]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/cpufreq/intel_pstate.c
Merge tag 'renesas-fixes-for-v4.10' of https://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-bionic-kernel.git] / drivers / cpufreq / intel_pstate.c
1 /*
2 * intel_pstate.c: Native P state management for Intel processors
3 *
4 * (C) Copyright 2012 Intel Corporation
5 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
10 * of the License.
11 */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/kernel.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/module.h>
18 #include <linux/ktime.h>
19 #include <linux/hrtimer.h>
20 #include <linux/tick.h>
21 #include <linux/slab.h>
22 #include <linux/sched.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25 #include <linux/cpufreq.h>
26 #include <linux/sysfs.h>
27 #include <linux/types.h>
28 #include <linux/fs.h>
29 #include <linux/debugfs.h>
30 #include <linux/acpi.h>
31 #include <linux/vmalloc.h>
32 #include <trace/events/power.h>
33
34 #include <asm/div64.h>
35 #include <asm/msr.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/cpufeature.h>
38 #include <asm/intel-family.h>
39
40 #define INTEL_CPUFREQ_TRANSITION_LATENCY 20000
41
42 #define ATOM_RATIOS 0x66a
43 #define ATOM_VIDS 0x66b
44 #define ATOM_TURBO_RATIOS 0x66c
45 #define ATOM_TURBO_VIDS 0x66d
46
47 #ifdef CONFIG_ACPI
48 #include <acpi/processor.h>
49 #include <acpi/cppc_acpi.h>
50 #endif
51
52 #define FRAC_BITS 8
53 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
54 #define fp_toint(X) ((X) >> FRAC_BITS)
55
56 #define EXT_BITS 6
57 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
58 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
59 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
60
61 static inline int32_t mul_fp(int32_t x, int32_t y)
62 {
63 return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
64 }
65
66 static inline int32_t div_fp(s64 x, s64 y)
67 {
68 return div64_s64((int64_t)x << FRAC_BITS, y);
69 }
70
71 static inline int ceiling_fp(int32_t x)
72 {
73 int mask, ret;
74
75 ret = fp_toint(x);
76 mask = (1 << FRAC_BITS) - 1;
77 if (x & mask)
78 ret += 1;
79 return ret;
80 }
81
82 static inline u64 mul_ext_fp(u64 x, u64 y)
83 {
84 return (x * y) >> EXT_FRAC_BITS;
85 }
86
87 static inline u64 div_ext_fp(u64 x, u64 y)
88 {
89 return div64_u64(x << EXT_FRAC_BITS, y);
90 }
91
92 /**
93 * struct sample - Store performance sample
94 * @core_avg_perf: Ratio of APERF/MPERF which is the actual average
95 * performance during last sample period
96 * @busy_scaled: Scaled busy value which is used to calculate next
97 * P state. This can be different than core_avg_perf
98 * to account for cpu idle period
99 * @aperf: Difference of actual performance frequency clock count
100 * read from APERF MSR between last and current sample
101 * @mperf: Difference of maximum performance frequency clock count
102 * read from MPERF MSR between last and current sample
103 * @tsc: Difference of time stamp counter between last and
104 * current sample
105 * @time: Current time from scheduler
106 *
107 * This structure is used in the cpudata structure to store performance sample
108 * data for choosing next P State.
109 */
110 struct sample {
111 int32_t core_avg_perf;
112 int32_t busy_scaled;
113 u64 aperf;
114 u64 mperf;
115 u64 tsc;
116 u64 time;
117 };
118
119 /**
120 * struct pstate_data - Store P state data
121 * @current_pstate: Current requested P state
122 * @min_pstate: Min P state possible for this platform
123 * @max_pstate: Max P state possible for this platform
124 * @max_pstate_physical:This is physical Max P state for a processor
125 * This can be higher than the max_pstate which can
126 * be limited by platform thermal design power limits
127 * @scaling: Scaling factor to convert frequency to cpufreq
128 * frequency units
129 * @turbo_pstate: Max Turbo P state possible for this platform
130 * @max_freq: @max_pstate frequency in cpufreq units
131 * @turbo_freq: @turbo_pstate frequency in cpufreq units
132 *
133 * Stores the per cpu model P state limits and current P state.
134 */
135 struct pstate_data {
136 int current_pstate;
137 int min_pstate;
138 int max_pstate;
139 int max_pstate_physical;
140 int scaling;
141 int turbo_pstate;
142 unsigned int max_freq;
143 unsigned int turbo_freq;
144 };
145
146 /**
147 * struct vid_data - Stores voltage information data
148 * @min: VID data for this platform corresponding to
149 * the lowest P state
150 * @max: VID data corresponding to the highest P State.
151 * @turbo: VID data for turbo P state
152 * @ratio: Ratio of (vid max - vid min) /
153 * (max P state - Min P State)
154 *
155 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
156 * This data is used in Atom platforms, where in addition to target P state,
157 * the voltage data needs to be specified to select next P State.
158 */
159 struct vid_data {
160 int min;
161 int max;
162 int turbo;
163 int32_t ratio;
164 };
165
166 /**
167 * struct _pid - Stores PID data
168 * @setpoint: Target set point for busyness or performance
169 * @integral: Storage for accumulated error values
170 * @p_gain: PID proportional gain
171 * @i_gain: PID integral gain
172 * @d_gain: PID derivative gain
173 * @deadband: PID deadband
174 * @last_err: Last error storage for integral part of PID calculation
175 *
176 * Stores PID coefficients and last error for PID controller.
177 */
178 struct _pid {
179 int setpoint;
180 int32_t integral;
181 int32_t p_gain;
182 int32_t i_gain;
183 int32_t d_gain;
184 int deadband;
185 int32_t last_err;
186 };
187
188 /**
189 * struct perf_limits - Store user and policy limits
190 * @no_turbo: User requested turbo state from intel_pstate sysfs
191 * @turbo_disabled: Platform turbo status either from msr
192 * MSR_IA32_MISC_ENABLE or when maximum available pstate
193 * matches the maximum turbo pstate
194 * @max_perf_pct: Effective maximum performance limit in percentage, this
195 * is minimum of either limits enforced by cpufreq policy
196 * or limits from user set limits via intel_pstate sysfs
197 * @min_perf_pct: Effective minimum performance limit in percentage, this
198 * is maximum of either limits enforced by cpufreq policy
199 * or limits from user set limits via intel_pstate sysfs
200 * @max_perf: This is a scaled value between 0 to 255 for max_perf_pct
201 * This value is used to limit max pstate
202 * @min_perf: This is a scaled value between 0 to 255 for min_perf_pct
203 * This value is used to limit min pstate
204 * @max_policy_pct: The maximum performance in percentage enforced by
205 * cpufreq setpolicy interface
206 * @max_sysfs_pct: The maximum performance in percentage enforced by
207 * intel pstate sysfs interface, unused when per cpu
208 * controls are enforced
209 * @min_policy_pct: The minimum performance in percentage enforced by
210 * cpufreq setpolicy interface
211 * @min_sysfs_pct: The minimum performance in percentage enforced by
212 * intel pstate sysfs interface, unused when per cpu
213 * controls are enforced
214 *
215 * Storage for user and policy defined limits.
216 */
217 struct perf_limits {
218 int no_turbo;
219 int turbo_disabled;
220 int max_perf_pct;
221 int min_perf_pct;
222 int32_t max_perf;
223 int32_t min_perf;
224 int max_policy_pct;
225 int max_sysfs_pct;
226 int min_policy_pct;
227 int min_sysfs_pct;
228 };
229
230 /**
231 * struct cpudata - Per CPU instance data storage
232 * @cpu: CPU number for this instance data
233 * @policy: CPUFreq policy value
234 * @update_util: CPUFreq utility callback information
235 * @update_util_set: CPUFreq utility callback is set
236 * @iowait_boost: iowait-related boost fraction
237 * @last_update: Time of the last update.
238 * @pstate: Stores P state limits for this CPU
239 * @vid: Stores VID limits for this CPU
240 * @pid: Stores PID parameters for this CPU
241 * @last_sample_time: Last Sample time
242 * @prev_aperf: Last APERF value read from APERF MSR
243 * @prev_mperf: Last MPERF value read from MPERF MSR
244 * @prev_tsc: Last timestamp counter (TSC) value
245 * @prev_cummulative_iowait: IO Wait time difference from last and
246 * current sample
247 * @sample: Storage for storing last Sample data
248 * @perf_limits: Pointer to perf_limit unique to this CPU
249 * Not all field in the structure are applicable
250 * when per cpu controls are enforced
251 * @acpi_perf_data: Stores ACPI perf information read from _PSS
252 * @valid_pss_table: Set to true for valid ACPI _PSS entries found
253 * @epp_powersave: Last saved HWP energy performance preference
254 * (EPP) or energy performance bias (EPB),
255 * when policy switched to performance
256 * @epp_policy: Last saved policy used to set EPP/EPB
257 * @epp_default: Power on default HWP energy performance
258 * preference/bias
259 * @epp_saved: Saved EPP/EPB during system suspend or CPU offline
260 * operation
261 *
262 * This structure stores per CPU instance data for all CPUs.
263 */
264 struct cpudata {
265 int cpu;
266
267 unsigned int policy;
268 struct update_util_data update_util;
269 bool update_util_set;
270
271 struct pstate_data pstate;
272 struct vid_data vid;
273 struct _pid pid;
274
275 u64 last_update;
276 u64 last_sample_time;
277 u64 prev_aperf;
278 u64 prev_mperf;
279 u64 prev_tsc;
280 u64 prev_cummulative_iowait;
281 struct sample sample;
282 struct perf_limits *perf_limits;
283 #ifdef CONFIG_ACPI
284 struct acpi_processor_performance acpi_perf_data;
285 bool valid_pss_table;
286 #endif
287 unsigned int iowait_boost;
288 s16 epp_powersave;
289 s16 epp_policy;
290 s16 epp_default;
291 s16 epp_saved;
292 };
293
294 static struct cpudata **all_cpu_data;
295
296 /**
297 * struct pstate_adjust_policy - Stores static PID configuration data
298 * @sample_rate_ms: PID calculation sample rate in ms
299 * @sample_rate_ns: Sample rate calculation in ns
300 * @deadband: PID deadband
301 * @setpoint: PID Setpoint
302 * @p_gain_pct: PID proportional gain
303 * @i_gain_pct: PID integral gain
304 * @d_gain_pct: PID derivative gain
305 *
306 * Stores per CPU model static PID configuration data.
