]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - drivers/cpufreq/intel_pstate.c
Merge tag 'pm+acpi-3.12-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael...
[mirror_ubuntu-eoan-kernel.git] / drivers / cpufreq / intel_pstate.c
1 /*
2 * intel_pstate.c: Native P state management for Intel processors
3 *
4 * (C) Copyright 2012 Intel Corporation
5 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
10 * of the License.
11 */
12
13 #include <linux/kernel.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/module.h>
16 #include <linux/ktime.h>
17 #include <linux/hrtimer.h>
18 #include <linux/tick.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/list.h>
22 #include <linux/cpu.h>
23 #include <linux/cpufreq.h>
24 #include <linux/sysfs.h>
25 #include <linux/types.h>
26 #include <linux/fs.h>
27 #include <linux/debugfs.h>
28 #include <trace/events/power.h>
29
30 #include <asm/div64.h>
31 #include <asm/msr.h>
32 #include <asm/cpu_device_id.h>
33
34 #define SAMPLE_COUNT 3
35
36 #define FRAC_BITS 8
37 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
38 #define fp_toint(X) ((X) >> FRAC_BITS)
39
40 static inline int32_t mul_fp(int32_t x, int32_t y)
41 {
42 return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
43 }
44
45 static inline int32_t div_fp(int32_t x, int32_t y)
46 {
47 return div_s64((int64_t)x << FRAC_BITS, (int64_t)y);
48 }
49
50 struct sample {
51 int core_pct_busy;
52 u64 aperf;
53 u64 mperf;
54 int freq;
55 };
56
57 struct pstate_data {
58 int current_pstate;
59 int min_pstate;
60 int max_pstate;
61 int turbo_pstate;
62 };
63
64 struct _pid {
65 int setpoint;
66 int32_t integral;
67 int32_t p_gain;
68 int32_t i_gain;
69 int32_t d_gain;
70 int deadband;
71 int last_err;
72 };
73
74 struct cpudata {
75 int cpu;
76
77 char name[64];
78
79 struct timer_list timer;
80
81 struct pstate_adjust_policy *pstate_policy;
82 struct pstate_data pstate;
83 struct _pid pid;
84
85 int min_pstate_count;
86
87 u64 prev_aperf;
88 u64 prev_mperf;
89 int sample_ptr;
90 struct sample samples[SAMPLE_COUNT];
91 };
92
93 static struct cpudata **all_cpu_data;
94 struct pstate_adjust_policy {
95 int sample_rate_ms;
96 int deadband;
97 int setpoint;
98 int p_gain_pct;
99 int d_gain_pct;
100 int i_gain_pct;
101 };
102
103 static struct pstate_adjust_policy default_policy = {
104 .sample_rate_ms = 10,
105 .deadband = 0,
106 .setpoint = 97,
107 .p_gain_pct = 20,
108 .d_gain_pct = 0,
109 .i_gain_pct = 0,
110 };
111
112 struct perf_limits {
113 int no_turbo;
114 int max_perf_pct;
115 int min_perf_pct;
116 int32_t max_perf;
117 int32_t min_perf;
118 int max_policy_pct;
119 int max_sysfs_pct;
120 };
121
122 static struct perf_limits limits = {
123 .no_turbo = 0,
124 .max_perf_pct = 100,
125 .max_perf = int_tofp(1),
126 .min_perf_pct = 0,
127 .min_perf = 0,
128 .max_policy_pct = 100,
129 .max_sysfs_pct = 100,
130 };
131
132 static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
133 int deadband, int integral) {
134 pid->setpoint = setpoint;
135 pid->deadband = deadband;
136 pid->integral = int_tofp(integral);
137 pid->last_err = setpoint - busy;
138 }
139
140 static inline void pid_p_gain_set(struct _pid *pid, int percent)
141 {
142 pid->p_gain = div_fp(int_tofp(percent), int_tofp(100));
143 }
144
145 static inline void pid_i_gain_set(struct _pid *pid, int percent)
146 {
