]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/cpufreq/mt8173-cpufreq.c
KVM: SVM: Move spec control call after restore of GS
[mirror_ubuntu-artful-kernel.git] / drivers / cpufreq / mt8173-cpufreq.c
1 /*
2 * Copyright (c) 2015 Linaro Ltd.
3 * Author: Pi-Cheng Chen <pi-cheng.chen@linaro.org>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 */
14
15 #include <linux/clk.h>
16 #include <linux/cpu.h>
17 #include <linux/cpu_cooling.h>
18 #include <linux/cpufreq.h>
19 #include <linux/cpumask.h>
20 #include <linux/module.h>
21 #include <linux/of.h>
22 #include <linux/platform_device.h>
23 #include <linux/pm_opp.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/slab.h>
26 #include <linux/thermal.h>
27
28 #define MIN_VOLT_SHIFT (100000)
29 #define MAX_VOLT_SHIFT (200000)
30 #define MAX_VOLT_LIMIT (1150000)
31 #define VOLT_TOL (10000)
32
33 /*
34 * The struct mtk_cpu_dvfs_info holds necessary information for doing CPU DVFS
35 * on each CPU power/clock domain of Mediatek SoCs. Each CPU cluster in
36 * Mediatek SoCs has two voltage inputs, Vproc and Vsram. In some cases the two
37 * voltage inputs need to be controlled under a hardware limitation:
38 * 100mV < Vsram - Vproc < 200mV
39 *
40 * When scaling the clock frequency of a CPU clock domain, the clock source
41 * needs to be switched to another stable PLL clock temporarily until
42 * the original PLL becomes stable at target frequency.
43 */
44 struct mtk_cpu_dvfs_info {
45 struct cpumask cpus;
46 struct device *cpu_dev;
47 struct regulator *proc_reg;
48 struct regulator *sram_reg;
49 struct clk *cpu_clk;
50 struct clk *inter_clk;
51 struct thermal_cooling_device *cdev;
52 struct list_head list_head;
53 int intermediate_voltage;
54 bool need_voltage_tracking;
55 };
56
57 static LIST_HEAD(dvfs_info_list);
58
59 static struct mtk_cpu_dvfs_info *mtk_cpu_dvfs_info_lookup(int cpu)
60 {
61 struct mtk_cpu_dvfs_info *info;
62
63 list_for_each_entry(info, &dvfs_info_list, list_head) {
64 if (cpumask_test_cpu(cpu, &info->cpus))
65 return info;
66 }
67
68 return NULL;
69 }
70
71 static int mtk_cpufreq_voltage_tracking(struct mtk_cpu_dvfs_info *info,
72 int new_vproc)
73 {
74 struct regulator *proc_reg = info->proc_reg;
75 struct regulator *sram_reg = info->sram_reg;
76 int old_vproc, old_vsram, new_vsram, vsram, vproc, ret;
77
78 old_vproc = regulator_get_voltage(proc_reg);
79 if (old_vproc < 0) {
80 pr_err("%s: invalid Vproc value: %d\n", __func__, old_vproc);
81 return old_vproc;
82 }
83 /* Vsram should not exceed the maximum allowed voltage of SoC. */
84 new_vsram = min(new_vproc + MIN_VOLT_SHIFT, MAX_VOLT_LIMIT);
85
86 if (old_vproc < new_vproc) {
87 /*
88 * When scaling up voltages, Vsram and Vproc scale up step
89 * by step. At each step, set Vsram to (Vproc + 200mV) first,
90 * then set Vproc to (Vsram - 100mV).
91 * Keep doing it until Vsram and Vproc hit target voltages.
92 */
93 do {
94 old_vsram = regulator_get_voltage(sram_reg);
95 if (old_vsram < 0) {
96 pr_err("%s: invalid Vsram value: %d\n",
97 __func__, old_vsram);
98 return old_vsram;
99 }
100 old_vproc = regulator_get_voltage(proc_reg);
101 if (old_vproc < 0) {
102 pr_err("%s: invalid Vproc value: %d\n",
103 __func__, old_vproc);
104 return old_vproc;
105 }
106
107 vsram = min(new_vsram, old_vproc + MAX_VOLT_SHIFT);
108
109 if (vsram + VOLT_TOL >= MAX_VOLT_LIMIT) {
110 vsram = MAX_VOLT_LIMIT;
111
112 /*
113 * If the target Vsram hits the maximum voltage,
114 * try to set the exact voltage value first.
