]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/cpufreq/intel_pstate.c
cpufreq: intel_pstate: Per CPU P-State limits
[mirror_ubuntu-zesty-kernel.git] / drivers / cpufreq / intel_pstate.c
1 /*
2 * intel_pstate.c: Native P state management for Intel processors
3 *
4 * (C) Copyright 2012 Intel Corporation
5 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
10 * of the License.
11 */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/kernel.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/module.h>
18 #include <linux/ktime.h>
19 #include <linux/hrtimer.h>
20 #include <linux/tick.h>
21 #include <linux/slab.h>
22 #include <linux/sched.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25 #include <linux/cpufreq.h>
26 #include <linux/sysfs.h>
27 #include <linux/types.h>
28 #include <linux/fs.h>
29 #include <linux/debugfs.h>
30 #include <linux/acpi.h>
31 #include <linux/vmalloc.h>
32 #include <trace/events/power.h>
33
34 #include <asm/div64.h>
35 #include <asm/msr.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/cpufeature.h>
38 #include <asm/intel-family.h>
39
40 #define ATOM_RATIOS 0x66a
41 #define ATOM_VIDS 0x66b
42 #define ATOM_TURBO_RATIOS 0x66c
43 #define ATOM_TURBO_VIDS 0x66d
44
45 #ifdef CONFIG_ACPI
46 #include <acpi/processor.h>
47 #endif
48
49 #define FRAC_BITS 8
50 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
51 #define fp_toint(X) ((X) >> FRAC_BITS)
52
53 #define EXT_BITS 6
54 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
55
56 static inline int32_t mul_fp(int32_t x, int32_t y)
57 {
58 return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
59 }
60
61 static inline int32_t div_fp(s64 x, s64 y)
62 {
63 return div64_s64((int64_t)x << FRAC_BITS, y);
64 }
65
66 static inline int ceiling_fp(int32_t x)
67 {
68 int mask, ret;
69
70 ret = fp_toint(x);
71 mask = (1 << FRAC_BITS) - 1;
72 if (x & mask)
73 ret += 1;
74 return ret;
75 }
76
77 static inline u64 mul_ext_fp(u64 x, u64 y)
78 {
79 return (x * y) >> EXT_FRAC_BITS;
80 }
81
82 static inline u64 div_ext_fp(u64 x, u64 y)
83 {
84 return div64_u64(x << EXT_FRAC_BITS, y);
85 }
86
87 /**
88 * struct sample - Store performance sample
89 * @core_avg_perf: Ratio of APERF/MPERF which is the actual average
90 * performance during last sample period
91 * @busy_scaled: Scaled busy value which is used to calculate next
92 * P state. This can be different than core_avg_perf
93 * to account for cpu idle period
94 * @aperf: Difference of actual performance frequency clock count
95 * read from APERF MSR between last and current sample
96 * @mperf: Difference of maximum performance frequency clock count
97 * read from MPERF MSR between last and current sample
98 * @tsc: Difference of time stamp counter between last and
99 * current sample
100 * @time: Current time from scheduler
101 *
102 * This structure is used in the cpudata structure to store performance sample
103 * data for choosing next P State.
104 */
105 struct sample {
106 int32_t core_avg_perf;
107 int32_t busy_scaled;
108 u64 aperf;
109 u64 mperf;
110 u64 tsc;
111 u64 time;
112 };
113
114 /**
115 * struct pstate_data - Store P state data
116 * @current_pstate: Current requested P state
117 * @min_pstate: Min P state possible for this platform
118 * @max_pstate: Max P state possible for this platform
119 * @max_pstate_physical:This is physical Max P state for a processor
120 * This can be higher than the max_pstate which can
121 * be limited by platform thermal design power limits
122 * @scaling: Scaling factor to convert frequency to cpufreq
123 * frequency units
124 * @turbo_pstate: Max Turbo P state possible for this platform
125 *
126 * Stores the per cpu model P state limits and current P state.
127 */
128 struct pstate_data {
129 int current_pstate;
130 int min_pstate;
131 int max_pstate;
132 int max_pstate_physical;
133 int scaling;
134 int turbo_pstate;
135 };
136
137 /**
138 * struct vid_data - Stores voltage information data
139 * @min: VID data for this platform corresponding to
140 * the lowest P state
141 * @max: VID data corresponding to the highest P State.
142 * @turbo: VID data for turbo P state
143 * @ratio: Ratio of (vid max - vid min) /
144 * (max P state - Min P State)
145 *
146 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
147 * This data is used in Atom platforms, where in addition to target P state,
148 * the voltage data needs to be specified to select next P State.
149 */
150 struct vid_data {
151 int min;
152 int max;
153 int turbo;
154 int32_t ratio;
155 };
156
157 /**
158 * struct _pid - Stores PID data
159 * @setpoint: Target set point for busyness or performance
160 * @integral: Storage for accumulated error values
161 * @p_gain: PID proportional gain
162 * @i_gain: PID integral gain
163 * @d_gain: PID derivative gain
164 * @deadband: PID deadband
165 * @last_err: Last error storage for integral part of PID calculation
166 *
167 * Stores PID coefficients and last error for PID controller.
168 */
169 struct _pid {
170 int setpoint;
171 int32_t integral;
172 int32_t p_gain;
173 int32_t i_gain;
174 int32_t d_gain;
175 int deadband;
176 int32_t last_err;
177 };
178
179 /**
180 * struct perf_limits - Store user and policy limits
181 * @no_turbo: User requested turbo state from intel_pstate sysfs
182 * @turbo_disabled: Platform turbo status either from msr
183 * MSR_IA32_MISC_ENABLE or when maximum available pstate
184 * matches the maximum turbo pstate
185 * @max_perf_pct: Effective maximum performance limit in percentage, this
186 * is minimum of either limits enforced by cpufreq policy
187 * or limits from user set limits via intel_pstate sysfs
188 * @min_perf_pct: Effective minimum performance limit in percentage, this
189 * is maximum of either limits enforced by cpufreq policy
190 * or limits from user set limits via intel_pstate sysfs
191 * @max_perf: This is a scaled value between 0 to 255 for max_perf_pct
192 * This value is used to limit max pstate
193 * @min_perf: This is a scaled value between 0 to 255 for min_perf_pct
194 * This value is used to limit min pstate
195 * @max_policy_pct: The maximum performance in percentage enforced by
196 * cpufreq setpolicy interface
197 * @max_sysfs_pct: The maximum performance in percentage enforced by
198 * intel pstate sysfs interface, unused when per cpu
199 * controls are enforced
200 * @min_policy_pct: The minimum performance in percentage enforced by
201 * cpufreq setpolicy interface
202 * @min_sysfs_pct: The minimum performance in percentage enforced by
203 * intel pstate sysfs interface, unused when per cpu
204 * controls are enforced
205 *
206 * Storage for user and policy defined limits.
207 */
208 struct perf_limits {
209 int no_turbo;
210 int turbo_disabled;
211 int max_perf_pct;
212 int min_perf_pct;
213 int32_t max_perf;
214 int32_t min_perf;
215 int max_policy_pct;
216 int max_sysfs_pct;
217 int min_policy_pct;
218 int min_sysfs_pct;
219 };
220
221 /**
222 * struct cpudata - Per CPU instance data storage
223 * @cpu: CPU number for this instance data
224 * @policy: CPUFreq policy value
225 * @update_util: CPUFreq utility callback information
226 * @update_util_set: CPUFreq utility callback is set
227 * @iowait_boost: iowait-related boost fraction
228 * @last_update: Time of the last update.
