]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/cpufreq/intel_pstate.c
cpufreq: intel_pstate: Set EPP/EPB to 0 in performance mode
[mirror_ubuntu-zesty-kernel.git] / drivers / cpufreq / intel_pstate.c
1 /*
2 * intel_pstate.c: Native P state management for Intel processors
3 *
4 * (C) Copyright 2012 Intel Corporation
5 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
10 * of the License.
11 */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/kernel.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/module.h>
18 #include <linux/ktime.h>
19 #include <linux/hrtimer.h>
20 #include <linux/tick.h>
21 #include <linux/slab.h>
22 #include <linux/sched.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25 #include <linux/cpufreq.h>
26 #include <linux/sysfs.h>
27 #include <linux/types.h>
28 #include <linux/fs.h>
29 #include <linux/debugfs.h>
30 #include <linux/acpi.h>
31 #include <linux/vmalloc.h>
32 #include <trace/events/power.h>
33
34 #include <asm/div64.h>
35 #include <asm/msr.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/cpufeature.h>
38 #include <asm/intel-family.h>
39
40 #define INTEL_CPUFREQ_TRANSITION_LATENCY 20000
41
42 #define ATOM_RATIOS 0x66a
43 #define ATOM_VIDS 0x66b
44 #define ATOM_TURBO_RATIOS 0x66c
45 #define ATOM_TURBO_VIDS 0x66d
46
47 #ifdef CONFIG_ACPI
48 #include <acpi/processor.h>
49 #endif
50
51 #define FRAC_BITS 8
52 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
53 #define fp_toint(X) ((X) >> FRAC_BITS)
54
55 #define EXT_BITS 6
56 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
57 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
58 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
59
60 static inline int32_t mul_fp(int32_t x, int32_t y)
61 {
62 return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
63 }
64
65 static inline int32_t div_fp(s64 x, s64 y)
66 {
67 return div64_s64((int64_t)x << FRAC_BITS, y);
68 }
69
70 static inline int ceiling_fp(int32_t x)
71 {
72 int mask, ret;
73
74 ret = fp_toint(x);
75 mask = (1 << FRAC_BITS) - 1;
76 if (x & mask)
77 ret += 1;
78 return ret;
79 }
80
81 static inline u64 mul_ext_fp(u64 x, u64 y)
82 {
83 return (x * y) >> EXT_FRAC_BITS;
84 }
85
86 static inline u64 div_ext_fp(u64 x, u64 y)
87 {
88 return div64_u64(x << EXT_FRAC_BITS, y);
89 }
90
91 /**
92 * struct sample - Store performance sample
93 * @core_avg_perf: Ratio of APERF/MPERF which is the actual average
94 * performance during last sample period
95 * @busy_scaled: Scaled busy value which is used to calculate next
96 * P state. This can be different than core_avg_perf
97 * to account for cpu idle period
98 * @aperf: Difference of actual performance frequency clock count
99 * read from APERF MSR between last and current sample
100 * @mperf: Difference of maximum performance frequency clock count
101 * read from MPERF MSR between last and current sample
102 * @tsc: Difference of time stamp counter between last and
103 * current sample
104 * @time: Current time from scheduler
105 *
106 * This structure is used in the cpudata structure to store performance sample
107 * data for choosing next P State.
108 */
109 struct sample {
110 int32_t core_avg_perf;
111 int32_t busy_scaled;
112 u64 aperf;
113 u64 mperf;
114 u64 tsc;
115 u64 time;
116 };
117
118 /**
119 * struct pstate_data - Store P state data
120 * @current_pstate: Current requested P state
121 * @min_pstate: Min P state possible for this platform
122 * @max_pstate: Max P state possible for this platform
123 * @max_pstate_physical:This is physical Max P state for a processor
124 * This can be higher than the max_pstate which can
125 * be limited by platform thermal design power limits
126 * @scaling: Scaling factor to convert frequency to cpufreq
127 * frequency units
128 * @turbo_pstate: Max Turbo P state possible for this platform
129 * @max_freq: @max_pstate frequency in cpufreq units
130 * @turbo_freq: @turbo_pstate frequency in cpufreq units
131 *
132 * Stores the per cpu model P state limits and current P state.
133 */
134 struct pstate_data {
135 int current_pstate;
136 int min_pstate;
137 int max_pstate;
138 int max_pstate_physical;
139 int scaling;
140 int turbo_pstate;
141 unsigned int max_freq;
142 unsigned int turbo_freq;
143 };
144
145 /**
146 * struct vid_data - Stores voltage information data
147 * @min: VID data for this platform corresponding to
148 * the lowest P state
149 * @max: VID data corresponding to the highest P State.
150 * @turbo: VID data for turbo P state
151 * @ratio: Ratio of (vid max - vid min) /
152 * (max P state - Min P State)
153 *
154 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
155 * This data is used in Atom platforms, where in addition to target P state,
156 * the voltage data needs to be specified to select next P State.
157 */
158 struct vid_data {
159 int min;
160 int max;
161 int turbo;
162 int32_t ratio;
163 };
164
165 /**
166 * struct _pid - Stores PID data
167 * @setpoint: Target set point for busyness or performance
168 * @integral: Storage for accumulated error values
169 * @p_gain: PID proportional gain
170 * @i_gain: PID integral gain
171 * @d_gain: PID derivative gain
172 * @deadband: PID deadband
173 * @last_err: Last error storage for integral part of PID calculation
174 *
175 * Stores PID coefficients and last error for PID controller.
176 */
177 struct _pid {
178 int setpoint;
179 int32_t integral;
180 int32_t p_gain;
181 int32_t i_gain;
182 int32_t d_gain;
183 int deadband;
184 int32_t last_err;
185 };
186
187 /**
188 * struct perf_limits - Store user and policy limits
189 * @no_turbo: User requested turbo state from intel_pstate sysfs
190 * @turbo_disabled: Platform turbo status either from msr
191 * MSR_IA32_MISC_ENABLE or when maximum available pstate
192 * matches the maximum turbo pstate
193 * @max_perf_pct: Effective maximum performance limit in percentage, this
194 * is minimum of either limits enforced by cpufreq policy
195 * or limits from user set limits via intel_pstate sysfs
196 * @min_perf_pct: Effective minimum performance limit in percentage, this
197 * is maximum of either limits enforced by cpufreq policy
198 * or limits from user set limits via intel_pstate sysfs
199 * @max_perf: This is a scaled value between 0 to 255 for max_perf_pct
200 * This value is used to limit max pstate
201 * @min_perf: This is a scaled value between 0 to 255 for min_perf_pct
202 * This value is used to limit min pstate
203 * @max_policy_pct: The maximum performance in percentage enforced by
204 * cpufreq setpolicy interface
205 * @max_sysfs_pct: The maximum performance in percentage enforced by
206 * intel pstate sysfs interface, unused when per cpu
207 * controls are enforced
208 * @min_policy_pct: The minimum performance in percentage enforced by
209 * cpufreq setpolicy interface
210 * @min_sysfs_pct: The minimum performance in percentage enforced by
211 * intel pstate sysfs interface, unused when per cpu
212 * controls are enforced
213 *
214 * Storage for user and policy defined limits.
215 */
216 struct perf_limits {
217 int no_turbo;
218 int turbo_disabled;
219 int max_perf_pct;
220 int min_perf_pct;
221 int32_t max_perf;
222 int32_t min_perf;
223 int max_policy_pct;
224 int max_sysfs_pct;
225 int min_policy_pct;
226 int min_sysfs_pct;
227 };
228
229 /**
230 * struct cpudata - Per CPU instance data storage
231 * @cpu: CPU number for this instance data
232 * @policy: CPUFreq policy value
233 * @update_util: CPUFreq utility callback information
234 * @update_util_set: CPUFreq utility callback is set
235 * @iowait_boost: iowait-related boost fraction
236 * @last_update: Time of the last update.
237 * @pstate: Stores P state limits for this CPU
238 * @vid: Stores VID limits for this CPU
239 * @pid: Stores PID parameters for this CPU
240 * @last_sample_time: Last Sample time
241 * @prev_aperf: Last APERF value read from APERF MSR
242 * @prev_mperf: Last MPERF value read from MPERF MSR
243 * @prev_tsc: Last timestamp counter (TSC) value
244 * @prev_cummulative_iowait: IO Wait time difference from last and
245 * current sample
246 * @sample: Storage for storing last Sample data
247 * @perf_limits: Pointer to perf_limit unique to this CPU
248 * Not all field in the structure are applicable
249 * when per cpu controls are enforced
250 * @acpi_perf_data: Stores ACPI perf information read from _PSS
251 * @valid_pss_table: Set to true for valid ACPI _PSS entries found
252 * @epp_saved: Last saved HWP energy performance preference
253 * (EPP) or energy performance bias (EPB)
254 * @epp_policy: Last saved policy used to set EPP/EPB
255 *
256 * This structure stores per CPU instance data for all CPUs.
