]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/cpufreq/sparc-us2e-cpufreq.c
Merge tag 'kbuild-misc-v4.12' of git://git.kernel.org/pub/scm/linux/kernel/git/masahi...
[mirror_ubuntu-bionic-kernel.git] / drivers / cpufreq / sparc-us2e-cpufreq.c
1 /* us2e_cpufreq.c: UltraSPARC-IIe cpu frequency support
2 *
3 * Copyright (C) 2003 David S. Miller (davem@redhat.com)
4 *
5 * Many thanks to Dominik Brodowski for fixing up the cpufreq
6 * infrastructure in order to make this driver easier to implement.
7 */
8
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/sched.h>
12 #include <linux/smp.h>
13 #include <linux/cpufreq.h>
14 #include <linux/threads.h>
15 #include <linux/slab.h>
16 #include <linux/delay.h>
17 #include <linux/init.h>
18
19 #include <asm/asi.h>
20 #include <asm/timer.h>
21
22 static struct cpufreq_driver *cpufreq_us2e_driver;
23
24 struct us2e_freq_percpu_info {
25 struct cpufreq_frequency_table table[6];
26 };
27
28 /* Indexed by cpu number. */
29 static struct us2e_freq_percpu_info *us2e_freq_table;
30
31 #define HBIRD_MEM_CNTL0_ADDR 0x1fe0000f010UL
32 #define HBIRD_ESTAR_MODE_ADDR 0x1fe0000f080UL
33
34 /* UltraSPARC-IIe has five dividers: 1, 2, 4, 6, and 8. These are controlled
35 * in the ESTAR mode control register.
36 */
37 #define ESTAR_MODE_DIV_1 0x0000000000000000UL
38 #define ESTAR_MODE_DIV_2 0x0000000000000001UL
39 #define ESTAR_MODE_DIV_4 0x0000000000000003UL
40 #define ESTAR_MODE_DIV_6 0x0000000000000002UL
41 #define ESTAR_MODE_DIV_8 0x0000000000000004UL
42 #define ESTAR_MODE_DIV_MASK 0x0000000000000007UL
43
44 #define MCTRL0_SREFRESH_ENAB 0x0000000000010000UL
45 #define MCTRL0_REFR_COUNT_MASK 0x0000000000007f00UL
46 #define MCTRL0_REFR_COUNT_SHIFT 8
47 #define MCTRL0_REFR_INTERVAL 7800
48 #define MCTRL0_REFR_CLKS_P_CNT 64
49
50 static unsigned long read_hbreg(unsigned long addr)
51 {
52 unsigned long ret;
53
54 __asm__ __volatile__("ldxa [%1] %2, %0"
55 : "=&r" (ret)
56 : "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E));
57 return ret;
58 }
59
60 static void write_hbreg(unsigned long addr, unsigned long val)
61 {
62 __asm__ __volatile__("stxa %0, [%1] %2\n\t"
63 "membar #Sync"
64 : /* no outputs */
65 : "r" (val), "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E)
66 : "memory");
67 if (addr == HBIRD_ESTAR_MODE_ADDR) {
68 /* Need to wait 16 clock cycles for the PLL to lock. */
69 udelay(1);
70 }
71 }
72
73 static void self_refresh_ctl(int enable)
74 {
75 unsigned long mctrl = read_hbreg(HBIRD_MEM_CNTL0_ADDR);
76
77 if (enable)
78 mctrl |= MCTRL0_SREFRESH_ENAB;
79 else
80 mctrl &= ~MCTRL0_SREFRESH_ENAB;
81 write_hbreg(HBIRD_MEM_CNTL0_ADDR, mctrl);
82 (void) read_hbreg(HBIRD_MEM_CNTL0_ADDR);
83 }
84
85 static void frob_mem_refresh(int cpu_slowing_down,
86 unsigned long clock_tick,
87 unsigned long old_divisor, unsigned long divisor)
88 {
89 unsigned long old_refr_count, refr_count, mctrl;
90
91 refr_count = (clock_tick * MCTRL0_REFR_INTERVAL);
92 refr_count /= (MCTRL0_REFR_CLKS_P_CNT * divisor * 1000000000UL);
93
94 mctrl = read_hbreg(HBIRD_MEM_CNTL0_ADDR);
95 old_refr_count = (mctrl & MCTRL0_REFR_COUNT_MASK)
96 >> MCTRL0_REFR_COUNT_SHIFT;
97
98 mctrl &= ~MCTRL0_REFR_COUNT_MASK;
99 mctrl |= refr_count << MCTRL0_REFR_COUNT_SHIFT;
100 write_hbreg(HBIRD_MEM_CNTL0_ADDR, mctrl);
101 mctrl = read_hbreg(HBIRD_MEM_CNTL0_ADDR);
102
103 if (cpu_slowing_down && !(mctrl & MCTRL0_SREFRESH_ENAB)) {
104 unsigned long usecs;
105
106 /* We have to wait for both refresh counts (old
107 * and new) to go to zero.
