]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/cpufreq/intel_pstate.c
Merge tag 'openrisc-for-linus' of git://github.com/openrisc/linux
[mirror_ubuntu-artful-kernel.git] / drivers / cpufreq / intel_pstate.c
1 /*
2 * intel_pstate.c: Native P state management for Intel processors
3 *
4 * (C) Copyright 2012 Intel Corporation
5 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
10 * of the License.
11 */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/kernel.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/module.h>
18 #include <linux/ktime.h>
19 #include <linux/hrtimer.h>
20 #include <linux/tick.h>
21 #include <linux/slab.h>
22 #include <linux/sched/cpufreq.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25 #include <linux/cpufreq.h>
26 #include <linux/sysfs.h>
27 #include <linux/types.h>
28 #include <linux/fs.h>
29 #include <linux/debugfs.h>
30 #include <linux/acpi.h>
31 #include <linux/vmalloc.h>
32 #include <trace/events/power.h>
33
34 #include <asm/div64.h>
35 #include <asm/msr.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/cpufeature.h>
38 #include <asm/intel-family.h>
39
40 #define INTEL_CPUFREQ_TRANSITION_LATENCY 20000
41
42 #ifdef CONFIG_ACPI
43 #include <acpi/processor.h>
44 #include <acpi/cppc_acpi.h>
45 #endif
46
47 #define FRAC_BITS 8
48 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
49 #define fp_toint(X) ((X) >> FRAC_BITS)
50
51 #define EXT_BITS 6
52 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
53 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
54 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
55
56 static inline int32_t mul_fp(int32_t x, int32_t y)
57 {
58 return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
59 }
60
61 static inline int32_t div_fp(s64 x, s64 y)
62 {
63 return div64_s64((int64_t)x << FRAC_BITS, y);
64 }
65
66 static inline int ceiling_fp(int32_t x)
67 {
68 int mask, ret;
69
70 ret = fp_toint(x);
71 mask = (1 << FRAC_BITS) - 1;
72 if (x & mask)
73 ret += 1;
74 return ret;
75 }
76
77 static inline u64 mul_ext_fp(u64 x, u64 y)
78 {
79 return (x * y) >> EXT_FRAC_BITS;
80 }
81
82 static inline u64 div_ext_fp(u64 x, u64 y)
83 {
84 return div64_u64(x << EXT_FRAC_BITS, y);
85 }
86
87 static inline int32_t percent_ext_fp(int percent)
88 {
89 return div_ext_fp(percent, 100);
90 }
91
92 /**
93 * struct sample - Store performance sample
94 * @core_avg_perf: Ratio of APERF/MPERF which is the actual average
95 * performance during last sample period
96 * @busy_scaled: Scaled busy value which is used to calculate next
97 * P state. This can be different than core_avg_perf
98 * to account for cpu idle period
99 * @aperf: Difference of actual performance frequency clock count
100 * read from APERF MSR between last and current sample
101 * @mperf: Difference of maximum performance frequency clock count
102 * read from MPERF MSR between last and current sample
103 * @tsc: Difference of time stamp counter between last and
104 * current sample
105 * @time: Current time from scheduler
106 *
107 * This structure is used in the cpudata structure to store performance sample
108 * data for choosing next P State.
109 */
110 struct sample {
111 int32_t core_avg_perf;
112 int32_t busy_scaled;
113 u64 aperf;
114 u64 mperf;
115 u64 tsc;
116 u64 time;
117 };
118
119 /**
120 * struct pstate_data - Store P state data
121 * @current_pstate: Current requested P state
122 * @min_pstate: Min P state possible for this platform
123 * @max_pstate: Max P state possible for this platform
124 * @max_pstate_physical:This is physical Max P state for a processor
125 * This can be higher than the max_pstate which can
126 * be limited by platform thermal design power limits
127 * @scaling: Scaling factor to convert frequency to cpufreq
128 * frequency units
129 * @turbo_pstate: Max Turbo P state possible for this platform
130 * @max_freq: @max_pstate frequency in cpufreq units
131 * @turbo_freq: @turbo_pstate frequency in cpufreq units
132 *
133 * Stores the per cpu model P state limits and current P state.
134 */
135 struct pstate_data {
136 int current_pstate;
137 int min_pstate;
138 int max_pstate;
139 int max_pstate_physical;
140 int scaling;
141 int turbo_pstate;
142 unsigned int max_freq;
143 unsigned int turbo_freq;
144 };
145
146 /**
147 * struct vid_data - Stores voltage information data
148 * @min: VID data for this platform corresponding to
149 * the lowest P state
150 * @max: VID data corresponding to the highest P State.
151 * @turbo: VID data for turbo P state
152 * @ratio: Ratio of (vid max - vid min) /
153 * (max P state - Min P State)
154 *
155 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
156 * This data is used in Atom platforms, where in addition to target P state,
157 * the voltage data needs to be specified to select next P State.
158 */
159 struct vid_data {
160 int min;
161 int max;
162 int turbo;
163 int32_t ratio;
164 };
165
166 /**
167 * struct _pid - Stores PID data
168 * @setpoint: Target set point for busyness or performance
169 * @integral: Storage for accumulated error values
170 * @p_gain: PID proportional gain
171 * @i_gain: PID integral gain
172 * @d_gain: PID derivative gain
173 * @deadband: PID deadband
174 * @last_err: Last error storage for integral part of PID calculation
175 *
176 * Stores PID coefficients and last error for PID controller.
177 */
178 struct _pid {
179 int setpoint;
180 int32_t integral;
181 int32_t p_gain;
182 int32_t i_gain;
183 int32_t d_gain;
184 int deadband;
185 int32_t last_err;
186 };
187
188 /**
189 * struct perf_limits - Store user and policy limits
190 * @no_turbo: User requested turbo state from intel_pstate sysfs
191 * @turbo_disabled: Platform turbo status either from msr
192 * MSR_IA32_MISC_ENABLE or when maximum available pstate
193 * matches the maximum turbo pstate
194 * @max_perf_pct: Effective maximum performance limit in percentage, this
195 * is minimum of either limits enforced by cpufreq policy
196 * or limits from user set limits via intel_pstate sysfs
197 * @min_perf_pct: Effective minimum performance limit in percentage, this
198 * is maximum of either limits enforced by cpufreq policy
199 * or limits from user set limits via intel_pstate sysfs
200 * @max_perf: This is a scaled value between 0 to 255 for max_perf_pct
201 * This value is used to limit max pstate
202 * @min_perf: This is a scaled value between 0 to 255 for min_perf_pct
203 * This value is used to limit min pstate
204 * @max_policy_pct: The maximum performance in percentage enforced by
205 * cpufreq setpolicy interface
206 * @max_sysfs_pct: The maximum performance in percentage enforced by
207 * intel pstate sysfs interface, unused when per cpu
208 * controls are enforced
209 * @min_policy_pct: The minimum performance in percentage enforced by
210 * cpufreq setpolicy interface
211 * @min_sysfs_pct: The minimum performance in percentage enforced by
212 * intel pstate sysfs interface, unused when per cpu
213 * controls are enforced
214 *
215 * Storage for user and policy defined limits.
216 */
217 struct perf_limits {
218 int no_turbo;
219 int turbo_disabled;
220 int max_perf_pct;
221 int min_perf_pct;
222 int32_t max_perf;
223 int32_t min_perf;
224 int max_policy_pct;
225 int max_sysfs_pct;
226 int min_policy_pct;
227 int min_sysfs_pct;
228 };
229
230 /**
231 * struct cpudata - Per CPU instance data storage
232 * @cpu: CPU number for this instance data
233 * @policy: CPUFreq policy value
234 * @update_util: CPUFreq utility callback information
235 * @update_util_set: CPUFreq utility callback is set
236 * @iowait_boost: iowait-related boost fraction
237 * @last_update: Time of the last update.
238 * @pstate: Stores P state limits for this CPU
239 * @vid: Stores VID limits for this CPU
240 * @pid: Stores PID parameters for this CPU
241 * @last_sample_time: Last Sample time
242 * @prev_aperf: Last APERF value read from APERF MSR
243 * @prev_mperf: Last MPERF value read from MPERF MSR
244 * @prev_tsc: Last timestamp counter (TSC) value
245 * @prev_cummulative_iowait: IO Wait time difference from last and
246 * current sample
247 * @sample: Storage for storing last Sample data
248 * @perf_limits: Pointer to perf_limit unique to this CPU
249 * Not all field in the structure are applicable
250 * when per cpu controls are enforced
251 * @acpi_perf_data: Stores ACPI perf information read from _PSS
252 * @valid_pss_table: Set to true for valid ACPI _PSS entries found
253 * @epp_powersave: Last saved HWP energy performance preference
254 * (EPP) or energy performance bias (EPB),
255 * when policy switched to performance
256 * @epp_policy: Last saved policy used to set EPP/EPB
257 * @epp_default: Power on default HWP energy performance
258 * preference/bias
259 * @epp_saved: Saved EPP/EPB during system suspend or CPU offline
260 * operation
261 *
262 * This structure stores per CPU instance data for all CPUs.
263 */
264 struct cpudata {
265 int cpu;
266
267 unsigned int policy;
268 struct update_util_data update_util;
269 bool update_util_set;
270
271 struct pstate_data pstate;
272 struct vid_data vid;
273 struct _pid pid;
274
275 u64 last_update;
276 u64 last_sample_time;
277 u64 prev_aperf;
278 u64 prev_mperf;
279 u64 prev_tsc;
280 u64 prev_cummulative_iowait;
281 struct sample sample;
282 struct perf_limits *perf_limits;
283 #ifdef CONFIG_ACPI
284 struct acpi_processor_performance acpi_perf_data;
285 bool valid_pss_table;
286 #endif
287 unsigned int iowait_boost;
288 s16 epp_powersave;
289 s16 epp_policy;
290 s16 epp_default;
291 s16 epp_saved;
292 };
293
294 static struct cpudata **all_cpu_data;
295
296 /**
297 * struct pstate_adjust_policy - Stores static PID configuration data
298 * @sample_rate_ms: PID calculation sample rate in ms
299 * @sample_rate_ns: Sample rate calculation in ns
300 * @deadband: PID deadband
301 * @setpoint: PID Setpoint
302 * @p_gain_pct: PID proportional gain
303 * @i_gain_pct: PID integral gain
304 * @d_gain_pct: PID derivative gain
305 *
306 * Stores per CPU model static PID configuration data.
307 */
308 struct pstate_adjust_policy {
309 int sample_rate_ms;
310 s64 sample_rate_ns;
311 int deadband;
312 int setpoint;
313 int p_gain_pct;
314 int d_gain_pct;
315 int i_gain_pct;
316 };
317
318 /**
319 * struct pstate_funcs - Per CPU model specific callbacks
320 * @get_max: Callback to get maximum non turbo effective P state
321 * @get_max_physical: Callback to get maximum non turbo physical P state
322 * @get_min: Callback to get minimum P state
323 * @get_turbo: Callback to get turbo P state
324 * @get_scaling: Callback to get frequency scaling factor
325 * @get_val: Callback to convert P state to actual MSR write value
326 * @get_vid: Callback to get VID data for Atom platforms
327 * @get_target_pstate: Callback to a function to calculate next P state to use
328 *
329 * Core and Atom CPU models have different way to get P State limits. This
330 * structure is used to store those callbacks.
