]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/cpufreq/powernv-cpufreq.c
Merge tag 'hyperv-next-signed-20210831' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-jammy-kernel.git] / drivers / cpufreq / powernv-cpufreq.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * POWERNV cpufreq driver for the IBM POWER processors
4 *
5 * (C) Copyright IBM 2014
6 *
7 * Author: Vaidyanathan Srinivasan <svaidy at linux.vnet.ibm.com>
8 */
9
10 #define pr_fmt(fmt) "powernv-cpufreq: " fmt
11
12 #include <linux/kernel.h>
13 #include <linux/sysfs.h>
14 #include <linux/cpumask.h>
15 #include <linux/module.h>
16 #include <linux/cpufreq.h>
17 #include <linux/smp.h>
18 #include <linux/of.h>
19 #include <linux/reboot.h>
20 #include <linux/slab.h>
21 #include <linux/cpu.h>
22 #include <linux/hashtable.h>
23 #include <trace/events/power.h>
24
25 #include <asm/cputhreads.h>
26 #include <asm/firmware.h>
27 #include <asm/reg.h>
28 #include <asm/smp.h> /* Required for cpu_sibling_mask() in UP configs */
29 #include <asm/opal.h>
30 #include <linux/timer.h>
31
32 #define POWERNV_MAX_PSTATES_ORDER 8
33 #define POWERNV_MAX_PSTATES (1UL << (POWERNV_MAX_PSTATES_ORDER))
34 #define PMSR_PSAFE_ENABLE (1UL << 30)
35 #define PMSR_SPR_EM_DISABLE (1UL << 31)
36 #define MAX_PSTATE_SHIFT 32
37 #define LPSTATE_SHIFT 48
38 #define GPSTATE_SHIFT 56
39
40 #define MAX_RAMP_DOWN_TIME 5120
41 /*
42 * On an idle system we want the global pstate to ramp-down from max value to
43 * min over a span of ~5 secs. Also we want it to initially ramp-down slowly and
44 * then ramp-down rapidly later on.
45 *
46 * This gives a percentage rampdown for time elapsed in milliseconds.
47 * ramp_down_percentage = ((ms * ms) >> 18)
48 * ~= 3.8 * (sec * sec)
49 *
50 * At 0 ms ramp_down_percent = 0
51 * At 5120 ms ramp_down_percent = 100
52 */
53 #define ramp_down_percent(time) ((time * time) >> 18)
54
55 /* Interval after which the timer is queued to bring down global pstate */
56 #define GPSTATE_TIMER_INTERVAL 2000
57
58 /**
59 * struct global_pstate_info - Per policy data structure to maintain history of
60 * global pstates
61 * @highest_lpstate_idx: The local pstate index from which we are
62 * ramping down
63 * @elapsed_time: Time in ms spent in ramping down from
64 * highest_lpstate_idx
65 * @last_sampled_time: Time from boot in ms when global pstates were
66 * last set
67 * @last_lpstate_idx: Last set value of local pstate and global
68 * @last_gpstate_idx: pstate in terms of cpufreq table index
69 * @timer: Is used for ramping down if cpu goes idle for
70 * a long time with global pstate held high
71 * @gpstate_lock: A spinlock to maintain synchronization between
72 * routines called by the timer handler and
73 * governer's target_index calls
74 * @policy: Associated CPUFreq policy
75 */
76 struct global_pstate_info {
77 int highest_lpstate_idx;
78 unsigned int elapsed_time;
79 unsigned int last_sampled_time;
80 int last_lpstate_idx;
81 int last_gpstate_idx;
82 spinlock_t gpstate_lock;
83 struct timer_list timer;
84 struct cpufreq_policy *policy;
85 };
86
87 static struct cpufreq_frequency_table powernv_freqs[POWERNV_MAX_PSTATES+1];
88
89 static DEFINE_HASHTABLE(pstate_revmap, POWERNV_MAX_PSTATES_ORDER);
90 /**
91 * struct pstate_idx_revmap_data: Entry in the hashmap pstate_revmap
92 * indexed by a function of pstate id.
93 *
94 * @pstate_id: pstate id for this entry.
95 *
96 * @cpufreq_table_idx: Index into the powernv_freqs
97 * cpufreq_frequency_table for frequency
98 * corresponding to pstate_id.
99 *
100 * @hentry: hlist_node that hooks this entry into the pstate_revmap
101 * hashtable
102 */
103 struct pstate_idx_revmap_data {
104 u8 pstate_id;
105 unsigned int cpufreq_table_idx;
106 struct hlist_node hentry;
107 };
108
109 static bool rebooting, throttled, occ_reset;
110
111 static const char * const throttle_reason[] = {
112 "No throttling",
113 "Power Cap",
114 "Processor Over Temperature",
115 "Power Supply Failure",
116 "Over Current",
117 "OCC Reset"
118 };
119
120 enum throttle_reason_type {
121 NO_THROTTLE = 0,
122 POWERCAP,
123 CPU_OVERTEMP,
124 POWER_SUPPLY_FAILURE,
125 OVERCURRENT,
126 OCC_RESET_THROTTLE,
127 OCC_MAX_REASON
128 };
129
130 static struct chip {
131 unsigned int id;
132 bool throttled;
133 bool restore;
134 u8 throttle_reason;
135 cpumask_t mask;
136 struct work_struct throttle;
137 int throttle_turbo;
138 int throttle_sub_turbo;
139 int reason[OCC_MAX_REASON];
140 } *chips;
141
142 static int nr_chips;
143 static DEFINE_PER_CPU(struct chip *, chip_info);
144
145 /*
146 * Note:
147 * The set of pstates consists of contiguous integers.
