]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/cpufreq/sparc-us2e-cpufreq.c
Merge tag 'ntb-5.3' of git://github.com/jonmason/ntb
[mirror_ubuntu-jammy-kernel.git] / drivers / cpufreq / sparc-us2e-cpufreq.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* us2e_cpufreq.c: UltraSPARC-IIe cpu frequency support
3 *
4 * Copyright (C) 2003 David S. Miller (davem@redhat.com)
5 *
6 * Many thanks to Dominik Brodowski for fixing up the cpufreq
7 * infrastructure in order to make this driver easier to implement.
8 */
9
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/sched.h>
13 #include <linux/smp.h>
14 #include <linux/cpufreq.h>
15 #include <linux/threads.h>
16 #include <linux/slab.h>
17 #include <linux/delay.h>
18 #include <linux/init.h>
19
20 #include <asm/asi.h>
21 #include <asm/timer.h>
22
23 static struct cpufreq_driver *cpufreq_us2e_driver;
24
25 struct us2e_freq_percpu_info {
26 struct cpufreq_frequency_table table[6];
27 };
28
29 /* Indexed by cpu number. */
30 static struct us2e_freq_percpu_info *us2e_freq_table;
31
32 #define HBIRD_MEM_CNTL0_ADDR 0x1fe0000f010UL
33 #define HBIRD_ESTAR_MODE_ADDR 0x1fe0000f080UL
34
35 /* UltraSPARC-IIe has five dividers: 1, 2, 4, 6, and 8. These are controlled
36 * in the ESTAR mode control register.
37 */
38 #define ESTAR_MODE_DIV_1 0x0000000000000000UL
39 #define ESTAR_MODE_DIV_2 0x0000000000000001UL
40 #define ESTAR_MODE_DIV_4 0x0000000000000003UL
41 #define ESTAR_MODE_DIV_6 0x0000000000000002UL
42 #define ESTAR_MODE_DIV_8 0x0000000000000004UL
43 #define ESTAR_MODE_DIV_MASK 0x0000000000000007UL
44
45 #define MCTRL0_SREFRESH_ENAB 0x0000000000010000UL
46 #define MCTRL0_REFR_COUNT_MASK 0x0000000000007f00UL
47 #define MCTRL0_REFR_COUNT_SHIFT 8
48 #define MCTRL0_REFR_INTERVAL 7800
49 #define MCTRL0_REFR_CLKS_P_CNT 64
50
51 static unsigned long read_hbreg(unsigned long addr)
52 {
53 unsigned long ret;
54
55 __asm__ __volatile__("ldxa [%1] %2, %0"
56 : "=&r" (ret)
57 : "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E));
58 return ret;
59 }
60
61 static void write_hbreg(unsigned long addr, unsigned long val)
62 {
63 __asm__ __volatile__("stxa %0, [%1] %2\n\t"
64 "membar #Sync"
65 : /* no outputs */
66 : "r" (val), "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E)
67 : "memory");
68 if (addr == HBIRD_ESTAR_MODE_ADDR) {
69 /* Need to wait 16 clock cycles for the PLL to lock. */
70 udelay(1);
71 }
72 }
73
74 static void self_refresh_ctl(int enable)
75 {
76 unsigned long mctrl = read_hbreg(HBIRD_MEM_CNTL0_ADDR);
77
78 if (enable)
79 mctrl |= MCTRL0_SREFRESH_ENAB;
80 else
81 mctrl &= ~MCTRL0_SREFRESH_ENAB;
82 write_hbreg(HBIRD_MEM_CNTL0_ADDR, mctrl);
83 (void) read_hbreg(HBIRD_MEM_CNTL0_ADDR);
84 }
85
86 static void frob_mem_refresh(int cpu_slowing_down,
87 unsigned long clock_tick,
88 unsigned long old_divisor, unsigned long divisor)
89 {
90 unsigned long old_refr_count, refr_count, mctrl;
91
92 refr_count = (clock_tick * MCTRL0_REFR_INTERVAL);
93 refr_count /= (MCTRL0_REFR_CLKS_P_CNT * divisor * 1000000000UL);
94
95 mctrl = read_hbreg(HBIRD_MEM_CNTL0_ADDR);
96 old_refr_count = (mctrl & MCTRL0_REFR_COUNT_MASK)
97 >> MCTRL0_REFR_COUNT_SHIFT;
98
99 mctrl &= ~MCTRL0_REFR_COUNT_MASK;
100 mctrl |= refr_count << MCTRL0_REFR_COUNT_SHIFT;
101 write_hbreg(HBIRD_MEM_CNTL0_ADDR, mctrl);
102 mctrl = read_hbreg(HBIRD_MEM_CNTL0_ADDR);
103
104 if (cpu_slowing_down && !(mctrl & MCTRL0_SREFRESH_ENAB)) {
105 unsigned long usecs;
106
107 /* We have to wait for both refresh counts (old
108 * and new) to go to zero.