229 * @pstate: Stores P state limits for this CPU
230 * @vid: Stores VID limits for this CPU
231 * @pid: Stores PID parameters for this CPU
232 * @last_sample_time: Last Sample time
233 * @prev_aperf: Last APERF value read from APERF MSR
234 * @prev_mperf: Last MPERF value read from MPERF MSR
235 * @prev_tsc: Last timestamp counter (TSC) value
236 * @prev_cummulative_iowait: IO Wait time difference from last and
237 * current sample
238 * @sample: Storage for storing last Sample data
239 * @perf_limits: Pointer to perf_limit unique to this CPU
240 * Not all field in the structure are applicable
241 * when per cpu controls are enforced
242 * @acpi_perf_data: Stores ACPI perf information read from _PSS
243 * @valid_pss_table: Set to true for valid ACPI _PSS entries found
244 *
245 * This structure stores per CPU instance data for all CPUs.
246 */
247 struct cpudata {
248 int cpu;
249
250 unsigned int policy;
251 struct update_util_data update_util;
252 bool update_util_set;
253
254 struct pstate_data pstate;
255 struct vid_data vid;
256 struct _pid pid;
257
258 u64 last_update;
259 u64 last_sample_time;
260 u64 prev_aperf;
261 u64 prev_mperf;
262 u64 prev_tsc;
263 u64 prev_cummulative_iowait;
264 struct sample sample;
265 struct perf_limits *perf_limits;
266 #ifdef CONFIG_ACPI
267 struct acpi_processor_performance acpi_perf_data;
268 bool valid_pss_table;
269 #endif
270 unsigned int iowait_boost;
271 };
272
273 static struct cpudata **all_cpu_data;
274
275 /**
276 * struct pstate_adjust_policy - Stores static PID configuration data
277 * @sample_rate_ms: PID calculation sample rate in ms
278 * @sample_rate_ns: Sample rate calculation in ns
279 * @deadband: PID deadband
280 * @setpoint: PID Setpoint
281 * @p_gain_pct: PID proportional gain
282 * @i_gain_pct: PID integral gain
283 * @d_gain_pct: PID derivative gain
284 *
285 * Stores per CPU model static PID configuration data.
286 */
287 struct pstate_adjust_policy {
288 int sample_rate_ms;
289 s64 sample_rate_ns;
290 int deadband;
291 int setpoint;
292 int p_gain_pct;
293 int d_gain_pct;
294 int i_gain_pct;
295 };
296
297 /**
298 * struct pstate_funcs - Per CPU model specific callbacks
299 * @get_max: Callback to get maximum non turbo effective P state
300 * @get_max_physical: Callback to get maximum non turbo physical P state
301 * @get_min: Callback to get minimum P state
302 * @get_turbo: Callback to get turbo P state
303 * @get_scaling: Callback to get frequency scaling factor
304 * @get_val: Callback to convert P state to actual MSR write value
305 * @get_vid: Callback to get VID data for Atom platforms
306 * @get_target_pstate: Callback to a function to calculate next P state to use
307 *
308 * Core and Atom CPU models have different way to get P State limits. This
309 * structure is used to store those callbacks.
310 */
311 struct pstate_funcs {
312 int (*get_max)(void);
313 int (*get_max_physical)(void);
314 int (*get_min)(void);
315 int (*get_turbo)(void);
316 int (*get_scaling)(void);
317 u64 (*get_val)(struct cpudata*, int pstate);
318 void (*get_vid)(struct cpudata *);
319 int32_t (*get_target_pstate)(struct cpudata *);
320 };
321
322 /**
323 * struct cpu_defaults- Per CPU model default config data
324 * @pid_policy: PID config data
325 * @funcs: Callback function data
326 */
327 struct cpu_defaults {
328 struct pstate_adjust_policy pid_policy;
329 struct pstate_funcs funcs;
330 };
331
332 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
333 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
334
335 static struct pstate_adjust_policy pid_params __read_mostly;
336 static struct pstate_funcs pstate_funcs __read_mostly;
337 static int hwp_active __read_mostly;
338 static bool per_cpu_limits __read_mostly;
339
340 #ifdef CONFIG_ACPI
341 static bool acpi_ppc;
342 #endif
343
344 static struct perf_limits performance_limits = {
345 .no_turbo = 0,
346 .turbo_disabled = 0,
347 .max_perf_pct = 100,
348 .max_perf = int_tofp(1),
349 .min_perf_pct = 100,
350 .min_perf = int_tofp(1),
351 .max_policy_pct = 100,
352 .max_sysfs_pct = 100,
353 .min_policy_pct = 0,
354 .min_sysfs_pct = 0,
355 };
356
357 static struct perf_limits powersave_limits = {
358 .no_turbo = 0,
359 .turbo_disabled = 0,
360 .max_perf_pct = 100,
361 .max_perf = int_tofp(1),
362 .min_perf_pct = 0,
363 .min_perf = 0,
364 .max_policy_pct = 100,
365 .max_sysfs_pct = 100,
366 .min_policy_pct = 0,
367 .min_sysfs_pct = 0,
368 };
369
370 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
371 static struct perf_limits *limits = &performance_limits;
372 #else
373 static struct perf_limits *limits = &powersave_limits;
374 #endif
375
376 #ifdef CONFIG_ACPI
377
378 static bool intel_pstate_get_ppc_enable_status(void)
379 {
380 if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
381 acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
382 return true;
383
384 return acpi_ppc;
385 }
386
387 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
388 {
389 struct cpudata *cpu;
390 int ret;
391 int i;
392
393 if (hwp_active)
394 return;
395
396 if (!intel_pstate_get_ppc_enable_status())
397 return;
398
399 cpu = all_cpu_data[policy->cpu];
400
401 ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
402 policy->cpu);
403 if (ret)
404 return;
405
406 /*
407 * Check if the control value in _PSS is for PERF_CTL MSR, which should
408 * guarantee that the states returned by it map to the states in our
409 * list directly.
410 */
411 if (cpu->acpi_perf_data.control_register.space_id !=
412 ACPI_ADR_SPACE_FIXED_HARDWARE)
413 goto err;
414
415 /*
416 * If there is only one entry _PSS, simply ignore _PSS and continue as
417 * usual without taking _PSS into account
418 */
419 if (cpu->acpi_perf_data.state_count < 2)
420 goto err;
421
422 pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
423 for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
424 pr_debug(" %cP%d: %u MHz, %u mW, 0x%x\n",
425 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
426 (u32) cpu->acpi_perf_data.states[i].core_frequency,
427 (u32) cpu->acpi_perf_data.states[i].power,
428 (u32) cpu->acpi_perf_data.states[i].control);
429 }
430
431 /*
432 * The _PSS table doesn't contain whole turbo frequency range.
433 * This just contains +1 MHZ above the max non turbo frequency,
434 * with control value corresponding to max turbo ratio. But
435 * when cpufreq set policy is called, it will call with this
436 * max frequency, which will cause a reduced performance as
437 * this driver uses real max turbo frequency as the max
438 * frequency. So correct this frequency in _PSS table to
439 * correct max turbo frequency based on the turbo state.
440 * Also need to convert to MHz as _PSS freq is in MHz.
441 */
442 if (!limits->turbo_disabled)
443 cpu->acpi_perf_data.states[0].core_frequency =
444 policy->cpuinfo.max_freq / 1000;
445 cpu->valid_pss_table = true;
446 pr_debug("_PPC limits will be enforced\n");
447
448 return;
449
450 err:
451 cpu->valid_pss_table = false;
452 acpi_processor_unregister_performance(policy->cpu);
453 }
454
455 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
456 {
457 struct cpudata *cpu;
458
459 cpu = all_cpu_data[policy->cpu];
460 if (!cpu->valid_pss_table)
461 return;
462
463 acpi_processor_unregister_performance(policy->cpu);
464 }
465
466 #else
467 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
468 {
469 }
470
471 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
472 {
473 }
474 #endif
475
476 static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
477 int deadband, int integral) {
478 pid->setpoint = int_tofp(setpoint);
479 pid->deadband = int_tofp(deadband);
480 pid->integral = int_tofp(integral);
481 pid->last_err = int_tofp(setpoint) - int_tofp(busy);
482 }
483
484 static inline void pid_p_gain_set(struct _pid *pid, int percent)
485 {
486 pid->p_gain = div_fp(percent, 100);
487 }
488
489 static inline void pid_i_gain_set(struct _pid *pid, int percent)
490 {
491 pid->i_gain = div_fp(percent, 100);
492 }
493
494 static inline void pid_d_gain_set(struct _pid *pid, int percent)
495 {
496 pid->d_gain = div_fp(percent, 100);
497 }
498
499 static signed int pid_calc(struct _pid *pid, int32_t busy)
500 {
501 signed int result;
502 int32_t pterm, dterm, fp_error;
503 int32_t integral_limit;
504
505 fp_error = pid->setpoint - busy;
506
507 if (abs(fp_error) <= pid->deadband)
508 return 0;
509
510 pterm = mul_fp(pid->p_gain, fp_error);
511
512 pid->integral += fp_error;
513
514 /*
515 * We limit the integral here so that it will never
516 * get higher than 30. This prevents it from becoming
517 * too large an input over long periods of time and allows
518 * it to get factored out sooner.