331 */
332 struct pstate_funcs {
333 int (*get_max)(void);
334 int (*get_max_physical)(void);
335 int (*get_min)(void);
336 int (*get_turbo)(void);
337 int (*get_scaling)(void);
338 u64 (*get_val)(struct cpudata*, int pstate);
339 void (*get_vid)(struct cpudata *);
340 int32_t (*get_target_pstate)(struct cpudata *);
341 };
342
343 /**
344 * struct cpu_defaults- Per CPU model default config data
345 * @pid_policy: PID config data
346 * @funcs: Callback function data
347 */
348 struct cpu_defaults {
349 struct pstate_adjust_policy pid_policy;
350 struct pstate_funcs funcs;
351 };
352
353 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
354 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
355
356 static struct pstate_adjust_policy pid_params __read_mostly;
357 static struct pstate_funcs pstate_funcs __read_mostly;
358 static int hwp_active __read_mostly;
359 static bool per_cpu_limits __read_mostly;
360
361 static bool driver_registered __read_mostly;
362
363 #ifdef CONFIG_ACPI
364 static bool acpi_ppc;
365 #endif
366
367 static struct perf_limits performance_limits;
368 static struct perf_limits powersave_limits;
369 static struct perf_limits *limits;
370
371 static void intel_pstate_init_limits(struct perf_limits *limits)
372 {
373 memset(limits, 0, sizeof(*limits));
374 limits->max_perf_pct = 100;
375 limits->max_perf = int_ext_tofp(1);
376 limits->max_policy_pct = 100;
377 limits->max_sysfs_pct = 100;
378 }
379
380 static void intel_pstate_set_performance_limits(struct perf_limits *limits)
381 {
382 intel_pstate_init_limits(limits);
383 limits->min_perf_pct = 100;
384 limits->min_perf = int_ext_tofp(1);
385 limits->min_sysfs_pct = 100;
386 }
387
388 static DEFINE_MUTEX(intel_pstate_driver_lock);
389 static DEFINE_MUTEX(intel_pstate_limits_lock);
390
391 #ifdef CONFIG_ACPI
392
393 static bool intel_pstate_get_ppc_enable_status(void)
394 {
395 if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
396 acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
397 return true;
398
399 return acpi_ppc;
400 }
401
402 #ifdef CONFIG_ACPI_CPPC_LIB
403
404 /* The work item is needed to avoid CPU hotplug locking issues */
405 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
406 {
407 sched_set_itmt_support();
408 }
409
410 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
411
412 static void intel_pstate_set_itmt_prio(int cpu)
413 {
414 struct cppc_perf_caps cppc_perf;
415 static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
416 int ret;
417
418 ret = cppc_get_perf_caps(cpu, &cppc_perf);
419 if (ret)
420 return;
421
422 /*
423 * The priorities can be set regardless of whether or not
424 * sched_set_itmt_support(true) has been called and it is valid to
425 * update them at any time after it has been called.
426 */
427 sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
428
429 if (max_highest_perf <= min_highest_perf) {
430 if (cppc_perf.highest_perf > max_highest_perf)
431 max_highest_perf = cppc_perf.highest_perf;
432
433 if (cppc_perf.highest_perf < min_highest_perf)
434 min_highest_perf = cppc_perf.highest_perf;
435
436 if (max_highest_perf > min_highest_perf) {
437 /*
438 * This code can be run during CPU online under the
439 * CPU hotplug locks, so sched_set_itmt_support()
440 * cannot be called from here. Queue up a work item
441 * to invoke it.
442 */
443 schedule_work(&sched_itmt_work);
444 }
445 }
446 }
447 #else
448 static void intel_pstate_set_itmt_prio(int cpu)
449 {
450 }
451 #endif
452
453 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
454 {
455 struct cpudata *cpu;
456 int ret;
457 int i;
458
459 if (hwp_active) {
460 intel_pstate_set_itmt_prio(policy->cpu);
461 return;
462 }
463
464 if (!intel_pstate_get_ppc_enable_status())
465 return;
466
467 cpu = all_cpu_data[policy->cpu];
468
469 ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
470 policy->cpu);
471 if (ret)
472 return;
473
474 /*
475 * Check if the control value in _PSS is for PERF_CTL MSR, which should
476 * guarantee that the states returned by it map to the states in our
477 * list directly.
478 */
479 if (cpu->acpi_perf_data.control_register.space_id !=
480 ACPI_ADR_SPACE_FIXED_HARDWARE)
481 goto err;
482
483 /*
484 * If there is only one entry _PSS, simply ignore _PSS and continue as
485 * usual without taking _PSS into account
486 */
487 if (cpu->acpi_perf_data.state_count < 2)
488 goto err;
489
490 pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
491 for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
492 pr_debug(" %cP%d: %u MHz, %u mW, 0x%x\n",
493 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
494 (u32) cpu->acpi_perf_data.states[i].core_frequency,
495 (u32) cpu->acpi_perf_data.states[i].power,
496 (u32) cpu->acpi_perf_data.states[i].control);
497 }
498
499 /*
500 * The _PSS table doesn't contain whole turbo frequency range.
501 * This just contains +1 MHZ above the max non turbo frequency,
502 * with control value corresponding to max turbo ratio. But
503 * when cpufreq set policy is called, it will call with this
504 * max frequency, which will cause a reduced performance as
505 * this driver uses real max turbo frequency as the max
506 * frequency. So correct this frequency in _PSS table to
507 * correct max turbo frequency based on the turbo state.
508 * Also need to convert to MHz as _PSS freq is in MHz.
509 */
510 if (!limits->turbo_disabled)
511 cpu->acpi_perf_data.states[0].core_frequency =
512 policy->cpuinfo.max_freq / 1000;
513 cpu->valid_pss_table = true;
514 pr_debug("_PPC limits will be enforced\n");
515
516 return;
517
518 err:
519 cpu->valid_pss_table = false;
520 acpi_processor_unregister_performance(policy->cpu);
521 }
522
523 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
524 {
525 struct cpudata *cpu;
526
527 cpu = all_cpu_data[policy->cpu];
528 if (!cpu->valid_pss_table)
529 return;
530
531 acpi_processor_unregister_performance(policy->cpu);
532 }
533 #else
534 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
535 {
536 }
537
538 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
539 {
540 }
541 #endif
542
543 static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
544 int deadband, int integral) {
545 pid->setpoint = int_tofp(setpoint);
546 pid->deadband = int_tofp(deadband);
547 pid->integral = int_tofp(integral);
548 pid->last_err = int_tofp(setpoint) - int_tofp(busy);
549 }
550
551 static inline void pid_p_gain_set(struct _pid *pid, int percent)
552 {
553 pid->p_gain = div_fp(percent, 100);
554 }
555
556 static inline void pid_i_gain_set(struct _pid *pid, int percent)
557 {
558 pid->i_gain = div_fp(percent, 100);
559 }
560
561 static inline void pid_d_gain_set(struct _pid *pid, int percent)
562 {
563 pid->d_gain = div_fp(percent, 100);
564 }
565
566 static signed int pid_calc(struct _pid *pid, int32_t busy)
567 {
568 signed int result;
569 int32_t pterm, dterm, fp_error;
570 int32_t integral_limit;
571
572 fp_error = pid->setpoint - busy;
573
574 if (abs(fp_error) <= pid->deadband)
575 return 0;
576
577 pterm = mul_fp(pid->p_gain, fp_error);
578
579 pid->integral += fp_error;
580
581 /*
582 * We limit the integral here so that it will never
583 * get higher than 30. This prevents it from becoming
584 * too large an input over long periods of time and allows
585 * it to get factored out sooner.
586 *
587 * The value of 30 was chosen through experimentation.
588 */
589 integral_limit = int_tofp(30);
590 if (pid->integral > integral_limit)
591 pid->integral = integral_limit;
592 if (pid->integral < -integral_limit)
593 pid->integral = -integral_limit;
594
595 dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
596 pid->last_err = fp_error;
597
598 result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
599 result = result + (1 << (FRAC_BITS-1));
600 return (signed int)fp_toint(result);
601 }
602
603 static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
604 {
605 pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
606 pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
607 pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
608
609 pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
610 }
611
612 static inline void intel_pstate_reset_all_pid(void)
613 {
614 unsigned int cpu;
615
616 for_each_online_cpu(cpu) {
617 if (all_cpu_data[cpu])
618 intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
619 }
620 }
621
622 static inline void update_turbo_state(void)
623 {
624 u64 misc_en;
625 struct cpudata *cpu;
626
627 cpu = all_cpu_data[0];
628 rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
629 limits->turbo_disabled =
630 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
631 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
632 }
633
634 static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
635 {
636 u64 epb;
637 int ret;
638
639 if (!static_cpu_has(X86_FEATURE_EPB))
640 return -ENXIO;
641
642 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
643 if (ret)
644 return (s16)ret;
645
646 return (s16)(epb & 0x0f);
647 }
648
649 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
650 {
651 s16 epp;
652
653 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
654 /*
655 * When hwp_req_data is 0, means that caller didn't read
656 * MSR_HWP_REQUEST, so need to read and get EPP.
657 */
658 if (!hwp_req_data) {
659 epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
660 &hwp_req_data);
661 if (epp)
662 return epp;
663 }
664 epp = (hwp_req_data >> 24) & 0xff;
665 } else {
666 /* When there is no EPP present, HWP uses EPB settings */
667 epp = intel_pstate_get_epb(cpu_data);
668 }
669
670 return epp;
671 }
672
673 static int intel_pstate_set_epb(int cpu, s16 pref)
674 {
675 u64 epb;
676 int ret;
677
678 if (!static_cpu_has(X86_FEATURE_EPB))
679 return -ENXIO;
680
681 ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
682 if (ret)
683 return ret;
684
685 epb = (epb & ~0x0f) | pref;
686 wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
687
688 return 0;
689 }
690
691 /*
692 * EPP/EPB display strings corresponding to EPP index in the
693 * energy_perf_strings[]
694 * index String
695 *-------------------------------------
696 * 0 default
697 * 1 performance
698 * 2 balance_performance
699 * 3 balance_power
700 * 4 power
701 */
702 static const char * const energy_perf_strings[] = {
703 "default",
704 "performance",
705 "balance_performance",
706 "balance_power",
707 "power",
708 NULL
709 };
710
711 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
712 {
713 s16 epp;
714 int index = -EINVAL;
715
716 epp = intel_pstate_get_epp(cpu_data, 0);
717 if (epp < 0)
718 return epp;
719
720 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
721 /*
722 * Range:
723 * 0x00-0x3F : Performance
724 * 0x40-0x7F : Balance performance
725 * 0x80-0xBF : Balance power
726 * 0xC0-0xFF : Power
727 * The EPP is a 8 bit value, but our ranges restrict the
728 * value which can be set. Here only using top two bits
729 * effectively.
