]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/cpufreq/intel_pstate.c
cpufreq: intel_pstate: Enable HWP by default
[mirror_ubuntu-artful-kernel.git] / drivers / cpufreq / intel_pstate.c
1 /*
2 * intel_pstate.c: Native P state management for Intel processors
3 *
4 * (C) Copyright 2012 Intel Corporation
5 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
10 * of the License.
11 */
12
13 #include <linux/kernel.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/module.h>
16 #include <linux/ktime.h>
17 #include <linux/hrtimer.h>
18 #include <linux/tick.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/list.h>
22 #include <linux/cpu.h>
23 #include <linux/cpufreq.h>
24 #include <linux/sysfs.h>
25 #include <linux/types.h>
26 #include <linux/fs.h>
27 #include <linux/debugfs.h>
28 #include <linux/acpi.h>
29 #include <linux/vmalloc.h>
30 #include <trace/events/power.h>
31
32 #include <asm/div64.h>
33 #include <asm/msr.h>
34 #include <asm/cpu_device_id.h>
35 #include <asm/cpufeature.h>
36
37 #define ATOM_RATIOS 0x66a
38 #define ATOM_VIDS 0x66b
39 #define ATOM_TURBO_RATIOS 0x66c
40 #define ATOM_TURBO_VIDS 0x66d
41
42 #define FRAC_BITS 8
43 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
44 #define fp_toint(X) ((X) >> FRAC_BITS)
45
46 static inline int32_t mul_fp(int32_t x, int32_t y)
47 {
48 return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
49 }
50
51 static inline int32_t div_fp(s64 x, s64 y)
52 {
53 return div64_s64((int64_t)x << FRAC_BITS, y);
54 }
55
56 static inline int ceiling_fp(int32_t x)
57 {
58 int mask, ret;
59
60 ret = fp_toint(x);
61 mask = (1 << FRAC_BITS) - 1;
62 if (x & mask)
63 ret += 1;
64 return ret;
65 }
66
67 struct sample {
68 int32_t core_pct_busy;
69 int32_t busy_scaled;
70 u64 aperf;
71 u64 mperf;
72 u64 tsc;
73 int freq;
74 ktime_t time;
75 };
76
77 struct pstate_data {
78 int current_pstate;
79 int min_pstate;
80 int max_pstate;
81 int max_pstate_physical;
82 int scaling;
83 int turbo_pstate;
84 };
85
86 struct vid_data {
87 int min;
88 int max;
89 int turbo;
90 int32_t ratio;
91 };
92
93 struct _pid {
94 int setpoint;
95 int32_t integral;
96 int32_t p_gain;
97 int32_t i_gain;
98 int32_t d_gain;
99 int deadband;
100 int32_t last_err;
101 };
102
103 struct cpudata {
104 int cpu;
105
106 struct timer_list timer;
107
108 struct pstate_data pstate;
109 struct vid_data vid;
110 struct _pid pid;
111
112 ktime_t last_sample_time;
113 u64 prev_aperf;
114 u64 prev_mperf;
115 u64 prev_tsc;
116 u64 prev_cummulative_iowait;
117 struct sample sample;
118 };
119
120 static struct cpudata **all_cpu_data;
121 struct pstate_adjust_policy {
122 int sample_rate_ms;
123 int deadband;
124 int setpoint;
125 int p_gain_pct;
126 int d_gain_pct;
127 int i_gain_pct;
128 };
129
130 struct pstate_funcs {
131 int (*get_max)(void);
132 int (*get_max_physical)(void);
133 int (*get_min)(void);
134 int (*get_turbo)(void);
135 int (*get_scaling)(void);
136 void (*set)(struct cpudata*, int pstate);
137 void (*get_vid)(struct cpudata *);
138 int32_t (*get_target_pstate)(struct cpudata *);
139 };
140
141 struct cpu_defaults {
142 struct pstate_adjust_policy pid_policy;
143 struct pstate_funcs funcs;
144 };
145
146 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
147 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
148
149 static struct pstate_adjust_policy pid_params;
150 static struct pstate_funcs pstate_funcs;
151 static int hwp_active;
152
153 struct perf_limits {
154 int no_turbo;
155 int turbo_disabled;
156 int max_perf_pct;
157 int min_perf_pct;
158 int32_t max_perf;
159 int32_t min_perf;
160 int max_policy_pct;
161 int max_sysfs_pct;
162 int min_policy_pct;
163 int min_sysfs_pct;
164 };
165
166 static struct perf_limits performance_limits = {
167 .no_turbo = 0,
168 .turbo_disabled = 0,
169 .max_perf_pct = 100,
170 .max_perf = int_tofp(1),
171 .min_perf_pct = 100,
172 .min_perf = int_tofp(1),
173 .max_policy_pct = 100,
174 .max_sysfs_pct = 100,
175 .min_policy_pct = 0,
176 .min_sysfs_pct = 0,
177 };
178
179 static struct perf_limits powersave_limits = {
180 .no_turbo = 0,
181 .turbo_disabled = 0,
182 .max_perf_pct = 100,
183 .max_perf = int_tofp(1),
184 .min_perf_pct = 0,
185 .min_perf = 0,
186 .max_policy_pct = 100,
187 .max_sysfs_pct = 100,
188 .min_policy_pct = 0,
189 .min_sysfs_pct = 0,
190 };
191
192 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
193 static struct perf_limits *limits = &performance_limits;
194 #else
195 static struct perf_limits *limits = &powersave_limits;
196 #endif
197
198 static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
199 int deadband, int integral) {
200 pid->setpoint = setpoint;
201 pid->deadband = deadband;
202 pid->integral = int_tofp(integral);
203 pid->last_err = int_tofp(setpoint) - int_tofp(busy);
204 }
205
206 static inline void pid_p_gain_set(struct _pid *pid, int percent)
207 {
208 pid->p_gain = div_fp(int_tofp(percent), int_tofp(100));
209 }
210
211 static inline void pid_i_gain_set(struct _pid *pid, int percent)
212 {
213 pid->i_gain = div_fp(int_tofp(percent), int_tofp(100));
214 }
215
216 static inline void pid_d_gain_set(struct _pid *pid, int percent)
217 {
218 pid->d_gain = div_fp(int_tofp(percent), int_tofp(100));
219 }
220
221 static signed int pid_calc(struct _pid *pid, int32_t busy)
222 {
223 signed int result;
224 int32_t pterm, dterm, fp_error;
225 int32_t integral_limit;
226
227 fp_error = int_tofp(pid->setpoint) - busy;
228
229 if (abs(fp_error) <= int_tofp(pid->deadband))
230 return 0;
231
232 pterm = mul_fp(pid->p_gain, fp_error);
233
234 pid->integral += fp_error;
235
236 /*
237 * We limit the integral here so that it will never
238 * get higher than 30. This prevents it from becoming
239 * too large an input over long periods of time and allows
240 * it to get factored out sooner.
