel_pstate: Turbo disabled by BIOS or unavailable on processor\n");
440 return -EPERM;
441 }
442
443 limits->no_turbo = clamp_t(int, input, 0, 1);
444
445 if (hwp_active)
446 intel_pstate_hwp_set_online_cpus();
447
448 return count;
449 }
450
451 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
452 const char *buf, size_t count)
453 {
454 unsigned int input;
455 int ret;
456
457 ret = sscanf(buf, "%u", &input);
458 if (ret != 1)
459 return -EINVAL;
460
461 limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
462 limits->max_perf_pct = min(limits->max_policy_pct,
463 limits->max_sysfs_pct);
464 limits->max_perf_pct = max(limits->min_policy_pct,
465 limits->max_perf_pct);
466 limits->max_perf_pct = max(limits->min_perf_pct,
467 limits->max_perf_pct);
468 limits->max_perf = div_fp(int_tofp(limits->max_perf_pct),
469 int_tofp(100));
470
471 if (hwp_active)
472 intel_pstate_hwp_set_online_cpus();
473 return count;
474 }
475
476 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
477 const char *buf, size_t count)
478 {
479 unsigned int input;
480 int ret;
481
482 ret = sscanf(buf, "%u", &input);
483 if (ret != 1)
484 return -EINVAL;
485
486 limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
487 limits->min_perf_pct = max(limits->min_policy_pct,
488 limits->min_sysfs_pct);
489 limits->min_perf_pct = min(limits->max_policy_pct,
490 limits->min_perf_pct);
491 limits->min_perf_pct = min(limits->max_perf_pct,
492 limits->min_perf_pct);
493 limits->min_perf = div_fp(int_tofp(limits->min_perf_pct),
494 int_tofp(100));
495
496 if (hwp_active)
497 intel_pstate_hwp_set_online_cpus();
498 return count;
499 }
500
501 show_one(max_perf_pct, max_perf_pct);
502 show_one(min_perf_pct, min_perf_pct);
503
504 define_one_global_rw(no_turbo);
505 define_one_global_rw(max_perf_pct);
506 define_one_global_rw(min_perf_pct);
507 define_one_global_ro(turbo_pct);
508 define_one_global_ro(num_pstates);
509
510 static struct attribute *intel_pstate_attributes[] = {
511 &no_turbo.attr,
512 &max_perf_pct.attr,
513 &min_perf_pct.attr,
514 &turbo_pct.attr,
515 &num_pstates.attr,
516 NULL
517 };
518
519 static struct attribute_group intel_pstate_attr_group = {
520 .attrs = intel_pstate_attributes,
521 };
522
523 static void __init intel_pstate_sysfs_expose_params(void)
524 {
525 struct kobject *intel_pstate_kobject;
526 int rc;
527
528 intel_pstate_kobject = kobject_create_and_add("intel_pstate",
529 &cpu_subsys.dev_root->kobj);
530 BUG_ON(!intel_pstate_kobject);
531 rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
532 BUG_ON(rc);
533 }
534 /************************** sysfs end ************************/
535
536 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
537 {
538 /* First disable HWP notification interrupt as we don't process them */
539 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
540
541 wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
542 }
543
544 static int atom_get_min_pstate(void)
545 {
546 u64 value;
547
548 rdmsrl(ATOM_RATIOS, value);
549 return (value >> 8) & 0x7F;
550 }
551
552 static int atom_get_max_pstate(void)
553 {
554 u64 value;
555
556 rdmsrl(ATOM_RATIOS, value);
557 return (value >> 16) & 0x7F;
558 }
559
560 static int atom_get_turbo_pstate(void)
561 {