257 */
258 struct cpudata {
259 int cpu;
260
261 unsigned int policy;
262 struct update_util_data update_util;
263 bool update_util_set;
264
265 struct pstate_data pstate;
266 struct vid_data vid;
267 struct _pid pid;
268
269 u64 last_update;
270 u64 last_sample_time;
271 u64 prev_aperf;
272 u64 prev_mperf;
273 u64 prev_tsc;
274 u64 prev_cummulative_iowait;
275 struct sample sample;
276 struct perf_limits *perf_limits;
277 #ifdef CONFIG_ACPI
278 struct acpi_processor_performance acpi_perf_data;
279 bool valid_pss_table;
280 #endif
281 unsigned int iowait_boost;
282 s16 epp_saved;
283 s16 epp_policy;
284 };
285
286 static struct cpudata **all_cpu_data;
287
288 /**
289 * struct pstate_adjust_policy - Stores static PID configuration data
290 * @sample_rate_ms: PID calculation sample rate in ms
291 * @sample_rate_ns: Sample rate calculation in ns
292 * @deadband: PID deadband
293 * @setpoint: PID Setpoint
294 * @p_gain_pct: PID proportional gain
295 * @i_gain_pct: PID integral gain
296 * @d_gain_pct: PID derivative gain
297 *
298 * Stores per CPU model static PID configuration data.
299 */
300 struct pstate_adjust_policy {
301 int sample_rate_ms;
302 s64 sample_rate_ns;
303 int deadband;
304 int setpoint;
305 int p_gain_pct;
306 int d_gain_pct;
307 int i_gain_pct;
308 };
309
310 /**
311 * struct pstate_funcs - Per CPU model specific callbacks
312 * @get_max: Callback to get maximum non turbo effective P state
313 * @get_max_physical: Callback to get maximum non turbo physical P state
314 * @get_min: Callback to get minimum P state
315 * @get_turbo: Callback to get turbo P state
316 * @get_scaling: Callback to get frequency scaling factor
317 * @get_val: Callback to convert P state to actual MSR write value
318 * @get_vid: Callback to get VID data for Atom platforms
319 * @get_target_pstate: Callback to a function to calculate next P state to use
320 *
321 * Core and Atom CPU models have different way to get P State limits. This
322 * structure is used to store those callbacks.
323 */
324 struct pstate_funcs {
325 int (*get_max)(void);
326 int (*get_max_physical)(void);
327 int (*get_min)(void);
328 int (*get_turbo)(void);
329 int (*get_scaling)(void);
330 u64 (*get_val)(struct cpudata*, int pstate);
331 void (*get_vid)(struct cpudata *);
332 int32_t (*get_target_pstate)(struct cpudata *);
333 };
334
335 /**
336 * struct cpu_defaults- Per CPU model default config data
337 * @pid_policy: PID config data
338 * @funcs: Callback function data
339 */
340 struct cpu_defaults {
341 struct pstate_adjust_policy pid_policy;
342 struct pstate_funcs funcs;
343 };
344
345 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
346 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
347
348 static struct pstate_adjust_policy pid_params __read_mostly;
349 static struct pstate_funcs pstate_funcs __read_mostly;
350 static int hwp_active __read_mostly;
351 static bool per_cpu_limits __read_mostly;
352
353 #ifdef CONFIG_ACPI
354 static bool acpi_ppc;
355 #endif
356
357 static struct perf_limits performance_limits = {
358 .no_turbo = 0,
359 .turbo_disabled = 0,
360 .max_perf_pct = 100,
361 .max_perf = int_ext_tofp(1),
362 .min_perf_pct = 100,
363 .min_perf = int_ext_tofp(1),
364 .max_policy_pct = 100,
365 .max_sysfs_pct = 100,
366 .min_policy_pct = 0,
367 .min_sysfs_pct = 0,
368 };
369
370 static struct perf_limits powersave_limits = {
371 .no_turbo = 0,
372 .turbo_disabled = 0,
373 .max_perf_pct = 100,
374 .max_perf = int_ext_tofp(1),
375 .min_perf_pct = 0,
376 .min_perf = 0,
377 .max_policy_pct = 100,
378 .max_sysfs_pct = 100,
379 .min_policy_pct = 0,
380 .min_sysfs_pct = 0,
381 };
382
383 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
384 static struct perf_limits *limits = &performance_limits;
385 #else
386 static struct perf_limits *limits = &powersave_limits;
387 #endif
388
389 static DEFINE_MUTEX(intel_pstate_limits_lock);
390
391 #ifdef CONFIG_ACPI
392
393 static bool intel_pstate_get_ppc_enable_status(void)
394 {
395 if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
396 acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
397 return true;
398
399 return acpi_ppc;
400 }
401
402 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
403 {
404 struct cpudata *cpu;
405 int ret;
406 int i;
407
408 if (hwp_active)
409 return;
410
411 if (!intel_pstate_get_ppc_enable_status())
412 return;
413
414 cpu = all_cpu_data[policy->cpu];
415
416 ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
417 policy->cpu);
418 if (ret)
419 return;
420
421 /*
422 * Check if the control value in _PSS is for PERF_CTL MSR, which should
423 * guarantee that the states returned by it map to the states in our
424 * list directly.
425 */
426 if (cpu->acpi_perf_data.control_register.space_id !=
427 ACPI_ADR_SPACE_FIXED_HARDWARE)
428 goto err;
429
430 /*
431 * If there is only one entry _PSS, simply ignore _PSS and continue as
432 * usual without taking _PSS into account
433 */
434 if (cpu->acpi_perf_data.state_count < 2)
435 goto err;
436
437 pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
438 for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
439 pr_debug(" %cP%d: %u MHz, %u mW, 0x%x\n",
440 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
441 (u32) cpu->acpi_perf_data.states[i].core_frequency,
442 (u32) cpu->acpi_perf_data.states[i].power,
443 (u32) cpu->acpi_perf_data.states[i].control);
444 }
445
446 /*
447 * The _PSS table doesn't contain whole turbo frequency range.
448 * This just contains +1 MHZ above the max non turbo frequency,
449 * with control value corresponding to max turbo ratio. But
450 * when cpufreq set policy is called, it will call with this
451 * max frequency, which will cause a reduced performance as
452 * this driver uses real max turbo frequency as the max
453 * frequency. So correct this frequency in _PSS table to
454 * correct max turbo frequency based on the turbo state.
455 * Also need to convert to MHz as _PSS freq is in MHz.
456 */
457 if (!limits->turbo_disabled)
458 cpu->acpi_perf_data.states[0].core_frequency =
459 policy->cpuinfo.max_freq / 1000;
460 cpu->valid_pss_table = true;
461 pr_debug("_PPC limits will be enforced\n");
462
463 return;
464
465 err:
466 cpu->valid_pss_table = false;
467 acpi_processor_unregister_performance(policy->cpu);
468 }
469
470 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
471 {
472 struct cpudata *cpu;
473
474 cpu = all_cpu_data[policy->cpu];
475 if (!cpu->valid_pss_table)
476 return;
477
478 acpi_processor_unregister_performance(policy->cpu);
479 }
480
481 #else
482 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
483 {
484 }
485
486 static inline int intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
487 {
488 }
489 #endif
490
491 static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
492 int deadband, int integral) {
493 pid->setpoint = int_tofp(setpoint);
494 pid->deadband = int_tofp(deadband);
495 pid->integral = int_tofp(integral);
496 pid->last_err = int_tofp(setpoint) - int_tofp(busy);
497 }
498
499 static inline void pid_p_gain_set(struct _pid *pid, int percent)
500 {
501 pid->p_gain = div_fp(percent, 100);
502 }
503
504 static inline void pid_i_gain_set(struct _pid *pid, int percent)
505 {
506 pid->i_gain = div_fp(percent, 100);
507 }
508
509 static inline void pid_d_gain_set(struct _pid *pid, int percent)
510 {
511 pid->d_gain = div_fp(percent, 100);
512 }
513
514 static signed int pid_calc(struct _pid *pid, int32_t busy)
515 {
516 signed int result;
517 int32_t pterm, dterm, fp_error;
518 int32_t integral_limit;
519
520 fp_error = pid->setpoint - busy;
521
522 if (abs(fp_error) <= pid->deadband)
523 return 0;
524
525 pterm = mul_fp(pid->p_gain, fp_error);
526
527 pid->integral += fp_error;
528
529 /*
530 * We limit the integral here so that it will never
531 * get higher than 30. This prevents it from becoming
532 * too large an input over long periods of time and allows
533 * it to get factored out sooner.
534 *
535 * The value of 30 was chosen through experimentation.