241 *
242 * The value of 30 was chosen through experimentation.
243 */
244 integral_limit = int_tofp(30);
245 if (pid->integral > integral_limit)
246 pid->integral = integral_limit;
247 if (pid->integral < -integral_limit)
248 pid->integral = -integral_limit;
249
250 dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
251 pid->last_err = fp_error;
252
253 result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
254 result = result + (1 << (FRAC_BITS-1));
255 return (signed int)fp_toint(result);
256 }
257
258 static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
259 {
260 pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
261 pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
262 pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
263
264 pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
265 }
266
267 static inline void intel_pstate_reset_all_pid(void)
268 {
269 unsigned int cpu;
270
271 for_each_online_cpu(cpu) {
272 if (all_cpu_data[cpu])
273 intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
274 }
275 }
276
277 static inline void update_turbo_state(void)
278 {
279 u64 misc_en;
280 struct cpudata *cpu;
281
282 cpu = all_cpu_data[0];
283 rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
284 limits->turbo_disabled =
285 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
286 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
287 }
288
289 static void intel_pstate_hwp_set(const struct cpumask *cpumask)
290 {
291 int min, hw_min, max, hw_max, cpu, range, adj_range;
292 u64 value, cap;
293
294 rdmsrl(MSR_HWP_CAPABILITIES, cap);
295 hw_min = HWP_LOWEST_PERF(cap);
296 hw_max = HWP_HIGHEST_PERF(cap);
297 range = hw_max - hw_min;
298
299 for_each_cpu(cpu, cpumask) {
300 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
301 adj_range = limits->min_perf_pct * range / 100;
302 min = hw_min + adj_range;
303 value &= ~HWP_MIN_PERF(~0L);
304 value |= HWP_MIN_PERF(min);
305
306 adj_range = limits->max_perf_pct * range / 100;
307 max = hw_min + adj_range;
308 if (limits->no_turbo) {
309 hw_max = HWP_GUARANTEED_PERF(cap);
310 if (hw_max < max)
311 max = hw_max;
312 }
313
314 value &= ~HWP_MAX_PERF(~0L);
315 value |= HWP_MAX_PERF(max);
316 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
317 }
318 }
319
320 static void intel_pstate_hwp_set_online_cpus(void)
321 {
322 get_online_cpus();
323 intel_pstate_hwp_set(cpu_online_mask);
324 put_online_cpus();
325 }
326
327 /************************** debugfs begin ************************/
328 static int pid_param_set(void *data, u64 val)
329 {
330 *(u32 *)data = val;
331 intel_pstate_reset_all_pid();
332 return 0;
333 }
334
335 static int pid_param_get(void *data, u64 *val)
336 {
337 *val = *(u32 *)data;
338 return 0;
339 }
340 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
341
342 struct pid_param {
343 char *name;
344 void *value;
345 };
346
347 static struct pid_param pid_files[] = {
348 {"sample_rate_ms", &pid_params.sample_rate_ms},
349 {"d_gain_pct", &pid_params.d_gain_pct},
350 {"i_gain_pct", &pid_params.i_gain_pct},
351 {"deadband", &pid_params.deadband},
352 {"setpoint", &pid_params.setpoint},
353 {"p_gain_pct", &pid_params.p_gain_pct},
354 {NULL, NULL}
355 };
356
357 static void __init intel_pstate_debug_expose_params(void)
358 {
359 struct dentry *debugfs_parent;
360 int i = 0;
361
362 if (hwp_active)
363 return;
364 debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
365 if (IS_ERR_OR_NULL(debugfs_parent))
366 return;
367 while (pid_files[i].name) {
368 debugfs_create_file(pid_files[i].name, 0660,
369 debugfs_parent, pid_files[i].value,
370 &fops_pid_param);
371 i++;
372 }
373 }
374
375 /************************** debugfs end ************************/
376
377 /************************** sysfs begin ************************/
378 #define show_one(file_name, object) \
379 static ssize_t show_##file_name \
380 (struct kobject *kobj, struct attribute *attr, char *buf) \
381 { \
382 return sprintf(buf, "%u\n", limits->object); \
383 }
384
385 static ssize_t show_turbo_pct(struct kobject *kobj,
386 struct attribute *attr, char *buf)
387 {
388 struct cpudata *cpu;
389 int total, no_turbo, turbo_pct;
390 uint32_t turbo_fp;
391
392 cpu = all_cpu_data[0];
393
394 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
395 no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
396 turbo_fp = div_fp(int_tofp(no_turbo), int_tofp(total));
397 turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
398 return sprintf(buf, "%u\n", turbo_pct);
399 }
400
401 static ssize_t show_num_pstates(struct kobject *kobj,
402 struct attribute *attr, char *buf)
403 {
404 struct cpudata *cpu;
405 int total;
406
407 cpu = all_cpu_data[0];
408 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
409 return sprintf(buf, "%u\n", total);
410 }
411
412 static ssize_t show_no_turbo(struct kobject *kobj,
413 struct attribute *attr, char *buf)
414 {
415 ssize_t ret;
416
417 update_turbo_state();
418 if (limits->turbo_disabled)
419 ret = sprintf(buf, "%u\n", limits->turbo_disabled);