148 * powernv_pstate_info stores the index of the frequency table for
149 * max, min and nominal frequencies. It also stores number of
150 * available frequencies.
151 *
152 * powernv_pstate_info.nominal indicates the index to the highest
153 * non-turbo frequency.
154 */
155 static struct powernv_pstate_info {
156 unsigned int min;
157 unsigned int max;
158 unsigned int nominal;
159 unsigned int nr_pstates;
160 bool wof_enabled;
161 } powernv_pstate_info;
162
163 static inline u8 extract_pstate(u64 pmsr_val, unsigned int shift)
164 {
165 return ((pmsr_val >> shift) & 0xFF);
166 }
167
168 #define extract_local_pstate(x) extract_pstate(x, LPSTATE_SHIFT)
169 #define extract_global_pstate(x) extract_pstate(x, GPSTATE_SHIFT)
170 #define extract_max_pstate(x) extract_pstate(x, MAX_PSTATE_SHIFT)
171
172 /* Use following functions for conversions between pstate_id and index */
173
174 /*
175 * idx_to_pstate : Returns the pstate id corresponding to the
176 * frequency in the cpufreq frequency table
177 * powernv_freqs indexed by @i.
178 *
179 * If @i is out of bound, this will return the pstate
180 * corresponding to the nominal frequency.
181 */
182 static inline u8 idx_to_pstate(unsigned int i)
183 {
184 if (unlikely(i >= powernv_pstate_info.nr_pstates)) {
185 pr_warn_once("idx_to_pstate: index %u is out of bound\n", i);
186 return powernv_freqs[powernv_pstate_info.nominal].driver_data;
187 }
188
189 return powernv_freqs[i].driver_data;
190 }
191
192 /*
193 * pstate_to_idx : Returns the index in the cpufreq frequencytable
194 * powernv_freqs for the frequency whose corresponding
195 * pstate id is @pstate.
196 *
197 * If no frequency corresponding to @pstate is found,
198 * this will return the index of the nominal
199 * frequency.
200 */
201 static unsigned int pstate_to_idx(u8 pstate)
202 {
203 unsigned int key = pstate % POWERNV_MAX_PSTATES;
204 struct pstate_idx_revmap_data *revmap_data;
205
206 hash_for_each_possible(pstate_revmap, revmap_data, hentry, key) {
207 if (revmap_data->pstate_id == pstate)
208 return revmap_data->cpufreq_table_idx;
209 }
210
211 pr_warn_once("pstate_to_idx: pstate 0x%x not found\n", pstate);
212 return powernv_pstate_info.nominal;
213 }
214
215 static inline void reset_gpstates(struct cpufreq_policy *policy)
216 {
217 struct global_pstate_info *gpstates = policy->driver_data;
218
219 gpstates->highest_lpstate_idx = 0;
220 gpstates->elapsed_time = 0;
221 gpstates->last_sampled_time = 0;
222 gpstates->last_lpstate_idx = 0;
223 gpstates->last_gpstate_idx = 0;
224 }
225
226 /*
227 * Initialize the freq table based on data obtained
228 * from the firmware passed via device-tree
229 */
230 static int init_powernv_pstates(void)
231 {
232 struct device_node *power_mgt;
233 int i, nr_pstates = 0;
234 const __be32 *pstate_ids, *pstate_freqs;
235 u32 len_ids, len_freqs;
236 u32 pstate_min, pstate_max, pstate_nominal;
237 u32 pstate_turbo, pstate_ultra_turbo;
238 int rc = -ENODEV;
239
240 power_mgt = of_find_node_by_path("/ibm,opal/power-mgt");
241 if (!power_mgt) {
242 pr_warn("power-mgt node not found\n");
243 return -ENODEV;
244 }
245
246 if (of_property_read_u32(power_mgt, "ibm,pstate-min", &pstate_min)) {
247 pr_warn("ibm,pstate-min node not found\n");
248 goto out;
249 }
250
251 if (of_property_read_u32(power_mgt, "ibm,pstate-max", &pstate_max)) {
252 pr_warn("ibm,pstate-max node not found\n");
253 goto out;
254 }
255
256 if (of_property_read_u32(power_mgt, "ibm,pstate-nominal",
257 &pstate_nominal)) {
258 pr_warn("ibm,pstate-nominal not found\n");
259 goto out;
260 }
261
262 if (of_property_read_u32(power_mgt, "ibm,pstate-ultra-turbo",
263 &pstate_ultra_turbo)) {
264 powernv_pstate_info.wof_enabled = false;
265 goto next;
266 }
267
268 if (of_property_read_u32(power_mgt, "ibm,pstate-turbo",
269 &pstate_turbo)) {
270 powernv_pstate_info.wof_enabled = false;
271 goto next;
272 }
273
274 if (pstate_turbo == pstate_ultra_turbo)
275 powernv_pstate_info.wof_enabled = false;
276 else
277 powernv_pstate_info.wof_enabled = true;
278
279 next:
280 pr_info("cpufreq pstate min 0x%x nominal 0x%x max 0x%x\n", pstate_min,
281 pstate_nominal, pstate_max);
282 pr_info("Workload Optimized Frequency is %s in the platform\n",
283 (powernv_pstate_info.wof_enabled) ? "enabled" : "disabled");
284
285 pstate_ids = of_get_property(power_mgt, "ibm,pstate-ids", &len_ids);
286 if (!pstate_ids) {
287 pr_warn("ibm,pstate-ids not found\n");
288 goto out;
289 }
290
291 pstate_freqs = of_get_property(power_mgt, "ibm,pstate-frequencies-mhz",
292 &len_freqs);
293 if (!pstate_freqs) {
294 pr_warn("ibm,pstate-frequencies-mhz not found\n");
295 goto out;
296 }
297
298 if (len_ids != len_freqs) {
299 pr_warn("Entries in ibm,pstate-ids and "