730 */
731 index = (epp >> 6) + 1;
732 } else if (static_cpu_has(X86_FEATURE_EPB)) {
733 /*
734 * Range:
735 * 0x00-0x03 : Performance
736 * 0x04-0x07 : Balance performance
737 * 0x08-0x0B : Balance power
738 * 0x0C-0x0F : Power
739 * The EPB is a 4 bit value, but our ranges restrict the
740 * value which can be set. Here only using top two bits
741 * effectively.
742 */
743 index = (epp >> 2) + 1;
744 }
745
746 return index;
747 }
748
749 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
750 int pref_index)
751 {
752 int epp = -EINVAL;
753 int ret;
754
755 if (!pref_index)
756 epp = cpu_data->epp_default;
757
758 mutex_lock(&intel_pstate_limits_lock);
759
760 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
761 u64 value;
762
763 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
764 if (ret)
765 goto return_pref;
766
767 value &= ~GENMASK_ULL(31, 24);
768
769 /*
770 * If epp is not default, convert from index into
771 * energy_perf_strings to epp value, by shifting 6
772 * bits left to use only top two bits in epp.
773 * The resultant epp need to shifted by 24 bits to
774 * epp position in MSR_HWP_REQUEST.
775 */
776 if (epp == -EINVAL)
777 epp = (pref_index - 1) << 6;
778
779 value |= (u64)epp << 24;
780 ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
781 } else {
782 if (epp == -EINVAL)
783 epp = (pref_index - 1) << 2;
784 ret = intel_pstate_set_epb(cpu_data->cpu, epp);
785 }
786 return_pref:
787 mutex_unlock(&intel_pstate_limits_lock);
788
789 return ret;
790 }
791
792 static ssize_t show_energy_performance_available_preferences(
793 struct cpufreq_policy *policy, char *buf)
794 {
795 int i = 0;
796 int ret = 0;
797
798 while (energy_perf_strings[i] != NULL)
799 ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
800
801 ret += sprintf(&buf[ret], "\n");
802
803 return ret;
804 }
805
806 cpufreq_freq_attr_ro(energy_performance_available_preferences);
807
808 static ssize_t store_energy_performance_preference(
809 struct cpufreq_policy *policy, const char *buf, size_t count)
810 {
811 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
812 char str_preference[21];
813 int ret, i = 0;
814
815 ret = sscanf(buf, "%20s", str_preference);
816 if (ret != 1)
817 return -EINVAL;
818
819 while (energy_perf_strings[i] != NULL) {
820 if (!strcmp(str_preference, energy_perf_strings[i])) {
821 intel_pstate_set_energy_pref_index(cpu_data, i);
822 return count;
823 }
824 ++i;
825 }
826
827 return -EINVAL;
828 }
829
830 static ssize_t show_energy_performance_preference(
831 struct cpufreq_policy *policy, char *buf)
832 {
833 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
834 int preference;
835
836 preference = intel_pstate_get_energy_pref_index(cpu_data);
837 if (preference < 0)
838 return preference;
839
840 return sprintf(buf, "%s\n", energy_perf_strings[preference]);
841 }
842
843 cpufreq_freq_attr_rw(energy_performance_preference);
844
845 static struct freq_attr *hwp_cpufreq_attrs[] = {
846 &energy_performance_preference,
847 &energy_performance_available_preferences,
848 NULL,
849 };
850
851 static void intel_pstate_hwp_set(struct cpufreq_policy *policy)
852 {
853 int min, hw_min, max, hw_max, cpu;
854 struct perf_limits *perf_limits = limits;
855 u64 value, cap;
856
857 for_each_cpu(cpu, policy->cpus) {
858 struct cpudata *cpu_data = all_cpu_data[cpu];
859 s16 epp;
860
861 if (per_cpu_limits)
862 perf_limits = all_cpu_data[cpu]->perf_limits;
863
864 rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
865 hw_min = HWP_LOWEST_PERF(cap);
866 if (limits->no_turbo)
867 hw_max = HWP_GUARANTEED_PERF(cap);
868 else
869 hw_max = HWP_HIGHEST_PERF(cap);
870
871 min = fp_ext_toint(hw_max * perf_limits->min_perf);
872
873 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
874
875 value &= ~HWP_MIN_PERF(~0L);
876 value |= HWP_MIN_PERF(min);
877
878 max = fp_ext_toint(hw_max * perf_limits->max_perf);
879 value &= ~HWP_MAX_PERF(~0L);
880 value |= HWP_MAX_PERF(max);
881
882 if (cpu_data->epp_policy == cpu_data->policy)
883 goto skip_epp;
884
885 cpu_data->epp_policy = cpu_data->policy;
886
887 if (cpu_data->epp_saved >= 0) {
888 epp = cpu_data->epp_saved;
889 cpu_data->epp_saved = -EINVAL;
890 goto update_epp;
891 }
892
893 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
894 epp = intel_pstate_get_epp(cpu_data, value);
895 cpu_data->epp_powersave = epp;
896 /* If EPP read was failed, then don't try to write */
897 if (epp < 0)
898 goto skip_epp;
899
900
901 epp = 0;
902 } else {
903 /* skip setting EPP, when saved value is invalid */
904 if (cpu_data->epp_powersave < 0)
905 goto skip_epp;
906
907 /*
908 * No need to restore EPP when it is not zero. This
909 * means:
910 * - Policy is not changed
911 * - user has manually changed
912 * - Error reading EPB
913 */
914 epp = intel_pstate_get_epp(cpu_data, value);
915 if (epp)
916 goto skip_epp;
917
918 epp = cpu_data->epp_powersave;
919 }
920 update_epp:
921 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
922 value &= ~GENMASK_ULL(31, 24);
923 value |= (u64)epp << 24;
924 } else {
925 intel_pstate_set_epb(cpu, epp);
926 }
927 skip_epp:
928 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
929 }
930 }
931
932 static int intel_pstate_hwp_set_policy(struct cpufreq_policy *policy)
933 {
934 if (hwp_active)
935 intel_pstate_hwp_set(policy);
936
937 return 0;
938 }
939
940 static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
941 {
942 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
943
944 if (!hwp_active)
945 return 0;
946
947 cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);
948
949 return 0;
950 }
951
952 static int intel_pstate_resume(struct cpufreq_policy *policy)
953 {
954 int ret;
955
956 if (!hwp_active)
957 return 0;
958
959 mutex_lock(&intel_pstate_limits_lock);
960
961 all_cpu_data[policy->cpu]->epp_policy = 0;
962
963 ret = intel_pstate_hwp_set_policy(policy);
964
965 mutex_unlock(&intel_pstate_limits_lock);
966
967 return ret;
968 }
969
970 static void intel_pstate_update_policies(void)
971 __releases(&intel_pstate_limits_lock)
972 __acquires(&intel_pstate_limits_lock)
973 {
974 struct perf_limits *saved_limits = limits;
975 int cpu;
976
977 mutex_unlock(&intel_pstate_limits_lock);
978
979 for_each_possible_cpu(cpu)
980 cpufreq_update_policy(cpu);
981
982 mutex_lock(&intel_pstate_limits_lock);
983
984 limits = saved_limits;
985 }
986
987 /************************** debugfs begin ************************/
988 static int pid_param_set(void *data, u64 val)
989 {
990 *(u32 *)data = val;
991 pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
992 intel_pstate_reset_all_pid();
993 return 0;
994 }
995
996 static int pid_param_get(void *data, u64 *val)
997 {
998 *val = *(u32 *)data;
999 return 0;
1000 }
1001 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
1002
1003 static struct dentry *debugfs_parent;
1004
1005 struct pid_param {
1006 char *name;
1007 void *value;
1008 struct dentry *dentry;
1009 };
1010
1011 static struct pid_param pid_files[] = {
1012 {"sample_rate_ms", &pid_params.sample_rate_ms, },
1013 {"d_gain_pct", &pid_params.d_gain_pct, },
1014 {"i_gain_pct", &pid_params.i_gain_pct, },
1015 {"deadband", &pid_params.deadband, },
1016 {"setpoint", &pid_params.setpoint, },
1017 {"p_gain_pct", &pid_params.p_gain_pct, },
1018 {NULL, NULL, }
1019 };
1020
1021 static void intel_pstate_debug_expose_params(void)
1022 {
1023 int i;
1024
1025 debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
1026 if (IS_ERR_OR_NULL(debugfs_parent))
1027 return;
1028
1029 for (i = 0; pid_files[i].name; i++) {
1030 struct dentry *dentry;
1031
1032 dentry = debugfs_create_file(pid_files[i].name, 0660,
1033 debugfs_parent, pid_files[i].value,
1034 &fops_pid_param);
1035 if (!IS_ERR(dentry))
1036 pid_files[i].dentry = dentry;
1037 }
1038 }
1039
1040 static void intel_pstate_debug_hide_params(void)
1041 {
1042 int i;
1043
1044 if (IS_ERR_OR_NULL(debugfs_parent))
1045 return;
1046
1047 for (i = 0; pid_files[i].name; i++) {
1048 debugfs_remove(pid_files[i].dentry);
1049 pid_files[i].dentry = NULL;
1050 }
1051
1052 debugfs_remove(debugfs_parent);
1053 debugfs_parent = NULL;
1054 }
1055
1056 /************************** debugfs end ************************/
1057
1058 /************************** sysfs begin ************************/
1059 #define show_one(file_name, object) \
1060 static ssize_t show_##file_name \
1061 (struct kobject *kobj, struct attribute *attr, char *buf) \
1062 { \
1063 return sprintf(buf, "%u\n", limits->object); \
1064 }
1065
1066 static ssize_t intel_pstate_show_status(char *buf);
1067 static int intel_pstate_update_status(const char *buf, size_t size);
1068
1069 static ssize_t show_status(struct kobject *kobj,
1070 struct attribute *attr, char *buf)
1071 {
1072 ssize_t ret;
1073
1074 mutex_lock(&intel_pstate_driver_lock);
1075 ret = intel_pstate_show_status(buf);
1076 mutex_unlock(&intel_pstate_driver_lock);
1077
1078 return ret;
1079 }
1080
1081 static ssize_t store_status(struct kobject *a, struct attribute *b,
1082 const char *buf, size_t count)
1083 {
1084 char *p = memchr(buf, '\n', count);
1085 int ret;
1086
1087 mutex_lock(&intel_pstate_driver_lock);
1088 ret = intel_pstate_update_status(buf, p ? p - buf : count);
1089 mutex_unlock(&intel_pstate_driver_lock);
1090
1091 return ret < 0 ? ret : count;
1092 }
1093
1094 static ssize_t show_turbo_pct(struct kobject *kobj,
1095 struct attribute *attr, char *buf)
1096 {
1097 struct cpudata *cpu;
1098 int total, no_turbo, turbo_pct;
1099 uint32_t turbo_fp;
1100
1101 mutex_lock(&intel_pstate_driver_lock);
1102
1103 if (!driver_registered) {
1104 mutex_unlock(&intel_pstate_driver_lock);
1105 return -EAGAIN;
1106 }
1107
1108 cpu = all_cpu_data[0];