420 else
421 ret = sprintf(buf, "%u\n", limits->no_turbo);
422
423 return ret;
424 }
425
426 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
427 const char *buf, size_t count)
428 {
429 unsigned int input;
430 int ret;
431
432 ret = sscanf(buf, "%u", &input);
433 if (ret != 1)
434 return -EINVAL;
435
436 update_turbo_state();
437 if (limits->turbo_disabled) {
438 pr_warn("intel_pstate: Turbo disabled by BIOS or unavailable on processor\n");
439 return -EPERM;
440 }
441
442 limits->no_turbo = clamp_t(int, input, 0, 1);
443
444 if (hwp_active)
445 intel_pstate_hwp_set_online_cpus();
446
447 return count;
448 }
449
450 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
451 const char *buf, size_t count)
452 {
453 unsigned int input;
454 int ret;
455
456 ret = sscanf(buf, "%u", &input);
457 if (ret != 1)
458 return -EINVAL;
459
460 limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
461 limits->max_perf_pct = min(limits->max_policy_pct,
462 limits->max_sysfs_pct);
463 limits->max_perf_pct = max(limits->min_policy_pct,
464 limits->max_perf_pct);
465 limits->max_perf_pct = max(limits->min_perf_pct,
466 limits->max_perf_pct);
467 limits->max_perf = div_fp(int_tofp(limits->max_perf_pct),
468 int_tofp(100));
469
470 if (hwp_active)
471 intel_pstate_hwp_set_online_cpus();
472 return count;
473 }
474
475 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
476 const char *buf, size_t count)
477 {
478 unsigned int input;
479 int ret;
480
481 ret = sscanf(buf, "%u", &input);
482 if (ret != 1)
483 return -EINVAL;
484
485 limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
486 limits->min_perf_pct = max(limits->min_policy_pct,
487 limits->min_sysfs_pct);
488 limits->min_perf_pct = min(limits->max_policy_pct,
489 limits->min_perf_pct);
490 limits->min_perf_pct = min(limits->max_perf_pct,
491 limits->min_perf_pct);
492 limits->min_perf = div_fp(int_tofp(limits->min_perf_pct),
493 int_tofp(100));
494
495 if (hwp_active)
496 intel_pstate_hwp_set_online_cpus();
497 return count;
498 }
499
500 show_one(max_perf_pct, max_perf_pct);
501 show_one(min_perf_pct, min_perf_pct);
502
503 define_one_global_rw(no_turbo);
504 define_one_global_rw(max_perf_pct);
505 define_one_global_rw(min_perf_pct);
506 define_one_global_ro(turbo_pct);
507 define_one_global_ro(num_pstates);
508
509 static struct attribute *intel_pstate_attributes[] = {
510 &no_turbo.attr,
511 &max_perf_pct.attr,
512 &min_perf_pct.attr,
513 &turbo_pct.attr,
514 &num_pstates.attr,
515 NULL
516 };
517
518 static struct attribute_group intel_pstate_attr_group = {
519 .attrs = intel_pstate_attributes,
520 };
521
522 static void __init intel_pstate_sysfs_expose_params(void)
523 {
524 struct kobject *intel_pstate_kobject;
525 int rc;
526
527 intel_pstate_kobject = kobject_create_and_add("intel_pstate",
528 &cpu_subsys.dev_root->kobj);
529 BUG_ON(!intel_pstate_kobject);
530 rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
531 BUG_ON(rc);
532 }
533 /************************** sysfs end ************************/
534
535 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
536 {
537 wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
538 }
539
540 static int atom_get_min_pstate(void)
541 {
542 u64 value;
543
544 rdmsrl(ATOM_RATIOS, value);
545 return (value >> 8) & 0x7F;
546 }
547
548 static int atom_get_max_pstate(void)
549 {
550 u64 value;
551
552 rdmsrl(ATOM_RATIOS, value);
553 return (value >> 16) & 0x7F;
554 }
555
556 static int atom_get_turbo_pstate(void)
557 {
558 u64 value;
559
560 rdmsrl(ATOM_TURBO_RATIOS, value);
561 return value & 0x7F;
562 }
563
564 static void atom_set_pstate(struct cpudata *cpudata, int pstate)
565 {
566 u64 val;
567 int32_t vid_fp;
568 u32 vid;
569
570 val = (u64)pstate << 8;
571 if (limits->no_turbo && !limits->turbo_disabled)
572 val |= (u64)1 << 32;
573
574 vid_fp = cpudata->vid.min + mul_fp(
575 int_tofp(pstate - cpudata->pstate.min_pstate),
576 cpudata->vid.ratio);
577
578 vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
579 vid = ceiling_fp(vid_fp);
580
581 if (pstate > cpudata->pstate.max_pstate)
582 vid = cpudata->vid.turbo;
583
584 val |= vid;
585
586 wrmsrl_on_cpu(cpudata->cpu, MSR_IA32_PERF_CTL, val);
587 }
588
589 static int silvermont_get_scaling(void)
590 {
591 u64 value;
592 int i;
593 /* Defined in Table 35-6 from SDM (Sept 2015) */
594 static int silvermont_freq_table[] = {
595 83300, 100000, 133300, 116700, 80000};
596
597 rdmsrl(MSR_FSB_FREQ, value);
598 i = value & 0x7;
599 WARN_ON(i > 4);
600
601 return silvermont_freq_table[i];
602 }
603
604 static int airmont_get_scaling(void)
605 {
606 u64 value;
607 int i;
608 /* Defined in Table 35-10 from SDM (Sept 2015) */
609 static int airmont_freq_table[] = {
610 83300, 100000, 133300, 116700, 80000,
611 93300, 90000, 88900, 87500};
612
613 rdmsrl(MSR_FSB_FREQ, value);
614 i = value & 0xF;
615 WARN_ON(i > 8);
616
617 return airmont_freq_table[i];
618 }
619
620 static void atom_get_vid(struct cpudata *cpudata)
621 {
622 u64 value;
623