307 */
308 struct pstate_adjust_policy {
309 int sample_rate_ms;
310 s64 sample_rate_ns;
311 int deadband;
312 int setpoint;
313 int p_gain_pct;
314 int d_gain_pct;
315 int i_gain_pct;
316 };
317
318 /**
319 * struct pstate_funcs - Per CPU model specific callbacks
320 * @get_max: Callback to get maximum non turbo effective P state
321 * @get_max_physical: Callback to get maximum non turbo physical P state
322 * @get_min: Callback to get minimum P state
323 * @get_turbo: Callback to get turbo P state
324 * @get_scaling: Callback to get frequency scaling factor
325 * @get_val: Callback to convert P state to actual MSR write value
326 * @get_vid: Callback to get VID data for Atom platforms
327 * @get_target_pstate: Callback to a function to calculate next P state to use
328 *
329 * Core and Atom CPU models have different way to get P State limits. This
330 * structure is used to store those callbacks.
331 */
332 struct pstate_funcs {
333 int (*get_max)(void);
334 int (*get_max_physical)(void);
335 int (*get_min)(void);
336 int (*get_turbo)(void);
337 int (*get_scaling)(void);
338 u64 (*get_val)(struct cpudata*, int pstate);
339 void (*get_vid)(struct cpudata *);
340 int32_t (*get_target_pstate)(struct cpudata *);
341 };
342
343 /**
344 * struct cpu_defaults- Per CPU model default config data
345 * @pid_policy: PID config data
346 * @funcs: Callback function data
347 */
348 struct cpu_defaults {
349 struct pstate_adjust_policy pid_policy;
350 struct pstate_funcs funcs;
351 };
352
353 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
354 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
355
356 static struct pstate_adjust_policy pid_params __read_mostly;
357 static struct pstate_funcs pstate_funcs __read_mostly;
358 static int hwp_active __read_mostly;
359 static bool per_cpu_limits __read_mostly;
360
361 #ifdef CONFIG_ACPI
362 static bool acpi_ppc;
363 #endif
364
365 static struct perf_limits performance_limits = {
366 .no_turbo = 0,
367 .turbo_disabled = 0,
368 .max_perf_pct = 100,
369 .max_perf = int_ext_tofp(1),
370 .min_perf_pct = 100,
371 .min_perf = int_ext_tofp(1),
372 .max_policy_pct = 100,
373 .max_sysfs_pct = 100,
374 .min_policy_pct = 0,
375 .min_sysfs_pct = 0,
376 };
377
378 static struct perf_limits powersave_limits = {
379 .no_turbo = 0,
380 .turbo_disabled = 0,
381 .max_perf_pct = 100,
382 .max_perf = int_ext_tofp(1),
383 .min_perf_pct = 0,
384 .min_perf = 0,
385 .max_policy_pct = 100,
386 .max_sysfs_pct = 100,
387 .min_policy_pct = 0,
388 .min_sysfs_pct = 0,
389 };
390
391 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
392 static struct perf_limits *limits = &performance_limits;
393 #else
394 static struct perf_limits *limits = &powersave_limits;
395 #endif
396
397 static DEFINE_MUTEX(intel_pstate_limits_lock);
398
399 #ifdef CONFIG_ACPI
400
401 static bool intel_pstate_get_ppc_enable_status(void)
402 {
403 if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
404 acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
405 return true;
406
407 return acpi_ppc;
408 }
409
410 #ifdef CONFIG_ACPI_CPPC_LIB
411
412 /* The work item is needed to avoid CPU hotplug locking issues */
413 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
414 {
415 sched_set_itmt_support();
416 }
417
418 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
419
420 static void intel_pstate_set_itmt_prio(int cpu)
421 {
422 struct cppc_perf_caps cppc_perf;
423 static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
424 int ret;
425
426 ret = cppc_get_perf_caps(cpu, &cppc_perf);
427 if (ret)
428 return;
429
430 /*
431 * The priorities can be set regardless of whether or not
432 * sched_set_itmt_support(true) has been called and it is valid to
433 * update them at any time after it has been called.
434 */
435 sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
436
437 if (max_highest_perf <= min_highest_perf) {
438 if (cppc_perf.highest_perf > max_highest_perf)
439 max_highest_perf = cppc_perf.highest_perf;
440
441 if (cppc_perf.highest_perf < min_highest_perf)
442 min_highest_perf = cppc_perf.highest_perf;
443
444 if (max_highest_perf > min_highest_perf) {
445 /*
446 * This code can be run during CPU online under the
447 * CPU hotplug locks, so sched_set_itmt_support()
448 * cannot be called from here. Queue up a work item
449 * to invoke it.
450 */
451 schedule_work(&sched_itmt_work);
452 }
453 }
454 }
455 #else
456 static void intel_pstate_set_itmt_prio(int cpu)
457 {
458 }
459 #endif
460
461 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
462 {
463 struct cpudata *cpu;
464 int ret;
465 int i;
466
467 if (hwp_active) {
468 intel_pstate_set_itmt_prio(policy->cpu);
469 return;
470 }
471
472 if (!intel_pstate_get_ppc_enable_status())
473 return;
474
475 cpu = all_cpu_data[policy->cpu];
476
477 ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
478 policy->cpu);
479 if (ret)
480 return;
481
482 /*
483 * Check if the control value in _PSS is for PERF_CTL MSR, which should
484 * guarantee that the states returned by it map to the states in our
485 * list directly.
486 */
487 if (cpu->acpi_perf_data.control_register.space_id !=
488 ACPI_ADR_SPACE_FIXED_HARDWARE)
489 goto err;
490
491 /*
492 * If there is only one entry _PSS, simply ignore _PSS and continue as
493 * usual without taking _PSS into account
494 */
495 if (cpu->acpi_perf_data.state_count < 2)
496 goto err;
497
498 pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
499 for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
500 pr_debug(" %cP%d: %u MHz, %u mW, 0x%x\n",
501 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
502 (u32) cpu->acpi_perf_data.states[i].core_frequency,
503 (u32) cpu->acpi_perf_data.states[i].power,
504 (u32) cpu->acpi_perf_data.states[i].control);
505 }
506
507 /*
508 * The _PSS table doesn't contain whole turbo frequency range.
509 * This just contains +1 MHZ above the max non turbo frequency,
510 * with control value corresponding to max turbo ratio. But
511 * when cpufreq set policy is called, it will call with this
512 * max frequency, which will cause a reduced performance as
513 * this driver uses real max turbo frequency as the max
514 * frequency. So correct this frequency in _PSS table to
515 * correct max turbo frequency based on the turbo state.
516 * Also need to convert to MHz as _PSS freq is in MHz.
517 */
518 if (!limits->turbo_disabled)
519 cpu->acpi_perf_data.states[0].core_frequency =
520 policy->cpuinfo.max_freq / 1000;
521 cpu->valid_pss_table = true;
522 pr_debug("_PPC limits will be enforced\n");
523
524 return;
525
526 err:
527 cpu->valid_pss_table = false;
528 acpi_processor_unregister_performance(policy->cpu);
529 }
530
531 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
532 {
533 struct cpudata *cpu;
534
535 cpu = all_cpu_data[policy->cpu];
536 if (!cpu->valid_pss_table)
537 return;
538
539 acpi_processor_unregister_performance(policy->cpu);
540 }
541
542 #else
543 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
544 {
545 }
546
547 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
548 {
549 }
550 #endif
551
552 static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
553 int deadband, int integral) {
554 pid->setpoint = int_tofp(setpoint);
555 pid->deadband = int_tofp(deadband);
556 pid->integral = int_tofp(integral);
557 pid->last_err = int_tofp(setpoint) - int_tofp(busy);
558 }
559
560 static inline void pid_p_gain_set(struct _pid *pid, int percent)
561 {
562 pid->p_gain = div_fp(percent, 100);
563 }
564
565 static inline void pid_i_gain_set(struct _pid *pid, int percent)
566 {
567 pid->i_gain = div_fp(percent, 100);
568 }
569
570 static inline void pid_d_gain_set(struct _pid *pid, int percent)
571 {
572 pid->d_gain = div_fp(percent, 100);
573 }
574
575 static signed int pid_calc(struct _pid *pid, int32_t busy)
576 {
577 signed int result;
578 int32_t pterm, dterm, fp_error;
579 int32_t integral_limit;
580
581 fp_error = pid->setpoint - busy;
582
583 if (abs(fp_error) <= pid->deadband)
584 return 0;
585
586 pterm = mul_fp(pid->p_gain, fp_error);
587
588 pid->integral += fp_error;
589
590 /*
591 * We limit the integral here so that it will never
592 * get higher than 30. This prevents it from becoming
593 * too large an input over long periods of time and allows
594 * it to get factored out sooner.
595 *
596 * The value of 30 was chosen through experimentation.
597 */
598 integral_limit = int_tofp(30);
599 if (pid->integral > integral_limit)
600 pid->integral = integral_limit;
601 if (pid->integral < -integral_limit)
602 pid->integral = -integral_limit;
603
604 dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
605 pid->last_err = fp_error;
606
607 result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
608 result = result + (1 << (FRAC_BITS-1));
609 return (signed int)fp_toint(result);
610 }
611
612 static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
613 {
614 pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
615 pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
616 pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
617
618 pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
619 }
620
621 static inline void intel_pstate_reset_all_pid(void)
622 {
623 unsigned int cpu;
624
625 for_each_online_cpu(cpu) {
626 if (all_cpu_data[cpu])
627 intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
628 }
629 }
630
631 static inline void update_turbo_state(void)
632 {
633 u64 misc_en;
634 struct cpudata *cpu;
635
636 cpu = all_cpu_data[0];
637 rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
638 limits->turbo_disabled =
639 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
640 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
641 }
642
643 static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
644 {
645 u64 epb;
646 int ret;
647
648 if (!static_cpu_has(X86_FEATURE_EPB))
649 return -ENXIO;
650
651 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
652 if (ret)
653 return (s16)ret;
654
655 return (s16)(epb & 0x0f);
656 }
657
658 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
659 {
660 s16 epp;
661
662 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
663 /*
664 * When hwp_req_data is 0, means that caller didn't read
665 * MSR_HWP_REQUEST, so need to read and get EPP.