1109
1110 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1111 no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1112 turbo_fp = div_fp(no_turbo, total);
1113 turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1114
1115 mutex_unlock(&intel_pstate_driver_lock);
1116
1117 return sprintf(buf, "%u\n", turbo_pct);
1118 }
1119
1120 static ssize_t show_num_pstates(struct kobject *kobj,
1121 struct attribute *attr, char *buf)
1122 {
1123 struct cpudata *cpu;
1124 int total;
1125
1126 mutex_lock(&intel_pstate_driver_lock);
1127
1128 if (!driver_registered) {
1129 mutex_unlock(&intel_pstate_driver_lock);
1130 return -EAGAIN;
1131 }
1132
1133 cpu = all_cpu_data[0];
1134 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1135
1136 mutex_unlock(&intel_pstate_driver_lock);
1137
1138 return sprintf(buf, "%u\n", total);
1139 }
1140
1141 static ssize_t show_no_turbo(struct kobject *kobj,
1142 struct attribute *attr, char *buf)
1143 {
1144 ssize_t ret;
1145
1146 mutex_lock(&intel_pstate_driver_lock);
1147
1148 if (!driver_registered) {
1149 mutex_unlock(&intel_pstate_driver_lock);
1150 return -EAGAIN;
1151 }
1152
1153 update_turbo_state();
1154 if (limits->turbo_disabled)
1155 ret = sprintf(buf, "%u\n", limits->turbo_disabled);
1156 else
1157 ret = sprintf(buf, "%u\n", limits->no_turbo);
1158
1159 mutex_unlock(&intel_pstate_driver_lock);
1160
1161 return ret;
1162 }
1163
1164 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
1165 const char *buf, size_t count)
1166 {
1167 unsigned int input;
1168 int ret;
1169
1170 ret = sscanf(buf, "%u", &input);
1171 if (ret != 1)
1172 return -EINVAL;
1173
1174 mutex_lock(&intel_pstate_driver_lock);
1175
1176 if (!driver_registered) {
1177 mutex_unlock(&intel_pstate_driver_lock);
1178 return -EAGAIN;
1179 }
1180
1181 mutex_lock(&intel_pstate_limits_lock);
1182
1183 update_turbo_state();
1184 if (limits->turbo_disabled) {
1185 pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
1186 mutex_unlock(&intel_pstate_limits_lock);
1187 mutex_unlock(&intel_pstate_driver_lock);
1188 return -EPERM;
1189 }
1190
1191 limits->no_turbo = clamp_t(int, input, 0, 1);
1192
1193 intel_pstate_update_policies();
1194
1195 mutex_unlock(&intel_pstate_limits_lock);
1196
1197 mutex_unlock(&intel_pstate_driver_lock);
1198
1199 return count;
1200 }
1201
1202 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
1203 const char *buf, size_t count)
1204 {
1205 unsigned int input;
1206 int ret;
1207
1208 ret = sscanf(buf, "%u", &input);
1209 if (ret != 1)
1210 return -EINVAL;
1211
1212 mutex_lock(&intel_pstate_driver_lock);
1213
1214 if (!driver_registered) {
1215 mutex_unlock(&intel_pstate_driver_lock);
1216 return -EAGAIN;
1217 }
1218
1219 mutex_lock(&intel_pstate_limits_lock);
1220
1221 limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
1222 limits->max_perf_pct = min(limits->max_policy_pct,
1223 limits->max_sysfs_pct);
1224 limits->max_perf_pct = max(limits->min_policy_pct,
1225 limits->max_perf_pct);
1226 limits->max_perf_pct = max(limits->min_perf_pct,
1227 limits->max_perf_pct);
1228 limits->max_perf = percent_ext_fp(limits->max_perf_pct);
1229
1230 intel_pstate_update_policies();
1231
1232 mutex_unlock(&intel_pstate_limits_lock);
1233
1234 mutex_unlock(&intel_pstate_driver_lock);
1235
1236 return count;
1237 }
1238
1239 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
1240 const char *buf, size_t count)
1241 {
1242 unsigned int input;
1243 int ret;
1244
1245 ret = sscanf(buf, "%u", &input);
1246 if (ret != 1)
1247 return -EINVAL;
1248
1249 mutex_lock(&intel_pstate_driver_lock);
1250
1251 if (!driver_registered) {
1252 mutex_unlock(&intel_pstate_driver_lock);
1253 return -EAGAIN;
1254 }
1255
1256 mutex_lock(&intel_pstate_limits_lock);
1257
1258 limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
1259 limits->min_perf_pct = max(limits->min_policy_pct,
1260 limits->min_sysfs_pct);
1261 limits->min_perf_pct = min(limits->max_policy_pct,
1262 limits->min_perf_pct);
1263 limits->min_perf_pct = min(limits->max_perf_pct,
1264 limits->min_perf_pct);
1265 limits->min_perf = percent_ext_fp(limits->min_perf_pct);
1266
1267 intel_pstate_update_policies();
1268
1269 mutex_unlock(&intel_pstate_limits_lock);
1270
1271 mutex_unlock(&intel_pstate_driver_lock);
1272
1273 return count;
1274 }
1275
1276 show_one(max_perf_pct, max_perf_pct);
1277 show_one(min_perf_pct, min_perf_pct);
1278
1279 define_one_global_rw(status);
1280 define_one_global_rw(no_turbo);
1281 define_one_global_rw(max_perf_pct);
1282 define_one_global_rw(min_perf_pct);
1283 define_one_global_ro(turbo_pct);
1284 define_one_global_ro(num_pstates);
1285
1286 static struct attribute *intel_pstate_attributes[] = {
1287 &status.attr,
1288 &no_turbo.attr,
1289 &turbo_pct.attr,
1290 &num_pstates.attr,
1291 NULL
1292 };
1293
1294 static struct attribute_group intel_pstate_attr_group = {
1295 .attrs = intel_pstate_attributes,
1296 };
1297
1298 static void __init intel_pstate_sysfs_expose_params(void)
1299 {
1300 struct kobject *intel_pstate_kobject;
1301 int rc;
1302
1303 intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1304 &cpu_subsys.dev_root->kobj);
1305 if (WARN_ON(!intel_pstate_kobject))
1306 return;
1307
1308 rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1309 if (WARN_ON(rc))
1310 return;
1311
1312 /*
1313 * If per cpu limits are enforced there are no global limits, so
1314 * return without creating max/min_perf_pct attributes
1315 */
1316 if (per_cpu_limits)
1317 return;
1318
1319 rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1320 WARN_ON(rc);
1321
1322 rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1323 WARN_ON(rc);
1324
1325 }
1326 /************************** sysfs end ************************/
1327
1328 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1329 {
1330 /* First disable HWP notification interrupt as we don't process them */
1331 if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
1332 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1333
1334 wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1335 cpudata->epp_policy = 0;
1336 if (cpudata->epp_default == -EINVAL)
1337 cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1338 }
1339
1340 #define MSR_IA32_POWER_CTL_BIT_EE 19
1341
1342 /* Disable energy efficiency optimization */
1343 static void intel_pstate_disable_ee(int cpu)
1344 {
1345 u64 power_ctl;
1346 int ret;
1347
1348 ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
1349 if (ret)
1350 return;
1351
1352 if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
1353 pr_info("Disabling energy efficiency optimization\n");
1354 power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1355 wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
1356 }
1357 }
1358
1359 static int atom_get_min_pstate(void)
1360 {
1361 u64 value;
1362
1363 rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1364 return (value >> 8) & 0x7F;
1365 }
1366
1367 static int atom_get_max_pstate(void)
1368 {
1369 u64 value;
1370
1371 rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1372 return (value >> 16) & 0x7F;
1373 }
1374
1375 static int atom_get_turbo_pstate(void)
1376 {
1377 u64 value;
1378
1379 rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
1380 return value & 0x7F;
1381 }
1382
1383 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1384 {
1385 u64 val;
1386 int32_t vid_fp;
1387 u32 vid;
1388
1389 val = (u64)pstate << 8;
1390 if (limits->no_turbo && !limits->turbo_disabled)
1391 val |= (u64)1 << 32;
1392
1393 vid_fp = cpudata->vid.min + mul_fp(
1394 int_tofp(pstate - cpudata->pstate.min_pstate),
1395 cpudata->vid.ratio);
1396
1397 vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1398 vid = ceiling_fp(vid_fp);
1399
1400 if (pstate > cpudata->pstate.max_pstate)
1401 vid = cpudata->vid.turbo;
1402
1403 return val | vid;
1404 }
1405
1406 static int silvermont_get_scaling(void)
1407 {
1408 u64 value;
1409 int i;
1410 /* Defined in Table 35-6 from SDM (Sept 2015) */
1411 static int silvermont_freq_table[] = {
1412 83300, 100000, 133300, 116700, 80000};
1413
1414 rdmsrl(MSR_FSB_FREQ, value);
1415 i = value & 0x7;
1416 WARN_ON(i > 4);
1417
1418 return silvermont_freq_table[i];
1419 }
1420
1421 static int airmont_get_scaling(void)
1422 {
1423 u64 value;
1424 int i;
1425 /* Defined in Table 35-10 from SDM (Sept 2015) */
1426 static int airmont_freq_table[] = {
1427 83300, 100000, 133300, 116700, 80000,
1428 93300, 90000, 88900, 87500};
1429
1430 rdmsrl(MSR_FSB_FREQ, value);
1431 i = value & 0xF;
1432 WARN_ON(i > 8);
1433
1434 return airmont_freq_table[i];
1435 }
1436
1437 static void atom_get_vid(struct cpudata *cpudata)
1438 {
1439 u64 value;
1440
1441 rdmsrl(MSR_ATOM_CORE_VIDS, value);
1442 cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1443 cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1444 cpudata->vid.ratio = div_fp(
1445 cpudata->vid.max - cpudata->vid.min,
1446 int_tofp(cpudata->pstate.max_pstate -
1447 cpudata->pstate.min_pstate));
1448
1449 rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1450 cpudata->vid.turbo = value & 0x7f;
1451 }
1452
1453 static int core_get_min_pstate(void)
1454 {
1455 u64 value;
1456
1457 rdmsrl(MSR_PLATFORM_INFO, value);
1458 return (value >> 40) & 0xFF;
1459 }
1460
1461 static int core_get_max_pstate_physical(void)
1462 {
1463 u64 value;
1464
1465 rdmsrl(MSR_PLATFORM_INFO, value);
1466 return (value >> 8) & 0xFF;
1467 }
1468
1469 static int core_get_tdp_ratio(u64 plat_info)
1470 {
1471 /* Check how many TDP levels present */
1472 if (plat_info & 0x600000000) {
1473 u64 tdp_ctrl;
1474 u64 tdp_ratio;
1475 int tdp_msr;
1476 int err;
1477
1478 /* Get the TDP level (0, 1, 2) to get ratios */