624 rdmsrl(ATOM_VIDS, value);
625 cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
626 cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
627 cpudata->vid.ratio = div_fp(
628 cpudata->vid.max - cpudata->vid.min,
629 int_tofp(cpudata->pstate.max_pstate -
630 cpudata->pstate.min_pstate));
631
632 rdmsrl(ATOM_TURBO_VIDS, value);
633 cpudata->vid.turbo = value & 0x7f;
634 }
635
636 static int core_get_min_pstate(void)
637 {
638 u64 value;
639
640 rdmsrl(MSR_PLATFORM_INFO, value);
641 return (value >> 40) & 0xFF;
642 }
643
644 static int core_get_max_pstate_physical(void)
645 {
646 u64 value;
647
648 rdmsrl(MSR_PLATFORM_INFO, value);
649 return (value >> 8) & 0xFF;
650 }
651
652 static int core_get_max_pstate(void)
653 {
654 u64 tar;
655 u64 plat_info;
656 int max_pstate;
657 int err;
658
659 rdmsrl(MSR_PLATFORM_INFO, plat_info);
660 max_pstate = (plat_info >> 8) & 0xFF;
661
662 err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
663 if (!err) {
664 /* Do some sanity checking for safety */
665 if (plat_info & 0x600000000) {
666 u64 tdp_ctrl;
667 u64 tdp_ratio;
668 int tdp_msr;
669
670 err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
671 if (err)
672 goto skip_tar;
673
674 tdp_msr = MSR_CONFIG_TDP_NOMINAL + tdp_ctrl;
675 err = rdmsrl_safe(tdp_msr, &tdp_ratio);
676 if (err)
677 goto skip_tar;
678
679 if (tdp_ratio - 1 == tar) {
680 max_pstate = tar;
681 pr_debug("max_pstate=TAC %x\n", max_pstate);
682 } else {
683 goto skip_tar;
684 }
685 }
686 }
687
688 skip_tar:
689 return max_pstate;
690 }
691
692 static int core_get_turbo_pstate(void)
693 {
694 u64 value;
695 int nont, ret;
696
697 rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
698 nont = core_get_max_pstate();
699 ret = (value) & 255;
700 if (ret <= nont)
701 ret = nont;
702 return ret;
703 }
704
705 static inline int core_get_scaling(void)
706 {
707 return 100000;
708 }
709
710 static void core_set_pstate(struct cpudata *cpudata, int pstate)
711 {
712 u64 val;
713
714 val = (u64)pstate << 8;
715 if (limits->no_turbo && !limits->turbo_disabled)
716 val |= (u64)1 << 32;
717
718 wrmsrl_on_cpu(cpudata->cpu, MSR_IA32_PERF_CTL, val);
719 }
720
721 static int knl_get_turbo_pstate(void)
722 {
723 u64 value;
724 int nont, ret;
725
726 rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
727 nont = core_get_max_pstate();
728 ret = (((value) >> 8) & 0xFF);
729 if (ret <= nont)
730 ret = nont;
731 return ret;
732 }
733
734 static struct cpu_defaults core_params = {
735 .pid_policy = {
736 .sample_rate_ms = 10,
737 .deadband = 0,
738 .setpoint = 97,
739 .p_gain_pct = 20,
740 .d_gain_pct = 0,
741 .i_gain_pct = 0,
742 },
743 .funcs = {
744 .get_max = core_get_max_pstate,
745 .get_max_physical = core_get_max_pstate_physical,
746 .get_min = core_get_min_pstate,
747 .get_turbo = core_get_turbo_pstate,
748 .get_scaling = core_get_scaling,
749 .set = core_set_pstate,
750 .get_target_pstate = get_target_pstate_use_performance,
751 },
752 };
753
754 static struct cpu_defaults silvermont_params = {
755 .pid_policy = {
756 .sample_rate_ms = 10,
757 .deadband = 0,
758 .setpoint = 60,
759 .p_gain_pct = 14,
760 .d_gain_pct = 0,
761 .i_gain_pct = 4,
762 },
763 .funcs = {
764 .get_max = atom_get_max_pstate,
765 .get_max_physical = atom_get_max_pstate,
766 .get_min = atom_get_min_pstate,
767 .get_turbo = atom_get_turbo_pstate,
768 .set = atom_set_pstate,
769 .get_scaling = silvermont_get_scaling,
770 .get_vid = atom_get_vid,
771 .get_target_pstate = get_target_pstate_use_cpu_load,
772 },
773 };
774
775 static struct cpu_defaults airmont_params = {
776 .pid_policy = {
777 .sample_rate_ms = 10,
778 .deadband = 0,
779 .setpoint = 60,
780 .p_gain_pct = 14,
781 .d_gain_pct = 0,
782 .i_gain_pct = 4,
783 },
784 .funcs = {
785 .get_max = atom_get_max_pstate,
786 .get_max_physical = atom_get_max_pstate,
787 .get_min = atom_get_min_pstate,
788 .get_turbo = atom_get_turbo_pstate,
789 .set = atom_set_pstate,
790 .get_scaling = airmont_get_scaling,
791 .get_vid = atom_get_vid,
792 .get_target_pstate = get_target_pstate_use_cpu_load,
793 },
794 };
795
796 static struct cpu_defaults knl_params = {
797 .pid_policy = {
798 .sample_rate_ms = 10,
799 .deadband = 0,
800 .setpoint = 97,
801 .p_gain_pct = 20,
802 .d_gain_pct = 0,
803 .i_gain_pct = 0,
804 },
805 .funcs = {
806 .get_max = core_get_max_pstate,
807 .get_max_physical = core_get_max_pstate_physical,
808 .get_min = core_get_min_pstate,
809 .get_turbo = knl_get_turbo_pstate,
810 .get_scaling = core_get_scaling,
811 .set = core_set_pstate,
812 .get_target_pstate = get_target_pstate_use_performance,
813 },
814 };
815
816 static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
817 {
818 int max_perf = cpu->pstate.turbo_pstate;
819 int max_perf_adj;
820 int min_perf;
821
822 if (limits->no_turbo || limits->turbo_disabled)
823 max_perf = cpu->pstate.max_pstate;
824
825 /*
826 * performance can be limited by user through sysfs, by cpufreq
827 * policy, or by cpu specific default values determined through
828 * experimentation.