562 u64 value;
563
564 rdmsrl(ATOM_TURBO_RATIOS, value);
565 return value & 0x7F;
566 }
567
568 static void atom_set_pstate(struct cpudata *cpudata, int pstate)
569 {
570 u64 val;
571 int32_t vid_fp;
572 u32 vid;
573
574 val = (u64)pstate << 8;
575 if (limits->no_turbo && !limits->turbo_disabled)
576 val |= (u64)1 << 32;
577
578 vid_fp = cpudata->vid.min + mul_fp(
579 int_tofp(pstate - cpudata->pstate.min_pstate),
580 cpudata->vid.ratio);
581
582 vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
583 vid = ceiling_fp(vid_fp);
584
585 if (pstate > cpudata->pstate.max_pstate)
586 vid = cpudata->vid.turbo;
587
588 val |= vid;
589
590 wrmsrl_on_cpu(cpudata->cpu, MSR_IA32_PERF_CTL, val);
591 }
592
593 static int silvermont_get_scaling(void)
594 {
595 u64 value;
596 int i;
597 /* Defined in Table 35-6 from SDM (Sept 2015) */
598 static int silvermont_freq_table[] = {
599 83300, 100000, 133300, 116700, 80000};
600
601 rdmsrl(MSR_FSB_FREQ, value);
602 i = value & 0x7;
603 WARN_ON(i > 4);
604
605 return silvermont_freq_table[i];
606 }
607
608 static int airmont_get_scaling(void)
609 {
610 u64 value;
611 int i;
612 /* Defined in Table 35-10 from SDM (Sept 2015) */
613 static int airmont_freq_table[] = {
614 83300, 100000, 133300, 116700, 80000,
615 93300, 90000, 88900, 87500};
616
617 rdmsrl(MSR_FSB_FREQ, value);
618 i = value & 0xF;
619 WARN_ON(i > 8);
620
621 return airmont_freq_table[i];
622 }
623
624 static void atom_get_vid(struct cpudata *cpudata)
625 {
626 u64 value;
627
628 rdmsrl(ATOM_VIDS, value);
629 cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
630 cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
631 cpudata->vid.ratio = div_fp(
632 cpudata->vid.max - cpudata->vid.min,
633 int_tofp(cpudata->pstate.max_pstate -
634 cpudata->pstate.min_pstate));
635
636 rdmsrl(ATOM_TURBO_VIDS, value);
637 cpudata->vid.turbo = value & 0x7f;
638 }
639
640 static int core_get_min_pstate(void)
641 {
642 u64 value;
643
644 rdmsrl(MSR_PLATFORM_INFO, value);
645 return (value >> 40) & 0xFF;
646 }
647
648 static int core_get_max_pstate_physical(void)
649 {
650 u64 value;
651
652 rdmsrl(MSR_PLATFORM_INFO, value);
653 return (value >> 8) & 0xFF;
654 }
655
656 static int core_get_max_pstate(void)
657 {
658 u64 tar;
659 u64 plat_info;
660 int max_pstate;
661 int err;
662
663 rdmsrl(MSR_PLATFORM_INFO, plat_info);
664 max_pstate = (plat_info >> 8) & 0xFF;
665
666 err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
667 if (!err) {
668 /* Do some sanity checking for safety */
669 if (plat_info & 0x600000000) {
670 u64 tdp_ctrl;
671 u64 tdp_ratio;
672 int tdp_msr;
673
674 err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
675 if (err)
676 goto skip_tar;
677
678 tdp_msr = MSR_CONFIG_TDP_NOMINAL + tdp_ctrl;
679 err = rdmsrl_safe(tdp_msr, &tdp_ratio);
680 if (err)
681 goto skip_tar;
682
683 if (tdp_ratio - 1 == tar) {
684 max_pstate = tar;
685 pr_debug("max_pstate=TAC %x\n", max_pstate);
686 } else {
687 goto skip_tar;
688 }
689 }
690 }
691
692 skip_tar:
693 return max_pstate;
694 }
695
696 static int core_get_turbo_pstate(void)
697 {
698 u64 value;
699 int nont, ret;
700
701 rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
702 nont = core_get_max_pstate();
703 ret = (value) & 255;