115 */
116 ret = regulator_set_voltage(sram_reg, vsram,
117 vsram);
118 if (ret)
119 ret = regulator_set_voltage(sram_reg,
120 vsram - VOLT_TOL,
121 vsram);
122
123 vproc = new_vproc;
124 } else {
125 ret = regulator_set_voltage(sram_reg, vsram,
126 vsram + VOLT_TOL);
127
128 vproc = vsram - MIN_VOLT_SHIFT;
129 }
130 if (ret)
131 return ret;
132
133 ret = regulator_set_voltage(proc_reg, vproc,
134 vproc + VOLT_TOL);
135 if (ret) {
136 regulator_set_voltage(sram_reg, old_vsram,
137 old_vsram);
138 return ret;
139 }
140 } while (vproc < new_vproc || vsram < new_vsram);
141 } else if (old_vproc > new_vproc) {
142 /*
143 * When scaling down voltages, Vsram and Vproc scale down step
144 * by step. At each step, set Vproc to (Vsram - 200mV) first,
145 * then set Vproc to (Vproc + 100mV).
146 * Keep doing it until Vsram and Vproc hit target voltages.
147 */
148 do {
149 old_vproc = regulator_get_voltage(proc_reg);
150 if (old_vproc < 0) {
151 pr_err("%s: invalid Vproc value: %d\n",
152 __func__, old_vproc);
153 return old_vproc;
154 }
155 old_vsram = regulator_get_voltage(sram_reg);
156 if (old_vsram < 0) {
157 pr_err("%s: invalid Vsram value: %d\n",
158 __func__, old_vsram);
159 return old_vsram;
160 }
161
162 vproc = max(new_vproc, old_vsram - MAX_VOLT_SHIFT);
163 ret = regulator_set_voltage(proc_reg, vproc,
164 vproc + VOLT_TOL);
165 if (ret)
166 return ret;
167
168 if (vproc == new_vproc)
169 vsram = new_vsram;
170 else
171 vsram = max(new_vsram, vproc + MIN_VOLT_SHIFT);
172
173 if (vsram + VOLT_TOL >= MAX_VOLT_LIMIT) {
174 vsram = MAX_VOLT_LIMIT;
175
176 /*
177 * If the target Vsram hits the maximum voltage,
178 * try to set the exact voltage value first.
179 */
180 ret = regulator_set_voltage(sram_reg, vsram,
181 vsram);
182 if (ret)
183 ret = regulator_set_voltage(sram_reg,
184 vsram - VOLT_TOL,
185 vsram);
186 } else {
187 ret = regulator_set_voltage(sram_reg, vsram,
188 vsram + VOLT_TOL);
189 }
190
191 if (ret) {
192 regulator_set_voltage(proc_reg, old_vproc,
193 old_vproc);
194 return ret;
195 }
196 } while (vproc > new_vproc + VOLT_TOL ||
197 vsram > new_vsram + VOLT_TOL);
198 }
199
200 return 0;
201 }
202
203 static int mtk_cpufreq_set_voltage(struct mtk_cpu_dvfs_info *info, int vproc)
204 {
205 if (info->need_voltage_tracking)
206 return mtk_cpufreq_voltage_tracking(info, vproc);
207 else
208 return regulator_set_voltage(info->proc_reg, vproc,
209 vproc + VOLT_TOL);
210 }
211
212 static int mtk_cpufreq_set_target(struct cpufreq_policy *policy,
213 unsigned int index)
214 {
215 struct cpufreq_frequency_table *freq_table = policy->freq_table;
216 struct clk *cpu_clk = policy->clk;
217 struct clk *armpll = clk_get_parent(cpu_clk);
218 struct mtk_cpu_dvfs_info *info = policy->driver_data;
219 struct device *cpu_dev = info->cpu_dev;
220 struct dev_pm_opp *opp;
221 long freq_hz, old_freq_hz;
222 int vproc, old_vproc, inter_vproc, target_vproc, ret;
223
224 inter_vproc = info->intermediate_voltage;
225
226 old_freq_hz = clk_get_rate(cpu_clk);
227 old_vproc = regulator_get_voltage(info->proc_reg);
228 if (old_vproc < 0) {
229 pr_err("%s: invalid Vproc value: %d\n", __func__, old_vproc);
230 return old_vproc;
231 }
232
233 freq_hz = freq_table[index].frequency * 1000;
234
235 opp = dev_pm_opp_find_freq_ceil(cpu_dev, &freq_hz);
236 if (IS_ERR(opp)) {
237 pr_err("cpu%d: failed to find OPP for %ld\n",
238 policy->cpu, freq_hz);
239 return PTR_ERR(opp);
240 }
241 vproc = dev_pm_opp_get_voltage(opp);
242 dev_pm_opp_put(opp);
243
244 /*
245 * If the new voltage or the intermediate voltage is higher than the
246 * current voltage, scale up voltage first.