300 "ibm,pstate-frequencies-mhz does not match\n");
301 }
302
303 nr_pstates = min(len_ids, len_freqs) / sizeof(u32);
304 if (!nr_pstates) {
305 pr_warn("No PStates found\n");
306 goto out;
307 }
308
309 powernv_pstate_info.nr_pstates = nr_pstates;
310 pr_debug("NR PStates %d\n", nr_pstates);
311
312 for (i = 0; i < nr_pstates; i++) {
313 u32 id = be32_to_cpu(pstate_ids[i]);
314 u32 freq = be32_to_cpu(pstate_freqs[i]);
315 struct pstate_idx_revmap_data *revmap_data;
316 unsigned int key;
317
318 pr_debug("PState id %d freq %d MHz\n", id, freq);
319 powernv_freqs[i].frequency = freq * 1000; /* kHz */
320 powernv_freqs[i].driver_data = id & 0xFF;
321
322 revmap_data = kmalloc(sizeof(*revmap_data), GFP_KERNEL);
323 if (!revmap_data) {
324 rc = -ENOMEM;
325 goto out;
326 }
327
328 revmap_data->pstate_id = id & 0xFF;
329 revmap_data->cpufreq_table_idx = i;
330 key = (revmap_data->pstate_id) % POWERNV_MAX_PSTATES;
331 hash_add(pstate_revmap, &revmap_data->hentry, key);
332
333 if (id == pstate_max)
334 powernv_pstate_info.max = i;
335 if (id == pstate_nominal)
336 powernv_pstate_info.nominal = i;
337 if (id == pstate_min)
338 powernv_pstate_info.min = i;
339
340 if (powernv_pstate_info.wof_enabled && id == pstate_turbo) {
341 int j;
342
343 for (j = i - 1; j >= (int)powernv_pstate_info.max; j--)
344 powernv_freqs[j].flags = CPUFREQ_BOOST_FREQ;
345 }
346 }
347
348 /* End of list marker entry */
349 powernv_freqs[i].frequency = CPUFREQ_TABLE_END;
350
351 of_node_put(power_mgt);
352 return 0;
353 out:
354 of_node_put(power_mgt);
355 return rc;
356 }
357
358 /* Returns the CPU frequency corresponding to the pstate_id. */
359 static unsigned int pstate_id_to_freq(u8 pstate_id)
360 {
361 int i;
362
363 i = pstate_to_idx(pstate_id);
364 if (i >= powernv_pstate_info.nr_pstates || i < 0) {
365 pr_warn("PState id 0x%x outside of PState table, reporting nominal id 0x%x instead\n",
366 pstate_id, idx_to_pstate(powernv_pstate_info.nominal));
367 i = powernv_pstate_info.nominal;
368 }
369
370 return powernv_freqs[i].frequency;
371 }
372
373 /*
374 * cpuinfo_nominal_freq_show - Show the nominal CPU frequency as indicated by
375 * the firmware
376 */
377 static ssize_t cpuinfo_nominal_freq_show(struct cpufreq_policy *policy,
378 char *buf)
379 {
380 return sprintf(buf, "%u\n",
381 powernv_freqs[powernv_pstate_info.nominal].frequency);
382 }
383
384 static struct freq_attr cpufreq_freq_attr_cpuinfo_nominal_freq =
385 __ATTR_RO(cpuinfo_nominal_freq);
386
387 #define SCALING_BOOST_FREQS_ATTR_INDEX 2
388
389 static struct freq_attr *powernv_cpu_freq_attr[] = {
390 &cpufreq_freq_attr_scaling_available_freqs,
391 &cpufreq_freq_attr_cpuinfo_nominal_freq,
392 &cpufreq_freq_attr_scaling_boost_freqs,
393 NULL,
394 };
395
396 #define throttle_attr(name, member) \
397 static ssize_t name##_show(struct cpufreq_policy *policy, char *buf) \
398 { \
399 struct chip *chip = per_cpu(chip_info, policy->cpu); \
400 \
401 return sprintf(buf, "%u\n", chip->member); \
402 } \
403 \
404 static struct freq_attr throttle_attr_##name = __ATTR_RO(name) \
405
406 throttle_attr(unthrottle, reason[NO_THROTTLE]);
407 throttle_attr(powercap, reason[POWERCAP]);
408 throttle_attr(overtemp, reason[CPU_OVERTEMP]);
409 throttle_attr(supply_fault, reason[POWER_SUPPLY_FAILURE]);
410 throttle_attr(overcurrent, reason[OVERCURRENT]);
411 throttle_attr(occ_reset, reason[OCC_RESET_THROTTLE]);
412 throttle_attr(turbo_stat, throttle_turbo);
413 throttle_attr(sub_turbo_stat, throttle_sub_turbo);
414
415 static struct attribute *throttle_attrs[] = {
416 &throttle_attr_unthrottle.attr,
417 &throttle_attr_powercap.attr,
418 &throttle_attr_overtemp.attr,
419 &throttle_attr_supply_fault.attr,
420 &throttle_attr_overcurrent.attr,
421 &throttle_attr_occ_reset.attr,
422 &throttle_attr_turbo_stat.attr,
423 &throttle_attr_sub_turbo_stat.attr,
424 NULL,
425 };
426
427 static const struct attribute_group throttle_attr_grp = {
428 .name = "throttle_stats",
429 .attrs = throttle_attrs,
430 };
431
432 /* Helper routines */
433
434 /* Access helpers to power mgt SPR */
435
436 static inline unsigned long get_pmspr(unsigned long sprn)
437 {
438 switch (sprn) {
439 case SPRN_PMCR:
440 return mfspr(SPRN_PMCR);
441
442 case SPRN_PMICR:
443 return mfspr(SPRN_PMICR);
444
445 case SPRN_PMSR:
446 return mfspr(SPRN_PMSR);
447 }
448 BUG();
449 }
450
451 static inline void set_pmspr(unsigned long sprn, unsigned long val)
452 {
453 switch (sprn) {
454 case SPRN_PMCR:
455 mtspr(SPRN_PMCR, val);
456 return;
457
458 case SPRN_PMICR:
459 mtspr(SPRN_PMICR, val);
460 return;
461 }
462 BUG();
463 }
464
465 /*
466 * Use objects of this type to query/update
467 * pstates on a remote CPU via smp_call_function.