704 if (ret <= nont)
705 ret = nont;
706 return ret;
707 }
708
709 static inline int core_get_scaling(void)
710 {
711 return 100000;
712 }
713
714 static void core_set_pstate(struct cpudata *cpudata, int pstate)
715 {
716 u64 val;
717
718 val = (u64)pstate << 8;
719 if (limits->no_turbo && !limits->turbo_disabled)
720 val |= (u64)1 << 32;
721
722 wrmsrl(MSR_IA32_PERF_CTL, val);
723 }
724
725 static int knl_get_turbo_pstate(void)
726 {
727 u64 value;
728 int nont, ret;
729
730 rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
731 nont = core_get_max_pstate();
732 ret = (((value) >> 8) & 0xFF);
733 if (ret <= nont)
734 ret = nont;
735 return ret;
736 }
737
738 static struct cpu_defaults core_params = {
739 .pid_policy = {
740 .sample_rate_ms = 10,
741 .deadband = 0,
742 .setpoint = 97,
743 .p_gain_pct = 20,
744 .d_gain_pct = 0,
745 .i_gain_pct = 0,
746 },
747 .funcs = {
748 .get_max = core_get_max_pstate,
749 .get_max_physical = core_get_max_pstate_physical,
750 .get_min = core_get_min_pstate,
751 .get_turbo = core_get_turbo_pstate,
752 .get_scaling = core_get_scaling,
753 .set = core_set_pstate,
754 .get_target_pstate = get_target_pstate_use_performance,
755 },
756 };
757
758 static struct cpu_defaults silvermont_params = {
759 .pid_policy = {
760 .sample_rate_ms = 10,
761 .deadband = 0,
762 .setpoint = 60,
763 .p_gain_pct = 14,
764 .d_gain_pct = 0,
765 .i_gain_pct = 4,
766 },
767 .funcs = {
768 .get_max = atom_get_max_pstate,
769 .get_max_physical = atom_get_max_pstate,
770 .get_min = atom_get_min_pstate,
771 .get_turbo = atom_get_turbo_pstate,
772 .set = atom_set_pstate,
773 .get_scaling = silvermont_get_scaling,
774 .get_vid = atom_get_vid,
775 .get_target_pstate = get_target_pstate_use_cpu_load,
776 },
777 };
778
779 static struct cpu_defaults airmont_params = {
780 .pid_policy = {
781 .sample_rate_ms = 10,
782 .deadband = 0,
783 .setpoint = 60,
784 .p_gain_pct = 14,
785 .d_gain_pct = 0,
786 .i_gain_pct = 4,
787 },
788 .funcs = {
789 .get_max = atom_get_max_pstate,
790 .get_max_physical = atom_get_max_pstate,
791 .get_min = atom_get_min_pstate,
792 .get_turbo = atom_get_turbo_pstate,
793 .set = atom_set_pstate,
794 .get_scaling = airmont_get_scaling,
795 .get_vid = atom_get_vid,
796 .get_target_pstate = get_target_pstate_use_cpu_load,
797 },
798 };
799
800 static struct cpu_defaults knl_params = {
801 .pid_policy = {
802 .sample_rate_ms = 10,
803 .deadband = 0,
804 .setpoint = 97,
805 .p_gain_pct = 20,
806 .d_gain_pct = 0,
807 .i_gain_pct = 0,
808 },
809 .funcs = {
810 .get_max = core_get_max_pstate,
811 .get_max_physical = core_get_max_pstate_physical,
812 .get_min = core_get_min_pstate,
813 .get_turbo = knl_get_turbo_pstate,
814 .get_scaling = core_get_scaling,
815 .set = core_set_pstate,
816 .get_target_pstate = get_target_pstate_use_performance,
817 },
818 };
819
820 static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
821 {
822 int max_perf = cpu->pstate.turbo_pstate;
823 int max_perf_adj;
824 int min_perf;
825
826 if (limits->no_turbo || limits->turbo_disabled)
827 max_perf = cpu->pstate.max_pstate;
828
829 /*
830 * performance can be limited by user through sysfs, by cpufreq
831 * policy, or by cpu specific default values determined through
832 * experimentation.