519 *
520 * The value of 30 was chosen through experimentation.
521 */
522 integral_limit = int_tofp(30);
523 if (pid->integral > integral_limit)
524 pid->integral = integral_limit;
525 if (pid->integral < -integral_limit)
526 pid->integral = -integral_limit;
527
528 dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
529 pid->last_err = fp_error;
530
531 result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
532 result = result + (1 << (FRAC_BITS-1));
533 return (signed int)fp_toint(result);
534 }
535
536 static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
537 {
538 pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
539 pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
540 pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
541
542 pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
543 }
544
545 static inline void intel_pstate_reset_all_pid(void)
546 {
547 unsigned int cpu;
548
549 for_each_online_cpu(cpu) {
550 if (all_cpu_data[cpu])
551 intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
552 }
553 }
554
555 static inline void update_turbo_state(void)
556 {
557 u64 misc_en;
558 struct cpudata *cpu;
559
560 cpu = all_cpu_data[0];
561 rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
562 limits->turbo_disabled =
563 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
564 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
565 }
566
567 static void intel_pstate_hwp_set(const struct cpumask *cpumask)
568 {
569 int min, hw_min, max, hw_max, cpu, range, adj_range;
570 struct perf_limits *perf_limits = limits;
571 u64 value, cap;
572
573 for_each_cpu(cpu, cpumask) {
574 int max_perf_pct, min_perf_pct;
575
576 if (per_cpu_limits)
577 perf_limits = all_cpu_data[cpu]->perf_limits;
578
579 rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
580 hw_min = HWP_LOWEST_PERF(cap);
581 hw_max = HWP_HIGHEST_PERF(cap);
582 range = hw_max - hw_min;
583
584 max_perf_pct = perf_limits->max_perf_pct;
585 min_perf_pct = perf_limits->min_perf_pct;
586
587 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
588 adj_range = min_perf_pct * range / 100;
589 min = hw_min + adj_range;
590 value &= ~HWP_MIN_PERF(~0L);
591 value |= HWP_MIN_PERF(min);
592
593 adj_range = max_perf_pct * range / 100;
594 max = hw_min + adj_range;
595 if (limits->no_turbo) {
596 hw_max = HWP_GUARANTEED_PERF(cap);
597 if (hw_max < max)
598 max = hw_max;
599 }
600
601 value &= ~HWP_MAX_PERF(~0L);
602 value |= HWP_MAX_PERF(max);
603 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
604 }
605 }
606
607 static int intel_pstate_hwp_set_policy(struct cpufreq_policy *policy)
608 {
609 if (hwp_active)
610 intel_pstate_hwp_set(policy->cpus);
611
612 return 0;
613 }
614
615 static void intel_pstate_hwp_set_online_cpus(void)
616 {
617 get_online_cpus();
618 intel_pstate_hwp_set(cpu_online_mask);
619 put_online_cpus();
620 }
621
622 /************************** debugfs begin ************************/
623 static int pid_param_set(void *data, u64 val)
624 {
625 *(u32 *)data = val;
626 intel_pstate_reset_all_pid();
627 return 0;
628 }
629
630 static int pid_param_get(void *data, u64 *val)
631 {
632 *val = *(u32 *)data;
633 return 0;
634 }
635 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
636
637 struct pid_param {
638 char *name;
639 void *value;
640 };
641
642 static struct pid_param pid_files[] = {
643 {"sample_rate_ms", &pid_params.sample_rate_ms},
644 {"d_gain_pct", &pid_params.d_gain_pct},
645 {"i_gain_pct", &pid_params.i_gain_pct},
646 {"deadband", &pid_params.deadband},
647 {"setpoint", &pid_params.setpoint},
648 {"p_gain_pct", &pid_params.p_gain_pct},
649 {NULL, NULL}
650 };
651
652 static void __init intel_pstate_debug_expose_params(void)
653 {
654 struct dentry *debugfs_parent;
655 int i = 0;
656
657 if (hwp_active ||
658 pstate_funcs.get_target_pstate == get_target_pstate_use_cpu_load)
659 return;
660
661 debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
662 if (IS_ERR_OR_NULL(debugfs_parent))
663 return;
664 while (pid_files[i].name) {
665 debugfs_create_file(pid_files[i].name, 0660,
666 debugfs_parent, pid_files[i].value,
667 &fops_pid_param);
668 i++;
669 }
670 }
671
672 /************************** debugfs end ************************/
673
674 /************************** sysfs begin ************************/
675 #define show_one(file_name, object) \
676 static ssize_t show_##file_name \
677 (struct kobject *kobj, struct attribute *attr, char *buf) \
678 { \
679 return sprintf(buf, "%u\n", limits->object); \
680 }
681
682 static ssize_t show_turbo_pct(struct kobject *kobj,
683 struct attribute *attr, char *buf)
684 {
685 struct cpudata *cpu;
686 int total, no_turbo, turbo_pct;
687 uint32_t turbo_fp;
688
689 cpu = all_cpu_data[0];
690
691 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
692 no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
693 turbo_fp = div_fp(no_turbo, total);
694 turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
695 return sprintf(buf, "%u\n", turbo_pct);
696 }
697
698 static ssize_t show_num_pstates(struct kobject *kobj,
699 struct attribute *attr, char *buf)
700 {
701 struct cpudata *cpu;
702 int total;
703
704 cpu = all_cpu_data[0];
705 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
706 return sprintf(buf, "%u\n", total);
707 }
708
709 static ssize_t show_no_turbo(struct kobject *kobj,
710 struct attribute *attr, char *buf)
711 {
712 ssize_t ret;
713
714 update_turbo_state();
715 if (limits->turbo_disabled)
716 ret = sprintf(buf, "%u\n", limits->turbo_disabled);
717 else
718 ret = sprintf(buf, "%u\n", limits->no_turbo);
719
720 return ret;
721 }
722
723 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
724 const char *buf, size_t count)
725 {
726 unsigned int input;
727 int ret;
728
729 ret = sscanf(buf, "%u", &input);
730 if (ret != 1)
731 return -EINVAL;
732
733 update_turbo_state();
734 if (limits->turbo_disabled) {
735 pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
736 return -EPERM;
737 }
738
739 limits->no_turbo = clamp_t(int, input, 0, 1);
740
741 if (hwp_active)
742 intel_pstate_hwp_set_online_cpus();
743
744 return count;
745 }
746
747 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
748 const char *buf, size_t count)
749 {
750 unsigned int input;
751 int ret;
752
753 ret = sscanf(buf, "%u", &input);
754 if (ret != 1)
755 return -EINVAL;
756
757 limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
758 limits->max_perf_pct = min(limits->max_policy_pct,
759 limits->max_sysfs_pct);
760 limits->max_perf_pct = max(limits->min_policy_pct,
761 limits->max_perf_pct);
762 limits->max_perf_pct = max(limits->min_perf_pct,
763 limits->max_perf_pct);
764 limits->max_perf = div_fp(limits->max_perf_pct, 100);
765
766 if (hwp_active)
767 intel_pstate_hwp_set_online_cpus();
768 return count;
769 }
770
771 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
772 const char *buf, size_t count)
773 {