536 */
537 integral_limit = int_tofp(30);
538 if (pid->integral > integral_limit)
539 pid->integral = integral_limit;
540 if (pid->integral < -integral_limit)
541 pid->integral = -integral_limit;
542
543 dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
544 pid->last_err = fp_error;
545
546 result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
547 result = result + (1 << (FRAC_BITS-1));
548 return (signed int)fp_toint(result);
549 }
550
551 static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
552 {
553 pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
554 pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
555 pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
556
557 pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
558 }
559
560 static inline void intel_pstate_reset_all_pid(void)
561 {
562 unsigned int cpu;
563
564 for_each_online_cpu(cpu) {
565 if (all_cpu_data[cpu])
566 intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
567 }
568 }
569
570 static inline void update_turbo_state(void)
571 {
572 u64 misc_en;
573 struct cpudata *cpu;
574
575 cpu = all_cpu_data[0];
576 rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
577 limits->turbo_disabled =
578 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
579 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
580 }
581
582 static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
583 {
584 u64 epb;
585 int ret;
586
587 if (!static_cpu_has(X86_FEATURE_EPB))
588 return -ENXIO;
589
590 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
591 if (ret)
592 return (s16)ret;
593
594 return (s16)(epb & 0x0f);
595 }
596
597 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
598 {
599 s16 epp;
600
601 if (static_cpu_has(X86_FEATURE_HWP_EPP))
602 epp = (hwp_req_data >> 24) & 0xff;
603 else
604 /* When there is no EPP present, HWP uses EPB settings */
605 epp = intel_pstate_get_epb(cpu_data);
606
607 return epp;
608 }
609
610 static void intel_pstate_set_epb(int cpu, s16 pref)
611 {
612 u64 epb;
613
614 if (!static_cpu_has(X86_FEATURE_EPB))
615 return;
616
617 if (rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb))
618 return;
619
620 epb = (epb & ~0x0f) | pref;
621 wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
622 }
623
624 static void intel_pstate_hwp_set(const struct cpumask *cpumask)
625 {
626 int min, hw_min, max, hw_max, cpu, range, adj_range;
627 struct perf_limits *perf_limits = limits;
628 u64 value, cap;
629
630 for_each_cpu(cpu, cpumask) {
631 int max_perf_pct, min_perf_pct;
632 struct cpudata *cpu_data = all_cpu_data[cpu];
633 s16 epp;
634
635 if (per_cpu_limits)
636 perf_limits = all_cpu_data[cpu]->perf_limits;
637
638 rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
639 hw_min = HWP_LOWEST_PERF(cap);
640 hw_max = HWP_HIGHEST_PERF(cap);
641 range = hw_max - hw_min;
642
643 max_perf_pct = perf_limits->max_perf_pct;
644 min_perf_pct = perf_limits->min_perf_pct;
645
646 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
647 adj_range = min_perf_pct * range / 100;
648 min = hw_min + adj_range;
649 value &= ~HWP_MIN_PERF(~0L);
650 value |= HWP_MIN_PERF(min);
651
652 adj_range = max_perf_pct * range / 100;
653 max = hw_min + adj_range;
654 if (limits->no_turbo) {
655 hw_max = HWP_GUARANTEED_PERF(cap);
656 if (hw_max < max)
657 max = hw_max;
658 }
659
660 value &= ~HWP_MAX_PERF(~0L);
661 value |= HWP_MAX_PERF(max);
662
663 if (cpu_data->epp_policy == cpu_data->policy)
664 goto skip_epp;
665
666 cpu_data->epp_policy = cpu_data->policy;
667
668 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
669 epp = intel_pstate_get_epp(cpu_data, value);
670 /* If EPP read was failed, then don't try to write */
671 if (epp < 0) {
672 cpu_data->epp_saved = epp;
673 goto skip_epp;
674 }
675
676 cpu_data->epp_saved = epp;
677
678 epp = 0;
679 } else {
680 /* skip setting EPP, when saved value is invalid */
681 if (cpu_data->epp_saved < 0)
682 goto skip_epp;
683
684 /*
685 * No need to restore EPP when it is not zero. This
686 * means:
687 * - Policy is not changed
688 * - user has manually changed
689 * - Error reading EPB
690 */
691 epp = intel_pstate_get_epp(cpu_data, value);
692 if (epp)
693 goto skip_epp;
694
695 epp = cpu_data->epp_saved;
696 }
697 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
698 value &= ~GENMASK_ULL(31, 24);
699 value |= (u64)epp << 24;
700 } else {
701 intel_pstate_set_epb(cpu, epp);
702 }
703 skip_epp:
704 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
705 }
706 }
707
708 static int intel_pstate_hwp_set_policy(struct cpufreq_policy *policy)
709 {
710 if (hwp_active)
711 intel_pstate_hwp_set(policy->cpus);
712
713 return 0;
714 }
715
716 static int intel_pstate_resume(struct cpufreq_policy *policy)
717 {
718 if (!hwp_active)
719 return 0;
720
721 all_cpu_data[policy->cpu]->epp_policy = 0;
722 all_cpu_data[policy->cpu]->epp_saved = -EINVAL;
723
724 return intel_pstate_hwp_set_policy(policy);
725 }
726
727 static void intel_pstate_hwp_set_online_cpus(void)
728 {
729 get_online_cpus();
730 intel_pstate_hwp_set(cpu_online_mask);
731 put_online_cpus();
732 }
733
734 /************************** debugfs begin ************************/
735 static int pid_param_set(void *data, u64 val)
736 {
737 *(u32 *)data = val;
738 intel_pstate_reset_all_pid();
739 return 0;
740 }
741
742 static int pid_param_get(void *data, u64 *val)
743 {
744 *val = *(u32 *)data;
745 return 0;
746 }
747 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
748
749 struct pid_param {
750 char *name;
751 void *value;
752 };
753
754 static struct pid_param pid_files[] = {
755 {"sample_rate_ms", &pid_params.sample_rate_ms},
756 {"d_gain_pct", &pid_params.d_gain_pct},
757 {"i_gain_pct", &pid_params.i_gain_pct},
758 {"deadband", &pid_params.deadband},
759 {"setpoint", &pid_params.setpoint},
760 {"p_gain_pct", &pid_params.p_gain_pct},
761 {NULL, NULL}
762 };
763
764 static void __init intel_pstate_debug_expose_params(void)
765 {
766 struct dentry *debugfs_parent;
767 int i = 0;
768
769 if (hwp_active ||
770 pstate_funcs.get_target_pstate == get_target_pstate_use_cpu_load)
771 return;
772
773 debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
774 if (IS_ERR_OR_NULL(debugfs_parent))
775 return;
776 while (pid_files[i].name) {
777 debugfs_create_file(pid_files[i].name, 0660,
778 debugfs_parent, pid_files[i].value,
779 &fops_pid_param);
780 i++;
781 }
782 }
783
784 /************************** debugfs end ************************/
785
786 /************************** sysfs begin ************************/
787 #define show_one(file_name, object) \
788 static ssize_t show_##file_name \
789 (struct kobject *kobj, struct attribute *attr, char *buf) \
790 { \
791 return sprintf(buf, "%u\n", limits->object); \
792 }
793
794 static ssize_t show_turbo_pct(struct kobject *kobj,
795 struct attribute *attr, char *buf)
796 {
797 struct cpudata *cpu;
798 int total, no_turbo, turbo_pct;
799 uint32_t turbo_fp;
800
801 cpu = all_cpu_data[0];
802
803 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
804 no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
805 turbo_fp = div_fp(no_turbo, total);
806 turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
807 return sprintf(buf, "%u\n", turbo_pct);
808 }
809
810 static ssize_t show_num_pstates(struct kobject *kobj,
811 struct attribute *attr, char *buf)
812 {
813 struct cpudata *cpu;
814 int total;
815
816 cpu = all_cpu_data[0];
817 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
818 return sprintf(buf, "%u\n", total);
819 }
820
821 static ssize_t show_no_turbo(struct kobject *kobj,
822 struct attribute *attr, char *buf)
823 {
824 ssize_t ret;
825
826 update_turbo_state();
827 if (limits->turbo_disabled)
828 ret = sprintf(buf, "%u\n", limits->turbo_disabled);
829 else
830 ret = sprintf(buf, "%u\n", limits->no_turbo);
831
832 return ret;
833 }
834
835 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
836 const char *buf, size_t count)
837 {
838 unsigned int input;
839 int ret;
840
841 ret = sscanf(buf, "%u", &input);
842 if (ret != 1)
843 return -EINVAL;
844
845 mutex_lock(&intel_pstate_limits_lock);
846
847 update_turbo_state();
848 if (limits->turbo_disabled) {
849 pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
850 mutex_unlock(&intel_pstate_limits_lock);
851 return -EPERM;
852 }
853
854 limits->no_turbo = clamp_t(int, input, 0, 1);
855
856 mutex_unlock(&intel_pstate_limits_lock);
857