247 */
248 target_vproc = (inter_vproc > vproc) ? inter_vproc : vproc;
249 if (old_vproc < target_vproc) {
250 ret = mtk_cpufreq_set_voltage(info, target_vproc);
251 if (ret) {
252 pr_err("cpu%d: failed to scale up voltage!\n",
253 policy->cpu);
254 mtk_cpufreq_set_voltage(info, old_vproc);
255 return ret;
256 }
257 }
258
259 /* Reparent the CPU clock to intermediate clock. */
260 ret = clk_set_parent(cpu_clk, info->inter_clk);
261 if (ret) {
262 pr_err("cpu%d: failed to re-parent cpu clock!\n",
263 policy->cpu);
264 mtk_cpufreq_set_voltage(info, old_vproc);
265 WARN_ON(1);
266 return ret;
267 }
268
269 /* Set the original PLL to target rate. */
270 ret = clk_set_rate(armpll, freq_hz);
271 if (ret) {
272 pr_err("cpu%d: failed to scale cpu clock rate!\n",
273 policy->cpu);
274 clk_set_parent(cpu_clk, armpll);
275 mtk_cpufreq_set_voltage(info, old_vproc);
276 return ret;
277 }
278
279 /* Set parent of CPU clock back to the original PLL. */
280 ret = clk_set_parent(cpu_clk, armpll);
281 if (ret) {
282 pr_err("cpu%d: failed to re-parent cpu clock!\n",
283 policy->cpu);
284 mtk_cpufreq_set_voltage(info, inter_vproc);
285 WARN_ON(1);
286 return ret;
287 }
288
289 /*
290 * If the new voltage is lower than the intermediate voltage or the
291 * original voltage, scale down to the new voltage.
292 */
293 if (vproc < inter_vproc || vproc < old_vproc) {
294 ret = mtk_cpufreq_set_voltage(info, vproc);
295 if (ret) {
296 pr_err("cpu%d: failed to scale down voltage!\n",
297 policy->cpu);
298 clk_set_parent(cpu_clk, info->inter_clk);
299 clk_set_rate(armpll, old_freq_hz);
300 clk_set_parent(cpu_clk, armpll);
301 return ret;
302 }
303 }
304
305 return 0;
306 }
307
308 #define DYNAMIC_POWER "dynamic-power-coefficient"
309
310 static void mtk_cpufreq_ready(struct cpufreq_policy *policy)
311 {
312 struct mtk_cpu_dvfs_info *info = policy->driver_data;
313 struct device_node *np = of_node_get(info->cpu_dev->of_node);
314 u32 capacitance = 0;
315
316 if (WARN_ON(!np))
317 return;
318
319 if (of_find_property(np, "#cooling-cells", NULL)) {
320 of_property_read_u32(np, DYNAMIC_POWER, &capacitance);
321
322 info->cdev = of_cpufreq_power_cooling_register(np,
323 policy, capacitance, NULL);
324
325 if (IS_ERR(info->cdev)) {
326 dev_err(info->cpu_dev,
327 "running cpufreq without cooling device: %ld\n",
328 PTR_ERR(info->cdev));
329
330 info->cdev = NULL;
331 }
332 }
333
334 of_node_put(np);
335 }
336
337 static int mtk_cpu_dvfs_info_init(struct mtk_cpu_dvfs_info *info, int cpu)
338 {
339 struct device *cpu_dev;
340 struct regulator *proc_reg = ERR_PTR(-ENODEV);
341 struct regulator *sram_reg = ERR_PTR(-ENODEV);
342 struct clk *cpu_clk = ERR_PTR(-ENODEV);
343 struct clk *inter_clk = ERR_PTR(-ENODEV);
344 struct dev_pm_opp *opp;
345 unsigned long rate;
346 int ret;
347
348 cpu_dev = get_cpu_device(cpu);
349 if (!cpu_dev) {
350 pr_err("failed to get cpu%d device\n", cpu);
351 return -ENODEV;
352 }
353
354 cpu_clk = clk_get(cpu_dev, "cpu");
355 if (IS_ERR(cpu_clk)) {
356 if (PTR_ERR(cpu_clk) == -EPROBE_DEFER)
357 pr_warn("cpu clk for cpu%d not ready, retry.\n", cpu);
358 else
359 pr_err("failed to get cpu clk for cpu%d\n", cpu);
360
361 ret = PTR_ERR(cpu_clk);
362 return ret;
363 }
364
365 inter_clk = clk_get(cpu_dev, "intermediate");
366 if (IS_ERR(inter_clk)) {
367 if (PTR_ERR(inter_clk) == -EPROBE_DEFER)
368 pr_warn("intermediate clk for cpu%d not ready, retry.\n",