1479 err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1480 if (err)
1481 return err;
1482
1483 /* TDP MSR are continuous starting at 0x648 */
1484 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1485 err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1486 if (err)
1487 return err;
1488
1489 /* For level 1 and 2, bits[23:16] contain the ratio */
1490 if (tdp_ctrl & 0x03)
1491 tdp_ratio >>= 16;
1492
1493 tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1494 pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1495
1496 return (int)tdp_ratio;
1497 }
1498
1499 return -ENXIO;
1500 }
1501
1502 static int core_get_max_pstate(void)
1503 {
1504 u64 tar;
1505 u64 plat_info;
1506 int max_pstate;
1507 int tdp_ratio;
1508 int err;
1509
1510 rdmsrl(MSR_PLATFORM_INFO, plat_info);
1511 max_pstate = (plat_info >> 8) & 0xFF;
1512
1513 tdp_ratio = core_get_tdp_ratio(plat_info);
1514 if (tdp_ratio <= 0)
1515 return max_pstate;
1516
1517 if (hwp_active) {
1518 /* Turbo activation ratio is not used on HWP platforms */
1519 return tdp_ratio;
1520 }
1521
1522 err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1523 if (!err) {
1524 int tar_levels;
1525
1526 /* Do some sanity checking for safety */
1527 tar_levels = tar & 0xff;
1528 if (tdp_ratio - 1 == tar_levels) {
1529 max_pstate = tar_levels;
1530 pr_debug("max_pstate=TAC %x\n", max_pstate);
1531 }
1532 }
1533
1534 return max_pstate;
1535 }
1536
1537 static int core_get_turbo_pstate(void)
1538 {
1539 u64 value;
1540 int nont, ret;
1541
1542 rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1543 nont = core_get_max_pstate();
1544 ret = (value) & 255;
1545 if (ret <= nont)
1546 ret = nont;
1547 return ret;
1548 }
1549
1550 static inline int core_get_scaling(void)
1551 {
1552 return 100000;
1553 }
1554
1555 static u64 core_get_val(struct cpudata *cpudata, int pstate)
1556 {
1557 u64 val;
1558
1559 val = (u64)pstate << 8;
1560 if (limits->no_turbo && !limits->turbo_disabled)
1561 val |= (u64)1 << 32;
1562
1563 return val;
1564 }
1565
1566 static int knl_get_turbo_pstate(void)
1567 {
1568 u64 value;
1569 int nont, ret;
1570
1571 rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1572 nont = core_get_max_pstate();
1573 ret = (((value) >> 8) & 0xFF);
1574 if (ret <= nont)
1575 ret = nont;
1576 return ret;
1577 }
1578
1579 static struct cpu_defaults core_params = {
1580 .pid_policy = {
1581 .sample_rate_ms = 10,
1582 .deadband = 0,
1583 .setpoint = 97,
1584 .p_gain_pct = 20,
1585 .d_gain_pct = 0,
1586 .i_gain_pct = 0,
1587 },
1588 .funcs = {
1589 .get_max = core_get_max_pstate,
1590 .get_max_physical = core_get_max_pstate_physical,
1591 .get_min = core_get_min_pstate,
1592 .get_turbo = core_get_turbo_pstate,
1593 .get_scaling = core_get_scaling,
1594 .get_val = core_get_val,
1595 .get_target_pstate = get_target_pstate_use_performance,
1596 },
1597 };
1598
1599 static const struct cpu_defaults silvermont_params = {
1600 .pid_policy = {
1601 .sample_rate_ms = 10,
1602 .deadband = 0,
1603 .setpoint = 60,
1604 .p_gain_pct = 14,
1605 .d_gain_pct = 0,
1606 .i_gain_pct = 4,
1607 },
1608 .funcs = {
1609 .get_max = atom_get_max_pstate,
1610 .get_max_physical = atom_get_max_pstate,
1611 .get_min = atom_get_min_pstate,
1612 .get_turbo = atom_get_turbo_pstate,
1613 .get_val = atom_get_val,
1614 .get_scaling = silvermont_get_scaling,
1615 .get_vid = atom_get_vid,
1616 .get_target_pstate = get_target_pstate_use_cpu_load,
1617 },
1618 };
1619
1620 static const struct cpu_defaults airmont_params = {
1621 .pid_policy = {
1622 .sample_rate_ms = 10,
1623 .deadband = 0,
1624 .setpoint = 60,
1625 .p_gain_pct = 14,
1626 .d_gain_pct = 0,
1627 .i_gain_pct = 4,
1628 },
1629 .funcs = {
1630 .get_max = atom_get_max_pstate,
1631 .get_max_physical = atom_get_max_pstate,
1632 .get_min = atom_get_min_pstate,
1633 .get_turbo = atom_get_turbo_pstate,
1634 .get_val = atom_get_val,
1635 .get_scaling = airmont_get_scaling,
1636 .get_vid = atom_get_vid,
1637 .get_target_pstate = get_target_pstate_use_cpu_load,
1638 },
1639 };
1640
1641 static const struct cpu_defaults knl_params = {
1642 .pid_policy = {
1643 .sample_rate_ms = 10,
1644 .deadband = 0,
1645 .setpoint = 97,
1646 .p_gain_pct = 20,
1647 .d_gain_pct = 0,
1648 .i_gain_pct = 0,
1649 },
1650 .funcs = {
1651 .get_max = core_get_max_pstate,
1652 .get_max_physical = core_get_max_pstate_physical,
1653 .get_min = core_get_min_pstate,
1654 .get_turbo = knl_get_turbo_pstate,
1655 .get_scaling = core_get_scaling,
1656 .get_val = core_get_val,
1657 .get_target_pstate = get_target_pstate_use_performance,
1658 },
1659 };
1660
1661 static const struct cpu_defaults bxt_params = {
1662 .pid_policy = {
1663 .sample_rate_ms = 10,
1664 .deadband = 0,
1665 .setpoint = 60,
1666 .p_gain_pct = 14,
1667 .d_gain_pct = 0,
1668 .i_gain_pct = 4,
1669 },
1670 .funcs = {
1671 .get_max = core_get_max_pstate,
1672 .get_max_physical = core_get_max_pstate_physical,
1673 .get_min = core_get_min_pstate,
1674 .get_turbo = core_get_turbo_pstate,
1675 .get_scaling = core_get_scaling,
1676 .get_val = core_get_val,
1677 .get_target_pstate = get_target_pstate_use_cpu_load,
1678 },
1679 };
1680
1681 static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
1682 {
1683 int max_perf = cpu->pstate.turbo_pstate;
1684 int max_perf_adj;
1685 int min_perf;
1686 struct perf_limits *perf_limits = limits;
1687
1688 if (limits->no_turbo || limits->turbo_disabled)
1689 max_perf = cpu->pstate.max_pstate;
1690
1691 if (per_cpu_limits)
1692 perf_limits = cpu->perf_limits;
1693
1694 /*
1695 * performance can be limited by user through sysfs, by cpufreq
1696 * policy, or by cpu specific default values determined through
1697 * experimentation.
1698 */
1699 max_perf_adj = fp_ext_toint(max_perf * perf_limits->max_perf);
1700 *max = clamp_t(int, max_perf_adj,
1701 cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
1702
1703 min_perf = fp_ext_toint(max_perf * perf_limits->min_perf);
1704 *min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
1705 }
1706
1707 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1708 {
1709 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1710 cpu->pstate.current_pstate = pstate;
1711 /*
1712 * Generally, there is no guarantee that this code will always run on
1713 * the CPU being updated, so force the register update to run on the
1714 * right CPU.
1715 */
1716 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1717 pstate_funcs.get_val(cpu, pstate));
1718 }
1719
1720 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1721 {
1722 intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1723 }
1724
1725 static void intel_pstate_max_within_limits(struct cpudata *cpu)
1726 {
1727 int min_pstate, max_pstate;
1728
1729 update_turbo_state();
1730 intel_pstate_get_min_max(cpu, &min_pstate, &max_pstate);
1731 intel_pstate_set_pstate(cpu, max_pstate);
1732 }
1733
1734 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1735 {
1736 cpu->pstate.min_pstate = pstate_funcs.get_min();
1737 cpu->pstate.max_pstate = pstate_funcs.get_max();
1738 cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1739 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1740 cpu->pstate.scaling = pstate_funcs.get_scaling();
1741 cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1742 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1743
1744 if (pstate_funcs.get_vid)
1745 pstate_funcs.get_vid(cpu);
1746
1747 intel_pstate_set_min_pstate(cpu);
1748 }
1749
1750 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1751 {
1752 struct sample *sample = &cpu->sample;
1753
1754 sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1755 }
1756
1757 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1758 {
1759 u64 aperf, mperf;
1760 unsigned long flags;
1761 u64 tsc;
1762
1763 local_irq_save(flags);
1764 rdmsrl(MSR_IA32_APERF, aperf);
1765 rdmsrl(MSR_IA32_MPERF, mperf);
1766 tsc = rdtsc();
1767 if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1768 local_irq_restore(flags);
1769 return false;
1770 }
1771 local_irq_restore(flags);
1772
1773 cpu->last_sample_time = cpu->sample.time;
1774 cpu->sample.time = time;
1775 cpu->sample.aperf = aperf;
1776 cpu->sample.mperf = mperf;
1777 cpu->sample.tsc = tsc;
1778 cpu->sample.aperf -= cpu->prev_aperf;
1779 cpu->sample.mperf -= cpu->prev_mperf;
1780 cpu->sample.tsc -= cpu->prev_tsc;
1781
1782 cpu->prev_aperf = aperf;
1783 cpu->prev_mperf = mperf;
1784 cpu->prev_tsc = tsc;
1785 /*
1786 * First time this function is invoked in a given cycle, all of the
1787 * previous sample data fields are equal to zero or stale and they must
1788 * be populated with meaningful numbers for things to work, so assume
1789 * that sample.time will always be reset before setting the utilization
1790 * update hook and make the caller skip the sample then.
1791 */
1792 return !!cpu->last_sample_time;
1793 }
1794
1795 static inline int32_t get_avg_frequency(struct cpudata *cpu)
1796 {
1797 return mul_ext_fp(cpu->sample.core_avg_perf,
1798 cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
1799 }
1800
1801 static inline int32_t get_avg_pstate(struct cpudata *cpu)
1802 {
1803 return mul_ext_fp(cpu->pstate.max_pstate_physical,
1804 cpu->sample.core_avg_perf);
1805 }
1806
1807 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
1808 {
1809 struct sample *sample = &cpu->sample;
1810 int32_t busy_frac, boost;
1811 int target, avg_pstate;
1812
1813 busy_frac = div_fp(sample->mperf, sample->tsc);
1814
1815 boost = cpu->iowait_boost;
1816 cpu->iowait_boost >>= 1;
1817
1818 if (busy_frac < boost)
1819 busy_frac = boost;
1820
1821 sample->busy_scaled = busy_frac * 100;
1822
1823 target = limits->no_turbo || limits->turbo_disabled ?