468 */
469 struct powernv_smp_call_data {
470 unsigned int freq;
471 u8 pstate_id;
472 u8 gpstate_id;
473 };
474
475 /*
476 * powernv_read_cpu_freq: Reads the current frequency on this CPU.
477 *
478 * Called via smp_call_function.
479 *
480 * Note: The caller of the smp_call_function should pass an argument of
481 * the type 'struct powernv_smp_call_data *' along with this function.
482 *
483 * The current frequency on this CPU will be returned via
484 * ((struct powernv_smp_call_data *)arg)->freq;
485 */
486 static void powernv_read_cpu_freq(void *arg)
487 {
488 unsigned long pmspr_val;
489 struct powernv_smp_call_data *freq_data = arg;
490
491 pmspr_val = get_pmspr(SPRN_PMSR);
492 freq_data->pstate_id = extract_local_pstate(pmspr_val);
493 freq_data->freq = pstate_id_to_freq(freq_data->pstate_id);
494
495 pr_debug("cpu %d pmsr %016lX pstate_id 0x%x frequency %d kHz\n",
496 raw_smp_processor_id(), pmspr_val, freq_data->pstate_id,
497 freq_data->freq);
498 }
499
500 /*
501 * powernv_cpufreq_get: Returns the CPU frequency as reported by the
502 * firmware for CPU 'cpu'. This value is reported through the sysfs
503 * file cpuinfo_cur_freq.
504 */
505 static unsigned int powernv_cpufreq_get(unsigned int cpu)
506 {
507 struct powernv_smp_call_data freq_data;
508
509 smp_call_function_any(cpu_sibling_mask(cpu), powernv_read_cpu_freq,
510 &freq_data, 1);
511
512 return freq_data.freq;
513 }
514
515 /*
516 * set_pstate: Sets the pstate on this CPU.
517 *
518 * This is called via an smp_call_function.
519 *
520 * The caller must ensure that freq_data is of the type
521 * (struct powernv_smp_call_data *) and the pstate_id which needs to be set
522 * on this CPU should be present in freq_data->pstate_id.
523 */
524 static void set_pstate(void *data)
525 {
526 unsigned long val;
527 struct powernv_smp_call_data *freq_data = data;
528 unsigned long pstate_ul = freq_data->pstate_id;
529 unsigned long gpstate_ul = freq_data->gpstate_id;
530
531 val = get_pmspr(SPRN_PMCR);
532 val = val & 0x0000FFFFFFFFFFFFULL;
533
534 pstate_ul = pstate_ul & 0xFF;
535 gpstate_ul = gpstate_ul & 0xFF;
536
537 /* Set both global(bits 56..63) and local(bits 48..55) PStates */
538 val = val | (gpstate_ul << 56) | (pstate_ul << 48);
539
540 pr_debug("Setting cpu %d pmcr to %016lX\n",
541 raw_smp_processor_id(), val);
542 set_pmspr(SPRN_PMCR, val);
543 }
544
545 /*
546 * get_nominal_index: Returns the index corresponding to the nominal
547 * pstate in the cpufreq table
548 */
549 static inline unsigned int get_nominal_index(void)
550 {
551 return powernv_pstate_info.nominal;
552 }
553
554 static void powernv_cpufreq_throttle_check(void *data)
555 {
556 struct chip *chip;
557 unsigned int cpu = smp_processor_id();
558 unsigned long pmsr;
559 u8 pmsr_pmax;
560 unsigned int pmsr_pmax_idx;
561
562 pmsr = get_pmspr(SPRN_PMSR);
563 chip = this_cpu_read(chip_info);
564
565 /* Check for Pmax Capping */
566 pmsr_pmax = extract_max_pstate(pmsr);
567 pmsr_pmax_idx = pstate_to_idx(pmsr_pmax);
568 if (pmsr_pmax_idx != powernv_pstate_info.max) {
569 if (chip->throttled)
570 goto next;
571 chip->throttled = true;
572 if (pmsr_pmax_idx > powernv_pstate_info.nominal) {
573 pr_warn_once("CPU %d on Chip %u has Pmax(0x%x) reduced below that of nominal frequency(0x%x)\n",
574 cpu, chip->id, pmsr_pmax,
575 idx_to_pstate(powernv_pstate_info.nominal));
576 chip->throttle_sub_turbo++;
577 } else {
578 chip->throttle_turbo++;
579 }
580 trace_powernv_throttle(chip->id,
581 throttle_reason[chip->throttle_reason],
582 pmsr_pmax);
583 } else if (chip->throttled) {
584 chip->throttled = false;
585 trace_powernv_throttle(chip->id,
586 throttle_reason[chip->throttle_reason],
587 pmsr_pmax);
588 }
589