833 */
834 max_perf_adj = fp_toint(max_perf * limits->max_perf);
835 *max = clamp_t(int, max_perf_adj,
836 cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
837
838 min_perf = fp_toint(max_perf * limits->min_perf);
839 *min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
840 }
841
842 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate, bool force)
843 {
844 int max_perf, min_perf;
845
846 if (force) {
847 update_turbo_state();
848
849 intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
850
851 pstate = clamp_t(int, pstate, min_perf, max_perf);
852
853 if (pstate == cpu->pstate.current_pstate)
854 return;
855 }
856 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
857
858 cpu->pstate.current_pstate = pstate;
859
860 pstate_funcs.set(cpu, pstate);
861 }
862
863 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
864 {
865 cpu->pstate.min_pstate = pstate_funcs.get_min();
866 cpu->pstate.max_pstate = pstate_funcs.get_max();
867 cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
868 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
869 cpu->pstate.scaling = pstate_funcs.get_scaling();
870
871 if (pstate_funcs.get_vid)
872 pstate_funcs.get_vid(cpu);
873 intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate, false);
874 }
875
876 static inline void intel_pstate_calc_busy(struct cpudata *cpu)
877 {
878 struct sample *sample = &cpu->sample;
879 int64_t core_pct;
880
881 core_pct = int_tofp(sample->aperf) * int_tofp(100);
882 core_pct = div64_u64(core_pct, int_tofp(sample->mperf));
883
884 sample->freq = fp_toint(
885 mul_fp(int_tofp(
886 cpu->pstate.max_pstate_physical *
887 cpu->pstate.scaling / 100),
888 core_pct));
889
890 sample->core_pct_busy = (int32_t)core_pct;
891 }
892
893 static inline void intel_pstate_sample(struct cpudata *cpu, u64 time)
894 {
895 u64 aperf, mperf;
896 unsigned long flags;
897 u64 tsc;
898
899 local_irq_save(flags);
900 rdmsrl(MSR_IA32_APERF, aperf);
901 rdmsrl(MSR_IA32_MPERF, mperf);
902 tsc = rdtsc();
903 if ((cpu->prev_mperf == mperf) || (cpu->prev_tsc == tsc)) {
904 local_irq_restore(flags);
905 return;
906 }
907 local_irq_restore(flags);
908
909 cpu->last_sample_time = cpu->sample.time;
910 cpu->sample.time = time;
911 cpu->sample.aperf = aperf;
912 cpu->sample.mperf = mperf;
913 cpu->sample.tsc = tsc;
914 cpu->sample.aperf -= cpu->prev_aperf;
915 cpu->sample.mperf -= cpu->prev_mperf;
916 cpu->sample.tsc -= cpu->prev_tsc;
917
918 cpu->prev_aperf = aperf;
919 cpu->prev_mperf = mperf;
920 cpu->prev_tsc = tsc;
921 }
922
923 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
924 {
925 struct sample *sample = &cpu->sample;
926 u64 cummulative_iowait, delta_iowait_us;
927 u64 delta_iowait_mperf;
928 u64 mperf, now;
929 int32_t cpu_load;
930
931 cummulative_iowait = get_cpu_iowait_time_us(cpu->cpu, &now);
932
933 /*
934 * Convert iowait time into number of IO cycles spent at max_freq.
935 * IO is considered as busy only for the cpu_load algorithm. For
936 * performance this is not needed since we always try to reach the
937 * maximum P-State, so we are already boosting the IOs.
938 */
939 delta_iowait_us = cummulative_iowait - cpu->prev_cummulative_iowait;
940 delta_iowait_mperf = div64_u64(delta_iowait_us * cpu->pstate.scaling *
941 cpu->pstate.max_pstate, MSEC_PER_SEC);
942
943 mperf = cpu->sample.mperf + delta_iowait_mperf;
944 cpu->prev_cummulative_iowait = cummulative_iowait;
945
946 /*
947 * The load can be estimated as the ratio of the mperf counter
948 * running at a constant frequency during active periods
949 * (C0) and the time stamp counter running at the same frequency
950 * also during C-states.
951 */
952 cpu_load = div64_u64(int_tofp(100) * mperf, sample->tsc);
953 cpu->sample.busy_scaled = cpu_load;
954
955 return cpu->pstate.current_pstate - pid_calc(&cpu->pid, cpu_load);
956 }
957
958 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
959 {
960 int32_t core_busy, max_pstate, current_pstate, sample_ratio;
961 u64 duration_ns;
962
963 intel_pstate_calc_busy(cpu);
964
965 /*
966 * core_busy is the ratio of actual performance to max
967 * max_pstate is the max non turbo pstate available
968 * current_pstate was the pstate that was requested during
969 * the last sample period.
970 *
971 * We normalize core_busy, which was our actual percent
972 * performance to what we requested during the last sample
973 * period. The result will be a percentage of busy at a
974 * specified pstate.