666 */
667 if (!hwp_req_data) {
668 epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
669 &hwp_req_data);
670 if (epp)
671 return epp;
672 }
673 epp = (hwp_req_data >> 24) & 0xff;
674 } else {
675 /* When there is no EPP present, HWP uses EPB settings */
676 epp = intel_pstate_get_epb(cpu_data);
677 }
678
679 return epp;
680 }
681
682 static int intel_pstate_set_epb(int cpu, s16 pref)
683 {
684 u64 epb;
685 int ret;
686
687 if (!static_cpu_has(X86_FEATURE_EPB))
688 return -ENXIO;
689
690 ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
691 if (ret)
692 return ret;
693
694 epb = (epb & ~0x0f) | pref;
695 wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
696
697 return 0;
698 }
699
700 /*
701 * EPP/EPB display strings corresponding to EPP index in the
702 * energy_perf_strings[]
703 * index String
704 *-------------------------------------
705 * 0 default
706 * 1 performance
707 * 2 balance_performance
708 * 3 balance_power
709 * 4 power
710 */
711 static const char * const energy_perf_strings[] = {
712 "default",
713 "performance",
714 "balance_performance",
715 "balance_power",
716 "power",
717 NULL
718 };
719
720 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
721 {
722 s16 epp;
723 int index = -EINVAL;
724
725 epp = intel_pstate_get_epp(cpu_data, 0);
726 if (epp < 0)
727 return epp;
728
729 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
730 /*
731 * Range:
732 * 0x00-0x3F : Performance
733 * 0x40-0x7F : Balance performance
734 * 0x80-0xBF : Balance power
735 * 0xC0-0xFF : Power
736 * The EPP is a 8 bit value, but our ranges restrict the
737 * value which can be set. Here only using top two bits
738 * effectively.
739 */
740 index = (epp >> 6) + 1;
741 } else if (static_cpu_has(X86_FEATURE_EPB)) {
742 /*
743 * Range:
744 * 0x00-0x03 : Performance
745 * 0x04-0x07 : Balance performance
746 * 0x08-0x0B : Balance power
747 * 0x0C-0x0F : Power
748 * The EPB is a 4 bit value, but our ranges restrict the
749 * value which can be set. Here only using top two bits
750 * effectively.
751 */
752 index = (epp >> 2) + 1;
753 }
754
755 return index;
756 }
757
758 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
759 int pref_index)
760 {
761 int epp = -EINVAL;
762 int ret;
763
764 if (!pref_index)
765 epp = cpu_data->epp_default;
766
767 mutex_lock(&intel_pstate_limits_lock);
768
769 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
770 u64 value;
771
772 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
773 if (ret)
774 goto return_pref;
775
776 value &= ~GENMASK_ULL(31, 24);
777
778 /*
779 * If epp is not default, convert from index into
780 * energy_perf_strings to epp value, by shifting 6
781 * bits left to use only top two bits in epp.
782 * The resultant epp need to shifted by 24 bits to
783 * epp position in MSR_HWP_REQUEST.
784 */
785 if (epp == -EINVAL)
786 epp = (pref_index - 1) << 6;
787
788 value |= (u64)epp << 24;
789 ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
790 } else {
791 if (epp == -EINVAL)
792 epp = (pref_index - 1) << 2;
793 ret = intel_pstate_set_epb(cpu_data->cpu, epp);
794 }
795 return_pref:
796 mutex_unlock(&intel_pstate_limits_lock);
797
798 return ret;
799 }
800
801 static ssize_t show_energy_performance_available_preferences(
802 struct cpufreq_policy *policy, char *buf)
803 {
804 int i = 0;
805 int ret = 0;
806
807 while (energy_perf_strings[i] != NULL)
808 ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
809
810 ret += sprintf(&buf[ret], "\n");
811
812 return ret;
813 }
814
815 cpufreq_freq_attr_ro(energy_performance_available_preferences);
816
817 static ssize_t store_energy_performance_preference(
818 struct cpufreq_policy *policy, const char *buf, size_t count)
819 {
820 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
821 char str_preference[21];
822 int ret, i = 0;
823
824 ret = sscanf(buf, "%20s", str_preference);
825 if (ret != 1)
826 return -EINVAL;
827
828 while (energy_perf_strings[i] != NULL) {
829 if (!strcmp(str_preference, energy_perf_strings[i])) {
830 intel_pstate_set_energy_pref_index(cpu_data, i);
831 return count;
832 }
833 ++i;
834 }
835
836 return -EINVAL;
837 }
838
839 static ssize_t show_energy_performance_preference(
840 struct cpufreq_policy *policy, char *buf)
841 {
842 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
843 int preference;
844
845 preference = intel_pstate_get_energy_pref_index(cpu_data);
846 if (preference < 0)
847 return preference;
848
849 return sprintf(buf, "%s\n", energy_perf_strings[preference]);
850 }
851
852 cpufreq_freq_attr_rw(energy_performance_preference);
853
854 static struct freq_attr *hwp_cpufreq_attrs[] = {
855 &energy_performance_preference,
856 &energy_performance_available_preferences,
857 NULL,
858 };
859
860 static void intel_pstate_hwp_set(const struct cpumask *cpumask)
861 {
862 int min, hw_min, max, hw_max, cpu, range, adj_range;
863 struct perf_limits *perf_limits = limits;
864 u64 value, cap;
865
866 for_each_cpu(cpu, cpumask) {
867 int max_perf_pct, min_perf_pct;
868 struct cpudata *cpu_data = all_cpu_data[cpu];
869 s16 epp;
870
871 if (per_cpu_limits)
872 perf_limits = all_cpu_data[cpu]->perf_limits;
873
874 rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
875 hw_min = HWP_LOWEST_PERF(cap);
876 hw_max = HWP_HIGHEST_PERF(cap);
877 range = hw_max - hw_min;
878
879 max_perf_pct = perf_limits->max_perf_pct;
880 min_perf_pct = perf_limits->min_perf_pct;
881
882 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
883 adj_range = min_perf_pct * range / 100;
884 min = hw_min + adj_range;
885 value &= ~HWP_MIN_PERF(~0L);
886 value |= HWP_MIN_PERF(min);
887
888 adj_range = max_perf_pct * range / 100;
889 max = hw_min + adj_range;
890 if (limits->no_turbo) {
891 hw_max = HWP_GUARANTEED_PERF(cap);
892 if (hw_max < max)
893 max = hw_max;
894 }
895
896 value &= ~HWP_MAX_PERF(~0L);
897 value |= HWP_MAX_PERF(max);
898
899 if (cpu_data->epp_policy == cpu_data->policy)
900 goto skip_epp;
901
902 cpu_data->epp_policy = cpu_data->policy;
903
904 if (cpu_data->epp_saved >= 0) {
905 epp = cpu_data->epp_saved;
906 cpu_data->epp_saved = -EINVAL;
907 goto update_epp;
908 }
909
910 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
911 epp = intel_pstate_get_epp(cpu_data, value);
912 cpu_data->epp_powersave = epp;
913 /* If EPP read was failed, then don't try to write */
914 if (epp < 0)
915 goto skip_epp;
916
917
918 epp = 0;
919 } else {
920 /* skip setting EPP, when saved value is invalid */
921 if (cpu_data->epp_powersave < 0)
922 goto skip_epp;
923
924 /*
925 * No need to restore EPP when it is not zero. This
926 * means:
927 * - Policy is not changed
928 * - user has manually changed
929 * - Error reading EPB
930 */
931 epp = intel_pstate_get_epp(cpu_data, value);
932 if (epp)
933 goto skip_epp;
934
935 epp = cpu_data->epp_powersave;
936 }
937 update_epp:
938 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
939 value &= ~GENMASK_ULL(31, 24);
940 value |= (u64)epp << 24;
941 } else {
942 intel_pstate_set_epb(cpu, epp);
943 }
944 skip_epp:
945 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
946 }
947 }
948
949 static int intel_pstate_hwp_set_policy(struct cpufreq_policy *policy)
950 {
951 if (hwp_active)
952 intel_pstate_hwp_set(policy->cpus);
953
954 return 0;
955 }
956
957 static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
958 {
959 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
960
961 if (!hwp_active)
962 return 0;
963
964 cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);
965
966 return 0;
967 }
968
969 static int intel_pstate_resume(struct cpufreq_policy *policy)
970 {
971 if (!hwp_active)
972 return 0;
973
974 all_cpu_data[policy->cpu]->epp_policy = 0;
975
976 return intel_pstate_hwp_set_policy(policy);
977 }
978
979 static void intel_pstate_hwp_set_online_cpus(void)
980 {
981 get_online_cpus();
982 intel_pstate_hwp_set(cpu_online_mask);
983 put_online_cpus();
984 }
985
986 /************************** debugfs begin ************************/
987 static int pid_param_set(void *data, u64 val)
988 {
989 *(u32 *)data = val;
990 intel_pstate_reset_all_pid();
991 return 0;
992 }
993
994 static int pid_param_get(void *data, u64 *val)
995 {
996 *val = *(u32 *)data;
997 return 0;
998 }
999 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
1000
1001 struct pid_param {
1002 char *name;
1003 void *value;
1004 };
1005
1006 static struct pid_param pid_files[] = {
1007 {"sample_rate_ms", &pid_params.sample_rate_ms},
1008 {"d_gain_pct", &pid_params.d_gain_pct},
1009 {"i_gain_pct", &pid_params.i_gain_pct},
1010 {"deadband", &pid_params.deadband},
1011 {"setpoint", &pid_params.setpoint},