109 */
110 usecs = (MCTRL0_REFR_CLKS_P_CNT *
111 (refr_count + old_refr_count) *
112 1000000UL *
113 old_divisor) / clock_tick;
114 udelay(usecs + 1UL);
115 }
116 }
117
118 static void us2e_transition(unsigned long estar, unsigned long new_bits,
119 unsigned long clock_tick,
120 unsigned long old_divisor, unsigned long divisor)
121 {
122 estar &= ~ESTAR_MODE_DIV_MASK;
123
124 /* This is based upon the state transition diagram in the IIe manual. */
125 if (old_divisor == 2 && divisor == 1) {
126 self_refresh_ctl(0);
127 write_hbreg(HBIRD_ESTAR_MODE_ADDR, estar | new_bits);
128 frob_mem_refresh(0, clock_tick, old_divisor, divisor);
129 } else if (old_divisor == 1 && divisor == 2) {
130 frob_mem_refresh(1, clock_tick, old_divisor, divisor);
131 write_hbreg(HBIRD_ESTAR_MODE_ADDR, estar | new_bits);
132 self_refresh_ctl(1);
133 } else if (old_divisor == 1 && divisor > 2) {
134 us2e_transition(estar, ESTAR_MODE_DIV_2, clock_tick,
135 1, 2);
136 us2e_transition(estar, new_bits, clock_tick,
137 2, divisor);
138 } else if (old_divisor > 2 && divisor == 1) {
139 us2e_transition(estar, ESTAR_MODE_DIV_2, clock_tick,
140 old_divisor, 2);
141 us2e_transition(estar, new_bits, clock_tick,
142 2, divisor);
143 } else if (old_divisor < divisor) {
144 frob_mem_refresh(0, clock_tick, old_divisor, divisor);
145 write_hbreg(HBIRD_ESTAR_MODE_ADDR, estar | new_bits);
146 } else if (old_divisor > divisor) {
147 write_hbreg(HBIRD_ESTAR_MODE_ADDR, estar | new_bits);
148 frob_mem_refresh(1, clock_tick, old_divisor, divisor);
149 } else {
150 BUG();
151 }
152 }
153
154 static unsigned long index_to_estar_mode(unsigned int index)
155 {
156 switch (index) {
157 case 0:
158 return ESTAR_MODE_DIV_1;
159
160 case 1:
161 return ESTAR_MODE_DIV_2;
162
163 case 2:
164 return ESTAR_MODE_DIV_4;
165
166 case 3:
167 return ESTAR_MODE_DIV_6;
168
169 case 4:
170 return ESTAR_MODE_DIV_8;
171
172 default:
173 BUG();
174 }
175 }
176
177 static unsigned long index_to_divisor(unsigned int index)
178 {
179 switch (index) {
180 case 0:
181 return 1;
182
183 case 1:
184 return 2;
185
186 case 2:
187 return 4;
188
189 case 3:
190 return 6;
191
192 case 4:
193 return 8;
194
195 default:
196 BUG();
197 }
198 }
199
200 static unsigned long estar_to_divisor(unsigned long estar)
201 {
202 unsigned long ret;
203
204 switch (estar & ESTAR_MODE_DIV_MASK) {
205 case ESTAR_MODE_DIV_1:
206 ret = 1;
207 break;
208 case ESTAR_MODE_DIV_2:
209 ret = 2;
210 break;
211 case ESTAR_MODE_DIV_4:
212 ret = 4;
213 break;
214 case ESTAR_MODE_DIV_6:
215 ret = 6;
216 break;
217 case ESTAR_MODE_DIV_8:
218 ret = 8;
219 break;
220 default:
221 BUG();
222 }
223
224 return ret;
225 }
226
227 static void __us2e_freq_get(void *arg)
228 {
229 unsigned long *estar = arg;
230
231 *estar = read_hbreg(HBIRD_ESTAR_MODE_ADDR);
232 }
233
234 static unsigned int us2e_freq_get(unsigned int cpu)
235 {
236 unsigned long clock_tick, estar;
237
238 clock_tick = sparc64_get_clock_tick(cpu) / 1000;
239 if (smp_call_function_single(cpu, __us2e_freq_get, &estar, 1))
240 return 0;
241
242 return clock_tick / estar_to_divisor(estar);
243 }
244
245 static void __us2e_freq_target(void *arg)
246 {
247 unsigned int cpu = smp_processor_id();
248 unsigned int *index = arg;
249 unsigned long new_bits, new_freq;
250 unsigned long clock_tick, divisor, old_divisor, estar;