774 unsigned int input;
775 int ret;
776
777 ret = sscanf(buf, "%u", &input);
778 if (ret != 1)
779 return -EINVAL;
780
781 limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
782 limits->min_perf_pct = max(limits->min_policy_pct,
783 limits->min_sysfs_pct);
784 limits->min_perf_pct = min(limits->max_policy_pct,
785 limits->min_perf_pct);
786 limits->min_perf_pct = min(limits->max_perf_pct,
787 limits->min_perf_pct);
788 limits->min_perf = div_fp(limits->min_perf_pct, 100);
789
790 if (hwp_active)
791 intel_pstate_hwp_set_online_cpus();
792 return count;
793 }
794
795 show_one(max_perf_pct, max_perf_pct);
796 show_one(min_perf_pct, min_perf_pct);
797
798 define_one_global_rw(no_turbo);
799 define_one_global_rw(max_perf_pct);
800 define_one_global_rw(min_perf_pct);
801 define_one_global_ro(turbo_pct);
802 define_one_global_ro(num_pstates);
803
804 static struct attribute *intel_pstate_attributes[] = {
805 &no_turbo.attr,
806 &turbo_pct.attr,
807 &num_pstates.attr,
808 NULL
809 };
810
811 static struct attribute_group intel_pstate_attr_group = {
812 .attrs = intel_pstate_attributes,
813 };
814
815 static void __init intel_pstate_sysfs_expose_params(void)
816 {
817 struct kobject *intel_pstate_kobject;
818 int rc;
819
820 intel_pstate_kobject = kobject_create_and_add("intel_pstate",
821 &cpu_subsys.dev_root->kobj);
822 if (WARN_ON(!intel_pstate_kobject))
823 return;
824
825 rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
826 if (WARN_ON(rc))
827 return;
828
829 /*
830 * If per cpu limits are enforced there are no global limits, so
831 * return without creating max/min_perf_pct attributes
832 */
833 if (per_cpu_limits)
834 return;
835
836 rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
837 WARN_ON(rc);
838
839 rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
840 WARN_ON(rc);
841
842 }
843 /************************** sysfs end ************************/
844
845 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
846 {
847 /* First disable HWP notification interrupt as we don't process them */
848 if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
849 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
850
851 wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
852 }
853
854 static int atom_get_min_pstate(void)
855 {
856 u64 value;
857
858 rdmsrl(ATOM_RATIOS, value);
859 return (value >> 8) & 0x7F;
860 }
861
862 static int atom_get_max_pstate(void)
863 {
864 u64 value;
865
866 rdmsrl(ATOM_RATIOS, value);
867 return (value >> 16) & 0x7F;
868 }
869
870 static int atom_get_turbo_pstate(void)
871 {
872 u64 value;
873
874 rdmsrl(ATOM_TURBO_RATIOS, value);
875 return value & 0x7F;
876 }
877
878 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
879 {
880 u64 val;
881 int32_t vid_fp;
882 u32 vid;
883
884 val = (u64)pstate << 8;
885 if (limits->no_turbo && !limits->turbo_disabled)
886 val |= (u64)1 << 32;
887
888 vid_fp = cpudata->vid.min + mul_fp(
889 int_tofp(pstate - cpudata->pstate.min_pstate),
890 cpudata->vid.ratio);
891
892 vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
893 vid = ceiling_fp(vid_fp);
894
895 if (pstate > cpudata->pstate.max_pstate)
896 vid = cpudata->vid.turbo;
897
898 return val | vid;
899 }
900
901 static int silvermont_get_scaling(void)
902 {
903 u64 value;
904 int i;
905 /* Defined in Table 35-6 from SDM (Sept 2015) */
906 static int silvermont_freq_table[] = {
907 83300, 100000, 133300, 116700, 80000};
908
909 rdmsrl(MSR_FSB_FREQ, value);
910 i = value & 0x7;
911 WARN_ON(i > 4);
912
913 return silvermont_freq_table[i];
914 }
915
916 static int airmont_get_scaling(void)
917 {
918 u64 value;
919 int i;
920 /* Defined in Table 35-10 from SDM (Sept 2015) */
921 static int airmont_freq_table[] = {
922 83300, 100000, 133300, 116700, 80000,
923 93300, 90000, 88900, 87500};
924
925 rdmsrl(MSR_FSB_FREQ, value);
926 i = value & 0xF;
927 WARN_ON(i > 8);
928
929 return airmont_freq_table[i];
930 }
931
932 static void atom_get_vid(struct cpudata *cpudata)
933 {
934 u64 value;
935
936 rdmsrl(ATOM_VIDS, value);
937 cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
938 cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
939 cpudata->vid.ratio = div_fp(
940 cpudata->vid.max - cpudata->vid.min,
941 int_tofp(cpudata->pstate.max_pstate -
942 cpudata->pstate.min_pstate));
943
944 rdmsrl(ATOM_TURBO_VIDS, value);
945 cpudata->vid.turbo = value & 0x7f;
946 }
947
948 static int core_get_min_pstate(void)
949 {
950 u64 value;
951
952 rdmsrl(MSR_PLATFORM_INFO, value);
953 return (value >> 40) & 0xFF;
954 }
955
956 static int core_get_max_pstate_physical(void)
957 {
958 u64 value;
959
960 rdmsrl(MSR_PLATFORM_INFO, value);
961 return (value >> 8) & 0xFF;
962 }
963
964 static int core_get_max_pstate(void)
965 {
966 u64 tar;
967 u64 plat_info;
968 int max_pstate;
969 int err;
970
971 rdmsrl(MSR_PLATFORM_INFO, plat_info);
972 max_pstate = (plat_info >> 8) & 0xFF;
973
974 err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
975 if (!err) {
976 /* Do some sanity checking for safety */
977 if (plat_info & 0x600000000) {
978 u64 tdp_ctrl;
979 u64 tdp_ratio;
980 int tdp_msr;
981
982 err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
983 if (err)
984 goto skip_tar;
985
986 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x3);
987 err = rdmsrl_safe(tdp_msr, &tdp_ratio);
988 if (err)
989 goto skip_tar;
990
991 /* For level 1 and 2, bits[23:16] contain the ratio */
992 if (tdp_ctrl)
993 tdp_ratio >>= 16;
994
995 tdp_ratio &= 0xff; /* ratios are only 8 bits long */
996 if (tdp_ratio - 1 == tar) {
997 max_pstate = tar;
998 pr_debug("max_pstate=TAC %x\n", max_pstate);
999 } else {
1000 goto skip_tar;
1001 }
1002 }
1003 }
1004
1005 skip_tar:
1006 return max_pstate;
1007 }
1008
1009 static int core_get_turbo_pstate(void)
1010 {
1011 u64 value;
1012 int nont, ret;
1013
1014 rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1015 nont = core_get_max_pstate();
1016 ret = (value) & 255;
1017 if (ret <= nont)
1018 ret = nont;
1019 return ret;
1020 }
1021
1022 static inline int core_get_scaling(void)
1023 {
1024 return 100000;
1025 }
1026
1027 static u64 core_get_val(struct cpudata *cpudata, int pstate)
1028 {
1029 u64 val;
1030
1031 val = (u64)pstate << 8;
1032 if (limits->no_turbo && !limits->turbo_disabled)
1033 val |= (u64)1 << 32;
1034
1035 return val;
1036 }
1037
1038 static int knl_get_turbo_pstate(void)
1039 {
1040 u64 value;
1041 int nont, ret;
1042
1043 rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1044 nont = core_get_max_pstate();
1045 ret = (((value) >> 8) & 0xFF);
1046 if (ret <= nont)
1047 ret = nont;
1048 return ret;
1049 }
1050
1051 static struct cpu_defaults core_params = {
1052 .pid_policy = {
1053 .sample_rate_ms = 10,
1054 .deadband = 0,
1055 .setpoint = 97,
1056 .p_gain_pct = 20,
1057 .d_gain_pct = 0,
1058 .i_gain_pct = 0,
1059 },
1060 .funcs = {
1061 .get_max = core_get_max_pstate,
1062 .get_max_physical = core_get_max_pstate_physical,