975 */
976 core_busy = cpu->sample.core_pct_busy;
977 max_pstate = int_tofp(cpu->pstate.max_pstate_physical);
978 current_pstate = int_tofp(cpu->pstate.current_pstate);
979 core_busy = mul_fp(core_busy, div_fp(max_pstate, current_pstate));
980
981 /*
982 * Since our utilization update callback will not run unless we are
983 * in C0, check if the actual elapsed time is significantly greater (3x)
984 * than our sample interval. If it is, then we were idle for a long
985 * enough period of time to adjust our busyness.
986 */
987 duration_ns = cpu->sample.time - cpu->last_sample_time;
988 if ((s64)duration_ns > pid_params.sample_rate_ns * 3
989 && cpu->last_sample_time > 0) {
990 sample_ratio = div_fp(int_tofp(pid_params.sample_rate_ns),
991 int_tofp(duration_ns));
992 core_busy = mul_fp(core_busy, sample_ratio);
993 }
994
995 cpu->sample.busy_scaled = core_busy;
996 return cpu->pstate.current_pstate - pid_calc(&cpu->pid, core_busy);
997 }
998
999 static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
1000 {
1001 int from, target_pstate;
1002 struct sample *sample;
1003
1004 from = cpu->pstate.current_pstate;
1005
1006 target_pstate = pstate_funcs.get_target_pstate(cpu);
1007
1008 intel_pstate_set_pstate(cpu, target_pstate, true);
1009
1010 sample = &cpu->sample;
1011 trace_pstate_sample(fp_toint(sample->core_pct_busy),
1012 fp_toint(sample->busy_scaled),
1013 from,
1014 cpu->pstate.current_pstate,
1015 sample->mperf,
1016 sample->aperf,
1017 sample->tsc,
1018 sample->freq);
1019 }
1020
1021 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1022 unsigned long util, unsigned long max)
1023 {
1024 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1025 u64 delta_ns = time - cpu->sample.time;
1026
1027 if ((s64)delta_ns >= pid_params.sample_rate_ns) {
1028 intel_pstate_sample(cpu, time);
1029 if (!hwp_active)
1030 intel_pstate_adjust_busy_pstate(cpu);
1031 }
1032 }
1033
1034 #define ICPU(model, policy) \
1035 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1036 (unsigned long)&policy }
1037
1038 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1039 ICPU(0x2a, core_params),
1040 ICPU(0x2d, core_params),
1041 ICPU(0x37, silvermont_params),
1042 ICPU(0x3a, core_params),
1043 ICPU(0x3c, core_params),
1044 ICPU(0x3d, core_params),
1045 ICPU(0x3e, core_params),
1046 ICPU(0x3f, core_params),
1047 ICPU(0x45, core_params),
1048 ICPU(0x46, core_params),
1049 ICPU(0x47, core_params),
1050 ICPU(0x4c, airmont_params),
1051 ICPU(0x4e, core_params),
1052 ICPU(0x4f, core_params),
1053 ICPU(0x5e, core_params),
1054 ICPU(0x56, core_params),
1055 ICPU(0x57, knl_params),
1056 {}
1057 };
1058 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1059
1060 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] = {
1061 ICPU(0x56, core_params),
1062 {}
1063 };
1064
1065 static int intel_pstate_init_cpu(unsigned int cpunum)
1066 {
1067 struct cpudata *cpu;
1068
1069 if (!all_cpu_data[cpunum])
1070 all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata),
1071 GFP_KERNEL);
1072 if (!all_cpu_data[cpunum])
1073 return -ENOMEM;
1074
1075 cpu = all_cpu_data[cpunum];
1076
1077 cpu->cpu = cpunum;
1078
1079 if (hwp_active) {
1080 intel_pstate_hwp_enable(cpu);
1081 pid_params.sample_rate_ms = 50;
1082 pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
1083 }
1084
1085 intel_pstate_get_cpu_pstates(cpu);
1086
1087 intel_pstate_busy_pid_reset(cpu);
1088 intel_pstate_sample(cpu, 0);
1089
1090 cpu->update_util.func = intel_pstate_update_util;
1091 cpufreq_set_update_util_data(cpunum, &cpu->update_util);
1092