858 if (hwp_active)
859 intel_pstate_hwp_set_online_cpus();
860
861 return count;
862 }
863
864 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
865 const char *buf, size_t count)
866 {
867 unsigned int input;
868 int ret;
869
870 ret = sscanf(buf, "%u", &input);
871 if (ret != 1)
872 return -EINVAL;
873
874 mutex_lock(&intel_pstate_limits_lock);
875
876 limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
877 limits->max_perf_pct = min(limits->max_policy_pct,
878 limits->max_sysfs_pct);
879 limits->max_perf_pct = max(limits->min_policy_pct,
880 limits->max_perf_pct);
881 limits->max_perf_pct = max(limits->min_perf_pct,
882 limits->max_perf_pct);
883 limits->max_perf = div_ext_fp(limits->max_perf_pct, 100);
884
885 mutex_unlock(&intel_pstate_limits_lock);
886
887 if (hwp_active)
888 intel_pstate_hwp_set_online_cpus();
889 return count;
890 }
891
892 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
893 const char *buf, size_t count)
894 {
895 unsigned int input;
896 int ret;
897
898 ret = sscanf(buf, "%u", &input);
899 if (ret != 1)
900 return -EINVAL;
901
902 mutex_lock(&intel_pstate_limits_lock);
903
904 limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
905 limits->min_perf_pct = max(limits->min_policy_pct,
906 limits->min_sysfs_pct);
907 limits->min_perf_pct = min(limits->max_policy_pct,
908 limits->min_perf_pct);
909 limits->min_perf_pct = min(limits->max_perf_pct,
910 limits->min_perf_pct);
911 limits->min_perf = div_ext_fp(limits->min_perf_pct, 100);
912
913 mutex_unlock(&intel_pstate_limits_lock);
914
915 if (hwp_active)
916 intel_pstate_hwp_set_online_cpus();
917 return count;
918 }
919
920 show_one(max_perf_pct, max_perf_pct);
921 show_one(min_perf_pct, min_perf_pct);
922
923 define_one_global_rw(no_turbo);
924 define_one_global_rw(max_perf_pct);
925 define_one_global_rw(min_perf_pct);
926 define_one_global_ro(turbo_pct);
927 define_one_global_ro(num_pstates);
928
929 static struct attribute *intel_pstate_attributes[] = {
930 &no_turbo.attr,
931 &turbo_pct.attr,
932 &num_pstates.attr,
933 NULL
934 };
935
936 static struct attribute_group intel_pstate_attr_group = {
937 .attrs = intel_pstate_attributes,
938 };
939
940 static void __init intel_pstate_sysfs_expose_params(void)
941 {
942 struct kobject *intel_pstate_kobject;
943 int rc;
944
945 intel_pstate_kobject = kobject_create_and_add("intel_pstate",
946 &cpu_subsys.dev_root->kobj);
947 if (WARN_ON(!intel_pstate_kobject))
948 return;
949
950 rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
951 if (WARN_ON(rc))
952 return;
953
954 /*
955 * If per cpu limits are enforced there are no global limits, so
956 * return without creating max/min_perf_pct attributes
957 */
958 if (per_cpu_limits)
959 return;
960
961 rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
962 WARN_ON(rc);
963
964 rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
965 WARN_ON(rc);
966
967 }
968 /************************** sysfs end ************************/
969
970 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
971 {
972 /* First disable HWP notification interrupt as we don't process them */
973 if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
974 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
975
976 wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
977 cpudata->epp_policy = 0;
978 cpudata->epp_saved = -EINVAL;
979 }
980
981 static int atom_get_min_pstate(void)
982 {
983 u64 value;
984
985 rdmsrl(ATOM_RATIOS, value);
986 return (value >> 8) & 0x7F;
987 }
988
989 static int atom_get_max_pstate(void)
990 {
991 u64 value;
992
993 rdmsrl(ATOM_RATIOS, value);
994 return (value >> 16) & 0x7F;
995 }
996
997 static int atom_get_turbo_pstate(void)
998 {
999 u64 value;
1000
1001 rdmsrl(ATOM_TURBO_RATIOS, value);
1002 return value & 0x7F;
1003 }
1004
1005 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1006 {
1007 u64 val;
1008 int32_t vid_fp;
1009 u32 vid;
1010
1011 val = (u64)pstate << 8;
1012 if (limits->no_turbo && !limits->turbo_disabled)
1013 val |= (u64)1 << 32;
1014
1015 vid_fp = cpudata->vid.min + mul_fp(
1016 int_tofp(pstate - cpudata->pstate.min_pstate),
1017 cpudata->vid.ratio);
1018
1019 vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1020 vid = ceiling_fp(vid_fp);
1021
1022 if (pstate > cpudata->pstate.max_pstate)
1023 vid = cpudata->vid.turbo;
1024
1025 return val | vid;
1026 }
1027
1028 static int silvermont_get_scaling(void)
1029 {
1030 u64 value;
1031 int i;
1032 /* Defined in Table 35-6 from SDM (Sept 2015) */
1033 static int silvermont_freq_table[] = {
1034 83300, 100000, 133300, 116700, 80000};
1035
1036 rdmsrl(MSR_FSB_FREQ, value);
1037 i = value & 0x7;
1038 WARN_ON(i > 4);
1039
1040 return silvermont_freq_table[i];
1041 }
1042
1043 static int airmont_get_scaling(void)
1044 {
1045 u64 value;
1046 int i;
1047 /* Defined in Table 35-10 from SDM (Sept 2015) */
1048 static int airmont_freq_table[] = {
1049 83300, 100000, 133300, 116700, 80000,
1050 93300, 90000, 88900, 87500};
1051
1052 rdmsrl(MSR_FSB_FREQ, value);
1053 i = value & 0xF;
1054 WARN_ON(i > 8);
1055
1056 return airmont_freq_table[i];
1057 }
1058
1059 static void atom_get_vid(struct cpudata *cpudata)
1060 {
1061 u64 value;
1062
1063 rdmsrl(ATOM_VIDS, value);
1064 cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1065 cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1066 cpudata->vid.ratio = div_fp(
1067 cpudata->vid.max - cpudata->vid.min,
1068 int_tofp(cpudata->pstate.max_pstate -
1069 cpudata->pstate.min_pstate));
1070
1071 rdmsrl(ATOM_TURBO_VIDS, value);
1072 cpudata->vid.turbo = value & 0x7f;
1073 }
1074
1075 static int core_get_min_pstate(void)
1076 {
1077 u64 value;
1078
1079 rdmsrl(MSR_PLATFORM_INFO, value);
1080 return (value >> 40) & 0xFF;
1081 }
1082
1083 static int core_get_max_pstate_physical(void)
1084 {
1085 u64 value;
1086
1087 rdmsrl(MSR_PLATFORM_INFO, value);
1088 return (value >> 8) & 0xFF;
1089 }
1090
1091 static int core_get_max_pstate(void)
1092 {
1093 u64 tar;
1094 u64 plat_info;
1095 int max_pstate;
1096 int err;
1097
1098 rdmsrl(MSR_PLATFORM_INFO, plat_info);
1099 max_pstate = (plat_info >> 8) & 0xFF;
1100
1101 err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1102 if (!err) {
1103 /* Do some sanity checking for safety */
1104 if (plat_info & 0x600000000) {
1105 u64 tdp_ctrl;
1106 u64 tdp_ratio;
1107 int tdp_msr;
1108
1109 err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1110 if (err)
1111 goto skip_tar;
1112
1113 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x3);
1114 err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1115 if (err)
1116 goto skip_tar;
1117
1118 /* For level 1 and 2, bits[23:16] contain the ratio */
1119 if (tdp_ctrl)
1120 tdp_ratio >>= 16;
1121
1122 tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1123 if (tdp_ratio - 1 == tar) {
1124 max_pstate = tar;
1125 pr_debug("max_pstate=TAC %x\n", max_pstate);
1126 } else {
1127 goto skip_tar;
1128 }
1129 }
1130 }
1131
1132 skip_tar:
1133 return max_pstate;
1134 }
1135
1136 static int core_get_turbo_pstate(void)
1137 {
1138 u64 value;
1139 int nont, ret;
1140
1141 rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1142 nont = core_get_max_pstate();
1143 ret = (value) & 255;
1144 if (ret <= nont)
1145 ret = nont;
1146 return ret;
1147 }
1148
1149 static inline int core_get_scaling(void)
1150 {
1151 return 100000;
1152 }
1153
1154 static u64 core_get_val(struct cpudata *cpudata, int pstate)
1155 {
1156 u64 val;
1157
1158 val = (u64)pstate << 8;
1159 if (limits->no_turbo && !limits->turbo_disabled)
1160 val |= (u64)1 << 32;
1161
1162 return val;
1163 }
1164
1165 static int knl_get_turbo_pstate(void)
1166 {
1167 u64 value;
1168 int nont, ret;
1169
1170 rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1171 nont = core_get_max_pstate();
1172 ret = (((value) >> 8) & 0xFF);
1173 if (ret <= nont)
1174 ret = nont;
1175 return ret;
1176 }
1177
1178 static struct cpu_defaults core_params = {
1179 .pid_policy = {
1180 .sample_rate_ms = 10,
1181 .deadband = 0,
1182 .setpoint = 97,
1183 .p_gain_pct = 20,
1184 .d_gain_pct = 0,
1185 .i_gain_pct = 0,
1186 },
1187 .funcs = {
1188 .get_max = core_get_max_pstate,
1189 .get_max_physical = core_get_max_pstate_physical,
1190 .get_min = core_get_min_pstate,
1191 .get_turbo = core_get_turbo_pstate,
1192 .get_scaling = core_get_scaling,
1193 .get_val = core_get_val,
1194 .get_target_pstate = get_target_pstate_use_performance,
1195 },
1196 };
1197