147 pid->i_gain = div_fp(int_tofp(percent), int_tofp(100));
148 }
149
150 static inline void pid_d_gain_set(struct _pid *pid, int percent)
151 {
152
153 pid->d_gain = div_fp(int_tofp(percent), int_tofp(100));
154 }
155
156 static signed int pid_calc(struct _pid *pid, int busy)
157 {
158 signed int err, result;
159 int32_t pterm, dterm, fp_error;
160 int32_t integral_limit;
161
162 err = pid->setpoint - busy;
163 fp_error = int_tofp(err);
164
165 if (abs(err) <= pid->deadband)
166 return 0;
167
168 pterm = mul_fp(pid->p_gain, fp_error);
169
170 pid->integral += fp_error;
171
172 /* limit the integral term */
173 integral_limit = int_tofp(30);
174 if (pid->integral > integral_limit)
175 pid->integral = integral_limit;
176 if (pid->integral < -integral_limit)
177 pid->integral = -integral_limit;
178
179 dterm = mul_fp(pid->d_gain, (err - pid->last_err));
180 pid->last_err = err;
181
182 result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
183
184 return (signed int)fp_toint(result);
185 }
186
187 static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
188 {
189 pid_p_gain_set(&cpu->pid, cpu->pstate_policy->p_gain_pct);
190 pid_d_gain_set(&cpu->pid, cpu->pstate_policy->d_gain_pct);
191 pid_i_gain_set(&cpu->pid, cpu->pstate_policy->i_gain_pct);
192
193 pid_reset(&cpu->pid,
194 cpu->pstate_policy->setpoint,
195 100,
196 cpu->pstate_policy->deadband,
197 0);
198 }
199
200 static inline void intel_pstate_reset_all_pid(void)
201 {
202 unsigned int cpu;
203 for_each_online_cpu(cpu) {
204 if (all_cpu_data[cpu])
205 intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
206 }
207 }
208
209 /************************** debugfs begin ************************/
210 static int pid_param_set(void *data, u64 val)
211 {
212 *(u32 *)data = val;
213 intel_pstate_reset_all_pid();
214 return 0;
215 }
216 static int pid_param_get(void *data, u64 *val)
217 {
218 *val = *(u32 *)data;
219 return 0;
220 }
221 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get,
222 pid_param_set, "%llu\n");
223
224 struct pid_param {
225 char *name;
226 void *value;
227 };
228
229 static struct pid_param pid_files[] = {
230 {"sample_rate_ms", &default_policy.sample_rate_ms},
231 {"d_gain_pct", &default_policy.d_gain_pct},
232 {"i_gain_pct", &default_policy.i_gain_pct},
233 {"deadband", &default_policy.deadband},
234 {"setpoint", &default_policy.setpoint},
235 {"p_gain_pct", &default_policy.p_gain_pct},
236 {NULL, NULL}
237 };
238
239 static struct dentry *debugfs_parent;
240 static void intel_pstate_debug_expose_params(void)
241 {
242 int i = 0;
243
244 debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
245 if (IS_ERR_OR_NULL(debugfs_parent))
246 return;
247 while (pid_files[i].name) {
248 debugfs_create_file(pid_files[i].name, 0660,
249 debugfs_parent, pid_files[i].value,
250 &fops_pid_param);
251 i++;
252 }
253 }
254
255 /************************** debugfs end ************************/
256
257 /************************** sysfs begin ************************/
258 #define show_one(file_name, object) \
259 static ssize_t show_##file_name \
260 (struct kobject *kobj, struct attribute *attr, char *buf) \
261 { \
262 return sprintf(buf, "%u\n", limits.object); \
263 }
264
265 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
266 const char *buf, size_t count)
267 {
268 unsigned int input;