590 /* Check if Psafe_mode_active is set in PMSR. */
591 next:
592 if (pmsr & PMSR_PSAFE_ENABLE) {
593 throttled = true;
594 pr_info("Pstate set to safe frequency\n");
595 }
596
597 /* Check if SPR_EM_DISABLE is set in PMSR */
598 if (pmsr & PMSR_SPR_EM_DISABLE) {
599 throttled = true;
600 pr_info("Frequency Control disabled from OS\n");
601 }
602
603 if (throttled) {
604 pr_info("PMSR = %16lx\n", pmsr);
605 pr_warn("CPU Frequency could be throttled\n");
606 }
607 }
608
609 /**
610 * calc_global_pstate - Calculate global pstate
611 * @elapsed_time: Elapsed time in milliseconds
612 * @local_pstate_idx: New local pstate
613 * @highest_lpstate_idx: pstate from which its ramping down
614 *
615 * Finds the appropriate global pstate based on the pstate from which its
616 * ramping down and the time elapsed in ramping down. It follows a quadratic
617 * equation which ensures that it reaches ramping down to pmin in 5sec.
618 */
619 static inline int calc_global_pstate(unsigned int elapsed_time,
620 int highest_lpstate_idx,
621 int local_pstate_idx)
622 {
623 int index_diff;
624
625 /*
626 * Using ramp_down_percent we get the percentage of rampdown
627 * that we are expecting to be dropping. Difference between
628 * highest_lpstate_idx and powernv_pstate_info.min will give a absolute
629 * number of how many pstates we will drop eventually by the end of
630 * 5 seconds, then just scale it get the number pstates to be dropped.
631 */
632 index_diff = ((int)ramp_down_percent(elapsed_time) *
633 (powernv_pstate_info.min - highest_lpstate_idx)) / 100;
634
635 /* Ensure that global pstate is >= to local pstate */
636 if (highest_lpstate_idx + index_diff >= local_pstate_idx)
637 return local_pstate_idx;
638 else
639 return highest_lpstate_idx + index_diff;
640 }
641
642 static inline void queue_gpstate_timer(struct global_pstate_info *gpstates)
643 {
644 unsigned int timer_interval;
645
646 /*
647 * Setting up timer to fire after GPSTATE_TIMER_INTERVAL ms, But
648 * if it exceeds MAX_RAMP_DOWN_TIME ms for ramp down time.
649 * Set timer such that it fires exactly at MAX_RAMP_DOWN_TIME
650 * seconds of ramp down time.
651 */
652 if ((gpstates->elapsed_time + GPSTATE_TIMER_INTERVAL)
653 > MAX_RAMP_DOWN_TIME)
654 timer_interval = MAX_RAMP_DOWN_TIME - gpstates->elapsed_time;
655 else
656 timer_interval = GPSTATE_TIMER_INTERVAL;
657
658 mod_timer(&gpstates->timer, jiffies + msecs_to_jiffies(timer_interval));
659 }
660
661 /**
662 * gpstate_timer_handler
663 *
664 * @t: Timer context used to fetch global pstate info struct
665 *
666 * This handler brings down the global pstate closer to the local pstate
667 * according quadratic equation. Queues a new timer if it is still not equal
668 * to local pstate
669 */
670 static void gpstate_timer_handler(struct timer_list *t)
671 {
672 struct global_pstate_info *gpstates = from_timer(gpstates, t, timer);
673 struct cpufreq_policy *policy = gpstates->policy;
674 int gpstate_idx, lpstate_idx;
675 unsigned long val;
676 unsigned int time_diff = jiffies_to_msecs(jiffies)
677 - gpstates->last_sampled_time;
678 struct powernv_smp_call_data freq_data;
679
680 if (!spin_trylock(&gpstates->gpstate_lock))
681 return;
682 /*
683 * If the timer has migrated to the different cpu then bring
684 * it back to one of the policy->cpus
685 */
686 if (!cpumask_test_cpu(raw_smp_processor_id(), policy->cpus)) {
687 gpstates->timer.expires = jiffies + msecs_to_jiffies(1);
688 add_timer_on(&gpstates->timer, cpumask_first(policy->cpus));
689 spin_unlock(&gpstates->gpstate_lock);
690 return;
691 }
692
693 /*
694 * If PMCR was last updated was using fast_swtich then
695 * We may have wrong in gpstate->last_lpstate_idx
696 * value. Hence, read from PMCR to get correct data.