369 cpu);
370 else
371 pr_err("failed to get intermediate clk for cpu%d\n",
372 cpu);
373
374 ret = PTR_ERR(inter_clk);
375 goto out_free_resources;
376 }
377
378 proc_reg = regulator_get_exclusive(cpu_dev, "proc");
379 if (IS_ERR(proc_reg)) {
380 if (PTR_ERR(proc_reg) == -EPROBE_DEFER)
381 pr_warn("proc regulator for cpu%d not ready, retry.\n",
382 cpu);
383 else
384 pr_err("failed to get proc regulator for cpu%d\n",
385 cpu);
386
387 ret = PTR_ERR(proc_reg);
388 goto out_free_resources;
389 }
390
391 /* Both presence and absence of sram regulator are valid cases. */
392 sram_reg = regulator_get_exclusive(cpu_dev, "sram");
393
394 /* Get OPP-sharing information from "operating-points-v2" bindings */
395 ret = dev_pm_opp_of_get_sharing_cpus(cpu_dev, &info->cpus);
396 if (ret) {
397 pr_err("failed to get OPP-sharing information for cpu%d\n",
398 cpu);
399 goto out_free_resources;
400 }
401
402 ret = dev_pm_opp_of_cpumask_add_table(&info->cpus);
403 if (ret) {
404 pr_warn("no OPP table for cpu%d\n", cpu);
405 goto out_free_resources;
406 }
407
408 /* Search a safe voltage for intermediate frequency. */
409 rate = clk_get_rate(inter_clk);
410 opp = dev_pm_opp_find_freq_ceil(cpu_dev, &rate);
411 if (IS_ERR(opp)) {
412 pr_err("failed to get intermediate opp for cpu%d\n", cpu);
413 ret = PTR_ERR(opp);
414 goto out_free_opp_table;
415 }
416 info->intermediate_voltage = dev_pm_opp_get_voltage(opp);
417 dev_pm_opp_put(opp);
418
419 info->cpu_dev = cpu_dev;
420 info->proc_reg = proc_reg;
421 info->sram_reg = IS_ERR(sram_reg) ? NULL : sram_reg;
422 info->cpu_clk = cpu_clk;
423 info->inter_clk = inter_clk;
424
425 /*
426 * If SRAM regulator is present, software "voltage tracking" is needed
427 * for this CPU power domain.
428 */
429 info->need_voltage_tracking = !IS_ERR(sram_reg);
430
431 return 0;
432
433 out_free_opp_table:
434 dev_pm_opp_of_cpumask_remove_table(&info->cpus);
435
436 out_free_resources:
437 if (!IS_ERR(proc_reg))
438 regulator_put(proc_reg);
439 if (!IS_ERR(sram_reg))
440 regulator_put(sram_reg);
441 if (!IS_ERR(cpu_clk))
442 clk_put(cpu_clk);
443 if (!IS_ERR(inter_clk))
444 clk_put(inter_clk);
445
446 return ret;
447 }
448
449 static void mtk_cpu_dvfs_info_release(struct mtk_cpu_dvfs_info *info)
450 {
451 if (!IS_ERR(info->proc_reg))
452 regulator_put(info->proc_reg);
453 if (!IS_ERR(info->sram_reg))
454 regulator_put(info->sram_reg);
455 if (!IS_ERR(info->cpu_clk))
456 clk_put(info->cpu_clk);
457 if (!IS_ERR(info->inter_clk))
458 clk_put(info->inter_clk);
459
460 dev_pm_opp_of_cpumask_remove_table(&info->cpus);
461 }
462
463 static int mtk_cpufreq_init(struct cpufreq_policy *policy)
464 {
465 struct mtk_cpu_dvfs_info *info;
466 struct cpufreq_frequency_table *freq_table;
467 int ret;
468
469 info = mtk_cpu_dvfs_info_lookup(policy->cpu);
470 if (!info) {
471 pr_err("dvfs info for cpu%d is not initialized.\n",
472 policy->cpu);
473 return -EINVAL;
474 }
475
476 ret = dev_pm_opp_init_cpufreq_table(info->cpu_dev, &freq_table);
477 if (ret) {
478 pr_err("failed to init cpufreq table for cpu%d: %d\n",
479 policy->cpu, ret);
480 return ret;
481 }
482
483 ret = cpufreq_table_validate_and_show(policy, freq_table);
484 if (ret) {
485 pr_err("%s: invalid frequency table: %d\n", __func__, ret);
486 goto out_free_cpufreq_table;
487 }
488
489 cpumask_copy(policy->cpus, &info->cpus);
490 policy->driver_data = info;
491 policy->clk = info->cpu_clk;