269 int ret;
270 ret = sscanf(buf, "%u", &input);
271 if (ret != 1)
272 return -EINVAL;
273 limits.no_turbo = clamp_t(int, input, 0 , 1);
274
275 return count;
276 }
277
278 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
279 const char *buf, size_t count)
280 {
281 unsigned int input;
282 int ret;
283 ret = sscanf(buf, "%u", &input);
284 if (ret != 1)
285 return -EINVAL;
286
287 limits.max_sysfs_pct = clamp_t(int, input, 0 , 100);
288 limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
289 limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
290 return count;
291 }
292
293 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
294 const char *buf, size_t count)
295 {
296 unsigned int input;
297 int ret;
298 ret = sscanf(buf, "%u", &input);
299 if (ret != 1)
300 return -EINVAL;
301 limits.min_perf_pct = clamp_t(int, input, 0 , 100);
302 limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));
303
304 return count;
305 }
306
307 show_one(no_turbo, no_turbo);
308 show_one(max_perf_pct, max_perf_pct);
309 show_one(min_perf_pct, min_perf_pct);
310
311 define_one_global_rw(no_turbo);
312 define_one_global_rw(max_perf_pct);
313 define_one_global_rw(min_perf_pct);
314
315 static struct attribute *intel_pstate_attributes[] = {
316 &no_turbo.attr,
317 &max_perf_pct.attr,
318 &min_perf_pct.attr,
319 NULL
320 };
321
322 static struct attribute_group intel_pstate_attr_group = {
323 .attrs = intel_pstate_attributes,
324 };
325 static struct kobject *intel_pstate_kobject;
326
327 static void intel_pstate_sysfs_expose_params(void)
328 {
329 int rc;
330
331 intel_pstate_kobject = kobject_create_and_add("intel_pstate",
332 &cpu_subsys.dev_root->kobj);
333 BUG_ON(!intel_pstate_kobject);
334 rc = sysfs_create_group(intel_pstate_kobject,
335 &intel_pstate_attr_group);
336 BUG_ON(rc);
337 }
338
339 /************************** sysfs end ************************/
340
341 static int intel_pstate_min_pstate(void)
342 {
343 u64 value;
344 rdmsrl(MSR_PLATFORM_INFO, value);
345 return (value >> 40) & 0xFF;
346 }
347
348 static int intel_pstate_max_pstate(void)
349 {
350 u64 value;
351 rdmsrl(MSR_PLATFORM_INFO, value);
352 return (value >> 8) & 0xFF;
353 }
354
355 static int intel_pstate_turbo_pstate(void)
356 {
357 u64 value;
358 int nont, ret;
359 rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
360 nont = intel_pstate_max_pstate();
361 ret = ((value) & 255);
362 if (ret <= nont)
363 ret = nont;
364 return ret;
365 }
366
367 static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
368 {
369 int max_perf = cpu->pstate.turbo_pstate;
370 int min_perf;
371 if (limits.no_turbo)
372 max_perf = cpu->pstate.max_pstate;
373
374 max_perf = fp_toint(mul_fp(int_tofp(max_perf), limits.max_perf));
375 *max = clamp_t(int, max_perf,
376 cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
377
378 min_perf = fp_toint(mul_fp(int_tofp(max_perf), limits.min_perf));
379 *min = clamp_t(int, min_perf,
380 cpu->pstate.min_pstate, max_perf);
381 }
382
383 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
384 {
385 int max_perf, min_perf;
386
387 intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
388
389 pstate = clamp_t(int, pstate, min_perf, max_perf);
390
391 if (pstate == cpu->pstate.current_pstate)
392 return;
393
394 trace_cpu_frequency(pstate * 100000, cpu->cpu);
395