697 */
698 val = get_pmspr(SPRN_PMCR);
699 freq_data.gpstate_id = extract_global_pstate(val);
700 freq_data.pstate_id = extract_local_pstate(val);
701 if (freq_data.gpstate_id == freq_data.pstate_id) {
702 reset_gpstates(policy);
703 spin_unlock(&gpstates->gpstate_lock);
704 return;
705 }
706
707 gpstates->last_sampled_time += time_diff;
708 gpstates->elapsed_time += time_diff;
709
710 if (gpstates->elapsed_time > MAX_RAMP_DOWN_TIME) {
711 gpstate_idx = pstate_to_idx(freq_data.pstate_id);
712 lpstate_idx = gpstate_idx;
713 reset_gpstates(policy);
714 gpstates->highest_lpstate_idx = gpstate_idx;
715 } else {
716 lpstate_idx = pstate_to_idx(freq_data.pstate_id);
717 gpstate_idx = calc_global_pstate(gpstates->elapsed_time,
718 gpstates->highest_lpstate_idx,
719 lpstate_idx);
720 }
721 freq_data.gpstate_id = idx_to_pstate(gpstate_idx);
722 gpstates->last_gpstate_idx = gpstate_idx;
723 gpstates->last_lpstate_idx = lpstate_idx;
724 /*
725 * If local pstate is equal to global pstate, rampdown is over
726 * So timer is not required to be queued.
727 */
728 if (gpstate_idx != gpstates->last_lpstate_idx)
729 queue_gpstate_timer(gpstates);
730
731 set_pstate(&freq_data);
732 spin_unlock(&gpstates->gpstate_lock);
733 }
734
735 /*
736 * powernv_cpufreq_target_index: Sets the frequency corresponding to
737 * the cpufreq table entry indexed by new_index on the cpus in the
738 * mask policy->cpus
739 */
740 static int powernv_cpufreq_target_index(struct cpufreq_policy *policy,
741 unsigned int new_index)
742 {
743 struct powernv_smp_call_data freq_data;
744 unsigned int cur_msec, gpstate_idx;
745 struct global_pstate_info *gpstates = policy->driver_data;
746
747 if (unlikely(rebooting) && new_index != get_nominal_index())
748 return 0;
749
750 if (!throttled) {
751 /* we don't want to be preempted while
752 * checking if the CPU frequency has been throttled
753 */
754 preempt_disable();
755 powernv_cpufreq_throttle_check(NULL);
756 preempt_enable();
757 }
758
759 cur_msec = jiffies_to_msecs(get_jiffies_64());
760
761 freq_data.pstate_id = idx_to_pstate(new_index);
762 if (!gpstates) {
763 freq_data.gpstate_id = freq_data.pstate_id;
764 goto no_gpstate;
765 }
766
767 spin_lock(&gpstates->gpstate_lock);
768
769 if (!gpstates->last_sampled_time) {
770 gpstate_idx = new_index;
771 gpstates->highest_lpstate_idx = new_index;
772 goto gpstates_done;
773 }
774
775 if (gpstates->last_gpstate_idx < new_index) {
776 gpstates->elapsed_time += cur_msec -
777 gpstates->last_sampled_time;
778
779 /*
780 * If its has been ramping down for more than MAX_RAMP_DOWN_TIME
781 * we should be resetting all global pstate related data. Set it
782 * equal to local pstate to start fresh.
783 */
784 if (gpstates->elapsed_time > MAX_RAMP_DOWN_TIME) {
785 reset_gpstates(policy);
786 gpstates->highest_lpstate_idx = new_index;
787 gpstate_idx = new_index;
788 } else {
789 /* Elaspsed_time is less than 5 seconds, continue to rampdown */
790 gpstate_idx = calc_global_pstate(gpstates->elapsed_time,
791 gpstates->highest_lpstate_idx,
792 new_index);
793 }
794 } else {
795 reset_gpstates(policy);
796 gpstates->highest_lpstate_idx = new_index;
797 gpstate_idx = new_index;
798 }
799
800 /*
801 * If local pstate is equal to global pstate, rampdown is over
802 * So timer is not required to be queued.
803 */
804 if (gpstate_idx != new_index)
805 queue_gpstate_timer(gpstates);
806 else
807 del_timer_sync(&gpstates->timer);
808
809 gpstates_done:
810 freq_data.gpstate_id = idx_to_pstate(gpstate_idx);
811 gpstates->last_sampled_time = cur_msec;
812 gpstates->last_gpstate_idx = gpstate_idx;
813 gpstates->last_lpstate_idx = new_index;
814
815 spin_unlock(&gpstates->gpstate_lock);
816
817 no_gpstate:
818 /*
819 * Use smp_call_function to send IPI and execute the
820 * mtspr on target CPU. We could do that without IPI
821 * if current CPU is within policy->cpus (core)
822 */
823 smp_call_function_any(policy->cpus, set_pstate, &freq_data, 1);