829 */
830 max_perf_adj = fp_toint(mul_fp(int_tofp(max_perf), limits->max_perf));
831 *max = clamp_t(int, max_perf_adj,
832 cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
833
834 min_perf = fp_toint(mul_fp(int_tofp(max_perf), limits->min_perf));
835 *min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
836 }
837
838 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate, bool force)
839 {
840 int max_perf, min_perf;
841
842 if (force) {
843 update_turbo_state();
844
845 intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
846
847 pstate = clamp_t(int, pstate, min_perf, max_perf);
848
849 if (pstate == cpu->pstate.current_pstate)
850 return;
851 }
852 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
853
854 cpu->pstate.current_pstate = pstate;
855
856 pstate_funcs.set(cpu, pstate);
857 }
858
859 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
860 {
861 cpu->pstate.min_pstate = pstate_funcs.get_min();
862 cpu->pstate.max_pstate = pstate_funcs.get_max();
863 cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
864 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
865 cpu->pstate.scaling = pstate_funcs.get_scaling();
866
867 if (pstate_funcs.get_vid)
868 pstate_funcs.get_vid(cpu);
869 intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate, false);
870 }
871
872 static inline void intel_pstate_calc_busy(struct cpudata *cpu)
873 {
874 struct sample *sample = &cpu->sample;
875 int64_t core_pct;
876
877 core_pct = int_tofp(sample->aperf) * int_tofp(100);
878 core_pct = div64_u64(core_pct, int_tofp(sample->mperf));
879
880 sample->freq = fp_toint(
881 mul_fp(int_tofp(
882 cpu->pstate.max_pstate_physical *
883 cpu->pstate.scaling / 100),
884 core_pct));
885
886 sample->core_pct_busy = (int32_t)core_pct;
887 }
888
889 static inline void intel_pstate_sample(struct cpudata *cpu)
890 {
891 u64 aperf, mperf;
892 unsigned long flags;
893 u64 tsc;
894
895 local_irq_save(flags);
896 rdmsrl(MSR_IA32_APERF, aperf);
897 rdmsrl(MSR_IA32_MPERF, mperf);
898 tsc = rdtsc();
899 if ((cpu->prev_mperf == mperf) || (cpu->prev_tsc == tsc)) {
900 local_irq_restore(flags);
901 return;
902 }
903 local_irq_restore(flags);
904
905 cpu->last_sample_time = cpu->sample.time;
906 cpu->sample.time = ktime_get();
907 cpu->sample.aperf = aperf;
908 cpu->sample.mperf = mperf;
909 cpu->sample.tsc = tsc;
910 cpu->sample.aperf -= cpu->prev_aperf;
911 cpu->sample.mperf -= cpu->prev_mperf;
912 cpu->sample.tsc -= cpu->prev_tsc;
913
914 intel_pstate_calc_busy(cpu);
915
916 cpu->prev_aperf = aperf;
917 cpu->prev_mperf = mperf;
918 cpu->prev_tsc = tsc;
919 }
920
921 static inline void intel_hwp_set_sample_time(struct cpudata *cpu)
922 {
923 int delay;
924
925 delay = msecs_to_jiffies(50);
926 mod_timer_pinned(&cpu->timer, jiffies + delay);
927 }
928
929 static inline void intel_pstate_set_sample_time(struct cpudata *cpu)
930 {
931 int delay;
932
933 delay = msecs_to_jiffies(pid_params.sample_rate_ms);
934 mod_timer_pinned(&cpu->timer, jiffies + delay);
935 }
936
937 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
938 {
939 struct sample *sample = &cpu->sample;
940 u64 cummulative_iowait, delta_iowait_us;
941 u64 delta_iowait_mperf;
942 u64 mperf, now;
943 int32_t cpu_load;
944
945 cummulative_iowait = get_cpu_iowait_time_us(cpu->cpu, &now);
946
947 /*
948 * Convert iowait time into number of IO cycles spent at max_freq.
949 * IO is considered as busy only for the cpu_load algorithm. For
950 * performance this is not needed since we always try to reach the
951 * maximum P-State, so we are already boosting the IOs.
952 */
953 delta_iowait_us = cummulative_iowait - cpu->prev_cummulative_iowait;
954 delta_iowait_mperf = div64_u64(delta_iowait_us * cpu->pstate.scaling *
955 cpu->pstate.max_pstate, MSEC_PER_SEC);
956
957 mperf = cpu->sample.mperf + delta_iowait_mperf;
958 cpu->prev_cummulative_iowait = cummulative_iowait;
959
960
961 /*
962 * The load can be estimated as the ratio of the mperf counter
963 * running at a constant frequency during active periods
964 * (C0) and the time stamp counter running at the same frequency
965 * also during C-states.
966 */
967 cpu_load = div64_u64(int_tofp(100) * mperf, sample->tsc);
968 cpu->sample.busy_scaled = cpu_load;
969
970 return cpu->pstate.current_pstate - pid_calc(&cpu->pid, cpu_load);
971 }
972
973 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
974 {
975 int32_t core_busy, max_pstate, current_pstate, sample_ratio;
976 s64 duration_us;
977 u32 sample_time;
978
979 /*
980 * core_busy is the ratio of actual performance to max
981 * max_pstate is the max non turbo pstate available
982 * current_pstate was the pstate that was requested during
983 * the last sample period.