396 cpu->pstate.current_pstate = pstate;
397 if (limits.no_turbo)
398 wrmsrl(MSR_IA32_PERF_CTL, BIT(32) | (pstate << 8));
399 else
400 wrmsrl(MSR_IA32_PERF_CTL, pstate << 8);
401
402 }
403
404 static inline void intel_pstate_pstate_increase(struct cpudata *cpu, int steps)
405 {
406 int target;
407 target = cpu->pstate.current_pstate + steps;
408
409 intel_pstate_set_pstate(cpu, target);
410 }
411
412 static inline void intel_pstate_pstate_decrease(struct cpudata *cpu, int steps)
413 {
414 int target;
415 target = cpu->pstate.current_pstate - steps;
416 intel_pstate_set_pstate(cpu, target);
417 }
418
419 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
420 {
421 sprintf(cpu->name, "Intel 2nd generation core");
422
423 cpu->pstate.min_pstate = intel_pstate_min_pstate();
424 cpu->pstate.max_pstate = intel_pstate_max_pstate();
425 cpu->pstate.turbo_pstate = intel_pstate_turbo_pstate();
426
427 /*
428 * goto max pstate so we don't slow up boot if we are built-in if we are
429 * a module we will take care of it during normal operation
430 */
431 intel_pstate_set_pstate(cpu, cpu->pstate.max_pstate);
432 }
433
434 static inline void intel_pstate_calc_busy(struct cpudata *cpu,
435 struct sample *sample)
436 {
437 u64 core_pct;
438 core_pct = div64_u64(sample->aperf * 100, sample->mperf);
439 sample->freq = cpu->pstate.max_pstate * core_pct * 1000;
440
441 sample->core_pct_busy = core_pct;
442 }
443
444 static inline void intel_pstate_sample(struct cpudata *cpu)
445 {
446 u64 aperf, mperf;
447
448 rdmsrl(MSR_IA32_APERF, aperf);
449 rdmsrl(MSR_IA32_MPERF, mperf);
450 cpu->sample_ptr = (cpu->sample_ptr + 1) % SAMPLE_COUNT;
451 cpu->samples[cpu->sample_ptr].aperf = aperf;
452 cpu->samples[cpu->sample_ptr].mperf = mperf;
453 cpu->samples[cpu->sample_ptr].aperf -= cpu->prev_aperf;
454 cpu->samples[cpu->sample_ptr].mperf -= cpu->prev_mperf;
455
456 intel_pstate_calc_busy(cpu, &cpu->samples[cpu->sample_ptr]);
457
458 cpu->prev_aperf = aperf;
459 cpu->prev_mperf = mperf;
460 }
461
462 static inline void intel_pstate_set_sample_time(struct cpudata *cpu)
463 {
464 int sample_time, delay;
465
466 sample_time = cpu->pstate_policy->sample_rate_ms;
467 delay = msecs_to_jiffies(sample_time);
468 mod_timer_pinned(&cpu->timer, jiffies + delay);
469 }
470
471 static inline int intel_pstate_get_scaled_busy(struct cpudata *cpu)
472 {
473 int32_t busy_scaled;
474 int32_t core_busy, max_pstate, current_pstate;
475
476 core_busy = int_tofp(cpu->samples[cpu->sample_ptr].core_pct_busy);
477 max_pstate = int_tofp(cpu->pstate.max_pstate);
478 current_pstate = int_tofp(cpu->pstate.current_pstate);
479 busy_scaled = mul_fp(core_busy, div_fp(max_pstate, current_pstate));
480
481 return fp_toint(busy_scaled);
482 }
483
484 static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
485 {
486 int busy_scaled;
487 struct _pid *pid;
488 signed int ctl = 0;
489 int steps;
490
491 pid = &cpu->pid;
492 busy_scaled = intel_pstate_get_scaled_busy(cpu);
493
494 ctl = pid_calc(pid, busy_scaled);
495
496 steps = abs(ctl);
497 if (ctl < 0)
498 intel_pstate_pstate_increase(cpu, steps);
499 else
500 intel_pstate_pstate_decrease(cpu, steps);
501 }
502
503 static void intel_pstate_timer_func(unsigned long __data)
504 {
505 struct cpudata *cpu = (struct cpudata *) __data;
506
507 intel_pstate_sample(cpu);