1063 .get_min = core_get_min_pstate,
1064 .get_turbo = core_get_turbo_pstate,
1065 .get_scaling = core_get_scaling,
1066 .get_val = core_get_val,
1067 .get_target_pstate = get_target_pstate_use_performance,
1068 },
1069 };
1070
1071 static const struct cpu_defaults silvermont_params = {
1072 .pid_policy = {
1073 .sample_rate_ms = 10,
1074 .deadband = 0,
1075 .setpoint = 60,
1076 .p_gain_pct = 14,
1077 .d_gain_pct = 0,
1078 .i_gain_pct = 4,
1079 },
1080 .funcs = {
1081 .get_max = atom_get_max_pstate,
1082 .get_max_physical = atom_get_max_pstate,
1083 .get_min = atom_get_min_pstate,
1084 .get_turbo = atom_get_turbo_pstate,
1085 .get_val = atom_get_val,
1086 .get_scaling = silvermont_get_scaling,
1087 .get_vid = atom_get_vid,
1088 .get_target_pstate = get_target_pstate_use_cpu_load,
1089 },
1090 };
1091
1092 static const struct cpu_defaults airmont_params = {
1093 .pid_policy = {
1094 .sample_rate_ms = 10,
1095 .deadband = 0,
1096 .setpoint = 60,
1097 .p_gain_pct = 14,
1098 .d_gain_pct = 0,
1099 .i_gain_pct = 4,
1100 },
1101 .funcs = {
1102 .get_max = atom_get_max_pstate,
1103 .get_max_physical = atom_get_max_pstate,
1104 .get_min = atom_get_min_pstate,
1105 .get_turbo = atom_get_turbo_pstate,
1106 .get_val = atom_get_val,
1107 .get_scaling = airmont_get_scaling,
1108 .get_vid = atom_get_vid,
1109 .get_target_pstate = get_target_pstate_use_cpu_load,
1110 },
1111 };
1112
1113 static const struct cpu_defaults knl_params = {
1114 .pid_policy = {
1115 .sample_rate_ms = 10,
1116 .deadband = 0,
1117 .setpoint = 97,
1118 .p_gain_pct = 20,
1119 .d_gain_pct = 0,
1120 .i_gain_pct = 0,
1121 },
1122 .funcs = {
1123 .get_max = core_get_max_pstate,
1124 .get_max_physical = core_get_max_pstate_physical,
1125 .get_min = core_get_min_pstate,
1126 .get_turbo = knl_get_turbo_pstate,
1127 .get_scaling = core_get_scaling,
1128 .get_val = core_get_val,
1129 .get_target_pstate = get_target_pstate_use_performance,
1130 },
1131 };
1132
1133 static const struct cpu_defaults bxt_params = {
1134 .pid_policy = {
1135 .sample_rate_ms = 10,
1136 .deadband = 0,
1137 .setpoint = 60,
1138 .p_gain_pct = 14,
1139 .d_gain_pct = 0,
1140 .i_gain_pct = 4,
1141 },
1142 .funcs = {
1143 .get_max = core_get_max_pstate,
1144 .get_max_physical = core_get_max_pstate_physical,
1145 .get_min = core_get_min_pstate,
1146 .get_turbo = core_get_turbo_pstate,
1147 .get_scaling = core_get_scaling,
1148 .get_val = core_get_val,
1149 .get_target_pstate = get_target_pstate_use_cpu_load,
1150 },
1151 };
1152
1153 static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
1154 {
1155 int max_perf = cpu->pstate.turbo_pstate;
1156 int max_perf_adj;
1157 int min_perf;
1158 struct perf_limits *perf_limits = limits;
1159
1160 if (limits->no_turbo || limits->turbo_disabled)
1161 max_perf = cpu->pstate.max_pstate;
1162
1163 if (per_cpu_limits)
1164 perf_limits = cpu->perf_limits;
1165
1166 /*
1167 * performance can be limited by user through sysfs, by cpufreq
1168 * policy, or by cpu specific default values determined through
1169 * experimentation.
1170 */
1171 max_perf_adj = fp_toint(max_perf * perf_limits->max_perf);
1172 *max = clamp_t(int, max_perf_adj,
1173 cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
1174
1175 min_perf = fp_toint(max_perf * perf_limits->min_perf);
1176 *min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
1177 }
1178
1179 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1180 {
1181 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1182 cpu->pstate.current_pstate = pstate;
1183 /*
1184 * Generally, there is no guarantee that this code will always run on
1185 * the CPU being updated, so force the register update to run on the
1186 * right CPU.
1187 */
1188 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1189 pstate_funcs.get_val(cpu, pstate));
1190 }
1191
1192 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1193 {
1194 intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1195 }
1196
1197 static void intel_pstate_max_within_limits(struct cpudata *cpu)
1198 {
1199 int min_pstate, max_pstate;
1200
1201 update_turbo_state();
1202 intel_pstate_get_min_max(cpu, &min_pstate, &max_pstate);
1203 intel_pstate_set_pstate(cpu, max_pstate);
1204 }
1205
1206 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1207 {
1208 cpu->pstate.min_pstate = pstate_funcs.get_min();
1209 cpu->pstate.max_pstate = pstate_funcs.get_max();
1210 cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1211 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1212 cpu->pstate.scaling = pstate_funcs.get_scaling();
1213
1214 if (pstate_funcs.get_vid)
1215 pstate_funcs.get_vid(cpu);
1216
1217 intel_pstate_set_min_pstate(cpu);
1218 }
1219
1220 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1221 {
1222 struct sample *sample = &cpu->sample;
1223
1224 sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1225 }
1226
1227 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1228 {
1229 u64 aperf, mperf;
1230 unsigned long flags;
1231 u64 tsc;
1232
1233 local_irq_save(flags);
1234 rdmsrl(MSR_IA32_APERF, aperf);
1235 rdmsrl(MSR_IA32_MPERF, mperf);
1236 tsc = rdtsc();
1237 if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1238 local_irq_restore(flags);
1239 return false;
1240 }
1241 local_irq_restore(flags);
1242
1243 cpu->last_sample_time = cpu->sample.time;
1244 cpu->sample.time = time;
1245 cpu->sample.aperf = aperf;
1246 cpu->sample.mperf = mperf;
1247 cpu->sample.tsc = tsc;
1248 cpu->sample.aperf -= cpu->prev_aperf;
1249 cpu->sample.mperf -= cpu->prev_mperf;
1250 cpu->sample.tsc -= cpu->prev_tsc;
1251
1252 cpu->prev_aperf = aperf;
1253 cpu->prev_mperf = mperf;
1254 cpu->prev_tsc = tsc;
1255 /*
1256 * First time this function is invoked in a given cycle, all of the
1257 * previous sample data fields are equal to zero or stale and they must
1258 * be populated with meaningful numbers for things to work, so assume
1259 * that sample.time will always be reset before setting the utilization
1260 * update hook and make the caller skip the sample then.
1261 */
1262 return !!cpu->last_sample_time;
1263 }
1264
1265 static inline int32_t get_avg_frequency(struct cpudata *cpu)
1266 {
1267 return mul_ext_fp(cpu->sample.core_avg_perf,
1268 cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
1269 }
1270
1271 static inline int32_t get_avg_pstate(struct cpudata *cpu)
1272 {
1273 return mul_ext_fp(cpu->pstate.max_pstate_physical,
1274 cpu->sample.core_avg_perf);
1275 }
1276
1277 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
1278 {
1279 struct sample *sample = &cpu->sample;
1280 int32_t busy_frac, boost;
1281 int target, avg_pstate;
1282
1283 busy_frac = div_fp(sample->mperf, sample->tsc);
1284
1285 boost = cpu->iowait_boost;
1286 cpu->iowait_boost >>= 1;
1287
1288 if (busy_frac < boost)
1289 busy_frac = boost;
1290
1291 sample->busy_scaled = busy_frac * 100;
1292
1293 target = limits->no_turbo || limits->turbo_disabled ?