1198 static const struct cpu_defaults silvermont_params = {
1199 .pid_policy = {
1200 .sample_rate_ms = 10,
1201 .deadband = 0,
1202 .setpoint = 60,
1203 .p_gain_pct = 14,
1204 .d_gain_pct = 0,
1205 .i_gain_pct = 4,
1206 },
1207 .funcs = {
1208 .get_max = atom_get_max_pstate,
1209 .get_max_physical = atom_get_max_pstate,
1210 .get_min = atom_get_min_pstate,
1211 .get_turbo = atom_get_turbo_pstate,
1212 .get_val = atom_get_val,
1213 .get_scaling = silvermont_get_scaling,
1214 .get_vid = atom_get_vid,
1215 .get_target_pstate = get_target_pstate_use_cpu_load,
1216 },
1217 };
1218
1219 static const struct cpu_defaults airmont_params = {
1220 .pid_policy = {
1221 .sample_rate_ms = 10,
1222 .deadband = 0,
1223 .setpoint = 60,
1224 .p_gain_pct = 14,
1225 .d_gain_pct = 0,
1226 .i_gain_pct = 4,
1227 },
1228 .funcs = {
1229 .get_max = atom_get_max_pstate,
1230 .get_max_physical = atom_get_max_pstate,
1231 .get_min = atom_get_min_pstate,
1232 .get_turbo = atom_get_turbo_pstate,
1233 .get_val = atom_get_val,
1234 .get_scaling = airmont_get_scaling,
1235 .get_vid = atom_get_vid,
1236 .get_target_pstate = get_target_pstate_use_cpu_load,
1237 },
1238 };
1239
1240 static const struct cpu_defaults knl_params = {
1241 .pid_policy = {
1242 .sample_rate_ms = 10,
1243 .deadband = 0,
1244 .setpoint = 97,
1245 .p_gain_pct = 20,
1246 .d_gain_pct = 0,
1247 .i_gain_pct = 0,
1248 },
1249 .funcs = {
1250 .get_max = core_get_max_pstate,
1251 .get_max_physical = core_get_max_pstate_physical,
1252 .get_min = core_get_min_pstate,
1253 .get_turbo = knl_get_turbo_pstate,
1254 .get_scaling = core_get_scaling,
1255 .get_val = core_get_val,
1256 .get_target_pstate = get_target_pstate_use_performance,
1257 },
1258 };
1259
1260 static const struct cpu_defaults bxt_params = {
1261 .pid_policy = {
1262 .sample_rate_ms = 10,
1263 .deadband = 0,
1264 .setpoint = 60,
1265 .p_gain_pct = 14,
1266 .d_gain_pct = 0,
1267 .i_gain_pct = 4,
1268 },
1269 .funcs = {
1270 .get_max = core_get_max_pstate,
1271 .get_max_physical = core_get_max_pstate_physical,
1272 .get_min = core_get_min_pstate,
1273 .get_turbo = core_get_turbo_pstate,
1274 .get_scaling = core_get_scaling,
1275 .get_val = core_get_val,
1276 .get_target_pstate = get_target_pstate_use_cpu_load,
1277 },
1278 };
1279
1280 static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
1281 {
1282 int max_perf = cpu->pstate.turbo_pstate;
1283 int max_perf_adj;
1284 int min_perf;
1285 struct perf_limits *perf_limits = limits;
1286
1287 if (limits->no_turbo || limits->turbo_disabled)
1288 max_perf = cpu->pstate.max_pstate;
1289
1290 if (per_cpu_limits)
1291 perf_limits = cpu->perf_limits;
1292
1293 /*
1294 * performance can be limited by user through sysfs, by cpufreq
1295 * policy, or by cpu specific default values determined through
1296 * experimentation.
1297 */
1298 max_perf_adj = fp_ext_toint(max_perf * perf_limits->max_perf);
1299 *max = clamp_t(int, max_perf_adj,
1300 cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
1301
1302 min_perf = fp_ext_toint(max_perf * perf_limits->min_perf);
1303 *min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
1304 }
1305
1306 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1307 {
1308 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1309 cpu->pstate.current_pstate = pstate;
1310 /*
1311 * Generally, there is no guarantee that this code will always run on
1312 * the CPU being updated, so force the register update to run on the
1313 * right CPU.
1314 */
1315 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1316 pstate_funcs.get_val(cpu, pstate));
1317 }
1318
1319 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1320 {
1321 intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1322 }
1323
1324 static void intel_pstate_max_within_limits(struct cpudata *cpu)
1325 {
1326 int min_pstate, max_pstate;
1327
1328 update_turbo_state();
1329 intel_pstate_get_min_max(cpu, &min_pstate, &max_pstate);
1330 intel_pstate_set_pstate(cpu, max_pstate);
1331 }
1332
1333 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1334 {
1335 cpu->pstate.min_pstate = pstate_funcs.get_min();
1336 cpu->pstate.max_pstate = pstate_funcs.get_max();
1337 cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1338 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1339 cpu->pstate.scaling = pstate_funcs.get_scaling();
1340 cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1341 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1342
1343 if (pstate_funcs.get_vid)
1344 pstate_funcs.get_vid(cpu);
1345
1346 intel_pstate_set_min_pstate(cpu);
1347 }
1348
1349 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1350 {
1351 struct sample *sample = &cpu->sample;
1352
1353 sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1354 }
1355
1356 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1357 {
1358 u64 aperf, mperf;
1359 unsigned long flags;
1360 u64 tsc;
1361
1362 local_irq_save(flags);
1363 rdmsrl(MSR_IA32_APERF, aperf);
1364 rdmsrl(MSR_IA32_MPERF, mperf);
1365 tsc = rdtsc();
1366 if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1367 local_irq_restore(flags);
1368 return false;
1369 }
1370 local_irq_restore(flags);
1371
1372 cpu->last_sample_time = cpu->sample.time;
1373 cpu->sample.time = time;
1374 cpu->sample.aperf = aperf;
1375 cpu->sample.mperf = mperf;
1376 cpu->sample.tsc = tsc;
1377 cpu->sample.aperf -= cpu->prev_aperf;
1378 cpu->sample.mperf -= cpu->prev_mperf;
1379 cpu->sample.tsc -= cpu->prev_tsc;
1380
1381 cpu->prev_aperf = aperf;
1382 cpu->prev_mperf = mperf;
1383 cpu->prev_tsc = tsc;
1384 /*
1385 * First time this function is invoked in a given cycle, all of the
1386 * previous sample data fields are equal to zero or stale and they must
1387 * be populated with meaningful numbers for things to work, so assume
1388 * that sample.time will always be reset before setting the utilization
1389 * update hook and make the caller skip the sample then.
1390 */
1391 return !!cpu->last_sample_time;
1392 }
1393
1394 static inline int32_t get_avg_frequency(struct cpudata *cpu)
1395 {
1396 return mul_ext_fp(cpu->sample.core_avg_perf,
1397 cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
1398 }
1399
1400 static inline int32_t get_avg_pstate(struct cpudata *cpu)
1401 {
1402 return mul_ext_fp(cpu->pstate.max_pstate_physical,
1403 cpu->sample.core_avg_perf);
1404 }
1405
1406 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
1407 {
1408 struct sample *sample = &cpu->sample;
1409 int32_t busy_frac, boost;
1410 int target, avg_pstate;
1411
1412 busy_frac = div_fp(sample->mperf, sample->tsc);
1413
1414 boost = cpu->iowait_boost;
1415 cpu->iowait_boost >>= 1;
1416
1417 if (busy_frac < boost)
1418 busy_frac = boost;
1419
1420 sample->busy_scaled = busy_frac * 100;
1421
1422 target = limits->no_turbo || limits->turbo_disabled ?
1423 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1424 target += target >> 2;
1425 target = mul_fp(target, busy_frac);
1426 if (target < cpu->pstate.min_pstate)
1427 target = cpu->pstate.min_pstate;
1428
1429 /*
1430 * If the average P-state during the previous cycle was higher than the
1431 * current target, add 50% of the difference to the target to reduce
1432 * possible performance oscillations and offset possible performance
1433 * loss related to moving the workload from one CPU to another within
1434 * a package/module.
1435 */
1436 avg_pstate = get_avg_pstate(cpu);
1437 if (avg_pstate > target)
1438 target += (avg_pstate - target) >> 1;
1439
1440 return target;
1441 }
1442
1443 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
1444 {
1445 int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
1446 u64 duration_ns;
1447
1448 /*
1449 * perf_scaled is the ratio of the average P-state during the last
1450 * sampling period to the P-state requested last time (in percent).
1451 *
1452 * That measures the system's response to the previous P-state
1453 * selection.
1454 */
1455 max_pstate = cpu->pstate.max_pstate_physical;
1456 current_pstate = cpu->pstate.current_pstate;
1457 perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
1458 div_fp(100 * max_pstate, current_pstate));
1459
1460 /*
1461 * Since our utilization update callback will not run unless we are
1462 * in C0, check if the actual elapsed time is significantly greater (3x)
1463 * than our sample interval. If it is, then we were idle for a long
1464 * enough period of time to adjust our performance metric.