1824 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1825 target += target >> 2;
1826 target = mul_fp(target, busy_frac);
1827 if (target < cpu->pstate.min_pstate)
1828 target = cpu->pstate.min_pstate;
1829
1830 /*
1831 * If the average P-state during the previous cycle was higher than the
1832 * current target, add 50% of the difference to the target to reduce
1833 * possible performance oscillations and offset possible performance
1834 * loss related to moving the workload from one CPU to another within
1835 * a package/module.
1836 */
1837 avg_pstate = get_avg_pstate(cpu);
1838 if (avg_pstate > target)
1839 target += (avg_pstate - target) >> 1;
1840
1841 return target;
1842 }
1843
1844 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
1845 {
1846 int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
1847 u64 duration_ns;
1848
1849 /*
1850 * perf_scaled is the ratio of the average P-state during the last
1851 * sampling period to the P-state requested last time (in percent).
1852 *
1853 * That measures the system's response to the previous P-state
1854 * selection.
1855 */
1856 max_pstate = cpu->pstate.max_pstate_physical;
1857 current_pstate = cpu->pstate.current_pstate;
1858 perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
1859 div_fp(100 * max_pstate, current_pstate));
1860
1861 /*
1862 * Since our utilization update callback will not run unless we are
1863 * in C0, check if the actual elapsed time is significantly greater (3x)
1864 * than our sample interval. If it is, then we were idle for a long
1865 * enough period of time to adjust our performance metric.
1866 */
1867 duration_ns = cpu->sample.time - cpu->last_sample_time;
1868 if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
1869 sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1870 perf_scaled = mul_fp(perf_scaled, sample_ratio);
1871 } else {
1872 sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
1873 if (sample_ratio < int_tofp(1))
1874 perf_scaled = 0;
1875 }
1876
1877 cpu->sample.busy_scaled = perf_scaled;
1878 return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
1879 }
1880
1881 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1882 {
1883 int max_perf, min_perf;
1884
1885 intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
1886 pstate = clamp_t(int, pstate, min_perf, max_perf);
1887 return pstate;
1888 }
1889
1890 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1891 {
1892 if (pstate == cpu->pstate.current_pstate)
1893 return;
1894
1895 cpu->pstate.current_pstate = pstate;
1896 wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1897 }
1898
1899 static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
1900 {
1901 int from, target_pstate;
1902 struct sample *sample;
1903
1904 from = cpu->pstate.current_pstate;
1905
1906 target_pstate = cpu->policy == CPUFREQ_POLICY_PERFORMANCE ?
1907 cpu->pstate.turbo_pstate : pstate_funcs.get_target_pstate(cpu);
1908
1909 update_turbo_state();
1910
1911 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
1912 trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1913 intel_pstate_update_pstate(cpu, target_pstate);
1914
1915 sample = &cpu->sample;
1916 trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1917 fp_toint(sample->busy_scaled),
1918 from,
1919 cpu->pstate.current_pstate,
1920 sample->mperf,
1921 sample->aperf,
1922 sample->tsc,
1923 get_avg_frequency(cpu),
1924 fp_toint(cpu->iowait_boost * 100));
1925 }
1926
1927 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1928 unsigned int flags)
1929 {
1930 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1931 u64 delta_ns;
1932
1933 if (pstate_funcs.get_target_pstate == get_target_pstate_use_cpu_load) {
1934 if (flags & SCHED_CPUFREQ_IOWAIT) {
1935 cpu->iowait_boost = int_tofp(1);
1936 } else if (cpu->iowait_boost) {
1937 /* Clear iowait_boost if the CPU may have been idle. */
1938 delta_ns = time - cpu->last_update;
1939 if (delta_ns > TICK_NSEC)
1940 cpu->iowait_boost = 0;
1941 }
1942 cpu->last_update = time;
1943 }
1944
1945 delta_ns = time - cpu->sample.time;
1946 if ((s64)delta_ns >= pid_params.sample_rate_ns) {
1947 bool sample_taken = intel_pstate_sample(cpu, time);
1948
1949 if (sample_taken) {
1950 intel_pstate_calc_avg_perf(cpu);
1951 if (!hwp_active)
1952 intel_pstate_adjust_busy_pstate(cpu);
1953 }
1954 }
1955 }
1956
1957 #define ICPU(model, policy) \
1958 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1959 (unsigned long)&policy }
1960
1961 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1962 ICPU(INTEL_FAM6_SANDYBRIDGE, core_params),
1963 ICPU(INTEL_FAM6_SANDYBRIDGE_X, core_params),
1964 ICPU(INTEL_FAM6_ATOM_SILVERMONT1, silvermont_params),
1965 ICPU(INTEL_FAM6_IVYBRIDGE, core_params),
1966 ICPU(INTEL_FAM6_HASWELL_CORE, core_params),
1967 ICPU(INTEL_FAM6_BROADWELL_CORE, core_params),
1968 ICPU(INTEL_FAM6_IVYBRIDGE_X, core_params),
1969 ICPU(INTEL_FAM6_HASWELL_X, core_params),
1970 ICPU(INTEL_FAM6_HASWELL_ULT, core_params),
1971 ICPU(INTEL_FAM6_HASWELL_GT3E, core_params),
1972 ICPU(INTEL_FAM6_BROADWELL_GT3E, core_params),
1973 ICPU(INTEL_FAM6_ATOM_AIRMONT, airmont_params),
1974 ICPU(INTEL_FAM6_SKYLAKE_MOBILE, core_params),
1975 ICPU(INTEL_FAM6_BROADWELL_X, core_params),
1976 ICPU(INTEL_FAM6_SKYLAKE_DESKTOP, core_params),
1977 ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
1978 ICPU(INTEL_FAM6_XEON_PHI_KNL, knl_params),
1979 ICPU(INTEL_FAM6_XEON_PHI_KNM, knl_params),
1980 ICPU(INTEL_FAM6_ATOM_GOLDMONT, bxt_params),
1981 {}
1982 };
1983 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1984
1985 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1986 ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
1987 ICPU(INTEL_FAM6_BROADWELL_X, core_params),
1988 ICPU(INTEL_FAM6_SKYLAKE_X, core_params),
1989 {}
1990 };
1991
1992 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
1993 ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_params),
1994 {}
1995 };
1996
1997 static int intel_pstate_init_cpu(unsigned int cpunum)
1998 {
1999 struct cpudata *cpu;
2000
2001 cpu = all_cpu_data[cpunum];
2002
2003 if (!cpu) {
2004 unsigned int size = sizeof(struct cpudata);
2005
2006 if (per_cpu_limits)
2007 size += sizeof(struct perf_limits);
2008
2009 cpu = kzalloc(size, GFP_KERNEL);
2010 if (!cpu)
2011 return -ENOMEM;
2012
2013 all_cpu_data[cpunum] = cpu;
2014 if (per_cpu_limits)
2015 cpu->perf_limits = (struct perf_limits *)(cpu + 1);
2016
2017 cpu->epp_default = -EINVAL;
2018 cpu->epp_powersave = -EINVAL;
2019 cpu->epp_saved = -EINVAL;
2020 }
2021
2022 cpu = all_cpu_data[cpunum];
2023
2024 cpu->cpu = cpunum;
2025
2026 if (hwp_active) {
2027 const struct x86_cpu_id *id;
2028
2029 id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
2030 if (id)
2031 intel_pstate_disable_ee(cpunum);
2032
2033 intel_pstate_hwp_enable(cpu);
2034 pid_params.sample_rate_ms = 50;
2035 pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
2036 }
2037
2038 intel_pstate_get_cpu_pstates(cpu);
2039
2040 intel_pstate_busy_pid_reset(cpu);
2041
2042 pr_debug("controlling: cpu %d\n", cpunum);
2043
2044 return 0;
2045 }
2046
2047 static unsigned int intel_pstate_get(unsigned int cpu_num)
2048 {
2049 struct cpudata *cpu = all_cpu_data[cpu_num];
2050
2051 return cpu ? get_avg_frequency(cpu) : 0;
2052 }
2053
2054 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
2055 {
2056 struct cpudata *cpu = all_cpu_data[cpu_num];
2057
2058 if (cpu->update_util_set)
2059 return;
2060
2061 /* Prevent intel_pstate_update_util() from using stale data. */
2062 cpu->sample.time = 0;
2063 cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
2064 intel_pstate_update_util);
2065 cpu->update_util_set = true;
2066 }
2067
2068 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
2069 {
2070 struct cpudata *cpu_data = all_cpu_data[cpu];
2071
2072 if (!cpu_data->update_util_set)
2073 return;
2074
2075 cpufreq_remove_update_util_hook(cpu);
2076 cpu_data->update_util_set = false;
2077 synchronize_sched();
2078 }
2079
2080 static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
2081 struct perf_limits *limits)
2082 {
2083 int32_t max_policy_perf, min_policy_perf;
2084
2085 max_policy_perf = div_ext_fp(policy->max, policy->cpuinfo.max_freq);
2086 max_policy_perf = clamp_t(int32_t, max_policy_perf, 0, int_ext_tofp(1));
2087 if (policy->max == policy->min) {
2088 min_policy_perf = max_policy_perf;
2089 } else {
2090 min_policy_perf = div_ext_fp(policy->min,
2091 policy->cpuinfo.max_freq);
2092 min_policy_perf = clamp_t(int32_t, min_policy_perf,
2093 0, max_policy_perf);
2094 }
2095
2096 /* Normalize user input to [min_perf, max_perf] */
2097 limits->min_perf = max(min_policy_perf,
2098 percent_ext_fp(limits->min_sysfs_pct));
2099 limits->min_perf = min(limits->min_perf, max_policy_perf);
2100 limits->max_perf = min(max_policy_perf,
2101 percent_ext_fp(limits->max_sysfs_pct));
2102 limits->max_perf = max(min_policy_perf, limits->max_perf);
2103
2104 /* Make sure min_perf <= max_perf */
2105 limits->min_perf = min(limits->min_perf, limits->max_perf);
2106
2107 limits->max_perf = round_up(limits->max_perf, EXT_FRAC_BITS);
2108 limits->min_perf = round_up(limits->min_perf, EXT_FRAC_BITS);
2109 limits->max_perf_pct = fp_ext_toint(limits->max_perf * 100);
2110 limits->min_perf_pct = fp_ext_toint(limits->min_perf * 100);
2111
2112 pr_debug("cpu:%d max_perf_pct:%d min_perf_pct:%d\n", policy->cpu,
2113 limits->max_perf_pct, limits->min_perf_pct);
2114 }
2115
2116 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2117 {
2118 struct cpudata *cpu;
2119 struct perf_limits *perf_limits = NULL;
2120
2121 if (!policy->cpuinfo.max_freq)
2122 return -ENODEV;
2123
2124 pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2125 policy->cpuinfo.max_freq, policy->max);
2126
2127 cpu = all_cpu_data[policy->cpu];
2128 cpu->policy = policy->policy;
2129
2130 if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2131 policy->max < policy->cpuinfo.max_freq &&
2132 policy->max > cpu->pstate.max_pstate * cpu->pstate.scaling) {
2133 pr_debug("policy->max > max non turbo frequency\n");
2134 policy->max = policy->cpuinfo.max_freq;
2135 }
2136
2137 if (per_cpu_limits)
2138 perf_limits = cpu->perf_limits;
2139
2140 mutex_lock(&intel_pstate_limits_lock);
2141
2142 if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
2143 pr_debug("set performance\n");
2144 if (!perf_limits) {
2145 limits = &performance_limits;
2146 perf_limits = limits;
2147 }
2148 } else {
2149 pr_debug("set powersave\n");
2150 if (!perf_limits) {
2151 limits = &powersave_limits;
2152 perf_limits = limits;
2153 }
2154
2155 }
2156
2157 intel_pstate_update_perf_limits(policy, perf_limits);
2158
2159 if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2160 /*
2161 * NOHZ_FULL CPUs need this as the governor callback may not
2162 * be invoked on them.