1294 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1295 target += target >> 2;
1296 target = mul_fp(target, busy_frac);
1297 if (target < cpu->pstate.min_pstate)
1298 target = cpu->pstate.min_pstate;
1299
1300 /*
1301 * If the average P-state during the previous cycle was higher than the
1302 * current target, add 50% of the difference to the target to reduce
1303 * possible performance oscillations and offset possible performance
1304 * loss related to moving the workload from one CPU to another within
1305 * a package/module.
1306 */
1307 avg_pstate = get_avg_pstate(cpu);
1308 if (avg_pstate > target)
1309 target += (avg_pstate - target) >> 1;
1310
1311 return target;
1312 }
1313
1314 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
1315 {
1316 int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
1317 u64 duration_ns;
1318
1319 /*
1320 * perf_scaled is the ratio of the average P-state during the last
1321 * sampling period to the P-state requested last time (in percent).
1322 *
1323 * That measures the system's response to the previous P-state
1324 * selection.
1325 */
1326 max_pstate = cpu->pstate.max_pstate_physical;
1327 current_pstate = cpu->pstate.current_pstate;
1328 perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
1329 div_fp(100 * max_pstate, current_pstate));
1330
1331 /*
1332 * Since our utilization update callback will not run unless we are
1333 * in C0, check if the actual elapsed time is significantly greater (3x)
1334 * than our sample interval. If it is, then we were idle for a long
1335 * enough period of time to adjust our performance metric.
1336 */
1337 duration_ns = cpu->sample.time - cpu->last_sample_time;
1338 if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
1339 sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1340 perf_scaled = mul_fp(perf_scaled, sample_ratio);
1341 } else {
1342 sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
1343 if (sample_ratio < int_tofp(1))
1344 perf_scaled = 0;
1345 }
1346
1347 cpu->sample.busy_scaled = perf_scaled;
1348 return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
1349 }
1350
1351 static inline void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1352 {
1353 int max_perf, min_perf;
1354
1355 update_turbo_state();
1356
1357 intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
1358 pstate = clamp_t(int, pstate, min_perf, max_perf);
1359 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1360 if (pstate == cpu->pstate.current_pstate)
1361 return;
1362
1363 cpu->pstate.current_pstate = pstate;
1364 wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1365 }
1366
1367 static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
1368 {
1369 int from, target_pstate;
1370 struct sample *sample;
1371
1372 from = cpu->pstate.current_pstate;
1373
1374 target_pstate = cpu->policy == CPUFREQ_POLICY_PERFORMANCE ?
1375 cpu->pstate.turbo_pstate : pstate_funcs.get_target_pstate(cpu);
1376
1377 intel_pstate_update_pstate(cpu, target_pstate);
1378
1379 sample = &cpu->sample;
1380 trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1381 fp_toint(sample->busy_scaled),
1382 from,
1383 cpu->pstate.current_pstate,
1384 sample->mperf,
1385 sample->aperf,
1386 sample->tsc,
1387 get_avg_frequency(cpu),
1388 fp_toint(cpu->iowait_boost * 100));
1389 }
1390
1391 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1392 unsigned int flags)
1393 {
1394 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1395 u64 delta_ns;
1396
1397 if (pstate_funcs.get_target_pstate == get_target_pstate_use_cpu_load) {
1398 if (flags & SCHED_CPUFREQ_IOWAIT) {
1399 cpu->iowait_boost = int_tofp(1);
1400 } else if (cpu->iowait_boost) {
1401 /* Clear iowait_boost if the CPU may have been idle. */
1402 delta_ns = time - cpu->last_update;
1403 if (delta_ns > TICK_NSEC)
1404 cpu->iowait_boost = 0;
1405 }
1406 cpu->last_update = time;
1407 }
1408
1409 delta_ns = time - cpu->sample.time;
1410 if ((s64)delta_ns >= pid_params.sample_rate_ns) {
1411 bool sample_taken = intel_pstate_sample(cpu, time);
1412
1413 if (sample_taken) {
1414 intel_pstate_calc_avg_perf(cpu);
1415 if (!hwp_active)
1416 intel_pstate_adjust_busy_pstate(cpu);
1417 }
1418 }
1419 }
1420
1421 #define ICPU(model, policy) \
1422 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1423 (unsigned long)&policy }
1424
1425 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1426 ICPU(INTEL_FAM6_SANDYBRIDGE, core_params),
1427 ICPU(INTEL_FAM6_SANDYBRIDGE_X, core_params),
1428 ICPU(INTEL_FAM6_ATOM_SILVERMONT1, silvermont_params),
1429 ICPU(INTEL_FAM6_IVYBRIDGE, core_params),
1430 ICPU(INTEL_FAM6_HASWELL_CORE, core_params),
1431 ICPU(INTEL_FAM6_BROADWELL_CORE, core_params),
1432 ICPU(INTEL_FAM6_IVYBRIDGE_X, core_params),
1433 ICPU(INTEL_FAM6_HASWELL_X, core_params),
1434 ICPU(INTEL_FAM6_HASWELL_ULT, core_params),
1435 ICPU(INTEL_FAM6_HASWELL_GT3E, core_params),
1436 ICPU(INTEL_FAM6_BROADWELL_GT3E, core_params),
1437 ICPU(INTEL_FAM6_ATOM_AIRMONT, airmont_params),
1438 ICPU(INTEL_FAM6_SKYLAKE_MOBILE, core_params),
1439 ICPU(INTEL_FAM6_BROADWELL_X, core_params),
1440 ICPU(INTEL_FAM6_SKYLAKE_DESKTOP, core_params),
1441 ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
1442 ICPU(INTEL_FAM6_XEON_PHI_KNL, knl_params),
1443 ICPU(INTEL_FAM6_ATOM_GOLDMONT, bxt_params),
1444 {}
1445 };
1446 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1447
1448 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1449 ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
1450 ICPU(INTEL_FAM6_BROADWELL_X, core_params),
1451 ICPU(INTEL_FAM6_SKYLAKE_X, core_params),
1452 {}
1453 };
1454
1455 static int intel_pstate_init_cpu(unsigned int cpunum)
1456 {
1457 struct cpudata *cpu;
1458
1459 cpu = all_cpu_data[cpunum];
1460
1461 if (!cpu) {
1462 unsigned int size = sizeof(struct cpudata);
1463
1464 if (per_cpu_limits)
1465 size += sizeof(struct perf_limits);
1466
1467 cpu = kzalloc(size, GFP_KERNEL);
1468 if (!cpu)
1469 return -ENOMEM;
1470
1471 all_cpu_data[cpunum] = cpu;
1472 if (per_cpu_limits)
1473 cpu->perf_limits = (struct perf_limits *)(cpu + 1);
1474
1475 }
1476
1477 cpu = all_cpu_data[cpunum];
1478
1479 cpu->cpu = cpunum;
1480
1481 if (hwp_active) {
1482 intel_pstate_hwp_enable(cpu);
1483 pid_params.sample_rate_ms = 50;