1465 */
1466 duration_ns = cpu->sample.time - cpu->last_sample_time;
1467 if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
1468 sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1469 perf_scaled = mul_fp(perf_scaled, sample_ratio);
1470 } else {
1471 sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
1472 if (sample_ratio < int_tofp(1))
1473 perf_scaled = 0;
1474 }
1475
1476 cpu->sample.busy_scaled = perf_scaled;
1477 return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
1478 }
1479
1480 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1481 {
1482 int max_perf, min_perf;
1483
1484 intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
1485 pstate = clamp_t(int, pstate, min_perf, max_perf);
1486 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1487 return pstate;
1488 }
1489
1490 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1491 {
1492 pstate = intel_pstate_prepare_request(cpu, pstate);
1493 if (pstate == cpu->pstate.current_pstate)
1494 return;
1495
1496 cpu->pstate.current_pstate = pstate;
1497 wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1498 }
1499
1500 static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
1501 {
1502 int from, target_pstate;
1503 struct sample *sample;
1504
1505 from = cpu->pstate.current_pstate;
1506
1507 target_pstate = cpu->policy == CPUFREQ_POLICY_PERFORMANCE ?
1508 cpu->pstate.turbo_pstate : pstate_funcs.get_target_pstate(cpu);
1509
1510 update_turbo_state();
1511
1512 intel_pstate_update_pstate(cpu, target_pstate);
1513
1514 sample = &cpu->sample;
1515 trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1516 fp_toint(sample->busy_scaled),
1517 from,
1518 cpu->pstate.current_pstate,
1519 sample->mperf,
1520 sample->aperf,
1521 sample->tsc,
1522 get_avg_frequency(cpu),
1523 fp_toint(cpu->iowait_boost * 100));
1524 }
1525
1526 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1527 unsigned int flags)
1528 {
1529 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1530 u64 delta_ns;
1531
1532 if (pstate_funcs.get_target_pstate == get_target_pstate_use_cpu_load) {
1533 if (flags & SCHED_CPUFREQ_IOWAIT) {
1534 cpu->iowait_boost = int_tofp(1);
1535 } else if (cpu->iowait_boost) {
1536 /* Clear iowait_boost if the CPU may have been idle. */
1537 delta_ns = time - cpu->last_update;
1538 if (delta_ns > TICK_NSEC)
1539 cpu->iowait_boost = 0;
1540 }
1541 cpu->last_update = time;
1542 }
1543
1544 delta_ns = time - cpu->sample.time;
1545 if ((s64)delta_ns >= pid_params.sample_rate_ns) {
1546 bool sample_taken = intel_pstate_sample(cpu, time);
1547
1548 if (sample_taken) {
1549 intel_pstate_calc_avg_perf(cpu);
1550 if (!hwp_active)
1551 intel_pstate_adjust_busy_pstate(cpu);
1552 }
1553 }
1554 }
1555
1556 #define ICPU(model, policy) \
1557 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1558 (unsigned long)&policy }
1559
1560 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1561 ICPU(INTEL_FAM6_SANDYBRIDGE, core_params),
1562 ICPU(INTEL_FAM6_SANDYBRIDGE_X, core_params),
1563 ICPU(INTEL_FAM6_ATOM_SILVERMONT1, silvermont_params),
1564 ICPU(INTEL_FAM6_IVYBRIDGE, core_params),
1565 ICPU(INTEL_FAM6_HASWELL_CORE, core_params),
1566 ICPU(INTEL_FAM6_BROADWELL_CORE, core_params),
1567 ICPU(INTEL_FAM6_IVYBRIDGE_X, core_params),
1568 ICPU(INTEL_FAM6_HASWELL_X, core_params),
1569 ICPU(INTEL_FAM6_HASWELL_ULT, core_params),
1570 ICPU(INTEL_FAM6_HASWELL_GT3E, core_params),
1571 ICPU(INTEL_FAM6_BROADWELL_GT3E, core_params),
1572 ICPU(INTEL_FAM6_ATOM_AIRMONT, airmont_params),
1573 ICPU(INTEL_FAM6_SKYLAKE_MOBILE, core_params),
1574 ICPU(INTEL_FAM6_BROADWELL_X, core_params),
1575 ICPU(INTEL_FAM6_SKYLAKE_DESKTOP, core_params),
1576 ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
1577 ICPU(INTEL_FAM6_XEON_PHI_KNL, knl_params),
1578 ICPU(INTEL_FAM6_ATOM_GOLDMONT, bxt_params),
1579 {}
1580 };
1581 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1582
1583 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1584 ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
1585 ICPU(INTEL_FAM6_BROADWELL_X, core_params),
1586 ICPU(INTEL_FAM6_SKYLAKE_X, core_params),
1587 {}
1588 };
1589
1590 static int intel_pstate_init_cpu(unsigned int cpunum)
1591 {
1592 struct cpudata *cpu;
1593
1594 cpu = all_cpu_data[cpunum];
1595
1596 if (!cpu) {
1597 unsigned int size = sizeof(struct cpudata);
1598
1599 if (per_cpu_limits)
1600 size += sizeof(struct perf_limits);
1601
1602 cpu = kzalloc(size, GFP_KERNEL);
1603 if (!cpu)
1604 return -ENOMEM;
1605
1606 all_cpu_data[cpunum] = cpu;
1607 if (per_cpu_limits)
1608 cpu->perf_limits = (struct perf_limits *)(cpu + 1);
1609
1610 }
1611
1612 cpu = all_cpu_data[cpunum];
1613
1614 cpu->cpu = cpunum;
1615
1616 if (hwp_active) {
1617 intel_pstate_hwp_enable(cpu);
1618 pid_params.sample_rate_ms = 50;
1619 pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
1620 }
1621
1622 intel_pstate_get_cpu_pstates(cpu);
1623
1624 intel_pstate_busy_pid_reset(cpu);
1625
1626 pr_debug("controlling: cpu %d\n", cpunum);
1627
1628 return 0;
1629 }
1630
1631 static unsigned int intel_pstate_get(unsigned int cpu_num)
1632 {
1633 struct cpudata *cpu = all_cpu_data[cpu_num];
1634
1635 return cpu ? get_avg_frequency(cpu) : 0;
1636 }
1637
1638 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1639 {
1640 struct cpudata *cpu = all_cpu_data[cpu_num];
1641
1642 if (cpu->update_util_set)
1643 return;
1644
1645 /* Prevent intel_pstate_update_util() from using stale data. */
1646 cpu->sample.time = 0;
1647 cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1648 intel_pstate_update_util);
1649 cpu->update_util_set = true;
1650 }
1651
1652 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1653 {
1654 struct cpudata *cpu_data = all_cpu_data[cpu];
1655
1656 if (!cpu_data->update_util_set)
1657 return;
1658
1659 cpufreq_remove_update_util_hook(cpu);
1660 cpu_data->update_util_set = false;
1661 synchronize_sched();
1662 }
1663
1664 static void intel_pstate_set_performance_limits(struct perf_limits *limits)
1665 {
1666 mutex_lock(&intel_pstate_limits_lock);
1667 limits->no_turbo = 0;
1668 limits->turbo_disabled = 0;
1669 limits->max_perf_pct = 100;
1670 limits->max_perf = int_ext_tofp(1);
1671 limits->min_perf_pct = 100;
1672 limits->min_perf = int_ext_tofp(1);
1673 limits->max_policy_pct = 100;
1674 limits->max_sysfs_pct = 100;
1675 limits->min_policy_pct = 0;
1676 limits->min_sysfs_pct = 0;
1677 mutex_unlock(&intel_pstate_limits_lock);
1678 }
1679
1680 static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
1681 struct perf_limits *limits)
1682 {
1683
1684 mutex_lock(&intel_pstate_limits_lock);
1685
1686 limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100,
1687 policy->cpuinfo.max_freq);
1688 limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0, 100);
1689 if (policy->max == policy->min) {
1690 limits->min_policy_pct = limits->max_policy_pct;
1691 } else {
1692 limits->min_policy_pct = DIV_ROUND_UP(policy->min * 100,
1693 policy->cpuinfo.max_freq);
1694 limits->min_policy_pct = clamp_t(int, limits->min_policy_pct,
1695 0, 100);
1696 }
1697
1698 /* Normalize user input to [min_policy_pct, max_policy_pct] */
1699 limits->min_perf_pct = max(limits->min_policy_pct,
1700 limits->min_sysfs_pct);
1701 limits->min_perf_pct = min(limits->max_policy_pct,
1702 limits->min_perf_pct);
1703 limits->max_perf_pct = min(limits->max_policy_pct,
1704 limits->max_sysfs_pct);
1705 limits->max_perf_pct = max(limits->min_policy_pct,
1706 limits->max_perf_pct);
1707
1708 /* Make sure min_perf_pct <= max_perf_pct */
1709 limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct);
1710
1711 limits->min_perf = div_ext_fp(limits->min_perf_pct, 100);
1712 limits->max_perf = div_ext_fp(limits->max_perf_pct, 100);
1713 limits->max_perf = round_up(limits->max_perf, EXT_FRAC_BITS);
1714 limits->min_perf = round_up(limits->min_perf, EXT_FRAC_BITS);
1715
1716 mutex_unlock(&intel_pstate_limits_lock);
1717
1718 pr_debug("cpu:%d max_perf_pct:%d min_perf_pct:%d\n", policy->cpu,
1719 limits->max_perf_pct, limits->min_perf_pct);
1720 }
1721
1722 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
1723 {
1724 struct cpudata *cpu;
1725 struct perf_limits *perf_limits = NULL;
1726
1727 if (!policy->cpuinfo.max_freq)
1728 return -ENODEV;
1729
1730 pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
1731 policy->cpuinfo.max_freq, policy->max);
1732
1733 cpu = all_cpu_data[policy->cpu];
1734 cpu->policy = policy->policy;
1735
1736 if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
1737 policy->max < policy->cpuinfo.max_freq &&
1738 policy->max > cpu->pstate.max_pstate * cpu->pstate.scaling) {
1739 pr_debug("policy->max > max non turbo frequency\n");
1740 policy->max = policy->cpuinfo.max_freq;
1741 }
1742
1743 if (per_cpu_limits)
1744 perf_limits = cpu->perf_limits;
1745
1746 if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
1747 if (!perf_limits) {
1748 limits = &performance_limits;
1749 perf_limits = limits;
1750 }
1751 if (policy->max >= policy->cpuinfo.max_freq) {
1752 pr_debug("set performance\n");
1753 intel_pstate_set_performance_limits(perf_limits);
1754 goto out;
1755 }
1756 } else {
1757 pr_debug("set powersave\n");
1758 if (!perf_limits) {
1759 limits = &powersave_limits;
1760 perf_limits = limits;
1761 }
1762
1763 }
1764
1765 intel_pstate_update_perf_limits(policy, perf_limits);
1766 out:
1767 if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
1768 /*
1769 * NOHZ_FULL CPUs need this as the governor callback may not
1770 * be invoked on them.