1012 {"p_gain_pct", &pid_params.p_gain_pct},
1013 {NULL, NULL}
1014 };
1015
1016 static void __init intel_pstate_debug_expose_params(void)
1017 {
1018 struct dentry *debugfs_parent;
1019 int i = 0;
1020
1021 if (hwp_active ||
1022 pstate_funcs.get_target_pstate == get_target_pstate_use_cpu_load)
1023 return;
1024
1025 debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
1026 if (IS_ERR_OR_NULL(debugfs_parent))
1027 return;
1028 while (pid_files[i].name) {
1029 debugfs_create_file(pid_files[i].name, 0660,
1030 debugfs_parent, pid_files[i].value,
1031 &fops_pid_param);
1032 i++;
1033 }
1034 }
1035
1036 /************************** debugfs end ************************/
1037
1038 /************************** sysfs begin ************************/
1039 #define show_one(file_name, object) \
1040 static ssize_t show_##file_name \
1041 (struct kobject *kobj, struct attribute *attr, char *buf) \
1042 { \
1043 return sprintf(buf, "%u\n", limits->object); \
1044 }
1045
1046 static ssize_t show_turbo_pct(struct kobject *kobj,
1047 struct attribute *attr, char *buf)
1048 {
1049 struct cpudata *cpu;
1050 int total, no_turbo, turbo_pct;
1051 uint32_t turbo_fp;
1052
1053 cpu = all_cpu_data[0];
1054
1055 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1056 no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1057 turbo_fp = div_fp(no_turbo, total);
1058 turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1059 return sprintf(buf, "%u\n", turbo_pct);
1060 }
1061
1062 static ssize_t show_num_pstates(struct kobject *kobj,
1063 struct attribute *attr, char *buf)
1064 {
1065 struct cpudata *cpu;
1066 int total;
1067
1068 cpu = all_cpu_data[0];
1069 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1070 return sprintf(buf, "%u\n", total);
1071 }
1072
1073 static ssize_t show_no_turbo(struct kobject *kobj,
1074 struct attribute *attr, char *buf)
1075 {
1076 ssize_t ret;
1077
1078 update_turbo_state();
1079 if (limits->turbo_disabled)
1080 ret = sprintf(buf, "%u\n", limits->turbo_disabled);
1081 else
1082 ret = sprintf(buf, "%u\n", limits->no_turbo);
1083
1084 return ret;
1085 }
1086
1087 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
1088 const char *buf, size_t count)
1089 {
1090 unsigned int input;
1091 int ret;
1092
1093 ret = sscanf(buf, "%u", &input);
1094 if (ret != 1)
1095 return -EINVAL;
1096
1097 mutex_lock(&intel_pstate_limits_lock);
1098
1099 update_turbo_state();
1100 if (limits->turbo_disabled) {
1101 pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
1102 mutex_unlock(&intel_pstate_limits_lock);
1103 return -EPERM;
1104 }
1105
1106 limits->no_turbo = clamp_t(int, input, 0, 1);
1107
1108 if (hwp_active)
1109 intel_pstate_hwp_set_online_cpus();
1110
1111 mutex_unlock(&intel_pstate_limits_lock);
1112
1113 return count;
1114 }
1115
1116 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
1117 const char *buf, size_t count)
1118 {
1119 unsigned int input;
1120 int ret;
1121
1122 ret = sscanf(buf, "%u", &input);
1123 if (ret != 1)
1124 return -EINVAL;
1125
1126 mutex_lock(&intel_pstate_limits_lock);
1127
1128 limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
1129 limits->max_perf_pct = min(limits->max_policy_pct,
1130 limits->max_sysfs_pct);
1131 limits->max_perf_pct = max(limits->min_policy_pct,
1132 limits->max_perf_pct);
1133 limits->max_perf_pct = max(limits->min_perf_pct,
1134 limits->max_perf_pct);
1135 limits->max_perf = div_ext_fp(limits->max_perf_pct, 100);
1136
1137 if (hwp_active)
1138 intel_pstate_hwp_set_online_cpus();
1139
1140 mutex_unlock(&intel_pstate_limits_lock);
1141
1142 return count;
1143 }
1144
1145 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
1146 const char *buf, size_t count)
1147 {
1148 unsigned int input;
1149 int ret;
1150
1151 ret = sscanf(buf, "%u", &input);
1152 if (ret != 1)
1153 return -EINVAL;
1154
1155 mutex_lock(&intel_pstate_limits_lock);
1156
1157 limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
1158 limits->min_perf_pct = max(limits->min_policy_pct,
1159 limits->min_sysfs_pct);
1160 limits->min_perf_pct = min(limits->max_policy_pct,
1161 limits->min_perf_pct);
1162 limits->min_perf_pct = min(limits->max_perf_pct,
1163 limits->min_perf_pct);
1164 limits->min_perf = div_ext_fp(limits->min_perf_pct, 100);
1165
1166 if (hwp_active)
1167 intel_pstate_hwp_set_online_cpus();
1168
1169 mutex_unlock(&intel_pstate_limits_lock);
1170
1171 return count;
1172 }
1173
1174 show_one(max_perf_pct, max_perf_pct);
1175 show_one(min_perf_pct, min_perf_pct);
1176
1177 define_one_global_rw(no_turbo);
1178 define_one_global_rw(max_perf_pct);
1179 define_one_global_rw(min_perf_pct);
1180 define_one_global_ro(turbo_pct);
1181 define_one_global_ro(num_pstates);
1182
1183 static struct attribute *intel_pstate_attributes[] = {
1184 &no_turbo.attr,
1185 &turbo_pct.attr,
1186 &num_pstates.attr,
1187 NULL
1188 };
1189
1190 static struct attribute_group intel_pstate_attr_group = {
1191 .attrs = intel_pstate_attributes,
1192 };
1193
1194 static void __init intel_pstate_sysfs_expose_params(void)
1195 {
1196 struct kobject *intel_pstate_kobject;
1197 int rc;
1198
1199 intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1200 &cpu_subsys.dev_root->kobj);
1201 if (WARN_ON(!intel_pstate_kobject))
1202 return;
1203
1204 rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1205 if (WARN_ON(rc))
1206 return;
1207
1208 /*
1209 * If per cpu limits are enforced there are no global limits, so
1210 * return without creating max/min_perf_pct attributes
1211 */
1212 if (per_cpu_limits)
1213 return;
1214
1215 rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1216 WARN_ON(rc);
1217
1218 rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1219 WARN_ON(rc);
1220
1221 }
1222 /************************** sysfs end ************************/
1223
1224 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1225 {
1226 /* First disable HWP notification interrupt as we don't process them */
1227 if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
1228 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1229
1230 wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1231 cpudata->epp_policy = 0;
1232 if (cpudata->epp_default == -EINVAL)
1233 cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1234 }
1235
1236 static int atom_get_min_pstate(void)
1237 {
1238 u64 value;
1239
1240 rdmsrl(ATOM_RATIOS, value);
1241 return (value >> 8) & 0x7F;
1242 }
1243
1244 static int atom_get_max_pstate(void)
1245 {
1246 u64 value;
1247
1248 rdmsrl(ATOM_RATIOS, value);
1249 return (value >> 16) & 0x7F;
1250 }
1251
1252 static int atom_get_turbo_pstate(void)
1253 {
1254 u64 value;
1255
1256 rdmsrl(ATOM_TURBO_RATIOS, value);
1257 return value & 0x7F;
1258 }
1259
1260 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1261 {
1262 u64 val;
1263 int32_t vid_fp;
1264 u32 vid;
1265
1266 val = (u64)pstate << 8;
1267 if (limits->no_turbo && !limits->turbo_disabled)
1268 val |= (u64)1 << 32;
1269
1270 vid_fp = cpudata->vid.min + mul_fp(
1271 int_tofp(pstate - cpudata->pstate.min_pstate),
1272 cpudata->vid.ratio);
1273
1274 vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1275 vid = ceiling_fp(vid_fp);
1276
1277 if (pstate > cpudata->pstate.max_pstate)
1278 vid = cpudata->vid.turbo;
1279
1280 return val | vid;
1281 }
1282
1283 static int silvermont_get_scaling(void)
1284 {
1285 u64 value;
1286 int i;
1287 /* Defined in Table 35-6 from SDM (Sept 2015) */
1288 static int silvermont_freq_table[] = {
1289 83300, 100000, 133300, 116700, 80000};
1290
1291 rdmsrl(MSR_FSB_FREQ, value);
1292 i = value & 0x7;
1293 WARN_ON(i > 4);
1294
1295 return silvermont_freq_table[i];
1296 }
1297
1298 static int airmont_get_scaling(void)
1299 {
1300 u64 value;
1301 int i;
1302 /* Defined in Table 35-10 from SDM (Sept 2015) */
1303 static int airmont_freq_table[] = {
1304 83300, 100000, 133300, 116700, 80000,
1305 93300, 90000, 88900, 87500};
1306
1307 rdmsrl(MSR_FSB_FREQ, value);
1308 i = value & 0xF;
1309 WARN_ON(i > 8);
1310
1311 return airmont_freq_table[i];
1312 }
1313
1314 static void atom_get_vid(struct cpudata *cpudata)
1315 {
1316 u64 value;
1317
1318 rdmsrl(ATOM_VIDS, value);
1319 cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1320 cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1321 cpudata->vid.ratio = div_fp(
1322 cpudata->vid.max - cpudata->vid.min,
1323 int_tofp(cpudata->pstate.max_pstate -
1324 cpudata->pstate.min_pstate));
1325
1326 rdmsrl(ATOM_TURBO_VIDS, value);
1327 cpudata->vid.turbo = value & 0x7f;
1328 }
1329
1330 static int core_get_min_pstate(void)
1331 {
1332 u64 value;
1333
1334 rdmsrl(MSR_PLATFORM_INFO, value);
1335 return (value >> 40) & 0xFF;