1484 pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
1485 }
1486
1487 intel_pstate_get_cpu_pstates(cpu);
1488
1489 intel_pstate_busy_pid_reset(cpu);
1490
1491 pr_debug("controlling: cpu %d\n", cpunum);
1492
1493 return 0;
1494 }
1495
1496 static unsigned int intel_pstate_get(unsigned int cpu_num)
1497 {
1498 struct cpudata *cpu = all_cpu_data[cpu_num];
1499
1500 return cpu ? get_avg_frequency(cpu) : 0;
1501 }
1502
1503 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1504 {
1505 struct cpudata *cpu = all_cpu_data[cpu_num];
1506
1507 if (cpu->update_util_set)
1508 return;
1509
1510 /* Prevent intel_pstate_update_util() from using stale data. */
1511 cpu->sample.time = 0;
1512 cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1513 intel_pstate_update_util);
1514 cpu->update_util_set = true;
1515 }
1516
1517 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1518 {
1519 struct cpudata *cpu_data = all_cpu_data[cpu];
1520
1521 if (!cpu_data->update_util_set)
1522 return;
1523
1524 cpufreq_remove_update_util_hook(cpu);
1525 cpu_data->update_util_set = false;
1526 synchronize_sched();
1527 }
1528
1529 static void intel_pstate_set_performance_limits(struct perf_limits *limits)
1530 {
1531 limits->no_turbo = 0;
1532 limits->turbo_disabled = 0;
1533 limits->max_perf_pct = 100;
1534 limits->max_perf = int_tofp(1);
1535 limits->min_perf_pct = 100;
1536 limits->min_perf = int_tofp(1);
1537 limits->max_policy_pct = 100;
1538 limits->max_sysfs_pct = 100;
1539 limits->min_policy_pct = 0;
1540 limits->min_sysfs_pct = 0;
1541 }
1542
1543 static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
1544 struct perf_limits *limits)
1545 {
1546 limits->min_policy_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
1547 limits->min_policy_pct = clamp_t(int, limits->min_policy_pct, 0, 100);
1548 limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100,
1549 policy->cpuinfo.max_freq);
1550 limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0, 100);
1551
1552 /* Normalize user input to [min_policy_pct, max_policy_pct] */
1553 limits->min_perf_pct = max(limits->min_policy_pct,
1554 limits->min_sysfs_pct);
1555 limits->min_perf_pct = min(limits->max_policy_pct,
1556 limits->min_perf_pct);
1557 limits->max_perf_pct = min(limits->max_policy_pct,
1558 limits->max_sysfs_pct);
1559 limits->max_perf_pct = max(limits->min_policy_pct,
1560 limits->max_perf_pct);
1561
1562 /* Make sure min_perf_pct <= max_perf_pct */
1563 limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct);
1564
1565 limits->min_perf = div_fp(limits->min_perf_pct, 100);
1566 limits->max_perf = div_fp(limits->max_perf_pct, 100);
1567 limits->max_perf = round_up(limits->max_perf, FRAC_BITS);
1568
1569 pr_debug("cpu:%d max_perf_pct:%d min_perf_pct:%d\n", policy->cpu,
1570 limits->max_perf_pct, limits->min_perf_pct);
1571 }
1572
1573 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
1574 {
1575 struct cpudata *cpu;
1576 struct perf_limits *perf_limits = NULL;
1577
1578 if (!policy->cpuinfo.max_freq)
1579 return -ENODEV;
1580
1581 pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
1582 policy->cpuinfo.max_freq, policy->max);
1583
1584 cpu = all_cpu_data[policy->cpu];
1585 cpu->policy = policy->policy;
1586
1587 if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
1588 policy->max < policy->cpuinfo.max_freq &&
1589 policy->max > cpu->pstate.max_pstate * cpu->pstate.scaling) {
1590 pr_debug("policy->max > max non turbo frequency\n");
1591 policy->max = policy->cpuinfo.max_freq;
1592 }
1593
1594 if (per_cpu_limits)
1595 perf_limits = cpu->perf_limits;
1596
1597 if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
1598 if (!perf_limits) {
1599 limits = &performance_limits;
1600 perf_limits = limits;
1601 }
1602 if (policy->max >= policy->cpuinfo.max_freq) {
1603 pr_debug("set performance\n");
1604 intel_pstate_set_performance_limits(perf_limits);
1605 goto out;
1606 }
1607 } else {
1608 pr_debug("set powersave\n");
1609 if (!perf_limits) {
1610 limits = &powersave_limits;
1611 perf_limits = limits;
1612 }
1613
1614 }
1615
1616 intel_pstate_update_perf_limits(policy, perf_limits);
1617 out:
1618 if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
1619 /*
1620 * NOHZ_FULL CPUs need this as the governor callback may not
1621 * be invoked on them.
1622 */
1623 intel_pstate_clear_update_util_hook(policy->cpu);
1624 intel_pstate_max_within_limits(cpu);
1625 }
1626
1627 intel_pstate_set_update_util_hook(policy->cpu);
1628
1629 intel_pstate_hwp_set_policy(policy);
1630
1631 return 0;
1632 }
1633
1634 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
1635 {
1636 cpufreq_verify_within_cpu_limits(policy);
1637
1638 if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
1639 policy->policy != CPUFREQ_POLICY_PERFORMANCE)
1640 return -EINVAL;
1641
1642 return 0;
1643 }
1644
1645 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
1646 {
1647 int cpu_num = policy->cpu;
1648 struct cpudata *cpu = all_cpu_data[cpu_num];
1649
1650 pr_debug("CPU %d exiting\n", cpu_num);
1651
1652 intel_pstate_clear_update_util_hook(cpu_num);
1653
1654 if (hwp_active)
1655 return;
1656
1657 intel_pstate_set_min_pstate(cpu);
1658 }
1659
1660 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
1661 {
1662 struct cpudata *cpu;
1663 int rc;
1664
1665 rc = intel_pstate_init_cpu(policy->cpu);
1666 if (rc)
1667 return rc;
1668
1669 cpu = all_cpu_data[policy->cpu];
1670
1671 if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
1672 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
1673 else
1674 policy->policy = CPUFREQ_POLICY_POWERSAVE;
1675
1676 /*
1677 * We need sane value in the cpu->perf_limits, so inherit from global
1678 * perf_limits limits, which are seeded with values based on the
1679 * CONFIG_CPU_FREQ_DEFAULT_GOV_*, during boot up.
1680 */
1681 if (per_cpu_limits)
1682 memcpy(cpu->perf_limits, limits, sizeof(struct perf_limits));
1683
1684 policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
1685 policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1686
1687 /* cpuinfo and default policy values */
1688 policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
1689 update_turbo_state();
1690 policy->cpuinfo.max_freq = limits->turbo_disabled ?