1093 pr_debug("intel_pstate: controlling: cpu %d\n", cpunum);
1094
1095 return 0;
1096 }
1097
1098 static unsigned int intel_pstate_get(unsigned int cpu_num)
1099 {
1100 struct sample *sample;
1101 struct cpudata *cpu;
1102
1103 cpu = all_cpu_data[cpu_num];
1104 if (!cpu)
1105 return 0;
1106 sample = &cpu->sample;
1107 return sample->freq;
1108 }
1109
1110 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
1111 {
1112 if (!policy->cpuinfo.max_freq)
1113 return -ENODEV;
1114
1115 if (policy->policy == CPUFREQ_POLICY_PERFORMANCE &&
1116 policy->max >= policy->cpuinfo.max_freq) {
1117 pr_debug("intel_pstate: set performance\n");
1118 limits = &performance_limits;
1119 if (hwp_active)
1120 intel_pstate_hwp_set(policy->cpus);
1121 return 0;
1122 }
1123
1124 pr_debug("intel_pstate: set powersave\n");
1125 limits = &powersave_limits;
1126 limits->min_policy_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
1127 limits->min_policy_pct = clamp_t(int, limits->min_policy_pct, 0 , 100);
1128 limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100,
1129 policy->cpuinfo.max_freq);
1130 limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0 , 100);
1131
1132 /* Normalize user input to [min_policy_pct, max_policy_pct] */
1133 limits->min_perf_pct = max(limits->min_policy_pct,
1134 limits->min_sysfs_pct);
1135 limits->min_perf_pct = min(limits->max_policy_pct,
1136 limits->min_perf_pct);
1137 limits->max_perf_pct = min(limits->max_policy_pct,
1138 limits->max_sysfs_pct);
1139 limits->max_perf_pct = max(limits->min_policy_pct,
1140 limits->max_perf_pct);
1141 limits->max_perf = round_up(limits->max_perf, FRAC_BITS);
1142
1143 /* Make sure min_perf_pct <= max_perf_pct */
1144 limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct);
1145
1146 limits->min_perf = div_fp(int_tofp(limits->min_perf_pct),
1147 int_tofp(100));
1148 limits->max_perf = div_fp(int_tofp(limits->max_perf_pct),
1149 int_tofp(100));
1150
1151 if (hwp_active)
1152 intel_pstate_hwp_set(policy->cpus);
1153
1154 return 0;
1155 }
1156
1157 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
1158 {
1159 cpufreq_verify_within_cpu_limits(policy);
1160
1161 if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
1162 policy->policy != CPUFREQ_POLICY_PERFORMANCE)
1163 return -EINVAL;
1164
1165 return 0;
1166 }
1167
1168 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
1169 {
1170 int cpu_num = policy->cpu;
1171 struct cpudata *cpu = all_cpu_data[cpu_num];
1172
1173 pr_debug("intel_pstate: CPU %d exiting\n", cpu_num);
1174
1175 cpufreq_set_update_util_data(cpu_num, NULL);
1176 synchronize_sched();
1177
1178 if (hwp_active)
1179 return;
1180
1181 intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate, false);
1182 }
1183
1184 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
1185 {
1186 struct cpudata *cpu;
1187 int rc;
1188
1189 rc = intel_pstate_init_cpu(policy->cpu);
1190 if (rc)
1191 return rc;
1192
1193 cpu = all_cpu_data[policy->cpu];
1194
1195 if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
1196 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
1197 else
1198 policy->policy = CPUFREQ_POLICY_POWERSAVE;
1199
1200 policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
1201 policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1202
1203 /* cpuinfo and default policy values */
1204 policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
1205 policy->cpuinfo.max_freq =
1206 cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1207 policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