1336 }
1337
1338 static int core_get_max_pstate_physical(void)
1339 {
1340 u64 value;
1341
1342 rdmsrl(MSR_PLATFORM_INFO, value);
1343 return (value >> 8) & 0xFF;
1344 }
1345
1346 static int core_get_max_pstate(void)
1347 {
1348 u64 tar;
1349 u64 plat_info;
1350 int max_pstate;
1351 int err;
1352
1353 rdmsrl(MSR_PLATFORM_INFO, plat_info);
1354 max_pstate = (plat_info >> 8) & 0xFF;
1355
1356 err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1357 if (!err) {
1358 /* Do some sanity checking for safety */
1359 if (plat_info & 0x600000000) {
1360 u64 tdp_ctrl;
1361 u64 tdp_ratio;
1362 int tdp_msr;
1363
1364 err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1365 if (err)
1366 goto skip_tar;
1367
1368 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x3);
1369 err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1370 if (err)
1371 goto skip_tar;
1372
1373 /* For level 1 and 2, bits[23:16] contain the ratio */
1374 if (tdp_ctrl)
1375 tdp_ratio >>= 16;
1376
1377 tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1378 if (tdp_ratio - 1 == tar) {
1379 max_pstate = tar;
1380 pr_debug("max_pstate=TAC %x\n", max_pstate);
1381 } else {
1382 goto skip_tar;
1383 }
1384 }
1385 }
1386
1387 skip_tar:
1388 return max_pstate;
1389 }
1390
1391 static int core_get_turbo_pstate(void)
1392 {
1393 u64 value;
1394 int nont, ret;
1395
1396 rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1397 nont = core_get_max_pstate();
1398 ret = (value) & 255;
1399 if (ret <= nont)
1400 ret = nont;
1401 return ret;
1402 }
1403
1404 static inline int core_get_scaling(void)
1405 {
1406 return 100000;
1407 }
1408
1409 static u64 core_get_val(struct cpudata *cpudata, int pstate)
1410 {
1411 u64 val;
1412
1413 val = (u64)pstate << 8;
1414 if (limits->no_turbo && !limits->turbo_disabled)
1415 val |= (u64)1 << 32;
1416
1417 return val;
1418 }
1419
1420 static int knl_get_turbo_pstate(void)
1421 {
1422 u64 value;
1423 int nont, ret;
1424
1425 rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1426 nont = core_get_max_pstate();
1427 ret = (((value) >> 8) & 0xFF);
1428 if (ret <= nont)
1429 ret = nont;
1430 return ret;
1431 }
1432
1433 static struct cpu_defaults core_params = {
1434 .pid_policy = {
1435 .sample_rate_ms = 10,
1436 .deadband = 0,
1437 .setpoint = 97,
1438 .p_gain_pct = 20,
1439 .d_gain_pct = 0,
1440 .i_gain_pct = 0,
1441 },
1442 .funcs = {
1443 .get_max = core_get_max_pstate,
1444 .get_max_physical = core_get_max_pstate_physical,
1445 .get_min = core_get_min_pstate,
1446 .get_turbo = core_get_turbo_pstate,
1447 .get_scaling = core_get_scaling,
1448 .get_val = core_get_val,
1449 .get_target_pstate = get_target_pstate_use_performance,
1450 },
1451 };
1452
1453 static const struct cpu_defaults silvermont_params = {
1454 .pid_policy = {
1455 .sample_rate_ms = 10,
1456 .deadband = 0,
1457 .setpoint = 60,
1458 .p_gain_pct = 14,
1459 .d_gain_pct = 0,
1460 .i_gain_pct = 4,
1461 },
1462 .funcs = {
1463 .get_max = atom_get_max_pstate,
1464 .get_max_physical = atom_get_max_pstate,
1465 .get_min = atom_get_min_pstate,
1466 .get_turbo = atom_get_turbo_pstate,
1467 .get_val = atom_get_val,
1468 .get_scaling = silvermont_get_scaling,
1469 .get_vid = atom_get_vid,
1470 .get_target_pstate = get_target_pstate_use_cpu_load,
1471 },
1472 };
1473
1474 static const struct cpu_defaults airmont_params = {
1475 .pid_policy = {
1476 .sample_rate_ms = 10,
1477 .deadband = 0,
1478 .setpoint = 60,
1479 .p_gain_pct = 14,
1480 .d_gain_pct = 0,
1481 .i_gain_pct = 4,
1482 },
1483 .funcs = {
1484 .get_max = atom_get_max_pstate,
1485 .get_max_physical = atom_get_max_pstate,
1486 .get_min = atom_get_min_pstate,
1487 .get_turbo = atom_get_turbo_pstate,
1488 .get_val = atom_get_val,
1489 .get_scaling = airmont_get_scaling,
1490 .get_vid = atom_get_vid,
1491 .get_target_pstate = get_target_pstate_use_cpu_load,
1492 },
1493 };
1494
1495 static const struct cpu_defaults knl_params = {
1496 .pid_policy = {
1497 .sample_rate_ms = 10,
1498 .deadband = 0,
1499 .setpoint = 97,
1500 .p_gain_pct = 20,
1501 .d_gain_pct = 0,
1502 .i_gain_pct = 0,
1503 },
1504 .funcs = {
1505 .get_max = core_get_max_pstate,
1506 .get_max_physical = core_get_max_pstate_physical,
1507 .get_min = core_get_min_pstate,
1508 .get_turbo = knl_get_turbo_pstate,
1509 .get_scaling = core_get_scaling,
1510 .get_val = core_get_val,
1511 .get_target_pstate = get_target_pstate_use_performance,
1512 },
1513 };
1514
1515 static const struct cpu_defaults bxt_params = {
1516 .pid_policy = {
1517 .sample_rate_ms = 10,
1518 .deadband = 0,
1519 .setpoint = 60,
1520 .p_gain_pct = 14,
1521 .d_gain_pct = 0,
1522 .i_gain_pct = 4,
1523 },
1524 .funcs = {
1525 .get_max = core_get_max_pstate,
1526 .get_max_physical = core_get_max_pstate_physical,
1527 .get_min = core_get_min_pstate,
1528 .get_turbo = core_get_turbo_pstate,
1529 .get_scaling = core_get_scaling,
1530 .get_val = core_get_val,
1531 .get_target_pstate = get_target_pstate_use_cpu_load,
1532 },
1533 };
1534
1535 static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
1536 {
1537 int max_perf = cpu->pstate.turbo_pstate;
1538 int max_perf_adj;
1539 int min_perf;
1540 struct perf_limits *perf_limits = limits;
1541
1542 if (limits->no_turbo || limits->turbo_disabled)
1543 max_perf = cpu->pstate.max_pstate;
1544
1545 if (per_cpu_limits)
1546 perf_limits = cpu->perf_limits;
1547
1548 /*
1549 * performance can be limited by user through sysfs, by cpufreq
1550 * policy, or by cpu specific default values determined through
1551 * experimentation.
1552 */
1553 max_perf_adj = fp_ext_toint(max_perf * perf_limits->max_perf);
1554 *max = clamp_t(int, max_perf_adj,
1555 cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
1556
1557 min_perf = fp_ext_toint(max_perf * perf_limits->min_perf);
1558 *min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
1559 }
1560
1561 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1562 {
1563 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1564 cpu->pstate.current_pstate = pstate;
1565 /*
1566 * Generally, there is no guarantee that this code will always run on
1567 * the CPU being updated, so force the register update to run on the
1568 * right CPU.
1569 */
1570 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1571 pstate_funcs.get_val(cpu, pstate));
1572 }
1573
1574 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1575 {
1576 intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1577 }
1578
1579 static void intel_pstate_max_within_limits(struct cpudata *cpu)
1580 {
1581 int min_pstate, max_pstate;
1582
1583 update_turbo_state();
1584 intel_pstate_get_min_max(cpu, &min_pstate, &max_pstate);
1585 intel_pstate_set_pstate(cpu, max_pstate);
1586 }
1587
1588 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1589 {
1590 cpu->pstate.min_pstate = pstate_funcs.get_min();
1591 cpu->pstate.max_pstate = pstate_funcs.get_max();
1592 cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1593 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1594 cpu->pstate.scaling = pstate_funcs.get_scaling();
1595 cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1596 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1597
1598 if (pstate_funcs.get_vid)
1599 pstate_funcs.get_vid(cpu);
1600
1601 intel_pstate_set_min_pstate(cpu);
1602 }
1603
1604 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1605 {
1606 struct sample *sample = &cpu->sample;
1607
1608 sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1609 }
1610
1611 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1612 {
1613 u64 aperf, mperf;
1614 unsigned long flags;
1615 u64 tsc;
1616
1617 local_irq_save(flags);
1618 rdmsrl(MSR_IA32_APERF, aperf);
1619 rdmsrl(MSR_IA32_MPERF, mperf);
1620 tsc = rdtsc();
1621 if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1622 local_irq_restore(flags);
1623 return false;
1624 }
1625 local_irq_restore(flags);
1626
1627 cpu->last_sample_time = cpu->sample.time;
1628 cpu->sample.time = time;
1629 cpu->sample.aperf = aperf;
1630 cpu->sample.mperf = mperf;
1631 cpu->sample.tsc = tsc;
1632 cpu->sample.aperf -= cpu->prev_aperf;
1633 cpu->sample.mperf -= cpu->prev_mperf;
1634 cpu->sample.tsc -= cpu->prev_tsc;
1635
1636 cpu->prev_aperf = aperf;
1637 cpu->prev_mperf = mperf;
1638 cpu->prev_tsc = tsc;
1639 /*
1640 * First time this function is invoked in a given cycle, all of the
1641 * previous sample data fields are equal to zero or stale and they must
1642 * be populated with meaningful numbers for things to work, so assume
1643 * that sample.time will always be reset before setting the utilization
1644 * update hook and make the caller skip the sample then.