1691 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1692 policy->cpuinfo.max_freq *= cpu->pstate.scaling;
1693
1694 intel_pstate_init_acpi_perf_limits(policy);
1695 policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
1696 cpumask_set_cpu(policy->cpu, policy->cpus);
1697
1698 return 0;
1699 }
1700
1701 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
1702 {
1703 intel_pstate_exit_perf_limits(policy);
1704
1705 return 0;
1706 }
1707
1708 static struct cpufreq_driver intel_pstate_driver = {
1709 .flags = CPUFREQ_CONST_LOOPS,
1710 .verify = intel_pstate_verify_policy,
1711 .setpolicy = intel_pstate_set_policy,
1712 .resume = intel_pstate_hwp_set_policy,
1713 .get = intel_pstate_get,
1714 .init = intel_pstate_cpu_init,
1715 .exit = intel_pstate_cpu_exit,
1716 .stop_cpu = intel_pstate_stop_cpu,
1717 .name = "intel_pstate",
1718 };
1719
1720 static int no_load __initdata;
1721 static int no_hwp __initdata;
1722 static int hwp_only __initdata;
1723 static unsigned int force_load __initdata;
1724
1725 static int __init intel_pstate_msrs_not_valid(void)
1726 {
1727 if (!pstate_funcs.get_max() ||
1728 !pstate_funcs.get_min() ||
1729 !pstate_funcs.get_turbo())
1730 return -ENODEV;
1731
1732 return 0;
1733 }
1734
1735 static void __init copy_pid_params(struct pstate_adjust_policy *policy)
1736 {
1737 pid_params.sample_rate_ms = policy->sample_rate_ms;
1738 pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
1739 pid_params.p_gain_pct = policy->p_gain_pct;
1740 pid_params.i_gain_pct = policy->i_gain_pct;
1741 pid_params.d_gain_pct = policy->d_gain_pct;
1742 pid_params.deadband = policy->deadband;
1743 pid_params.setpoint = policy->setpoint;
1744 }
1745
1746 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
1747 {
1748 pstate_funcs.get_max = funcs->get_max;
1749 pstate_funcs.get_max_physical = funcs->get_max_physical;
1750 pstate_funcs.get_min = funcs->get_min;
1751 pstate_funcs.get_turbo = funcs->get_turbo;
1752 pstate_funcs.get_scaling = funcs->get_scaling;
1753 pstate_funcs.get_val = funcs->get_val;
1754 pstate_funcs.get_vid = funcs->get_vid;
1755 pstate_funcs.get_target_pstate = funcs->get_target_pstate;
1756
1757 }
1758
1759 #ifdef CONFIG_ACPI
1760
1761 static bool __init intel_pstate_no_acpi_pss(void)
1762 {
1763 int i;
1764
1765 for_each_possible_cpu(i) {
1766 acpi_status status;
1767 union acpi_object *pss;
1768 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1769 struct acpi_processor *pr = per_cpu(processors, i);
1770
1771 if (!pr)
1772 continue;
1773
1774 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
1775 if (ACPI_FAILURE(status))
1776 continue;
1777
1778 pss = buffer.pointer;
1779 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
1780 kfree(pss);
1781 return false;
1782 }
1783
1784 kfree(pss);
1785 }
1786
1787 return true;
1788 }
1789
1790 static bool __init intel_pstate_has_acpi_ppc(void)
1791 {
1792 int i;
1793
1794 for_each_possible_cpu(i) {
1795 struct acpi_processor *pr = per_cpu(processors, i);
1796
1797 if (!pr)
1798 continue;
1799 if (acpi_has_method(pr->handle, "_PPC"))
1800 return true;
1801 }
1802 return false;
1803 }
1804
1805 enum {
1806 PSS,
1807 PPC,
1808 };
1809
1810 struct hw_vendor_info {
1811 u16 valid;
1812 char oem_id[ACPI_OEM_ID_SIZE];
1813 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
1814 int oem_pwr_table;
1815 };
1816
1817 /* Hardware vendor-specific info that has its own power management modes */
1818 static struct hw_vendor_info vendor_info[] __initdata = {
1819 {1, "HP ", "ProLiant", PSS},
1820 {1, "ORACLE", "X4-2 ", PPC},
1821 {1, "ORACLE", "X4-2L ", PPC},
1822 {1, "ORACLE", "X4-2B ", PPC},
1823 {1, "ORACLE", "X3-2 ", PPC},
1824 {1, "ORACLE", "X3-2L ", PPC},
1825 {1, "ORACLE", "X3-2B ", PPC},
1826 {1, "ORACLE", "X4470M2 ", PPC},
1827 {1, "ORACLE", "X4270M3 ", PPC},
1828 {1, "ORACLE", "X4270M2 ", PPC},
1829 {1, "ORACLE", "X4170M2 ", PPC},
1830 {1, "ORACLE", "X4170 M3", PPC},
1831 {1, "ORACLE", "X4275 M3", PPC},
1832 {1, "ORACLE", "X6-2 ", PPC},
1833 {1, "ORACLE", "Sudbury ", PPC},
1834 {0, "", ""},
1835 };
1836
1837 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
1838 {
1839 struct acpi_table_header hdr;
1840 struct hw_vendor_info *v_info;
1841 const struct x86_cpu_id *id;
1842 u64 misc_pwr;
1843
1844 id = x86_match_cpu(intel_pstate_cpu_oob_ids);
1845 if (id) {
1846 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
1847 if ( misc_pwr & (1 << 8))
1848 return true;
1849 }
1850
1851 if (acpi_disabled ||
1852 ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
1853 return false;
1854
1855 for (v_info = vendor_info; v_info->valid; v_info++) {
1856 if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
1857 !strncmp(hdr.oem_table_id, v_info->oem_table_id,
1858 ACPI_OEM_TABLE_ID_SIZE))
1859 switch (v_info->oem_pwr_table) {
1860 case PSS:
1861 return intel_pstate_no_acpi_pss();
1862 case PPC:
1863 return intel_pstate_has_acpi_ppc() &&
1864 (!force_load);
1865 }
1866 }
1867
1868 return false;
1869 }
1870 #else /* CONFIG_ACPI not enabled */
1871 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
1872 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
1873 #endif /* CONFIG_ACPI */
1874
1875 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
1876 { X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
1877 {}
1878 };
1879
1880 static int __init intel_pstate_init(void)
1881 {
1882 int cpu, rc = 0;
1883 const struct x86_cpu_id *id;
1884 struct cpu_defaults *cpu_def;
1885
1886 if (no_load)
1887 return -ENODEV;
1888
1889 if (x86_match_cpu(hwp_support_ids) && !no_hwp) {
1890 copy_cpu_funcs(&core_params.funcs);
1891 hwp_active++;
1892 goto hwp_cpu_matched;
1893 }
1894
1895 id = x86_match_cpu(intel_pstate_cpu_ids);
1896 if (!id)
1897 return -ENODEV;
1898
1899 cpu_def = (struct cpu_defaults *)id->driver_data;
1900
1901 copy_pid_params(&cpu_def->pid_policy);
1902 copy_cpu_funcs(&cpu_def->funcs);
1903
1904 if (intel_pstate_msrs_not_valid())
1905 return -ENODEV;
1906
1907 hwp_cpu_matched:
1908 /*
1909 * The Intel pstate driver will be ignored if the platform
1910 * firmware has its own power management modes.
1911 */
1912 if (intel_pstate_platform_pwr_mgmt_exists())
1913 return -ENODEV;
1914
1915 pr_info("Intel P-state driver initializing\n");
1916
1917 all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
1918 if (!all_cpu_data)
1919 return -ENOMEM;
1920
1921 if (!hwp_active && hwp_only)
1922 goto out;
1923
1924 rc = cpufreq_register_driver(&intel_pstate_driver);
1925 if (rc)
1926 goto out;
1927
1928 intel_pstate_debug_expose_params();
1929 intel_pstate_sysfs_expose_params();
1930
1931 if (hwp_active)
1932 pr_info("HWP enabled\n");
1933
1934 return rc;
1935 out:
1936 get_online_cpus();
1937 for_each_online_cpu(cpu) {
1938 if (all_cpu_data[cpu]) {
1939 intel_pstate_clear_update_util_hook(cpu);
1940 kfree(all_cpu_data[cpu]);
1941 }
1942 }
1943
1944 put_online_cpus();
1945 vfree(all_cpu_data);
1946 return -ENODEV;
1947 }
1948 device_initcall(intel_pstate_init);
1949
1950 static int __init intel_pstate_setup(char *str)
1951 {
1952 if (!str)
1953 return -EINVAL;
1954
1955 if (!strcmp(str, "disable"))
1956 no_load = 1;
1957 if (!strcmp(str, "no_hwp")) {
1958 pr_info("HWP disabled\n");
1959 no_hwp = 1;
1960 }
1961 if (!strcmp(str, "force"))
1962 force_load = 1;
1963 if (!strcmp(str, "hwp_only"))
1964 hwp_only = 1;
1965 if (!strcmp(str, "per_cpu_perf_limits"))
1966 per_cpu_limits = true;
1967
1968 #ifdef CONFIG_ACPI
1969 if (!strcmp(str, "support_acpi_ppc"))
1970 acpi_ppc = true;
1971 #endif
1972
1973 return 0;
1974 }
1975 early_param("intel_pstate", intel_pstate_setup);
1976
1977 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
1978 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
1979 MODULE_LICENSE("GPL");