1208 cpumask_set_cpu(policy->cpu, policy->cpus);
1209
1210 return 0;
1211 }
1212
1213 static struct cpufreq_driver intel_pstate_driver = {
1214 .flags = CPUFREQ_CONST_LOOPS,
1215 .verify = intel_pstate_verify_policy,
1216 .setpolicy = intel_pstate_set_policy,
1217 .get = intel_pstate_get,
1218 .init = intel_pstate_cpu_init,
1219 .stop_cpu = intel_pstate_stop_cpu,
1220 .name = "intel_pstate",
1221 };
1222
1223 static int __initdata no_load;
1224 static int __initdata no_hwp;
1225 static int __initdata hwp_only;
1226 static unsigned int force_load;
1227
1228 static int intel_pstate_msrs_not_valid(void)
1229 {
1230 if (!pstate_funcs.get_max() ||
1231 !pstate_funcs.get_min() ||
1232 !pstate_funcs.get_turbo())
1233 return -ENODEV;
1234
1235 return 0;
1236 }
1237
1238 static void copy_pid_params(struct pstate_adjust_policy *policy)
1239 {
1240 pid_params.sample_rate_ms = policy->sample_rate_ms;
1241 pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
1242 pid_params.p_gain_pct = policy->p_gain_pct;
1243 pid_params.i_gain_pct = policy->i_gain_pct;
1244 pid_params.d_gain_pct = policy->d_gain_pct;
1245 pid_params.deadband = policy->deadband;
1246 pid_params.setpoint = policy->setpoint;
1247 }
1248
1249 static void copy_cpu_funcs(struct pstate_funcs *funcs)
1250 {
1251 pstate_funcs.get_max = funcs->get_max;
1252 pstate_funcs.get_max_physical = funcs->get_max_physical;
1253 pstate_funcs.get_min = funcs->get_min;
1254 pstate_funcs.get_turbo = funcs->get_turbo;
1255 pstate_funcs.get_scaling = funcs->get_scaling;
1256 pstate_funcs.set = funcs->set;
1257 pstate_funcs.get_vid = funcs->get_vid;
1258 pstate_funcs.get_target_pstate = funcs->get_target_pstate;
1259
1260 }
1261
1262 #if IS_ENABLED(CONFIG_ACPI)
1263 #include <acpi/processor.h>
1264
1265 static bool intel_pstate_no_acpi_pss(void)
1266 {
1267 int i;
1268
1269 for_each_possible_cpu(i) {
1270 acpi_status status;
1271 union acpi_object *pss;
1272 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1273 struct acpi_processor *pr = per_cpu(processors, i);
1274
1275 if (!pr)
1276 continue;
1277
1278 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
1279 if (ACPI_FAILURE(status))
1280 continue;
1281
1282 pss = buffer.pointer;
1283 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
1284 kfree(pss);
1285 return false;
1286 }
1287
1288 kfree(pss);
1289 }
1290
1291 return true;
1292 }
1293
1294 static bool intel_pstate_has_acpi_ppc(void)
1295 {
1296 int i;
1297
1298 for_each_possible_cpu(i) {
1299 struct acpi_processor *pr = per_cpu(processors, i);
1300
1301 if (!pr)
1302 continue;
1303 if (acpi_has_method(pr->handle, "_PPC"))
1304 return true;
1305 }
1306 return false;
1307 }
1308
1309 enum {
1310 PSS,
1311 PPC,
1312 };
1313
1314 struct hw_vendor_info {
1315 u16 valid;
1316 char oem_id[ACPI_OEM_ID_SIZE];
1317 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
1318 int oem_pwr_table;
1319 };
1320
1321 /* Hardware vendor-specific info that has its own power management modes */
1322 static struct hw_vendor_info vendor_info[] = {
1323 {1, "HP ", "ProLiant", PSS},
1324 {1, "ORACLE", "X4-2 ", PPC},
1325 {1, "ORACLE", "X4-2L ", PPC},
1326 {1, "ORACLE", "X4-2B ", PPC},
1327 {1, "ORACLE", "X3-2 ", PPC},
1328 {1, "ORACLE", "X3-2L ", PPC},
1329 {1, "ORACLE", "X3-2B ", PPC},
1330 {1, "ORACLE", "X4470M2 ", PPC},
1331 {1, "ORACLE", "X4270M3 ", PPC},
1332 {1, "ORACLE", "X4270M2 ", PPC},
1333 {1, "ORACLE", "X4170M2 ", PPC},
1334 {1, "ORACLE", "X4170 M3", PPC},
1335 {1, "ORACLE", "X4275 M3", PPC},
1336 {1, "ORACLE", "X6-2 ", PPC},
1337 {1, "ORACLE", "Sudbury ", PPC},
1338 {0, "", ""},