1645 */
1646 return !!cpu->last_sample_time;
1647 }
1648
1649 static inline int32_t get_avg_frequency(struct cpudata *cpu)
1650 {
1651 return mul_ext_fp(cpu->sample.core_avg_perf,
1652 cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
1653 }
1654
1655 static inline int32_t get_avg_pstate(struct cpudata *cpu)
1656 {
1657 return mul_ext_fp(cpu->pstate.max_pstate_physical,
1658 cpu->sample.core_avg_perf);
1659 }
1660
1661 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
1662 {
1663 struct sample *sample = &cpu->sample;
1664 int32_t busy_frac, boost;
1665 int target, avg_pstate;
1666
1667 busy_frac = div_fp(sample->mperf, sample->tsc);
1668
1669 boost = cpu->iowait_boost;
1670 cpu->iowait_boost >>= 1;
1671
1672 if (busy_frac < boost)
1673 busy_frac = boost;
1674
1675 sample->busy_scaled = busy_frac * 100;
1676
1677 target = limits->no_turbo || limits->turbo_disabled ?
1678 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1679 target += target >> 2;
1680 target = mul_fp(target, busy_frac);
1681 if (target < cpu->pstate.min_pstate)
1682 target = cpu->pstate.min_pstate;
1683
1684 /*
1685 * If the average P-state during the previous cycle was higher than the
1686 * current target, add 50% of the difference to the target to reduce
1687 * possible performance oscillations and offset possible performance
1688 * loss related to moving the workload from one CPU to another within
1689 * a package/module.
1690 */
1691 avg_pstate = get_avg_pstate(cpu);
1692 if (avg_pstate > target)
1693 target += (avg_pstate - target) >> 1;
1694
1695 return target;
1696 }
1697
1698 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
1699 {
1700 int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
1701 u64 duration_ns;
1702
1703 /*
1704 * perf_scaled is the ratio of the average P-state during the last
1705 * sampling period to the P-state requested last time (in percent).
1706 *
1707 * That measures the system's response to the previous P-state
1708 * selection.
1709 */
1710 max_pstate = cpu->pstate.max_pstate_physical;
1711 current_pstate = cpu->pstate.current_pstate;
1712 perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
1713 div_fp(100 * max_pstate, current_pstate));
1714
1715 /*
1716 * Since our utilization update callback will not run unless we are
1717 * in C0, check if the actual elapsed time is significantly greater (3x)
1718 * than our sample interval. If it is, then we were idle for a long
1719 * enough period of time to adjust our performance metric.
1720 */
1721 duration_ns = cpu->sample.time - cpu->last_sample_time;
1722 if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
1723 sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1724 perf_scaled = mul_fp(perf_scaled, sample_ratio);
1725 } else {
1726 sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
1727 if (sample_ratio < int_tofp(1))
1728 perf_scaled = 0;
1729 }
1730
1731 cpu->sample.busy_scaled = perf_scaled;
1732 return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
1733 }
1734
1735 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1736 {
1737 int max_perf, min_perf;
1738
1739 intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
1740 pstate = clamp_t(int, pstate, min_perf, max_perf);
1741 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1742 return pstate;
1743 }
1744
1745 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1746 {
1747 pstate = intel_pstate_prepare_request(cpu, pstate);
1748 if (pstate == cpu->pstate.current_pstate)
1749 return;
1750
1751 cpu->pstate.current_pstate = pstate;
1752 wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1753 }
1754
1755 static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
1756 {
1757 int from, target_pstate;
1758 struct sample *sample;
1759
1760 from = cpu->pstate.current_pstate;
1761
1762 target_pstate = cpu->policy == CPUFREQ_POLICY_PERFORMANCE ?
1763 cpu->pstate.turbo_pstate : pstate_funcs.get_target_pstate(cpu);
1764
1765 update_turbo_state();
1766
1767 intel_pstate_update_pstate(cpu, target_pstate);
1768
1769 sample = &cpu->sample;
1770 trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1771 fp_toint(sample->busy_scaled),
1772 from,
1773 cpu->pstate.current_pstate,
1774 sample->mperf,
1775 sample->aperf,
1776 sample->tsc,
1777 get_avg_frequency(cpu),
1778 fp_toint(cpu->iowait_boost * 100));
1779 }
1780
1781 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1782 unsigned int flags)
1783 {
1784 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1785 u64 delta_ns;
1786
1787 if (pstate_funcs.get_target_pstate == get_target_pstate_use_cpu_load) {
1788 if (flags & SCHED_CPUFREQ_IOWAIT) {
1789 cpu->iowait_boost = int_tofp(1);
1790 } else if (cpu->iowait_boost) {
1791 /* Clear iowait_boost if the CPU may have been idle. */
1792 delta_ns = time - cpu->last_update;
1793 if (delta_ns > TICK_NSEC)
1794 cpu->iowait_boost = 0;
1795 }
1796 cpu->last_update = time;
1797 }
1798
1799 delta_ns = time - cpu->sample.time;
1800 if ((s64)delta_ns >= pid_params.sample_rate_ns) {
1801 bool sample_taken = intel_pstate_sample(cpu, time);
1802
1803 if (sample_taken) {
1804 intel_pstate_calc_avg_perf(cpu);
1805 if (!hwp_active)
1806 intel_pstate_adjust_busy_pstate(cpu);
1807 }
1808 }
1809 }
1810
1811 #define ICPU(model, policy) \
1812 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1813 (unsigned long)&policy }
1814
1815 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1816 ICPU(INTEL_FAM6_SANDYBRIDGE, core_params),
1817 ICPU(INTEL_FAM6_SANDYBRIDGE_X, core_params),
1818 ICPU(INTEL_FAM6_ATOM_SILVERMONT1, silvermont_params),
1819 ICPU(INTEL_FAM6_IVYBRIDGE, core_params),
1820 ICPU(INTEL_FAM6_HASWELL_CORE, core_params),
1821 ICPU(INTEL_FAM6_BROADWELL_CORE, core_params),
1822 ICPU(INTEL_FAM6_IVYBRIDGE_X, core_params),
1823 ICPU(INTEL_FAM6_HASWELL_X, core_params),
1824 ICPU(INTEL_FAM6_HASWELL_ULT, core_params),
1825 ICPU(INTEL_FAM6_HASWELL_GT3E, core_params),
1826 ICPU(INTEL_FAM6_BROADWELL_GT3E, core_params),
1827 ICPU(INTEL_FAM6_ATOM_AIRMONT, airmont_params),
1828 ICPU(INTEL_FAM6_SKYLAKE_MOBILE, core_params),
1829 ICPU(INTEL_FAM6_BROADWELL_X, core_params),
1830 ICPU(INTEL_FAM6_SKYLAKE_DESKTOP, core_params),
1831 ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
1832 ICPU(INTEL_FAM6_XEON_PHI_KNL, knl_params),
1833 ICPU(INTEL_FAM6_XEON_PHI_KNM, knl_params),
1834 ICPU(INTEL_FAM6_ATOM_GOLDMONT, bxt_params),
1835 {}
1836 };
1837 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1838
1839 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1840 ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
1841 ICPU(INTEL_FAM6_BROADWELL_X, core_params),
1842 ICPU(INTEL_FAM6_SKYLAKE_X, core_params),
1843 {}
1844 };
1845
1846 static int intel_pstate_init_cpu(unsigned int cpunum)
1847 {
1848 struct cpudata *cpu;
1849
1850 cpu = all_cpu_data[cpunum];
1851
1852 if (!cpu) {
1853 unsigned int size = sizeof(struct cpudata);
1854
1855 if (per_cpu_limits)
1856 size += sizeof(struct perf_limits);
1857
1858 cpu = kzalloc(size, GFP_KERNEL);
1859 if (!cpu)
1860 return -ENOMEM;
1861
1862 all_cpu_data[cpunum] = cpu;
1863 if (per_cpu_limits)
1864 cpu->perf_limits = (struct perf_limits *)(cpu + 1);
1865
1866 cpu->epp_default = -EINVAL;
1867 cpu->epp_powersave = -EINVAL;
1868 cpu->epp_saved = -EINVAL;
1869 }
1870
1871 cpu = all_cpu_data[cpunum];
1872
1873 cpu->cpu = cpunum;
1874
1875 if (hwp_active) {
1876 intel_pstate_hwp_enable(cpu);
1877 pid_params.sample_rate_ms = 50;
1878 pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
1879 }
1880
1881 intel_pstate_get_cpu_pstates(cpu);
1882
1883 intel_pstate_busy_pid_reset(cpu);
1884
1885 pr_debug("controlling: cpu %d\n", cpunum);
1886
1887 return 0;
1888 }
1889
1890 static unsigned int intel_pstate_get(unsigned int cpu_num)
1891 {
1892 struct cpudata *cpu = all_cpu_data[cpu_num];
1893
1894 return cpu ? get_avg_frequency(cpu) : 0;
1895 }
1896
1897 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1898 {
1899 struct cpudata *cpu = all_cpu_data[cpu_num];
1900
1901 if (cpu->update_util_set)
1902 return;
1903