108 */
109 usecs = (MCTRL0_REFR_CLKS_P_CNT *
110 (refr_count + old_refr_count) *
111 1000000UL *
112 old_divisor) / clock_tick;
113 udelay(usecs + 1UL);
114 }
115 }
116
117 static void us2e_transition(unsigned long estar, unsigned long new_bits,
118 unsigned long clock_tick,
119 unsigned long old_divisor, unsigned long divisor)
120 {
121 estar &= ~ESTAR_MODE_DIV_MASK;
122
123 /* This is based upon the state transition diagram in the IIe manual. */
124 if (old_divisor == 2 && divisor == 1) {
125 self_refresh_ctl(0);
126 write_hbreg(HBIRD_ESTAR_MODE_ADDR, estar | new_bits);
127 frob_mem_refresh(0, clock_tick, old_divisor, divisor);
128 } else if (old_divisor == 1 && divisor == 2) {
129 frob_mem_refresh(1, clock_tick, old_divisor, divisor);
130 write_hbreg(HBIRD_ESTAR_MODE_ADDR, estar | new_bits);
131 self_refresh_ctl(1);
132 } else if (old_divisor == 1 && divisor > 2) {
133 us2e_transition(estar, ESTAR_MODE_DIV_2, clock_tick,
134 1, 2);
135 us2e_transition(estar, new_bits, clock_tick,
136 2, divisor);
137 } else if (old_divisor > 2 && divisor == 1) {
138 us2e_transition(estar, ESTAR_MODE_DIV_2, clock_tick,
139 old_divisor, 2);
140 us2e_transition(estar, new_bits, clock_tick,
141 2, divisor);
142 } else if (old_divisor < divisor) {
143 frob_mem_refresh(0, clock_tick, old_divisor, divisor);
144 write_hbreg(HBIRD_ESTAR_MODE_ADDR, estar | new_bits);
145 } else if (old_divisor > divisor) {
146 write_hbreg(HBIRD_ESTAR_MODE_ADDR, estar | new_bits);
147 frob_mem_refresh(1, clock_tick, old_divisor, divisor);
148 } else {
149 BUG();
150 }
151 }
152
153 static unsigned long index_to_estar_mode(unsigned int index)
154 {
155 switch (index) {
156 case 0:
157 return ESTAR_MODE_DIV_1;
158
159 case 1:
160 return ESTAR_MODE_DIV_2;
161
162 case 2:
163 return ESTAR_MODE_DIV_4;
164
165 case 3:
166 return ESTAR_MODE_DIV_6;
167
168 case 4:
169 return ESTAR_MODE_DIV_8;
170
171 default:
172 BUG();
173 }
174 }
175
176 static unsigned long index_to_divisor(unsigned int index)
177 {
178 switch (index) {
179 case 0:
180 return 1;
181
182 case 1:
183 return 2;
184
185 case 2:
186 return 4;
187
188 case 3:
189 return 6;
190
191 case 4:
192 return 8;
193
194 default:
195 BUG();
196 }
197 }
198
199 static unsigned long estar_to_divisor(unsigned long estar)
200 {
201 unsigned long ret;
202
203 switch (estar & ESTAR_MODE_DIV_MASK) {
204 case ESTAR_MODE_DIV_1:
205 ret = 1;
206 break;
207 case ESTAR_MODE_DIV_2:
208 ret = 2;
209 break;
210 case ESTAR_MODE_DIV_4:
211 ret = 4;
212 break;
213 case ESTAR_MODE_DIV_6:
214 ret = 6;
215 break;
216 case ESTAR_MODE_DIV_8:
217 ret = 8;
218 break;
219 default:
220 BUG();
221 }
222
223 return ret;
224 }
225
226 static void __us2e_freq_get(void *arg)
227 {
228 unsigned long *estar = arg;
229
230 *estar = read_hbreg(HBIRD_ESTAR_MODE_ADDR);
231 }
232
233 static unsigned int us2e_freq_get(unsigned int cpu)
234 {
235 unsigned long clock_tick, estar;
236
237 clock_tick = sparc64_get_clock_tick(cpu) / 1000;
238 if (smp_call_function_single(cpu, __us2e_freq_get, &estar, 1))
239 return 0;
240
241 return clock_tick / estar_to_divisor(estar);
242 }
243
244 static void __us2e_freq_target(void *arg)
245 {
246 unsigned int cpu = smp_processor_id();
247 unsigned int *index = arg;
248 unsigned long new_bits, new_freq;
249 unsigned long clock_tick, divisor, old_divisor, estar;