508 intel_pstate_adjust_busy_pstate(cpu);
509
510 if (cpu->pstate.current_pstate == cpu->pstate.min_pstate) {
511 cpu->min_pstate_count++;
512 if (!(cpu->min_pstate_count % 5)) {
513 intel_pstate_set_pstate(cpu, cpu->pstate.max_pstate);
514 }
515 } else
516 cpu->min_pstate_count = 0;
517
518 intel_pstate_set_sample_time(cpu);
519 }
520
521 #define ICPU(model, policy) \
522 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_ANY, (unsigned long)&policy }
523
524 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
525 ICPU(0x2a, default_policy),
526 ICPU(0x2d, default_policy),
527 ICPU(0x3a, default_policy),
528 ICPU(0x3c, default_policy),
529 ICPU(0x3e, default_policy),
530 ICPU(0x3f, default_policy),
531 ICPU(0x45, default_policy),
532 ICPU(0x46, default_policy),
533 {}
534 };
535 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
536
537 static int intel_pstate_init_cpu(unsigned int cpunum)
538 {
539
540 const struct x86_cpu_id *id;
541 struct cpudata *cpu;
542
543 id = x86_match_cpu(intel_pstate_cpu_ids);
544 if (!id)
545 return -ENODEV;
546
547 all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata), GFP_KERNEL);
548 if (!all_cpu_data[cpunum])
549 return -ENOMEM;
550
551 cpu = all_cpu_data[cpunum];
552
553 intel_pstate_get_cpu_pstates(cpu);
554
555 cpu->cpu = cpunum;
556 cpu->pstate_policy =
557 (struct pstate_adjust_policy *)id->driver_data;
558 init_timer_deferrable(&cpu->timer);
559 cpu->timer.function = intel_pstate_timer_func;
560 cpu->timer.data =
561 (unsigned long)cpu;
562 cpu->timer.expires = jiffies + HZ/100;
563 intel_pstate_busy_pid_reset(cpu);
564 intel_pstate_sample(cpu);
565 intel_pstate_set_pstate(cpu, cpu->pstate.max_pstate);
566
567 add_timer_on(&cpu->timer, cpunum);
568
569 pr_info("Intel pstate controlling: cpu %d\n", cpunum);
570
571 return 0;
572 }
573
574 static unsigned int intel_pstate_get(unsigned int cpu_num)
575 {
576 struct sample *sample;
577 struct cpudata *cpu;
578
579 cpu = all_cpu_data[cpu_num];
580 if (!cpu)
581 return 0;
582 sample = &cpu->samples[cpu->sample_ptr];
583 return sample->freq;
584 }
585
586 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
587 {
588 struct cpudata *cpu;
589
590 cpu = all_cpu_data[policy->cpu];
591
592 if (!policy->cpuinfo.max_freq)
593 return -ENODEV;
594
595 if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
596 limits.min_perf_pct = 100;
597 limits.min_perf = int_tofp(1);
598 limits.max_perf_pct = 100;
599 limits.max_perf = int_tofp(1);
600 limits.no_turbo = 0;
601 return 0;
602 }
603 limits.min_perf_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
604 limits.min_perf_pct = clamp_t(int, limits.min_perf_pct, 0 , 100);
605 limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));
606
607 limits.max_policy_pct = policy->max * 100 / policy->cpuinfo.max_freq;
608 limits.max_policy_pct = clamp_t(int, limits.max_policy_pct, 0 , 100);
609 limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
610 limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
611
612 return 0;
613 }
614
615 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
616 {
617 cpufreq_verify_within_limits(policy,
618 policy->cpuinfo.min_freq,
619 policy->cpuinfo.max_freq);
620
621 if ((policy->policy != CPUFREQ_POLICY_POWERSAVE) &&
622 (policy->policy != CPUFREQ_POLICY_PERFORMANCE))
623 return -EINVAL;
624
625 return 0;
626 }