1904 /* Prevent intel_pstate_update_util() from using stale data. */
1905 cpu->sample.time = 0;
1906 cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1907 intel_pstate_update_util);
1908 cpu->update_util_set = true;
1909 }
1910
1911 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1912 {
1913 struct cpudata *cpu_data = all_cpu_data[cpu];
1914
1915 if (!cpu_data->update_util_set)
1916 return;
1917
1918 cpufreq_remove_update_util_hook(cpu);
1919 cpu_data->update_util_set = false;
1920 synchronize_sched();
1921 }
1922
1923 static void intel_pstate_set_performance_limits(struct perf_limits *limits)
1924 {
1925 limits->no_turbo = 0;
1926 limits->turbo_disabled = 0;
1927 limits->max_perf_pct = 100;
1928 limits->max_perf = int_ext_tofp(1);
1929 limits->min_perf_pct = 100;
1930 limits->min_perf = int_ext_tofp(1);
1931 limits->max_policy_pct = 100;
1932 limits->max_sysfs_pct = 100;
1933 limits->min_policy_pct = 0;
1934 limits->min_sysfs_pct = 0;
1935 }
1936
1937 static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
1938 struct perf_limits *limits)
1939 {
1940
1941 limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100,
1942 policy->cpuinfo.max_freq);
1943 limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0, 100);
1944 if (policy->max == policy->min) {
1945 limits->min_policy_pct = limits->max_policy_pct;
1946 } else {
1947 limits->min_policy_pct = DIV_ROUND_UP(policy->min * 100,
1948 policy->cpuinfo.max_freq);
1949 limits->min_policy_pct = clamp_t(int, limits->min_policy_pct,
1950 0, 100);
1951 }
1952
1953 /* Normalize user input to [min_policy_pct, max_policy_pct] */
1954 limits->min_perf_pct = max(limits->min_policy_pct,
1955 limits->min_sysfs_pct);
1956 limits->min_perf_pct = min(limits->max_policy_pct,
1957 limits->min_perf_pct);
1958 limits->max_perf_pct = min(limits->max_policy_pct,
1959 limits->max_sysfs_pct);
1960 limits->max_perf_pct = max(limits->min_policy_pct,
1961 limits->max_perf_pct);
1962
1963 /* Make sure min_perf_pct <= max_perf_pct */
1964 limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct);
1965
1966 limits->min_perf = div_ext_fp(limits->min_perf_pct, 100);
1967 limits->max_perf = div_ext_fp(limits->max_perf_pct, 100);
1968 limits->max_perf = round_up(limits->max_perf, EXT_FRAC_BITS);
1969 limits->min_perf = round_up(limits->min_perf, EXT_FRAC_BITS);
1970
1971 pr_debug("cpu:%d max_perf_pct:%d min_perf_pct:%d\n", policy->cpu,
1972 limits->max_perf_pct, limits->min_perf_pct);
1973 }
1974
1975 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
1976 {
1977 struct cpudata *cpu;
1978 struct perf_limits *perf_limits = NULL;
1979
1980 if (!policy->cpuinfo.max_freq)
1981 return -ENODEV;
1982
1983 pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
1984 policy->cpuinfo.max_freq, policy->max);
1985
1986 cpu = all_cpu_data[policy->cpu];
1987 cpu->policy = policy->policy;
1988
1989 if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
1990 policy->max < policy->cpuinfo.max_freq &&
1991 policy->max > cpu->pstate.max_pstate * cpu->pstate.scaling) {
1992 pr_debug("policy->max > max non turbo frequency\n");
1993 policy->max = policy->cpuinfo.max_freq;
1994 }
1995
1996 if (per_cpu_limits)
1997 perf_limits = cpu->perf_limits;
1998
1999 mutex_lock(&intel_pstate_limits_lock);
2000
2001 if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
2002 if (!perf_limits) {
2003 limits = &performance_limits;
2004 perf_limits = limits;
2005 }
2006 if (policy->max >= policy->cpuinfo.max_freq) {
2007 pr_debug("set performance\n");
2008 intel_pstate_set_performance_limits(perf_limits);
2009 goto out;
2010 }
2011 } else {
2012 pr_debug("set powersave\n");
2013 if (!perf_limits) {
2014 limits = &powersave_limits;
2015 perf_limits = limits;
2016 }
2017
2018 }
2019
2020 intel_pstate_update_perf_limits(policy, perf_limits);
2021 out:
2022 if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2023 /*
2024 * NOHZ_FULL CPUs need this as the governor callback may not
2025 * be invoked on them.
2026 */
2027 intel_pstate_clear_update_util_hook(policy->cpu);
2028 intel_pstate_max_within_limits(cpu);
2029 }
2030
2031 intel_pstate_set_update_util_hook(policy->cpu);
2032
2033 intel_pstate_hwp_set_policy(policy);
2034
2035 mutex_unlock(&intel_pstate_limits_lock);
2036
2037 return 0;
2038 }
2039
2040 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
2041 {
2042 cpufreq_verify_within_cpu_limits(policy);
2043
2044 if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
2045 policy->policy != CPUFREQ_POLICY_PERFORMANCE)
2046 return -EINVAL;
2047
2048 return 0;
2049 }
2050
2051 static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
2052 {
2053 intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
2054 }
2055
2056 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2057 {
2058 pr_debug("CPU %d exiting\n", policy->cpu);
2059
2060 intel_pstate_clear_update_util_hook(policy->cpu);
2061 if (hwp_active)
2062 intel_pstate_hwp_save_state(policy);
2063 else
2064 intel_cpufreq_stop_cpu(policy);
2065 }
2066
2067 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2068 {
2069 intel_pstate_exit_perf_limits(policy);
2070
2071 policy->fast_switch_possible = false;
2072
2073 return 0;
2074 }
2075
2076 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2077 {
2078 struct cpudata *cpu;
2079 int rc;
2080
2081 rc = intel_pstate_init_cpu(policy->cpu);
2082 if (rc)
2083 return rc;
2084
2085 cpu = all_cpu_data[policy->cpu];
2086
2087 /*
2088 * We need sane value in the cpu->perf_limits, so inherit from global
2089 * perf_limits limits, which are seeded with values based on the
2090 * CONFIG_CPU_FREQ_DEFAULT_GOV_*, during boot up.
2091 */
2092 if (per_cpu_limits)
2093 memcpy(cpu->perf_limits, limits, sizeof(struct perf_limits));
2094
2095 policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
2096 policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2097
2098 /* cpuinfo and default policy values */
2099 policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2100 update_turbo_state();
2101 policy->cpuinfo.max_freq = limits->turbo_disabled ?
2102 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2103 policy->cpuinfo.max_freq *= cpu->pstate.scaling;
2104
2105 intel_pstate_init_acpi_perf_limits(policy);
2106 cpumask_set_cpu(policy->cpu, policy->cpus);
2107
2108 policy->fast_switch_possible = true;
2109
2110 return 0;
2111 }
2112
2113 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2114 {
2115 int ret = __intel_pstate_cpu_init(policy);
2116
2117 if (ret)
2118 return ret;
2119
2120 policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
2121 if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
2122 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
2123 else
2124 policy->policy = CPUFREQ_POLICY_POWERSAVE;
2125
2126 return 0;
2127 }
2128
2129 static struct cpufreq_driver intel_pstate = {
2130 .flags = CPUFREQ_CONST_LOOPS,
2131 .verify = intel_pstate_verify_policy,
2132 .setpolicy = intel_pstate_set_policy,
2133 .suspend = intel_pstate_hwp_save_state,
2134 .resume = intel_pstate_resume,
2135 .get = intel_pstate_get,
2136 .init = intel_pstate_cpu_init,
2137 .exit = intel_pstate_cpu_exit,
2138 .stop_cpu = intel_pstate_stop_cpu,
2139 .name = "intel_pstate",
2140 };
2141
2142 static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
2143 {
2144 struct cpudata *cpu = all_cpu_data[policy->cpu];
2145 struct perf_limits *perf_limits = limits;
2146
2147 update_turbo_state();
2148 policy->cpuinfo.max_freq = limits->turbo_disabled ?
2149 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2150
2151 cpufreq_verify_within_cpu_limits(policy);
2152
2153 if (per_cpu_limits)
2154 perf_limits = cpu->perf_limits;
2155
2156 intel_pstate_update_perf_limits(policy, perf_limits);
2157
2158 return 0;
2159 }
2160
2161 static unsigned int intel_cpufreq_turbo_update(struct cpudata *cpu,
2162 struct cpufreq_policy *policy,
2163 unsigned int target_freq)
2164 {
2165 unsigned int max_freq;
2166
2167 update_turbo_state();
2168
2169 max_freq = limits->no_turbo || limits->turbo_disabled ?