984 *
985 * We normalize core_busy, which was our actual percent
986 * performance to what we requested during the last sample
987 * period. The result will be a percentage of busy at a
988 * specified pstate.
989 */
990 core_busy = cpu->sample.core_pct_busy;
991 max_pstate = int_tofp(cpu->pstate.max_pstate_physical);
992 current_pstate = int_tofp(cpu->pstate.current_pstate);
993 core_busy = mul_fp(core_busy, div_fp(max_pstate, current_pstate));
994
995 /*
996 * Since we have a deferred timer, it will not fire unless
997 * we are in C0. So, determine if the actual elapsed time
998 * is significantly greater (3x) than our sample interval. If it
999 * is, then we were idle for a long enough period of time
1000 * to adjust our busyness.
1001 */
1002 sample_time = pid_params.sample_rate_ms * USEC_PER_MSEC;
1003 duration_us = ktime_us_delta(cpu->sample.time,
1004 cpu->last_sample_time);
1005 if (duration_us > sample_time * 3) {
1006 sample_ratio = div_fp(int_tofp(sample_time),
1007 int_tofp(duration_us));
1008 core_busy = mul_fp(core_busy, sample_ratio);
1009 }
1010
1011 cpu->sample.busy_scaled = core_busy;
1012 return cpu->pstate.current_pstate - pid_calc(&cpu->pid, core_busy);
1013 }
1014
1015 static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
1016 {
1017 int from, target_pstate;
1018 struct sample *sample;
1019
1020 from = cpu->pstate.current_pstate;
1021
1022 target_pstate = pstate_funcs.get_target_pstate(cpu);
1023
1024 intel_pstate_set_pstate(cpu, target_pstate, true);
1025
1026 sample = &cpu->sample;
1027 trace_pstate_sample(fp_toint(sample->core_pct_busy),
1028 fp_toint(sample->busy_scaled),
1029 from,
1030 cpu->pstate.current_pstate,
1031 sample->mperf,
1032 sample->aperf,
1033 sample->tsc,
1034 sample->freq);
1035 }
1036
1037 static void intel_hwp_timer_func(unsigned long __data)
1038 {
1039 struct cpudata *cpu = (struct cpudata *) __data;
1040
1041 intel_pstate_sample(cpu);
1042 intel_hwp_set_sample_time(cpu);
1043 }
1044
1045 static void intel_pstate_timer_func(unsigned long __data)
1046 {
1047 struct cpudata *cpu = (struct cpudata *) __data;
1048
1049 intel_pstate_sample(cpu);
1050
1051 intel_pstate_adjust_busy_pstate(cpu);
1052
1053 intel_pstate_set_sample_time(cpu);
1054 }
1055
1056 #define ICPU(model, policy) \
1057 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1058 (unsigned long)&policy }
1059
1060 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1061 ICPU(0x2a, core_params),
1062 ICPU(0x2d, core_params),
1063 ICPU(0x37, silvermont_params),
1064 ICPU(0x3a, core_params),
1065 ICPU(0x3c, core_params),
1066 ICPU(0x3d, core_params),
1067 ICPU(0x3e, core_params),
1068 ICPU(0x3f, core_params),
1069 ICPU(0x45, core_params),
1070 ICPU(0x46, core_params),
1071 ICPU(0x47, core_params),
1072 ICPU(0x4c, airmont_params),
1073 ICPU(0x4e, core_params),
1074 ICPU(0x4f, core_params),
1075 ICPU(0x5e, core_params),
1076 ICPU(0x56, core_params),
1077 ICPU(0x57, knl_params),
1078 {}
1079 };
1080 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1081
1082 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] = {
1083 ICPU(0x56, core_params),
1084 {}
1085 };
1086
1087 static int intel_pstate_init_cpu(unsigned int cpunum)
1088 {
1089 struct cpudata *cpu;
1090
1091 if (!all_cpu_data[cpunum])
1092 all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata),
1093 GFP_KERNEL);
1094 if (!all_cpu_data[cpunum])
1095 return -ENOMEM;
1096
1097 cpu = all_cpu_data[cpunum];
1098
1099 cpu->cpu = cpunum;
1100
1101 if (hwp_active)
1102 intel_pstate_hwp_enable(cpu);
1103
1104 intel_pstate_get_cpu_pstates(cpu);
1105
1106 init_timer_deferrable(&cpu->timer);
1107 cpu->timer.data = (unsigned long)cpu;
1108 cpu->timer.expires = jiffies + HZ/100;
1109
1110 if (!hwp_active)
1111 cpu->timer.function = intel_pstate_timer_func;
1112 else
1113 cpu->timer.function = intel_hwp_timer_func;
1114
1115 intel_pstate_busy_pid_reset(cpu);
1116 intel_pstate_sample(cpu);
1117
1118 add_timer_on(&cpu->timer, cpunum);
1119
1120 pr_debug("intel_pstate: controlling: cpu %d\n", cpunum);
1121
1122 return 0;
1123 }
1124
1125 static unsigned int intel_pstate_get(unsigned int cpu_num)
1126 {
1127 struct sample *sample;
1128 struct cpudata *cpu;
1129
1130 cpu = all_cpu_data[cpu_num];
1131 if (!cpu)
1132 return 0;
1133 sample = &cpu->sample;
1134 return sample->freq;
1135 }
1136
1137 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
1138 {
1139 if (!policy->cpuinfo.max_freq)
1140 return -ENODEV;
1141
1142 if (policy->policy == CPUFREQ_POLICY_PERFORMANCE &&
1143 policy->max >= policy->cpuinfo.max_freq) {
1144 pr_debug("intel_pstate: set performance\n");
1145 limits = &performance_limits;
1146 if (hwp_active)
1147 intel_pstate_hwp_set(policy->cpus);
1148 return 0;
1149 }
1150
1151 pr_debug("intel_pstate: set powersave\n");
1152 limits = &powersave_limits;