824 return 0;
825 }
826
827 static int powernv_cpufreq_cpu_init(struct cpufreq_policy *policy)
828 {
829 int base, i;
830 struct kernfs_node *kn;
831 struct global_pstate_info *gpstates;
832
833 base = cpu_first_thread_sibling(policy->cpu);
834
835 for (i = 0; i < threads_per_core; i++)
836 cpumask_set_cpu(base + i, policy->cpus);
837
838 kn = kernfs_find_and_get(policy->kobj.sd, throttle_attr_grp.name);
839 if (!kn) {
840 int ret;
841
842 ret = sysfs_create_group(&policy->kobj, &throttle_attr_grp);
843 if (ret) {
844 pr_info("Failed to create throttle stats directory for cpu %d\n",
845 policy->cpu);
846 return ret;
847 }
848 } else {
849 kernfs_put(kn);
850 }
851
852 policy->freq_table = powernv_freqs;
853 policy->fast_switch_possible = true;
854
855 if (pvr_version_is(PVR_POWER9))
856 return 0;
857
858 /* Initialise Gpstate ramp-down timer only on POWER8 */
859 gpstates = kzalloc(sizeof(*gpstates), GFP_KERNEL);
860 if (!gpstates)
861 return -ENOMEM;
862
863 policy->driver_data = gpstates;
864
865 /* initialize timer */
866 gpstates->policy = policy;
867 timer_setup(&gpstates->timer, gpstate_timer_handler,
868 TIMER_PINNED | TIMER_DEFERRABLE);
869 gpstates->timer.expires = jiffies +
870 msecs_to_jiffies(GPSTATE_TIMER_INTERVAL);
871 spin_lock_init(&gpstates->gpstate_lock);
872
873 return 0;
874 }
875
876 static int powernv_cpufreq_cpu_exit(struct cpufreq_policy *policy)
877 {
878 struct powernv_smp_call_data freq_data;
879 struct global_pstate_info *gpstates = policy->driver_data;
880
881 freq_data.pstate_id = idx_to_pstate(powernv_pstate_info.min);
882 freq_data.gpstate_id = idx_to_pstate(powernv_pstate_info.min);
883 smp_call_function_single(policy->cpu, set_pstate, &freq_data, 1);
884 if (gpstates)
885 del_timer_sync(&gpstates->timer);
886
887 kfree(policy->driver_data);
888
889 return 0;
890 }
891
892 static int powernv_cpufreq_reboot_notifier(struct notifier_block *nb,
893 unsigned long action, void *unused)
894 {
895 int cpu;
896 struct cpufreq_policy *cpu_policy;
897
898 rebooting = true;
899 for_each_online_cpu(cpu) {
900 cpu_policy = cpufreq_cpu_get(cpu);
901 if (!cpu_policy)
902 continue;
903 powernv_cpufreq_target_index(cpu_policy, get_nominal_index());
904 cpufreq_cpu_put(cpu_policy);
905 }
906
907 return NOTIFY_DONE;
908 }
909
910 static struct notifier_block powernv_cpufreq_reboot_nb = {
911 .notifier_call = powernv_cpufreq_reboot_notifier,
912 };
913
914 static void powernv_cpufreq_work_fn(struct work_struct *work)
915 {
916 struct chip *chip = container_of(work, struct chip, throttle);
917 struct cpufreq_policy *policy;
918 unsigned int cpu;
919 cpumask_t mask;
920
921 cpus_read_lock();
922 cpumask_and(&mask, &chip->mask, cpu_online_mask);
923 smp_call_function_any(&mask,
924 powernv_cpufreq_throttle_check, NULL, 0);
925
926 if (!chip->restore)
927 goto out;
928
929 chip->restore = false;
930 for_each_cpu(cpu, &mask) {
931 int index;
932
933 policy = cpufreq_cpu_get(cpu);
934 if (!policy)
935 continue;
936 index = cpufreq_table_find_index_c(policy, policy->cur);
937 powernv_cpufreq_target_index(policy, index);
938 cpumask_andnot(&mask, &mask, policy->cpus);
939 cpufreq_cpu_put(policy);
940 }
941 out:
942 cpus_read_unlock();
943 }
944
945 static int powernv_cpufreq_occ_msg(struct notifier_block *nb,
946 unsigned long msg_type, void *_msg)
947 {
948 struct opal_msg *msg = _msg;
949 struct opal_occ_msg omsg;
950 int i;
951
952 if (msg_type != OPAL_MSG_OCC)
953 return 0;
954
955 omsg.type = be64_to_cpu(msg->params[0]);
956
957 switch (omsg.type) {
958 case OCC_RESET:
959 occ_reset = true;
960 pr_info("OCC (On Chip Controller - enforces hard thermal/power limits) Resetting\n");
961 /*
962 * powernv_cpufreq_throttle_check() is called in
963 * target() callback which can detect the throttle state
964 * for governors like ondemand.
965 * But static governors will not call target() often thus
966 * report throttling here.