1339 };
1340
1341 static bool intel_pstate_platform_pwr_mgmt_exists(void)
1342 {
1343 struct acpi_table_header hdr;
1344 struct hw_vendor_info *v_info;
1345 const struct x86_cpu_id *id;
1346 u64 misc_pwr;
1347
1348 id = x86_match_cpu(intel_pstate_cpu_oob_ids);
1349 if (id) {
1350 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
1351 if ( misc_pwr & (1 << 8))
1352 return true;
1353 }
1354
1355 if (acpi_disabled ||
1356 ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
1357 return false;
1358
1359 for (v_info = vendor_info; v_info->valid; v_info++) {
1360 if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
1361 !strncmp(hdr.oem_table_id, v_info->oem_table_id,
1362 ACPI_OEM_TABLE_ID_SIZE))
1363 switch (v_info->oem_pwr_table) {
1364 case PSS:
1365 return intel_pstate_no_acpi_pss();
1366 case PPC:
1367 return intel_pstate_has_acpi_ppc() &&
1368 (!force_load);
1369 }
1370 }
1371
1372 return false;
1373 }
1374 #else /* CONFIG_ACPI not enabled */
1375 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
1376 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
1377 #endif /* CONFIG_ACPI */
1378
1379 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
1380 { X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
1381 {}
1382 };
1383
1384 static int __init intel_pstate_init(void)
1385 {
1386 int cpu, rc = 0;
1387 const struct x86_cpu_id *id;
1388 struct cpu_defaults *cpu_def;
1389
1390 if (no_load)
1391 return -ENODEV;
1392
1393 if (x86_match_cpu(hwp_support_ids) && !no_hwp) {
1394 copy_cpu_funcs(&core_params.funcs);
1395 hwp_active++;
1396 goto hwp_cpu_matched;
1397 }
1398
1399 id = x86_match_cpu(intel_pstate_cpu_ids);
1400 if (!id)
1401 return -ENODEV;
1402
1403 cpu_def = (struct cpu_defaults *)id->driver_data;
1404
1405 copy_pid_params(&cpu_def->pid_policy);
1406 copy_cpu_funcs(&cpu_def->funcs);
1407
1408 if (intel_pstate_msrs_not_valid())
1409 return -ENODEV;
1410
1411 hwp_cpu_matched:
1412 /*
1413 * The Intel pstate driver will be ignored if the platform
1414 * firmware has its own power management modes.
1415 */
1416 if (intel_pstate_platform_pwr_mgmt_exists())
1417 return -ENODEV;
1418
1419 pr_info("Intel P-state driver initializing.\n");
1420
1421 all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
1422 if (!all_cpu_data)
1423 return -ENOMEM;
1424
1425 if (!hwp_active && hwp_only)
1426 goto out;
1427
1428 rc = cpufreq_register_driver(&intel_pstate_driver);
1429 if (rc)
1430 goto out;
1431
1432 intel_pstate_debug_expose_params();
1433 intel_pstate_sysfs_expose_params();
1434
1435 if (hwp_active)
1436 pr_info("intel_pstate: HWP enabled\n");
1437
1438 return rc;
1439 out:
1440 get_online_cpus();
1441 for_each_online_cpu(cpu) {
1442 if (all_cpu_data[cpu]) {
1443 cpufreq_set_update_util_data(cpu, NULL);
1444 synchronize_sched();
1445 kfree(all_cpu_data[cpu]);
1446 }
1447 }
1448
1449 put_online_cpus();
1450 vfree(all_cpu_data);
1451 return -ENODEV;
1452 }
1453 device_initcall(intel_pstate_init);
1454
1455 static int __init intel_pstate_setup(char *str)
1456 {
1457 if (!str)
1458 return -EINVAL;
1459
1460 if (!strcmp(str, "disable"))
1461 no_load = 1;
1462 if (!strcmp(str, "no_hwp")) {
1463 pr_info("intel_pstate: HWP disabled\n");
1464 no_hwp = 1;
1465 }
1466 if (!strcmp(str, "force"))
1467 force_load = 1;
1468 if (!strcmp(str, "hwp_only"))
1469 hwp_only = 1;
1470 return 0;
1471 }
1472 early_param("intel_pstate", intel_pstate_setup);
1473
1474 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
1475 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
1476 MODULE_LICENSE("GPL");