251
252 new_freq = clock_tick = sparc64_get_clock_tick(cpu) / 1000;
253 new_bits = index_to_estar_mode(*index);
254 divisor = index_to_divisor(*index);
255 new_freq /= divisor;
256
257 estar = read_hbreg(HBIRD_ESTAR_MODE_ADDR);
258
259 old_divisor = estar_to_divisor(estar);
260
261 if (old_divisor != divisor) {
262 us2e_transition(estar, new_bits, clock_tick * 1000,
263 old_divisor, divisor);
264 }
265 }
266
267 static int us2e_freq_target(struct cpufreq_policy *policy, unsigned int index)
268 {
269 unsigned int cpu = policy->cpu;
270
271 return smp_call_function_single(cpu, __us2e_freq_target, &index, 1);
272 }
273
274 static int __init us2e_freq_cpu_init(struct cpufreq_policy *policy)
275 {
276 unsigned int cpu = policy->cpu;
277 unsigned long clock_tick = sparc64_get_clock_tick(cpu) / 1000;
278 struct cpufreq_frequency_table *table =
279 &us2e_freq_table[cpu].table[0];
280
281 table[0].driver_data = 0;
282 table[0].frequency = clock_tick / 1;
283 table[1].driver_data = 1;
284 table[1].frequency = clock_tick / 2;
285 table[2].driver_data = 2;
286 table[2].frequency = clock_tick / 4;
287 table[2].driver_data = 3;
288 table[2].frequency = clock_tick / 6;
289 table[2].driver_data = 4;
290 table[2].frequency = clock_tick / 8;
291 table[2].driver_data = 5;
292 table[3].frequency = CPUFREQ_TABLE_END;
293
294 policy->cpuinfo.transition_latency = 0;
295 policy->cur = clock_tick;
296 policy->freq_table = table;
297
298 return 0;
299 }
300
301 static int us2e_freq_cpu_exit(struct cpufreq_policy *policy)
302 {
303 if (cpufreq_us2e_driver)
304 us2e_freq_target(policy, 0);
305
306 return 0;
307 }
308
309 static int __init us2e_freq_init(void)
310 {
311 unsigned long manuf, impl, ver;
312 int ret;
313
314 if (tlb_type != spitfire)
315 return -ENODEV;
316
317 __asm__("rdpr %%ver, %0" : "=r" (ver));
318 manuf = ((ver >> 48) & 0xffff);
319 impl = ((ver >> 32) & 0xffff);
320
321 if (manuf == 0x17 && impl == 0x13) {
322 struct cpufreq_driver *driver;
323
324 ret = -ENOMEM;
325 driver = kzalloc(sizeof(*driver), GFP_KERNEL);
326 if (!driver)
327 goto err_out;
328
329 us2e_freq_table = kzalloc((NR_CPUS * sizeof(*us2e_freq_table)),
330 GFP_KERNEL);
331 if (!us2e_freq_table)
332 goto err_out;
333
334 driver->init = us2e_freq_cpu_init;
335 driver->verify = cpufreq_generic_frequency_table_verify;
336 driver->target_index = us2e_freq_target;
337 driver->get = us2e_freq_get;
338 driver->exit = us2e_freq_cpu_exit;
339 strcpy(driver->name, "UltraSPARC-IIe");
340
341 cpufreq_us2e_driver = driver;
342 ret = cpufreq_register_driver(driver);
343 if (ret)
344 goto err_out;
345
346 return 0;
347
348 err_out:
349 if (driver) {
350 kfree(driver);
351 cpufreq_us2e_driver = NULL;
352 }
353 kfree(us2e_freq_table);
354 us2e_freq_table = NULL;
355 return ret;
356 }
357
358 return -ENODEV;
359 }
360
361 static void __exit us2e_freq_exit(void)
362 {
363 if (cpufreq_us2e_driver) {
364 cpufreq_unregister_driver(cpufreq_us2e_driver);
365 kfree(cpufreq_us2e_driver);
366 cpufreq_us2e_driver = NULL;
367 kfree(us2e_freq_table);
368 us2e_freq_table = NULL;
369 }
370 }
371
372 MODULE_AUTHOR("David S. Miller <davem@redhat.com>");
373 MODULE_DESCRIPTION("cpufreq driver for UltraSPARC-IIe");
374 MODULE_LICENSE("GPL");
375
376 module_init(us2e_freq_init);
377 module_exit(us2e_freq_exit);