492
493 return 0;
494
495 out_free_cpufreq_table:
496 dev_pm_opp_free_cpufreq_table(info->cpu_dev, &freq_table);
497 return ret;
498 }
499
500 static int mtk_cpufreq_exit(struct cpufreq_policy *policy)
501 {
502 struct mtk_cpu_dvfs_info *info = policy->driver_data;
503
504 cpufreq_cooling_unregister(info->cdev);
505 dev_pm_opp_free_cpufreq_table(info->cpu_dev, &policy->freq_table);
506
507 return 0;
508 }
509
510 static struct cpufreq_driver mt8173_cpufreq_driver = {
511 .flags = CPUFREQ_STICKY | CPUFREQ_NEED_INITIAL_FREQ_CHECK |
512 CPUFREQ_HAVE_GOVERNOR_PER_POLICY,
513 .verify = cpufreq_generic_frequency_table_verify,
514 .target_index = mtk_cpufreq_set_target,
515 .get = cpufreq_generic_get,
516 .init = mtk_cpufreq_init,
517 .exit = mtk_cpufreq_exit,
518 .ready = mtk_cpufreq_ready,
519 .name = "mtk-cpufreq",
520 .attr = cpufreq_generic_attr,
521 };
522
523 static int mt8173_cpufreq_probe(struct platform_device *pdev)
524 {
525 struct mtk_cpu_dvfs_info *info, *tmp;
526 int cpu, ret;
527
528 for_each_possible_cpu(cpu) {
529 info = mtk_cpu_dvfs_info_lookup(cpu);
530 if (info)
531 continue;
532
533 info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
534 if (!info) {
535 ret = -ENOMEM;
536 goto release_dvfs_info_list;
537 }
538
539 ret = mtk_cpu_dvfs_info_init(info, cpu);
540 if (ret) {
541 dev_err(&pdev->dev,
542 "failed to initialize dvfs info for cpu%d\n",
543 cpu);
544 goto release_dvfs_info_list;
545 }
546
547 list_add(&info->list_head, &dvfs_info_list);
548 }
549
550 ret = cpufreq_register_driver(&mt8173_cpufreq_driver);
551 if (ret) {
552 dev_err(&pdev->dev, "failed to register mtk cpufreq driver\n");
553 goto release_dvfs_info_list;
554 }
555
556 return 0;
557
558 release_dvfs_info_list:
559 list_for_each_entry_safe(info, tmp, &dvfs_info_list, list_head) {
560 mtk_cpu_dvfs_info_release(info);
561 list_del(&info->list_head);
562 }
563
564 return ret;
565 }
566
567 static struct platform_driver mt8173_cpufreq_platdrv = {
568 .driver = {
569 .name = "mt8173-cpufreq",
570 },
571 .probe = mt8173_cpufreq_probe,
572 };
573
574 /* List of machines supported by this driver */
575 static const struct of_device_id mt8173_cpufreq_machines[] __initconst = {
576 { .compatible = "mediatek,mt817x", },
577 { .compatible = "mediatek,mt8173", },
578 { .compatible = "mediatek,mt8176", },
579
580 { }
581 };
582
583 static int __init mt8173_cpufreq_driver_init(void)
584 {
585 struct device_node *np;
586 const struct of_device_id *match;
587 struct platform_device *pdev;
588 int err;
589
590 np = of_find_node_by_path("/");
591 if (!np)
592 return -ENODEV;
593
594 match = of_match_node(mt8173_cpufreq_machines, np);
595 of_node_put(np);
596 if (!match) {
597 pr_warn("Machine is not compatible with mt8173-cpufreq\n");
598 return -ENODEV;
599 }
600
601 err = platform_driver_register(&mt8173_cpufreq_platdrv);
602 if (err)
603 return err;
604
605 /*
606 * Since there's no place to hold device registration code and no
607 * device tree based way to match cpufreq driver yet, both the driver
608 * and the device registration codes are put here to handle defer
609 * probing.
610 */
611 pdev = platform_device_register_simple("mt8173-cpufreq", -1, NULL, 0);
612 if (IS_ERR(pdev)) {
613 pr_err("failed to register mtk-cpufreq platform device\n");
614 return PTR_ERR(pdev);
615 }
616
617 return 0;
618 }
619 device_initcall(mt8173_cpufreq_driver_init);