2163 */
2164 intel_pstate_clear_update_util_hook(policy->cpu);
2165 intel_pstate_max_within_limits(cpu);
2166 }
2167
2168 intel_pstate_set_update_util_hook(policy->cpu);
2169
2170 intel_pstate_hwp_set_policy(policy);
2171
2172 mutex_unlock(&intel_pstate_limits_lock);
2173
2174 return 0;
2175 }
2176
2177 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
2178 {
2179 struct cpudata *cpu = all_cpu_data[policy->cpu];
2180 struct perf_limits *perf_limits;
2181
2182 if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
2183 perf_limits = &performance_limits;
2184 else
2185 perf_limits = &powersave_limits;
2186
2187 update_turbo_state();
2188 policy->cpuinfo.max_freq = perf_limits->turbo_disabled ||
2189 perf_limits->no_turbo ?
2190 cpu->pstate.max_freq :
2191 cpu->pstate.turbo_freq;
2192
2193 cpufreq_verify_within_cpu_limits(policy);
2194
2195 if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
2196 policy->policy != CPUFREQ_POLICY_PERFORMANCE)
2197 return -EINVAL;
2198
2199 /* When per-CPU limits are used, sysfs limits are not used */
2200 if (!per_cpu_limits) {
2201 unsigned int max_freq, min_freq;
2202
2203 max_freq = policy->cpuinfo.max_freq *
2204 perf_limits->max_sysfs_pct / 100;
2205 min_freq = policy->cpuinfo.max_freq *
2206 perf_limits->min_sysfs_pct / 100;
2207 cpufreq_verify_within_limits(policy, min_freq, max_freq);
2208 }
2209
2210 return 0;
2211 }
2212
2213 static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
2214 {
2215 intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
2216 }
2217
2218 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2219 {
2220 pr_debug("CPU %d exiting\n", policy->cpu);
2221
2222 intel_pstate_clear_update_util_hook(policy->cpu);
2223 if (hwp_active)
2224 intel_pstate_hwp_save_state(policy);
2225 else
2226 intel_cpufreq_stop_cpu(policy);
2227 }
2228
2229 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2230 {
2231 intel_pstate_exit_perf_limits(policy);
2232
2233 policy->fast_switch_possible = false;
2234
2235 return 0;
2236 }
2237
2238 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2239 {
2240 struct cpudata *cpu;
2241 int rc;
2242
2243 rc = intel_pstate_init_cpu(policy->cpu);
2244 if (rc)
2245 return rc;
2246
2247 cpu = all_cpu_data[policy->cpu];
2248
2249 if (per_cpu_limits)
2250 intel_pstate_init_limits(cpu->perf_limits);
2251
2252 policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
2253 policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2254
2255 /* cpuinfo and default policy values */
2256 policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2257 update_turbo_state();
2258 policy->cpuinfo.max_freq = limits->turbo_disabled ?
2259 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2260 policy->cpuinfo.max_freq *= cpu->pstate.scaling;
2261
2262 intel_pstate_init_acpi_perf_limits(policy);
2263 cpumask_set_cpu(policy->cpu, policy->cpus);
2264
2265 policy->fast_switch_possible = true;
2266
2267 return 0;
2268 }
2269
2270 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2271 {
2272 int ret = __intel_pstate_cpu_init(policy);
2273
2274 if (ret)
2275 return ret;
2276
2277 policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
2278 if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
2279 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
2280 else
2281 policy->policy = CPUFREQ_POLICY_POWERSAVE;
2282
2283 return 0;
2284 }
2285
2286 static struct cpufreq_driver intel_pstate = {
2287 .flags = CPUFREQ_CONST_LOOPS,
2288 .verify = intel_pstate_verify_policy,
2289 .setpolicy = intel_pstate_set_policy,
2290 .suspend = intel_pstate_hwp_save_state,
2291 .resume = intel_pstate_resume,
2292 .get = intel_pstate_get,
2293 .init = intel_pstate_cpu_init,
2294 .exit = intel_pstate_cpu_exit,
2295 .stop_cpu = intel_pstate_stop_cpu,
2296 .name = "intel_pstate",
2297 };
2298
2299 static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
2300 {
2301 struct cpudata *cpu = all_cpu_data[policy->cpu];
2302
2303 update_turbo_state();
2304 policy->cpuinfo.max_freq = limits->turbo_disabled ?
2305 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2306
2307 cpufreq_verify_within_cpu_limits(policy);
2308
2309 return 0;
2310 }
2311
2312 static unsigned int intel_cpufreq_turbo_update(struct cpudata *cpu,
2313 struct cpufreq_policy *policy,
2314 unsigned int target_freq)
2315 {
2316 unsigned int max_freq;
2317
2318 update_turbo_state();
2319
2320 max_freq = limits->no_turbo || limits->turbo_disabled ?
2321 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2322 policy->cpuinfo.max_freq = max_freq;
2323 if (policy->max > max_freq)
2324 policy->max = max_freq;
2325
2326 if (target_freq > max_freq)
2327 target_freq = max_freq;
2328
2329 return target_freq;
2330 }
2331
2332 static int intel_cpufreq_target(struct cpufreq_policy *policy,
2333 unsigned int target_freq,
2334 unsigned int relation)
2335 {
2336 struct cpudata *cpu = all_cpu_data[policy->cpu];
2337 struct cpufreq_freqs freqs;
2338 int target_pstate;
2339
2340 freqs.old = policy->cur;
2341 freqs.new = intel_cpufreq_turbo_update(cpu, policy, target_freq);
2342
2343 cpufreq_freq_transition_begin(policy, &freqs);
2344 switch (relation) {
2345 case CPUFREQ_RELATION_L:
2346 target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2347 break;
2348 case CPUFREQ_RELATION_H:
2349 target_pstate = freqs.new / cpu->pstate.scaling;
2350 break;
2351 default:
2352 target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2353 break;
2354 }
2355 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2356 if (target_pstate != cpu->pstate.current_pstate) {
2357 cpu->pstate.current_pstate = target_pstate;
2358 wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
2359 pstate_funcs.get_val(cpu, target_pstate));
2360 }
2361 freqs.new = target_pstate * cpu->pstate.scaling;
2362 cpufreq_freq_transition_end(policy, &freqs, false);
2363
2364 return 0;
2365 }
2366
2367 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2368 unsigned int target_freq)
2369 {
2370 struct cpudata *cpu = all_cpu_data[policy->cpu];
2371 int target_pstate;
2372
2373 target_freq = intel_cpufreq_turbo_update(cpu, policy, target_freq);
2374 target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2375 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2376 intel_pstate_update_pstate(cpu, target_pstate);
2377 return target_pstate * cpu->pstate.scaling;
2378 }
2379
2380 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2381 {
2382 int ret = __intel_pstate_cpu_init(policy);
2383
2384 if (ret)
2385 return ret;
2386
2387 policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2388 /* This reflects the intel_pstate_get_cpu_pstates() setting. */
2389 policy->cur = policy->cpuinfo.min_freq;
2390
2391 return 0;
2392 }
2393
2394 static struct cpufreq_driver intel_cpufreq = {
2395 .flags = CPUFREQ_CONST_LOOPS,
2396 .verify = intel_cpufreq_verify_policy,
2397 .target = intel_cpufreq_target,
2398 .fast_switch = intel_cpufreq_fast_switch,
2399 .init = intel_cpufreq_cpu_init,
2400 .exit = intel_pstate_cpu_exit,
2401 .stop_cpu = intel_cpufreq_stop_cpu,
2402 .name = "intel_cpufreq",
2403 };
2404
2405 static struct cpufreq_driver *intel_pstate_driver = &intel_pstate;
2406
2407 static void intel_pstate_driver_cleanup(void)
2408 {
2409 unsigned int cpu;
2410
2411 get_online_cpus();
2412 for_each_online_cpu(cpu) {
2413 if (all_cpu_data[cpu]) {
2414 if (intel_pstate_driver == &intel_pstate)
2415 intel_pstate_clear_update_util_hook(cpu);
2416
2417 kfree(all_cpu_data[cpu]);
2418 all_cpu_data[cpu] = NULL;
2419 }
2420 }
2421 put_online_cpus();
2422 }
2423
2424 static int intel_pstate_register_driver(void)
2425 {
2426 int ret;
2427
2428 intel_pstate_init_limits(&powersave_limits);
2429 intel_pstate_set_performance_limits(&performance_limits);
2430 if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE) &&
2431 intel_pstate_driver == &intel_pstate)
2432 limits = &performance_limits;
2433 else
2434 limits = &powersave_limits;
2435
2436 ret = cpufreq_register_driver(intel_pstate_driver);
2437 if (ret) {
2438 intel_pstate_driver_cleanup();
2439 return ret;
2440 }
2441
2442 mutex_lock(&intel_pstate_limits_lock);
2443 driver_registered = true;
2444 mutex_unlock(&intel_pstate_limits_lock);
2445
2446 if (intel_pstate_driver == &intel_pstate && !hwp_active &&
2447 pstate_funcs.get_target_pstate != get_target_pstate_use_cpu_load)
2448 intel_pstate_debug_expose_params();
2449
2450 return 0;
2451 }
2452
2453 static int intel_pstate_unregister_driver(void)
2454 {
2455 if (hwp_active)
2456 return -EBUSY;
2457
2458 if (intel_pstate_driver == &intel_pstate && !hwp_active &&
2459 pstate_funcs.get_target_pstate != get_target_pstate_use_cpu_load)
2460 intel_pstate_debug_hide_params();
2461
2462 mutex_lock(&intel_pstate_limits_lock);
2463 driver_registered = false;
2464 mutex_unlock(&intel_pstate_limits_lock);
2465
2466 cpufreq_unregister_driver(intel_pstate_driver);
2467 intel_pstate_driver_cleanup();
2468
2469 return 0;
2470 }
2471
2472 static ssize_t intel_pstate_show_status(char *buf)
2473 {
2474 if (!driver_registered)
2475 return sprintf(buf, "off\n");
2476
2477 return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
2478 "active" : "passive");
2479 }
2480
2481 static int intel_pstate_update_status(const char *buf, size_t size)
2482 {
2483 int ret;
2484
2485 if (size == 3 && !strncmp(buf, "off", size))
2486 return driver_registered ?