1771 */
1772 intel_pstate_clear_update_util_hook(policy->cpu);
1773 intel_pstate_max_within_limits(cpu);
1774 }
1775
1776 intel_pstate_set_update_util_hook(policy->cpu);
1777
1778 intel_pstate_hwp_set_policy(policy);
1779
1780 return 0;
1781 }
1782
1783 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
1784 {
1785 cpufreq_verify_within_cpu_limits(policy);
1786
1787 if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
1788 policy->policy != CPUFREQ_POLICY_PERFORMANCE)
1789 return -EINVAL;
1790
1791 return 0;
1792 }
1793
1794 static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
1795 {
1796 intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
1797 }
1798
1799 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
1800 {
1801 pr_debug("CPU %d exiting\n", policy->cpu);
1802
1803 intel_pstate_clear_update_util_hook(policy->cpu);
1804 if (!hwp_active)
1805 intel_cpufreq_stop_cpu(policy);
1806 }
1807
1808 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
1809 {
1810 intel_pstate_exit_perf_limits(policy);
1811
1812 policy->fast_switch_possible = false;
1813
1814 return 0;
1815 }
1816
1817 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
1818 {
1819 struct cpudata *cpu;
1820 int rc;
1821
1822 rc = intel_pstate_init_cpu(policy->cpu);
1823 if (rc)
1824 return rc;
1825
1826 cpu = all_cpu_data[policy->cpu];
1827
1828 /*
1829 * We need sane value in the cpu->perf_limits, so inherit from global
1830 * perf_limits limits, which are seeded with values based on the
1831 * CONFIG_CPU_FREQ_DEFAULT_GOV_*, during boot up.
1832 */
1833 if (per_cpu_limits)
1834 memcpy(cpu->perf_limits, limits, sizeof(struct perf_limits));
1835
1836 policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
1837 policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1838
1839 /* cpuinfo and default policy values */
1840 policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
1841 update_turbo_state();
1842 policy->cpuinfo.max_freq = limits->turbo_disabled ?
1843 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1844 policy->cpuinfo.max_freq *= cpu->pstate.scaling;
1845
1846 intel_pstate_init_acpi_perf_limits(policy);
1847 cpumask_set_cpu(policy->cpu, policy->cpus);
1848
1849 policy->fast_switch_possible = true;
1850
1851 return 0;
1852 }
1853
1854 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
1855 {
1856 int ret = __intel_pstate_cpu_init(policy);
1857
1858 if (ret)
1859 return ret;
1860
1861 policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
1862 if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
1863 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
1864 else
1865 policy->policy = CPUFREQ_POLICY_POWERSAVE;
1866
1867 return 0;
1868 }
1869
1870 static struct cpufreq_driver intel_pstate = {
1871 .flags = CPUFREQ_CONST_LOOPS,
1872 .verify = intel_pstate_verify_policy,
1873 .setpolicy = intel_pstate_set_policy,
1874 .resume = intel_pstate_resume,
1875 .get = intel_pstate_get,
1876 .init = intel_pstate_cpu_init,
1877 .exit = intel_pstate_cpu_exit,
1878 .stop_cpu = intel_pstate_stop_cpu,
1879 .name = "intel_pstate",
1880 };
1881
1882 static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
1883 {
1884 struct cpudata *cpu = all_cpu_data[policy->cpu];
1885 struct perf_limits *perf_limits = limits;
1886
1887 update_turbo_state();
1888 policy->cpuinfo.max_freq = limits->turbo_disabled ?
1889 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
1890
1891 cpufreq_verify_within_cpu_limits(policy);
1892
1893 if (per_cpu_limits)
1894 perf_limits = cpu->perf_limits;
1895
1896 intel_pstate_update_perf_limits(policy, perf_limits);
1897
1898 return 0;
1899 }
1900
1901 static unsigned int intel_cpufreq_turbo_update(struct cpudata *cpu,
1902 struct cpufreq_policy *policy,
1903 unsigned int target_freq)
1904 {
1905 unsigned int max_freq;
1906
1907 update_turbo_state();
1908
1909 max_freq = limits->no_turbo || limits->turbo_disabled ?
1910 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
1911 policy->cpuinfo.max_freq = max_freq;
1912 if (policy->max > max_freq)
1913 policy->max = max_freq;
1914
1915 if (target_freq > max_freq)
1916 target_freq = max_freq;
1917
1918 return target_freq;
1919 }
1920
1921 static int intel_cpufreq_target(struct cpufreq_policy *policy,
1922 unsigned int target_freq,
1923 unsigned int relation)
1924 {
1925 struct cpudata *cpu = all_cpu_data[policy->cpu];
1926 struct cpufreq_freqs freqs;
1927 int target_pstate;
1928
1929 freqs.old = policy->cur;
1930 freqs.new = intel_cpufreq_turbo_update(cpu, policy, target_freq);
1931
1932 cpufreq_freq_transition_begin(policy, &freqs);
1933 switch (relation) {
1934 case CPUFREQ_RELATION_L:
1935 target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
1936 break;
1937 case CPUFREQ_RELATION_H:
1938 target_pstate = freqs.new / cpu->pstate.scaling;
1939 break;
1940 default:
1941 target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
1942 break;
1943 }
1944 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
1945 if (target_pstate != cpu->pstate.current_pstate) {
1946 cpu->pstate.current_pstate = target_pstate;
1947 wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
1948 pstate_funcs.get_val(cpu, target_pstate));
1949 }
1950 cpufreq_freq_transition_end(policy, &freqs, false);
1951
1952 return 0;
1953 }
1954
1955 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
1956 unsigned int target_freq)
1957 {
1958 struct cpudata *cpu = all_cpu_data[policy->cpu];
1959 int target_pstate;
1960
1961 target_freq = intel_cpufreq_turbo_update(cpu, policy, target_freq);
1962 target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
1963 intel_pstate_update_pstate(cpu, target_pstate);
1964 return target_freq;
1965 }
1966
1967 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
1968 {
1969 int ret = __intel_pstate_cpu_init(policy);
1970
1971 if (ret)
1972 return ret;
1973
1974 policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
1975 /* This reflects the intel_pstate_get_cpu_pstates() setting. */
1976 policy->cur = policy->cpuinfo.min_freq;
1977
1978 return 0;
1979 }
1980
1981 static struct cpufreq_driver intel_cpufreq = {
1982 .flags = CPUFREQ_CONST_LOOPS,
1983 .verify = intel_cpufreq_verify_policy,
1984 .target = intel_cpufreq_target,
1985 .fast_switch = intel_cpufreq_fast_switch,
1986 .init = intel_cpufreq_cpu_init,
1987 .exit = intel_pstate_cpu_exit,
1988 .stop_cpu = intel_cpufreq_stop_cpu,
1989 .name = "intel_cpufreq",
1990 };
1991
1992 static struct cpufreq_driver *intel_pstate_driver = &intel_pstate;
1993
1994 static int no_load __initdata;
1995 static int no_hwp __initdata;
1996 static int hwp_only __initdata;
1997 static unsigned int force_load __initdata;
1998
1999 static int __init intel_pstate_msrs_not_valid(void)
2000 {
2001 if (!pstate_funcs.get_max() ||
2002 !pstate_funcs.get_min() ||
2003 !pstate_funcs.get_turbo())
2004 return -ENODEV;
2005
2006 return 0;
2007 }
2008
2009 static void __init copy_pid_params(struct pstate_adjust_policy *policy)
2010 {
2011 pid_params.sample_rate_ms = policy->sample_rate_ms;
2012 pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
2013 pid_params.p_gain_pct = policy->p_gain_pct;
2014 pid_params.i_gain_pct = policy->i_gain_pct;