1153 limits->min_policy_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
1154 limits->min_policy_pct = clamp_t(int, limits->min_policy_pct, 0 , 100);
1155 limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100,
1156 policy->cpuinfo.max_freq);
1157 limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0 , 100);
1158
1159 /* Normalize user input to [min_policy_pct, max_policy_pct] */
1160 limits->min_perf_pct = max(limits->min_policy_pct,
1161 limits->min_sysfs_pct);
1162 limits->min_perf_pct = min(limits->max_policy_pct,
1163 limits->min_perf_pct);
1164 limits->max_perf_pct = min(limits->max_policy_pct,
1165 limits->max_sysfs_pct);
1166 limits->max_perf_pct = max(limits->min_policy_pct,
1167 limits->max_perf_pct);
1168 limits->max_perf = round_up(limits->max_perf, FRAC_BITS);
1169
1170 /* Make sure min_perf_pct <= max_perf_pct */
1171 limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct);
1172
1173 limits->min_perf = div_fp(int_tofp(limits->min_perf_pct),
1174 int_tofp(100));
1175 limits->max_perf = div_fp(int_tofp(limits->max_perf_pct),
1176 int_tofp(100));
1177
1178 if (hwp_active)
1179 intel_pstate_hwp_set(policy->cpus);
1180
1181 return 0;
1182 }
1183
1184 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
1185 {
1186 cpufreq_verify_within_cpu_limits(policy);
1187
1188 if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
1189 policy->policy != CPUFREQ_POLICY_PERFORMANCE)
1190 return -EINVAL;
1191
1192 return 0;
1193 }
1194
1195 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
1196 {
1197 int cpu_num = policy->cpu;
1198 struct cpudata *cpu = all_cpu_data[cpu_num];
1199
1200 pr_debug("intel_pstate: CPU %d exiting\n", cpu_num);
1201
1202 del_timer_sync(&all_cpu_data[cpu_num]->timer);
1203 if (hwp_active)
1204 return;
1205
1206 intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate, false);
1207 }
1208
1209 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
1210 {
1211 struct cpudata *cpu;
1212 int rc;
1213
1214 rc = intel_pstate_init_cpu(policy->cpu);
1215 if (rc)
1216 return rc;
1217
1218 cpu = all_cpu_data[policy->cpu];
1219
1220 if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
1221 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
1222 else
1223 policy->policy = CPUFREQ_POLICY_POWERSAVE;
1224
1225 policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
1226 policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1227
1228 /* cpuinfo and default policy values */
1229 policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
1230 policy->cpuinfo.max_freq =
1231 cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1232 policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
1233 cpumask_set_cpu(policy->cpu, policy->cpus);
1234
1235 return 0;
1236 }
1237
1238 static struct cpufreq_driver intel_pstate_driver = {
1239 .flags = CPUFREQ_CONST_LOOPS,
1240 .verify = intel_pstate_verify_policy,
1241 .setpolicy = intel_pstate_set_policy,
1242 .get = intel_pstate_get,
1243 .init = intel_pstate_cpu_init,
1244 .stop_cpu = intel_pstate_stop_cpu,
1245 .name = "intel_pstate",
1246 };
1247
1248 static int __initdata no_load;
1249 static int __initdata no_hwp;
1250 static int __initdata hwp_only;
1251 static unsigned int force_load;
1252
1253 static int intel_pstate_msrs_not_valid(void)
1254 {
1255 if (!pstate_funcs.get_max() ||
1256 !pstate_funcs.get_min() ||
1257 !pstate_funcs.get_turbo())
1258 return -ENODEV;
1259
1260 return 0;
1261 }
1262
1263 static void copy_pid_params(struct pstate_adjust_policy *policy)
1264 {
1265 pid_params.sample_rate_ms = policy->sample_rate_ms;
1266 pid_params.p_gain_pct = policy->p_gain_pct;
1267 pid_params.i_gain_pct = policy->i_gain_pct;
1268 pid_params.d_gain_pct = policy->d_gain_pct;
1269 pid_params.deadband = policy->deadband;
1270 pid_params.setpoint = policy->setpoint;
1271 }
1272
1273 static void copy_cpu_funcs(struct pstate_funcs *funcs)
1274 {
1275 pstate_funcs.get_max = funcs->get_max;
1276 pstate_funcs.get_max_physical = funcs->get_max_physical;
1277 pstate_funcs.get_min = funcs->get_min;
1278 pstate_funcs.get_turbo = funcs->get_turbo;
1279 pstate_funcs.get_scaling = funcs->get_scaling;
1280 pstate_funcs.set = funcs->set;
1281 pstate_funcs.get_vid = funcs->get_vid;
1282 pstate_funcs.get_target_pstate = funcs->get_target_pstate;
1283
1284 }
1285
1286 #if IS_ENABLED(CONFIG_ACPI)
1287 #include <acpi/processor.h>
1288
1289 static bool intel_pstate_no_acpi_pss(void)
1290 {
1291 int i;
1292
1293 for_each_possible_cpu(i) {
1294 acpi_status status;
1295 union acpi_object *pss;
1296 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1297 struct acpi_processor *pr = per_cpu(processors, i);
1298
1299 if (!pr)
1300 continue;
1301
1302 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
1303 if (ACPI_FAILURE(status))
1304 continue;
1305
1306 pss = buffer.pointer;
1307 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