2487 intel_pstate_unregister_driver() : -EINVAL;
2488
2489 if (size == 6 && !strncmp(buf, "active", size)) {
2490 if (driver_registered) {
2491 if (intel_pstate_driver == &intel_pstate)
2492 return 0;
2493
2494 ret = intel_pstate_unregister_driver();
2495 if (ret)
2496 return ret;
2497 }
2498
2499 intel_pstate_driver = &intel_pstate;
2500 return intel_pstate_register_driver();
2501 }
2502
2503 if (size == 7 && !strncmp(buf, "passive", size)) {
2504 if (driver_registered) {
2505 if (intel_pstate_driver != &intel_pstate)
2506 return 0;
2507
2508 ret = intel_pstate_unregister_driver();
2509 if (ret)
2510 return ret;
2511 }
2512
2513 intel_pstate_driver = &intel_cpufreq;
2514 return intel_pstate_register_driver();
2515 }
2516
2517 return -EINVAL;
2518 }
2519
2520 static int no_load __initdata;
2521 static int no_hwp __initdata;
2522 static int hwp_only __initdata;
2523 static unsigned int force_load __initdata;
2524
2525 static int __init intel_pstate_msrs_not_valid(void)
2526 {
2527 if (!pstate_funcs.get_max() ||
2528 !pstate_funcs.get_min() ||
2529 !pstate_funcs.get_turbo())
2530 return -ENODEV;
2531
2532 return 0;
2533 }
2534
2535 static void __init copy_pid_params(struct pstate_adjust_policy *policy)
2536 {
2537 pid_params.sample_rate_ms = policy->sample_rate_ms;
2538 pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
2539 pid_params.p_gain_pct = policy->p_gain_pct;
2540 pid_params.i_gain_pct = policy->i_gain_pct;
2541 pid_params.d_gain_pct = policy->d_gain_pct;
2542 pid_params.deadband = policy->deadband;
2543 pid_params.setpoint = policy->setpoint;
2544 }
2545
2546 #ifdef CONFIG_ACPI
2547 static void intel_pstate_use_acpi_profile(void)
2548 {
2549 if (acpi_gbl_FADT.preferred_profile == PM_MOBILE)
2550 pstate_funcs.get_target_pstate =
2551 get_target_pstate_use_cpu_load;
2552 }
2553 #else
2554 static void intel_pstate_use_acpi_profile(void)
2555 {
2556 }
2557 #endif
2558
2559 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2560 {
2561 pstate_funcs.get_max = funcs->get_max;
2562 pstate_funcs.get_max_physical = funcs->get_max_physical;
2563 pstate_funcs.get_min = funcs->get_min;
2564 pstate_funcs.get_turbo = funcs->get_turbo;
2565 pstate_funcs.get_scaling = funcs->get_scaling;
2566 pstate_funcs.get_val = funcs->get_val;
2567 pstate_funcs.get_vid = funcs->get_vid;
2568 pstate_funcs.get_target_pstate = funcs->get_target_pstate;
2569
2570 intel_pstate_use_acpi_profile();
2571 }
2572
2573 #ifdef CONFIG_ACPI
2574
2575 static bool __init intel_pstate_no_acpi_pss(void)
2576 {
2577 int i;
2578
2579 for_each_possible_cpu(i) {
2580 acpi_status status;
2581 union acpi_object *pss;
2582 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
2583 struct acpi_processor *pr = per_cpu(processors, i);
2584
2585 if (!pr)
2586 continue;
2587
2588 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
2589 if (ACPI_FAILURE(status))
2590 continue;
2591
2592 pss = buffer.pointer;
2593 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
2594 kfree(pss);
2595 return false;
2596 }
2597
2598 kfree(pss);
2599 }
2600
2601 return true;
2602 }
2603
2604 static bool __init intel_pstate_has_acpi_ppc(void)
2605 {
2606 int i;
2607
2608 for_each_possible_cpu(i) {
2609 struct acpi_processor *pr = per_cpu(processors, i);
2610
2611 if (!pr)
2612 continue;
2613 if (acpi_has_method(pr->handle, "_PPC"))
2614 return true;
2615 }
2616 return false;
2617 }
2618
2619 enum {
2620 PSS,
2621 PPC,
2622 };
2623
2624 struct hw_vendor_info {
2625 u16 valid;
2626 char oem_id[ACPI_OEM_ID_SIZE];
2627 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
2628 int oem_pwr_table;
2629 };
2630
2631 /* Hardware vendor-specific info that has its own power management modes */
2632 static struct hw_vendor_info vendor_info[] __initdata = {
2633 {1, "HP ", "ProLiant", PSS},
2634 {1, "ORACLE", "X4-2 ", PPC},
2635 {1, "ORACLE", "X4-2L ", PPC},
2636 {1, "ORACLE", "X4-2B ", PPC},
2637 {1, "ORACLE", "X3-2 ", PPC},
2638 {1, "ORACLE", "X3-2L ", PPC},
2639 {1, "ORACLE", "X3-2B ", PPC},
2640 {1, "ORACLE", "X4470M2 ", PPC},
2641 {1, "ORACLE", "X4270M3 ", PPC},
2642 {1, "ORACLE", "X4270M2 ", PPC},
2643 {1, "ORACLE", "X4170M2 ", PPC},
2644 {1, "ORACLE", "X4170 M3", PPC},
2645 {1, "ORACLE", "X4275 M3", PPC},
2646 {1, "ORACLE", "X6-2 ", PPC},
2647 {1, "ORACLE", "Sudbury ", PPC},
2648 {0, "", ""},
2649 };
2650
2651 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2652 {
2653 struct acpi_table_header hdr;
2654 struct hw_vendor_info *v_info;
2655 const struct x86_cpu_id *id;
2656 u64 misc_pwr;
2657
2658 id = x86_match_cpu(intel_pstate_cpu_oob_ids);
2659 if (id) {
2660 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2661 if ( misc_pwr & (1 << 8))
2662 return true;
2663 }
2664
2665 if (acpi_disabled ||
2666 ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
2667 return false;
2668
2669 for (v_info = vendor_info; v_info->valid; v_info++) {
2670 if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
2671 !strncmp(hdr.oem_table_id, v_info->oem_table_id,
2672 ACPI_OEM_TABLE_ID_SIZE))
2673 switch (v_info->oem_pwr_table) {
2674 case PSS:
2675 return intel_pstate_no_acpi_pss();
2676 case PPC:
2677 return intel_pstate_has_acpi_ppc() &&
2678 (!force_load);
2679 }
2680 }
2681
2682 return false;
2683 }
2684
2685 static void intel_pstate_request_control_from_smm(void)
2686 {
2687 /*
2688 * It may be unsafe to request P-states control from SMM if _PPC support
2689 * has not been enabled.
2690 */
2691 if (acpi_ppc)
2692 acpi_processor_pstate_control();
2693 }
2694 #else /* CONFIG_ACPI not enabled */
2695 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2696 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2697 static inline void intel_pstate_request_control_from_smm(void) {}
2698 #endif /* CONFIG_ACPI */
2699
2700 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2701 { X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
2702 {}
2703 };
2704
2705 static int __init intel_pstate_init(void)
2706 {
2707 const struct x86_cpu_id *id;
2708 struct cpu_defaults *cpu_def;
2709 int rc = 0;
2710
2711 if (no_load)
2712 return -ENODEV;
2713
2714 if (x86_match_cpu(hwp_support_ids) && !no_hwp) {
2715 copy_cpu_funcs(&core_params.funcs);
2716 hwp_active++;
2717 intel_pstate.attr = hwp_cpufreq_attrs;
2718 goto hwp_cpu_matched;
2719 }
2720
2721 id = x86_match_cpu(intel_pstate_cpu_ids);
2722 if (!id)
2723 return -ENODEV;
2724
2725 cpu_def = (struct cpu_defaults *)id->driver_data;
2726
2727 copy_pid_params(&cpu_def->pid_policy);
2728 copy_cpu_funcs(&cpu_def->funcs);
2729
2730 if (intel_pstate_msrs_not_valid())
2731 return -ENODEV;
2732
2733 hwp_cpu_matched:
2734 /*
2735 * The Intel pstate driver will be ignored if the platform
2736 * firmware has its own power management modes.
2737 */
2738 if (intel_pstate_platform_pwr_mgmt_exists())
2739 return -ENODEV;
2740
2741 if (!hwp_active && hwp_only)
2742 return -ENOTSUPP;
2743
2744 pr_info("Intel P-state driver initializing\n");
2745
2746 all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
2747 if (!all_cpu_data)
2748 return -ENOMEM;
2749
2750 intel_pstate_request_control_from_smm();
2751
2752 intel_pstate_sysfs_expose_params();
2753
2754 mutex_lock(&intel_pstate_driver_lock);
2755 rc = intel_pstate_register_driver();
2756 mutex_unlock(&intel_pstate_driver_lock);
2757 if (rc)
2758 return rc;
2759
2760 if (hwp_active)
2761 pr_info("HWP enabled\n");
2762
2763 return 0;
2764 }
2765 device_initcall(intel_pstate_init);
2766
2767 static int __init intel_pstate_setup(char *str)
2768 {
2769 if (!str)
2770 return -EINVAL;
2771
2772 if (!strcmp(str, "disable")) {
2773 no_load = 1;
2774 } else if (!strcmp(str, "passive")) {
2775 pr_info("Passive mode enabled\n");
2776 intel_pstate_driver = &intel_cpufreq;
2777 no_hwp = 1;
2778 }
2779 if (!strcmp(str, "no_hwp")) {
2780 pr_info("HWP disabled\n");
2781 no_hwp = 1;
2782 }
2783 if (!strcmp(str, "force"))
2784 force_load = 1;
2785 if (!strcmp(str, "hwp_only"))
2786 hwp_only = 1;
2787 if (!strcmp(str, "per_cpu_perf_limits"))
2788 per_cpu_limits = true;
2789
2790 #ifdef CONFIG_ACPI
2791 if (!strcmp(str, "support_acpi_ppc"))
2792 acpi_ppc = true;
2793 #endif
2794
2795 return 0;
2796 }
2797 early_param("intel_pstate", intel_pstate_setup);
2798
2799 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
2800 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
2801 MODULE_LICENSE("GPL");