967 */
968 if (!throttled) {
969 throttled = true;
970 pr_warn("CPU frequency is throttled for duration\n");
971 }
972
973 break;
974 case OCC_LOAD:
975 pr_info("OCC Loading, CPU frequency is throttled until OCC is started\n");
976 break;
977 case OCC_THROTTLE:
978 omsg.chip = be64_to_cpu(msg->params[1]);
979 omsg.throttle_status = be64_to_cpu(msg->params[2]);
980
981 if (occ_reset) {
982 occ_reset = false;
983 throttled = false;
984 pr_info("OCC Active, CPU frequency is no longer throttled\n");
985
986 for (i = 0; i < nr_chips; i++) {
987 chips[i].restore = true;
988 schedule_work(&chips[i].throttle);
989 }
990
991 return 0;
992 }
993
994 for (i = 0; i < nr_chips; i++)
995 if (chips[i].id == omsg.chip)
996 break;
997
998 if (omsg.throttle_status >= 0 &&
999 omsg.throttle_status <= OCC_MAX_THROTTLE_STATUS) {
1000 chips[i].throttle_reason = omsg.throttle_status;
1001 chips[i].reason[omsg.throttle_status]++;
1002 }
1003
1004 if (!omsg.throttle_status)
1005 chips[i].restore = true;
1006
1007 schedule_work(&chips[i].throttle);
1008 }
1009 return 0;
1010 }
1011
1012 static struct notifier_block powernv_cpufreq_opal_nb = {
1013 .notifier_call = powernv_cpufreq_occ_msg,
1014 .next = NULL,
1015 .priority = 0,
1016 };
1017
1018 static unsigned int powernv_fast_switch(struct cpufreq_policy *policy,
1019 unsigned int target_freq)
1020 {
1021 int index;
1022 struct powernv_smp_call_data freq_data;
1023
1024 index = cpufreq_table_find_index_dl(policy, target_freq);
1025 freq_data.pstate_id = powernv_freqs[index].driver_data;
1026 freq_data.gpstate_id = powernv_freqs[index].driver_data;
1027 set_pstate(&freq_data);
1028
1029 return powernv_freqs[index].frequency;
1030 }
1031
1032 static struct cpufreq_driver powernv_cpufreq_driver = {
1033 .name = "powernv-cpufreq",
1034 .flags = CPUFREQ_CONST_LOOPS,
1035 .init = powernv_cpufreq_cpu_init,
1036 .exit = powernv_cpufreq_cpu_exit,
1037 .verify = cpufreq_generic_frequency_table_verify,
1038 .target_index = powernv_cpufreq_target_index,
1039 .fast_switch = powernv_fast_switch,
1040 .get = powernv_cpufreq_get,
1041 .attr = powernv_cpu_freq_attr,
1042 };
1043
1044 static int init_chip_info(void)
1045 {
1046 unsigned int *chip;
1047 unsigned int cpu, i;
1048 unsigned int prev_chip_id = UINT_MAX;
1049 int ret = 0;
1050
1051 chip = kcalloc(num_possible_cpus(), sizeof(*chip), GFP_KERNEL);
1052 if (!chip)
1053 return -ENOMEM;
1054
1055 for_each_possible_cpu(cpu) {
1056 unsigned int id = cpu_to_chip_id(cpu);
1057
1058 if (prev_chip_id != id) {
1059 prev_chip_id = id;
1060 chip[nr_chips++] = id;
1061 }
1062 }
1063
1064 chips = kcalloc(nr_chips, sizeof(struct chip), GFP_KERNEL);
1065 if (!chips) {
1066 ret = -ENOMEM;
1067 goto free_and_return;
1068 }
1069
1070 for (i = 0; i < nr_chips; i++) {
1071 chips[i].id = chip[i];
1072 cpumask_copy(&chips[i].mask, cpumask_of_node(chip[i]));
1073 INIT_WORK(&chips[i].throttle, powernv_cpufreq_work_fn);
1074 for_each_cpu(cpu, &chips[i].mask)
1075 per_cpu(chip_info, cpu) = &chips[i];
1076 }
1077
1078 free_and_return:
1079 kfree(chip);
1080 return ret;
1081 }
1082
1083 static inline void clean_chip_info(void)
1084 {
1085 int i;
1086
1087 /* flush any pending work items */
1088 if (chips)
1089 for (i = 0; i < nr_chips; i++)
1090 cancel_work_sync(&chips[i].throttle);
1091 kfree(chips);
1092 }
1093
1094 static inline void unregister_all_notifiers(void)
1095 {
1096 opal_message_notifier_unregister(OPAL_MSG_OCC,
1097 &powernv_cpufreq_opal_nb);
1098 unregister_reboot_notifier(&powernv_cpufreq_reboot_nb);
1099 }
1100
1101 static int __init powernv_cpufreq_init(void)
1102 {
1103 int rc = 0;
1104
1105 /* Don't probe on pseries (guest) platforms */
1106 if (!firmware_has_feature(FW_FEATURE_OPAL))
1107 return -ENODEV;
1108
1109 /* Discover pstates from device tree and init */
1110 rc = init_powernv_pstates();
1111 if (rc)
1112 goto out;
1113
1114 /* Populate chip info */
1115 rc = init_chip_info();
1116 if (rc)
1117 goto out;
1118
1119 if (powernv_pstate_info.wof_enabled)
1120 powernv_cpufreq_driver.boost_enabled = true;
1121 else
1122 powernv_cpu_freq_attr[SCALING_BOOST_FREQS_ATTR_INDEX] = NULL;
1123
1124 rc = cpufreq_register_driver(&powernv_cpufreq_driver);
1125 if (rc) {
1126 pr_info("Failed to register the cpufreq driver (%d)\n", rc);
1127 goto cleanup;
1128 }
1129
1130 if (powernv_pstate_info.wof_enabled)
1131 cpufreq_enable_boost_support();
1132
1133 register_reboot_notifier(&powernv_cpufreq_reboot_nb);
1134 opal_message_notifier_register(OPAL_MSG_OCC, &powernv_cpufreq_opal_nb);
1135
1136 return 0;
1137 cleanup:
1138 clean_chip_info();
1139 out:
1140 pr_info("Platform driver disabled. System does not support PState control\n");
1141 return rc;
1142 }
1143 module_init(powernv_cpufreq_init);
1144
1145 static void __exit powernv_cpufreq_exit(void)
1146 {
1147 cpufreq_unregister_driver(&powernv_cpufreq_driver);
1148 unregister_all_notifiers();
1149 clean_chip_info();
1150 }
1151 module_exit(powernv_cpufreq_exit);
1152
1153 MODULE_LICENSE("GPL");
1154 MODULE_AUTHOR("Vaidyanathan Srinivasan <svaidy at linux.vnet.ibm.com>");