2170 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2171 policy->cpuinfo.max_freq = max_freq;
2172 if (policy->max > max_freq)
2173 policy->max = max_freq;
2174
2175 if (target_freq > max_freq)
2176 target_freq = max_freq;
2177
2178 return target_freq;
2179 }
2180
2181 static int intel_cpufreq_target(struct cpufreq_policy *policy,
2182 unsigned int target_freq,
2183 unsigned int relation)
2184 {
2185 struct cpudata *cpu = all_cpu_data[policy->cpu];
2186 struct cpufreq_freqs freqs;
2187 int target_pstate;
2188
2189 freqs.old = policy->cur;
2190 freqs.new = intel_cpufreq_turbo_update(cpu, policy, target_freq);
2191
2192 cpufreq_freq_transition_begin(policy, &freqs);
2193 switch (relation) {
2194 case CPUFREQ_RELATION_L:
2195 target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2196 break;
2197 case CPUFREQ_RELATION_H:
2198 target_pstate = freqs.new / cpu->pstate.scaling;
2199 break;
2200 default:
2201 target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2202 break;
2203 }
2204 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2205 if (target_pstate != cpu->pstate.current_pstate) {
2206 cpu->pstate.current_pstate = target_pstate;
2207 wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
2208 pstate_funcs.get_val(cpu, target_pstate));
2209 }
2210 cpufreq_freq_transition_end(policy, &freqs, false);
2211
2212 return 0;
2213 }
2214
2215 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2216 unsigned int target_freq)
2217 {
2218 struct cpudata *cpu = all_cpu_data[policy->cpu];
2219 int target_pstate;
2220
2221 target_freq = intel_cpufreq_turbo_update(cpu, policy, target_freq);
2222 target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2223 intel_pstate_update_pstate(cpu, target_pstate);
2224 return target_freq;
2225 }
2226
2227 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2228 {
2229 int ret = __intel_pstate_cpu_init(policy);
2230
2231 if (ret)
2232 return ret;
2233
2234 policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2235 /* This reflects the intel_pstate_get_cpu_pstates() setting. */
2236 policy->cur = policy->cpuinfo.min_freq;
2237
2238 return 0;
2239 }
2240
2241 static struct cpufreq_driver intel_cpufreq = {
2242 .flags = CPUFREQ_CONST_LOOPS,
2243 .verify = intel_cpufreq_verify_policy,
2244 .target = intel_cpufreq_target,
2245 .fast_switch = intel_cpufreq_fast_switch,
2246 .init = intel_cpufreq_cpu_init,
2247 .exit = intel_pstate_cpu_exit,
2248 .stop_cpu = intel_cpufreq_stop_cpu,
2249 .name = "intel_cpufreq",
2250 };
2251
2252 static struct cpufreq_driver *intel_pstate_driver = &intel_pstate;
2253
2254 static int no_load __initdata;
2255 static int no_hwp __initdata;
2256 static int hwp_only __initdata;
2257 static unsigned int force_load __initdata;
2258
2259 static int __init intel_pstate_msrs_not_valid(void)
2260 {
2261 if (!pstate_funcs.get_max() ||
2262 !pstate_funcs.get_min() ||
2263 !pstate_funcs.get_turbo())
2264 return -ENODEV;
2265
2266 return 0;
2267 }
2268
2269 static void __init copy_pid_params(struct pstate_adjust_policy *policy)
2270 {
2271 pid_params.sample_rate_ms = policy->sample_rate_ms;
2272 pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
2273 pid_params.p_gain_pct = policy->p_gain_pct;
2274 pid_params.i_gain_pct = policy->i_gain_pct;
2275 pid_params.d_gain_pct = policy->d_gain_pct;
2276 pid_params.deadband = policy->deadband;
2277 pid_params.setpoint = policy->setpoint;
2278 }
2279
2280 #ifdef CONFIG_ACPI
2281 static void intel_pstate_use_acpi_profile(void)
2282 {
2283 if (acpi_gbl_FADT.preferred_profile == PM_MOBILE)
2284 pstate_funcs.get_target_pstate =
2285 get_target_pstate_use_cpu_load;
2286 }
2287 #else
2288 static void intel_pstate_use_acpi_profile(void)
2289 {
2290 }
2291 #endif
2292
2293 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2294 {
2295 pstate_funcs.get_max = funcs->get_max;
2296 pstate_funcs.get_max_physical = funcs->get_max_physical;
2297 pstate_funcs.get_min = funcs->get_min;
2298 pstate_funcs.get_turbo = funcs->get_turbo;
2299 pstate_funcs.get_scaling = funcs->get_scaling;
2300 pstate_funcs.get_val = funcs->get_val;
2301 pstate_funcs.get_vid = funcs->get_vid;
2302 pstate_funcs.get_target_pstate = funcs->get_target_pstate;
2303
2304 intel_pstate_use_acpi_profile();
2305 }
2306
2307 #ifdef CONFIG_ACPI
2308
2309 static bool __init intel_pstate_no_acpi_pss(void)
2310 {
2311 int i;
2312
2313 for_each_possible_cpu(i) {
2314 acpi_status status;
2315 union acpi_object *pss;
2316 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
2317 struct acpi_processor *pr = per_cpu(processors, i);
2318
2319 if (!pr)
2320 continue;
2321
2322 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
2323 if (ACPI_FAILURE(status))
2324 continue;
2325
2326 pss = buffer.pointer;
2327 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
2328 kfree(pss);
2329 return false;
2330 }
2331
2332 kfree(pss);
2333 }
2334
2335 return true;
2336 }
2337
2338 static bool __init intel_pstate_has_acpi_ppc(void)
2339 {
2340 int i;
2341
2342 for_each_possible_cpu(i) {
2343 struct acpi_processor *pr = per_cpu(processors, i);
2344
2345 if (!pr)
2346 continue;
2347 if (acpi_has_method(pr->handle, "_PPC"))
2348 return true;
2349 }
2350 return false;
2351 }
2352
2353 enum {
2354 PSS,
2355 PPC,
2356 };
2357
2358 struct hw_vendor_info {
2359 u16 valid;
2360 char oem_id[ACPI_OEM_ID_SIZE];
2361 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
2362 int oem_pwr_table;
2363 };
2364
2365 /* Hardware vendor-specific info that has its own power management modes */
2366 static struct hw_vendor_info vendor_info[] __initdata = {
2367 {1, "HP ", "ProLiant", PSS},
2368 {1, "ORACLE", "X4-2 ", PPC},
2369 {1, "ORACLE", "X4-2L ", PPC},
2370 {1, "ORACLE", "X4-2B ", PPC},
2371 {1, "ORACLE", "X3-2 ", PPC},
2372 {1, "ORACLE", "X3-2L ", PPC},
2373 {1, "ORACLE", "X3-2B ", PPC},
2374 {1, "ORACLE", "X4470M2 ", PPC},
2375 {1, "ORACLE", "X4270M3 ", PPC},
2376 {1, "ORACLE", "X4270M2 ", PPC},
2377 {1, "ORACLE", "X4170M2 ", PPC},
2378 {1, "ORACLE", "X4170 M3", PPC},
2379 {1, "ORACLE", "X4275 M3", PPC},
2380 {1, "ORACLE", "X6-2 ", PPC},
2381 {1, "ORACLE", "Sudbury ", PPC},
2382 {0, "", ""},
2383 };
2384
2385 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2386 {
2387 struct acpi_table_header hdr;
2388 struct hw_vendor_info *v_info;
2389 const struct x86_cpu_id *id;
2390 u64 misc_pwr;
2391
2392 id = x86_match_cpu(intel_pstate_cpu_oob_ids);
2393 if (id) {
2394 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2395 if ( misc_pwr & (1 << 8))
2396 return true;
2397 }
2398
2399 if (acpi_disabled ||
2400 ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
2401 return false;
2402
2403 for (v_info = vendor_info; v_info->valid; v_info++) {
2404 if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
2405 !strncmp(hdr.oem_table_id, v_info->oem_table_id,
2406 ACPI_OEM_TABLE_ID_SIZE))
2407 switch (v_info->oem_pwr_table) {
2408 case PSS:
2409 return intel_pstate_no_acpi_pss();
2410 case PPC:
2411 return intel_pstate_has_acpi_ppc() &&
2412 (!force_load);
2413 }
2414 }
2415
2416 return false;
2417 }
2418
2419 static void intel_pstate_request_control_from_smm(void)
2420 {
2421 /*
2422 * It may be unsafe to request P-states control from SMM if _PPC support
2423 * has not been enabled.
2424 */
2425 if (acpi_ppc)
2426 acpi_processor_pstate_control();
2427 }
2428 #else /* CONFIG_ACPI not enabled */
2429 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2430 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2431 static inline void intel_pstate_request_control_from_smm(void) {}
2432 #endif /* CONFIG_ACPI */
2433
2434 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2435 { X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
2436 {}
2437 };
2438
2439 static int __init intel_pstate_init(void)
2440 {
2441 int cpu, rc = 0;
2442 const struct x86_cpu_id *id;
2443 struct cpu_defaults *cpu_def;
2444
2445 if (no_load)
2446 return -ENODEV;
2447
2448 if (x86_match_cpu(hwp_support_ids) && !no_hwp) {
2449 copy_cpu_funcs(&core_params.funcs);
2450 hwp_active++;
2451 intel_pstate.attr = hwp_cpufreq_attrs;
2452 goto hwp_cpu_matched;
2453 }
2454
2455 id = x86_match_cpu(intel_pstate_cpu_ids);
2456 if (!id)
2457 return -ENODEV;
2458
2459 cpu_def = (struct cpu_defaults *)id->driver_data;
2460
2461 copy_pid_params(&cpu_def->pid_policy);
2462 copy_cpu_funcs(&cpu_def->funcs);
2463
2464 if (intel_pstate_msrs_not_valid())
2465 return -ENODEV;
2466
2467 hwp_cpu_matched:
2468 /*
2469 * The Intel pstate driver will be ignored if the platform
2470 * firmware has its own power management modes.
2471 */
2472 if (intel_pstate_platform_pwr_mgmt_exists())
2473 return -ENODEV;
2474
2475 pr_info("Intel P-state driver initializing\n");
2476
2477 all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
2478 if (!all_cpu_data)
2479 return -ENOMEM;
2480
2481 if (!hwp_active && hwp_only)
2482 goto out;
2483
2484 intel_pstate_request_control_from_smm();
2485
2486 rc = cpufreq_register_driver(intel_pstate_driver);
2487 if (rc)
2488 goto out;
2489
2490 intel_pstate_debug_expose_params();
2491 intel_pstate_sysfs_expose_params();
2492
2493 if (hwp_active)
2494 pr_info("HWP enabled\n");
2495
2496 return rc;
2497 out:
2498 get_online_cpus();
2499 for_each_online_cpu(cpu) {
2500 if (all_cpu_data[cpu]) {
2501 if (intel_pstate_driver == &intel_pstate)
2502 intel_pstate_clear_update_util_hook(cpu);
2503
2504 kfree(all_cpu_data[cpu]);
2505 }
2506 }
2507
2508 put_online_cpus();
2509 vfree(all_cpu_data);
2510 return -ENODEV;
2511 }
2512 device_initcall(intel_pstate_init);
2513
2514 static int __init intel_pstate_setup(char *str)
2515 {
2516 if (!str)
2517 return -EINVAL;
2518
2519 if (!strcmp(str, "disable")) {
2520 no_load = 1;
2521 } else if (!strcmp(str, "passive")) {
2522 pr_info("Passive mode enabled\n");
2523 intel_pstate_driver = &intel_cpufreq;
2524 no_hwp = 1;
2525 }
2526 if (!strcmp(str, "no_hwp")) {
2527 pr_info("HWP disabled\n");
2528 no_hwp = 1;
2529 }
2530 if (!strcmp(str, "force"))
2531 force_load = 1;
2532 if (!strcmp(str, "hwp_only"))
2533 hwp_only = 1;
2534 if (!strcmp(str, "per_cpu_perf_limits"))
2535 per_cpu_limits = true;
2536
2537 #ifdef CONFIG_ACPI
2538 if (!strcmp(str, "support_acpi_ppc"))
2539 acpi_ppc = true;
2540 #endif
2541
2542 return 0;
2543 }
2544 early_param("intel_pstate", intel_pstate_setup);
2545
2546 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
2547 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
2548 MODULE_LICENSE("GPL");