250
251 new_freq = clock_tick = sparc64_get_clock_tick(cpu) / 1000;
252 new_bits = index_to_estar_mode(*index);
253 divisor = index_to_divisor(*index);
254 new_freq /= divisor;
255
256 estar = read_hbreg(HBIRD_ESTAR_MODE_ADDR);
257
258 old_divisor = estar_to_divisor(estar);
259
260 if (old_divisor != divisor) {
261 us2e_transition(estar, new_bits, clock_tick * 1000,
262 old_divisor, divisor);
263 }
264 }
265
266 static int us2e_freq_target(struct cpufreq_policy *policy, unsigned int index)
267 {
268 unsigned int cpu = policy->cpu;
269
270 return smp_call_function_single(cpu, __us2e_freq_target, &index, 1);
271 }
272
273 static int __init us2e_freq_cpu_init(struct cpufreq_policy *policy)
274 {
275 unsigned int cpu = policy->cpu;
276 unsigned long clock_tick = sparc64_get_clock_tick(cpu) / 1000;
277 struct cpufreq_frequency_table *table =
278 &us2e_freq_table[cpu].table[0];
279
280 table[0].driver_data = 0;
281 table[0].frequency = clock_tick / 1;
282 table[1].driver_data = 1;
283 table[1].frequency = clock_tick / 2;
284 table[2].driver_data = 2;
285 table[2].frequency = clock_tick / 4;
286 table[2].driver_data = 3;
287 table[2].frequency = clock_tick / 6;
288 table[2].driver_data = 4;
289 table[2].frequency = clock_tick / 8;
290 table[2].driver_data = 5;
291 table[3].frequency = CPUFREQ_TABLE_END;
292
293 policy->cpuinfo.transition_latency = 0;
294 policy->cur = clock_tick;
295
296 return cpufreq_table_validate_and_show(policy, table);
297 }
298
299 static int us2e_freq_cpu_exit(struct cpufreq_policy *policy)
300 {
301 if (cpufreq_us2e_driver)
302 us2e_freq_target(policy, 0);
303
304 return 0;
305 }
306
307 static int __init us2e_freq_init(void)
308 {
309 unsigned long manuf, impl, ver;
310 int ret;
311
312 if (tlb_type != spitfire)
313 return -ENODEV;
314
315 __asm__("rdpr %%ver, %0" : "=r" (ver));
316 manuf = ((ver >> 48) & 0xffff);
317 impl = ((ver >> 32) & 0xffff);
318
319 if (manuf == 0x17 && impl == 0x13) {
320 struct cpufreq_driver *driver;
321
322 ret = -ENOMEM;
323 driver = kzalloc(sizeof(*driver), GFP_KERNEL);
324 if (!driver)
325 goto err_out;
326
327 us2e_freq_table = kzalloc((NR_CPUS * sizeof(*us2e_freq_table)),
328 GFP_KERNEL);
329 if (!us2e_freq_table)
330 goto err_out;
331
332 driver->init = us2e_freq_cpu_init;
333 driver->verify = cpufreq_generic_frequency_table_verify;
334 driver->target_index = us2e_freq_target;
335 driver->get = us2e_freq_get;
336 driver->exit = us2e_freq_cpu_exit;
337 strcpy(driver->name, "UltraSPARC-IIe");
338
339 cpufreq_us2e_driver = driver;
340 ret = cpufreq_register_driver(driver);
341 if (ret)
342 goto err_out;
343
344 return 0;
345
346 err_out:
347 if (driver) {
348 kfree(driver);
349 cpufreq_us2e_driver = NULL;
350 }
351 kfree(us2e_freq_table);
352 us2e_freq_table = NULL;
353 return ret;
354 }
355
356 return -ENODEV;
357 }
358
359 static void __exit us2e_freq_exit(void)
360 {
361 if (cpufreq_us2e_driver) {
362 cpufreq_unregister_driver(cpufreq_us2e_driver);
363 kfree(cpufreq_us2e_driver);
364 cpufreq_us2e_driver = NULL;
365 kfree(us2e_freq_table);
366 us2e_freq_table = NULL;
367 }
368 }
369
370 MODULE_AUTHOR("David S. Miller <davem@redhat.com>");
371 MODULE_DESCRIPTION("cpufreq driver for UltraSPARC-IIe");
372 MODULE_LICENSE("GPL");
373
374 module_init(us2e_freq_init);
375 module_exit(us2e_freq_exit);