627
628 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
629 {
630 int cpu = policy->cpu;
631
632 del_timer(&all_cpu_data[cpu]->timer);
633 kfree(all_cpu_data[cpu]);
634 all_cpu_data[cpu] = NULL;
635 return 0;
636 }
637
638 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
639 {
640 int rc, min_pstate, max_pstate;
641 struct cpudata *cpu;
642
643 rc = intel_pstate_init_cpu(policy->cpu);
644 if (rc)
645 return rc;
646
647 cpu = all_cpu_data[policy->cpu];
648
649 if (!limits.no_turbo &&
650 limits.min_perf_pct == 100 && limits.max_perf_pct == 100)
651 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
652 else
653 policy->policy = CPUFREQ_POLICY_POWERSAVE;
654
655 intel_pstate_get_min_max(cpu, &min_pstate, &max_pstate);
656 policy->min = min_pstate * 100000;
657 policy->max = max_pstate * 100000;
658
659 /* cpuinfo and default policy values */
660 policy->cpuinfo.min_freq = cpu->pstate.min_pstate * 100000;
661 policy->cpuinfo.max_freq = cpu->pstate.turbo_pstate * 100000;
662 policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
663 cpumask_set_cpu(policy->cpu, policy->cpus);
664
665 return 0;
666 }
667
668 static struct cpufreq_driver intel_pstate_driver = {
669 .flags = CPUFREQ_CONST_LOOPS,
670 .verify = intel_pstate_verify_policy,
671 .setpolicy = intel_pstate_set_policy,
672 .get = intel_pstate_get,
673 .init = intel_pstate_cpu_init,
674 .exit = intel_pstate_cpu_exit,
675 .name = "intel_pstate",
676 };
677
678 static int __initdata no_load;
679
680 static int intel_pstate_msrs_not_valid(void)
681 {
682 /* Check that all the msr's we are using are valid. */
683 u64 aperf, mperf, tmp;
684
685 rdmsrl(MSR_IA32_APERF, aperf);
686 rdmsrl(MSR_IA32_MPERF, mperf);
687
688 if (!intel_pstate_min_pstate() ||
689 !intel_pstate_max_pstate() ||
690 !intel_pstate_turbo_pstate())
691 return -ENODEV;
692
693 rdmsrl(MSR_IA32_APERF, tmp);
694 if (!(tmp - aperf))
695 return -ENODEV;
696
697 rdmsrl(MSR_IA32_MPERF, tmp);
698 if (!(tmp - mperf))
699 return -ENODEV;
700
701 return 0;
702 }
703 static int __init intel_pstate_init(void)
704 {
705 int cpu, rc = 0;
706 const struct x86_cpu_id *id;
707
708 if (no_load)
709 return -ENODEV;
710
711 id = x86_match_cpu(intel_pstate_cpu_ids);
712 if (!id)
713 return -ENODEV;
714
715 if (intel_pstate_msrs_not_valid())
716 return -ENODEV;
717
718 pr_info("Intel P-state driver initializing.\n");
719
720 all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
721 if (!all_cpu_data)
722 return -ENOMEM;
723
724 rc = cpufreq_register_driver(&intel_pstate_driver);
725 if (rc)
726 goto out;
727
728 intel_pstate_debug_expose_params();
729 intel_pstate_sysfs_expose_params();
730 return rc;
731 out:
732 get_online_cpus();
733 for_each_online_cpu(cpu) {
734 if (all_cpu_data[cpu]) {
735 del_timer_sync(&all_cpu_data[cpu]->timer);
736 kfree(all_cpu_data[cpu]);
737 }
738 }
739
740 put_online_cpus();
741 vfree(all_cpu_data);
742 return -ENODEV;
743 }
744 device_initcall(intel_pstate_init);
745
746 static int __init intel_pstate_setup(char *str)
747 {
748 if (!str)
749 return -EINVAL;
750
751 if (!strcmp(str, "disable"))
752 no_load = 1;
753 return 0;
754 }
755 early_param("intel_pstate", intel_pstate_setup);
756
757 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
758 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
759 MODULE_LICENSE("GPL");