1308 kfree(pss);
1309 return false;
1310 }
1311
1312 kfree(pss);
1313 }
1314
1315 return true;
1316 }
1317
1318 static bool intel_pstate_has_acpi_ppc(void)
1319 {
1320 int i;
1321
1322 for_each_possible_cpu(i) {
1323 struct acpi_processor *pr = per_cpu(processors, i);
1324
1325 if (!pr)
1326 continue;
1327 if (acpi_has_method(pr->handle, "_PPC"))
1328 return true;
1329 }
1330 return false;
1331 }
1332
1333 enum {
1334 PSS,
1335 PPC,
1336 };
1337
1338 struct hw_vendor_info {
1339 u16 valid;
1340 char oem_id[ACPI_OEM_ID_SIZE];
1341 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
1342 int oem_pwr_table;
1343 };
1344
1345 /* Hardware vendor-specific info that has its own power management modes */
1346 static struct hw_vendor_info vendor_info[] = {
1347 {1, "HP ", "ProLiant", PSS},
1348 {1, "ORACLE", "X4-2 ", PPC},
1349 {1, "ORACLE", "X4-2L ", PPC},
1350 {1, "ORACLE", "X4-2B ", PPC},
1351 {1, "ORACLE", "X3-2 ", PPC},
1352 {1, "ORACLE", "X3-2L ", PPC},
1353 {1, "ORACLE", "X3-2B ", PPC},
1354 {1, "ORACLE", "X4470M2 ", PPC},
1355 {1, "ORACLE", "X4270M3 ", PPC},
1356 {1, "ORACLE", "X4270M2 ", PPC},
1357 {1, "ORACLE", "X4170M2 ", PPC},
1358 {1, "ORACLE", "X4170 M3", PPC},
1359 {1, "ORACLE", "X4275 M3", PPC},
1360 {1, "ORACLE", "X6-2 ", PPC},
1361 {1, "ORACLE", "Sudbury ", PPC},
1362 {0, "", ""},
1363 };
1364
1365 static bool intel_pstate_platform_pwr_mgmt_exists(void)
1366 {
1367 struct acpi_table_header hdr;
1368 struct hw_vendor_info *v_info;
1369 const struct x86_cpu_id *id;
1370 u64 misc_pwr;
1371
1372 id = x86_match_cpu(intel_pstate_cpu_oob_ids);
1373 if (id) {
1374 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
1375 if ( misc_pwr & (1 << 8))
1376 return true;
1377 }
1378
1379 if (acpi_disabled ||
1380 ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
1381 return false;
1382
1383 for (v_info = vendor_info; v_info->valid; v_info++) {
1384 if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
1385 !strncmp(hdr.oem_table_id, v_info->oem_table_id,
1386 ACPI_OEM_TABLE_ID_SIZE))
1387 switch (v_info->oem_pwr_table) {
1388 case PSS:
1389 return intel_pstate_no_acpi_pss();
1390 case PPC:
1391 return intel_pstate_has_acpi_ppc() &&
1392 (!force_load);
1393 }
1394 }
1395
1396 return false;
1397 }
1398 #else /* CONFIG_ACPI not enabled */
1399 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
1400 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
1401 #endif /* CONFIG_ACPI */
1402
1403 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
1404 { X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
1405 {}
1406 };
1407
1408 static int __init intel_pstate_init(void)
1409 {
1410 int cpu, rc = 0;
1411 const struct x86_cpu_id *id;
1412 struct cpu_defaults *cpu_def;
1413
1414 if (no_load)
1415 return -ENODEV;
1416
1417 if (x86_match_cpu(hwp_support_ids) && !no_hwp) {
1418 copy_cpu_funcs(&core_params.funcs);
1419 hwp_active++;
1420 goto hwp_cpu_matched;
1421 }
1422
1423 id = x86_match_cpu(intel_pstate_cpu_ids);
1424 if (!id)
1425 return -ENODEV;
1426
1427 cpu_def = (struct cpu_defaults *)id->driver_data;
1428
1429 copy_pid_params(&cpu_def->pid_policy);
1430 copy_cpu_funcs(&cpu_def->funcs);
1431
1432 if (intel_pstate_msrs_not_valid())
1433 return -ENODEV;
1434
1435 hwp_cpu_matched:
1436 /*
1437 * The Intel pstate driver will be ignored if the platform
1438 * firmware has its own power management modes.
1439 */
1440 if (intel_pstate_platform_pwr_mgmt_exists())
1441 return -ENODEV;
1442
1443 pr_info("Intel P-state driver initializing.\n");
1444
1445 all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
1446 if (!all_cpu_data)
1447 return -ENOMEM;
1448
1449 if (!hwp_active && hwp_only)
1450 goto out;
1451
1452 rc = cpufreq_register_driver(&intel_pstate_driver);
1453 if (rc)
1454 goto out;
1455
1456 intel_pstate_debug_expose_params();
1457 intel_pstate_sysfs_expose_params();
1458
1459 if (hwp_active)
1460 pr_info("intel_pstate: HWP enabled\n");
1461
1462 return rc;
1463 out:
1464 get_online_cpus();
1465 for_each_online_cpu(cpu) {
1466 if (all_cpu_data[cpu]) {
1467 del_timer_sync(&all_cpu_data[cpu]->timer);
1468 kfree(all_cpu_data[cpu]);
1469 }
1470 }
1471
1472 put_online_cpus();
1473 vfree(all_cpu_data);
1474 return -ENODEV;
1475 }
1476 device_initcall(intel_pstate_init);
1477
1478 static int __init intel_pstate_setup(char *str)
1479 {
1480 if (!str)
1481 return -EINVAL;
1482
1483 if (!strcmp(str, "disable"))
1484 no_load = 1;
1485 if (!strcmp(str, "no_hwp")) {
1486 pr_info("intel_pstate: HWP disabled\n");
1487 no_hwp = 1;
1488 }
1489 if (!strcmp(str, "force"))
1490 force_load = 1;
1491 if (!strcmp(str, "hwp_only"))
1492 hwp_only = 1;
1493 return 0;
1494 }
1495 early_param("intel_pstate", intel_pstate_setup);
1496
1497 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
1498 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
1499 MODULE_LICENSE("GPL");