2015 pid_params.d_gain_pct = policy->d_gain_pct;
2016 pid_params.deadband = policy->deadband;
2017 pid_params.setpoint = policy->setpoint;
2018 }
2019
2020 #ifdef CONFIG_ACPI
2021 static void intel_pstate_use_acpi_profile(void)
2022 {
2023 if (acpi_gbl_FADT.preferred_profile == PM_MOBILE)
2024 pstate_funcs.get_target_pstate =
2025 get_target_pstate_use_cpu_load;
2026 }
2027 #else
2028 static void intel_pstate_use_acpi_profile(void)
2029 {
2030 }
2031 #endif
2032
2033 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2034 {
2035 pstate_funcs.get_max = funcs->get_max;
2036 pstate_funcs.get_max_physical = funcs->get_max_physical;
2037 pstate_funcs.get_min = funcs->get_min;
2038 pstate_funcs.get_turbo = funcs->get_turbo;
2039 pstate_funcs.get_scaling = funcs->get_scaling;
2040 pstate_funcs.get_val = funcs->get_val;
2041 pstate_funcs.get_vid = funcs->get_vid;
2042 pstate_funcs.get_target_pstate = funcs->get_target_pstate;
2043
2044 intel_pstate_use_acpi_profile();
2045 }
2046
2047 #ifdef CONFIG_ACPI
2048
2049 static bool __init intel_pstate_no_acpi_pss(void)
2050 {
2051 int i;
2052
2053 for_each_possible_cpu(i) {
2054 acpi_status status;
2055 union acpi_object *pss;
2056 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
2057 struct acpi_processor *pr = per_cpu(processors, i);
2058
2059 if (!pr)
2060 continue;
2061
2062 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
2063 if (ACPI_FAILURE(status))
2064 continue;
2065
2066 pss = buffer.pointer;
2067 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
2068 kfree(pss);
2069 return false;
2070 }
2071
2072 kfree(pss);
2073 }
2074
2075 return true;
2076 }
2077
2078 static bool __init intel_pstate_has_acpi_ppc(void)
2079 {
2080 int i;
2081
2082 for_each_possible_cpu(i) {
2083 struct acpi_processor *pr = per_cpu(processors, i);
2084
2085 if (!pr)
2086 continue;
2087 if (acpi_has_method(pr->handle, "_PPC"))
2088 return true;
2089 }
2090 return false;
2091 }
2092
2093 enum {
2094 PSS,
2095 PPC,
2096 };
2097
2098 struct hw_vendor_info {
2099 u16 valid;
2100 char oem_id[ACPI_OEM_ID_SIZE];
2101 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
2102 int oem_pwr_table;
2103 };
2104
2105 /* Hardware vendor-specific info that has its own power management modes */
2106 static struct hw_vendor_info vendor_info[] __initdata = {
2107 {1, "HP ", "ProLiant", PSS},
2108 {1, "ORACLE", "X4-2 ", PPC},
2109 {1, "ORACLE", "X4-2L ", PPC},
2110 {1, "ORACLE", "X4-2B ", PPC},
2111 {1, "ORACLE", "X3-2 ", PPC},
2112 {1, "ORACLE", "X3-2L ", PPC},
2113 {1, "ORACLE", "X3-2B ", PPC},
2114 {1, "ORACLE", "X4470M2 ", PPC},
2115 {1, "ORACLE", "X4270M3 ", PPC},
2116 {1, "ORACLE", "X4270M2 ", PPC},
2117 {1, "ORACLE", "X4170M2 ", PPC},
2118 {1, "ORACLE", "X4170 M3", PPC},
2119 {1, "ORACLE", "X4275 M3", PPC},
2120 {1, "ORACLE", "X6-2 ", PPC},
2121 {1, "ORACLE", "Sudbury ", PPC},
2122 {0, "", ""},
2123 };
2124
2125 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2126 {
2127 struct acpi_table_header hdr;
2128 struct hw_vendor_info *v_info;
2129 const struct x86_cpu_id *id;
2130 u64 misc_pwr;
2131
2132 id = x86_match_cpu(intel_pstate_cpu_oob_ids);
2133 if (id) {
2134 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2135 if ( misc_pwr & (1 << 8))
2136 return true;
2137 }
2138
2139 if (acpi_disabled ||
2140 ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
2141 return false;
2142
2143 for (v_info = vendor_info; v_info->valid; v_info++) {
2144 if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
2145 !strncmp(hdr.oem_table_id, v_info->oem_table_id,
2146 ACPI_OEM_TABLE_ID_SIZE))
2147 switch (v_info->oem_pwr_table) {
2148 case PSS:
2149 return intel_pstate_no_acpi_pss();
2150 case PPC:
2151 return intel_pstate_has_acpi_ppc() &&
2152 (!force_load);
2153 }
2154 }
2155
2156 return false;
2157 }
2158
2159 static void intel_pstate_request_control_from_smm(void)
2160 {
2161 /*
2162 * It may be unsafe to request P-states control from SMM if _PPC support
2163 * has not been enabled.
2164 */
2165 if (acpi_ppc)
2166 acpi_processor_pstate_control();
2167 }
2168 #else /* CONFIG_ACPI not enabled */
2169 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2170 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2171 static inline void intel_pstate_request_control_from_smm(void) {}
2172 #endif /* CONFIG_ACPI */
2173
2174 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2175 { X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
2176 {}
2177 };
2178
2179 static int __init intel_pstate_init(void)
2180 {
2181 int cpu, rc = 0;
2182 const struct x86_cpu_id *id;
2183 struct cpu_defaults *cpu_def;
2184
2185 if (no_load)
2186 return -ENODEV;
2187
2188 if (x86_match_cpu(hwp_support_ids) && !no_hwp) {
2189 copy_cpu_funcs(&core_params.funcs);
2190 hwp_active++;
2191 goto hwp_cpu_matched;
2192 }
2193
2194 id = x86_match_cpu(intel_pstate_cpu_ids);
2195 if (!id)
2196 return -ENODEV;
2197
2198 cpu_def = (struct cpu_defaults *)id->driver_data;
2199
2200 copy_pid_params(&cpu_def->pid_policy);
2201 copy_cpu_funcs(&cpu_def->funcs);
2202
2203 if (intel_pstate_msrs_not_valid())
2204 return -ENODEV;
2205
2206 hwp_cpu_matched:
2207 /*
2208 * The Intel pstate driver will be ignored if the platform
2209 * firmware has its own power management modes.
2210 */
2211 if (intel_pstate_platform_pwr_mgmt_exists())
2212 return -ENODEV;
2213
2214 pr_info("Intel P-state driver initializing\n");
2215
2216 all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
2217 if (!all_cpu_data)
2218 return -ENOMEM;
2219
2220 if (!hwp_active && hwp_only)
2221 goto out;
2222
2223 intel_pstate_request_control_from_smm();
2224
2225 rc = cpufreq_register_driver(intel_pstate_driver);
2226 if (rc)
2227 goto out;
2228
2229 intel_pstate_debug_expose_params();
2230 intel_pstate_sysfs_expose_params();
2231
2232 if (hwp_active)
2233 pr_info("HWP enabled\n");
2234
2235 return rc;
2236 out:
2237 get_online_cpus();
2238 for_each_online_cpu(cpu) {
2239 if (all_cpu_data[cpu]) {
2240 if (intel_pstate_driver == &intel_pstate)
2241 intel_pstate_clear_update_util_hook(cpu);
2242
2243 kfree(all_cpu_data[cpu]);
2244 }
2245 }
2246
2247 put_online_cpus();
2248 vfree(all_cpu_data);
2249 return -ENODEV;
2250 }
2251 device_initcall(intel_pstate_init);
2252
2253 static int __init intel_pstate_setup(char *str)
2254 {
2255 if (!str)
2256 return -EINVAL;
2257
2258 if (!strcmp(str, "disable")) {
2259 no_load = 1;
2260 } else if (!strcmp(str, "passive")) {
2261 pr_info("Passive mode enabled\n");
2262 intel_pstate_driver = &intel_cpufreq;
2263 no_hwp = 1;
2264 }
2265 if (!strcmp(str, "no_hwp")) {
2266 pr_info("HWP disabled\n");
2267 no_hwp = 1;
2268 }
2269 if (!strcmp(str, "force"))
2270 force_load = 1;
2271 if (!strcmp(str, "hwp_only"))
2272 hwp_only = 1;
2273 if (!strcmp(str, "per_cpu_perf_limits"))
2274 per_cpu_limits = true;
2275
2276 #ifdef CONFIG_ACPI
2277 if (!strcmp(str, "support_acpi_ppc"))
2278 acpi_ppc = true;
2279 #endif
2280
2281 return 0;
2282 }
2283 early_param("intel_pstate", intel_pstate_setup);
2284
2285 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
2286 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
2287 MODULE_LICENSE("GPL");