]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/crypto/atmel-aes.c
Merge tag 'armsoc-dt64' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[mirror_ubuntu-artful-kernel.git] / drivers / crypto / atmel-aes.c
1 /*
2 * Cryptographic API.
3 *
4 * Support for ATMEL AES HW acceleration.
5 *
6 * Copyright (c) 2012 Eukréa Electromatique - ATMEL
7 * Author: Nicolas Royer <nicolas@eukrea.com>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as published
11 * by the Free Software Foundation.
12 *
13 * Some ideas are from omap-aes.c driver.
14 */
15
16
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/err.h>
21 #include <linux/clk.h>
22 #include <linux/io.h>
23 #include <linux/hw_random.h>
24 #include <linux/platform_device.h>
25
26 #include <linux/device.h>
27 #include <linux/init.h>
28 #include <linux/errno.h>
29 #include <linux/interrupt.h>
30 #include <linux/irq.h>
31 #include <linux/scatterlist.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/of_device.h>
34 #include <linux/delay.h>
35 #include <linux/crypto.h>
36 #include <crypto/scatterwalk.h>
37 #include <crypto/algapi.h>
38 #include <crypto/aes.h>
39 #include <crypto/xts.h>
40 #include <crypto/internal/aead.h>
41 #include <linux/platform_data/crypto-atmel.h>
42 #include <dt-bindings/dma/at91.h>
43 #include "atmel-aes-regs.h"
44 #include "atmel-authenc.h"
45
46 #define ATMEL_AES_PRIORITY 300
47
48 #define ATMEL_AES_BUFFER_ORDER 2
49 #define ATMEL_AES_BUFFER_SIZE (PAGE_SIZE << ATMEL_AES_BUFFER_ORDER)
50
51 #define CFB8_BLOCK_SIZE 1
52 #define CFB16_BLOCK_SIZE 2
53 #define CFB32_BLOCK_SIZE 4
54 #define CFB64_BLOCK_SIZE 8
55
56 #define SIZE_IN_WORDS(x) ((x) >> 2)
57
58 /* AES flags */
59 /* Reserve bits [18:16] [14:12] [1:0] for mode (same as for AES_MR) */
60 #define AES_FLAGS_ENCRYPT AES_MR_CYPHER_ENC
61 #define AES_FLAGS_GTAGEN AES_MR_GTAGEN
62 #define AES_FLAGS_OPMODE_MASK (AES_MR_OPMOD_MASK | AES_MR_CFBS_MASK)
63 #define AES_FLAGS_ECB AES_MR_OPMOD_ECB
64 #define AES_FLAGS_CBC AES_MR_OPMOD_CBC
65 #define AES_FLAGS_OFB AES_MR_OPMOD_OFB
66 #define AES_FLAGS_CFB128 (AES_MR_OPMOD_CFB | AES_MR_CFBS_128b)
67 #define AES_FLAGS_CFB64 (AES_MR_OPMOD_CFB | AES_MR_CFBS_64b)
68 #define AES_FLAGS_CFB32 (AES_MR_OPMOD_CFB | AES_MR_CFBS_32b)
69 #define AES_FLAGS_CFB16 (AES_MR_OPMOD_CFB | AES_MR_CFBS_16b)
70 #define AES_FLAGS_CFB8 (AES_MR_OPMOD_CFB | AES_MR_CFBS_8b)
71 #define AES_FLAGS_CTR AES_MR_OPMOD_CTR
72 #define AES_FLAGS_GCM AES_MR_OPMOD_GCM
73 #define AES_FLAGS_XTS AES_MR_OPMOD_XTS
74
75 #define AES_FLAGS_MODE_MASK (AES_FLAGS_OPMODE_MASK | \
76 AES_FLAGS_ENCRYPT | \
77 AES_FLAGS_GTAGEN)
78
79 #define AES_FLAGS_INIT BIT(2)
80 #define AES_FLAGS_BUSY BIT(3)
81 #define AES_FLAGS_DUMP_REG BIT(4)
82 #define AES_FLAGS_OWN_SHA BIT(5)
83
84 #define AES_FLAGS_PERSISTENT (AES_FLAGS_INIT | AES_FLAGS_BUSY)
85
86 #define ATMEL_AES_QUEUE_LENGTH 50
87
88 #define ATMEL_AES_DMA_THRESHOLD 256
89
90
91 struct atmel_aes_caps {
92 bool has_dualbuff;
93 bool has_cfb64;
94 bool has_ctr32;
95 bool has_gcm;
96 bool has_xts;
97 bool has_authenc;
98 u32 max_burst_size;
99 };
100
101 struct atmel_aes_dev;
102
103
104 typedef int (*atmel_aes_fn_t)(struct atmel_aes_dev *);
105
106
107 struct atmel_aes_base_ctx {
108 struct atmel_aes_dev *dd;
109 atmel_aes_fn_t start;
110 int keylen;
111 u32 key[AES_KEYSIZE_256 / sizeof(u32)];
112 u16 block_size;
113 };
114
115 struct atmel_aes_ctx {
116 struct atmel_aes_base_ctx base;
117 };
118
119 struct atmel_aes_ctr_ctx {
120 struct atmel_aes_base_ctx base;
121
122 u32 iv[AES_BLOCK_SIZE / sizeof(u32)];
123 size_t offset;
124 struct scatterlist src[2];
125 struct scatterlist dst[2];
126 };
127
128 struct atmel_aes_gcm_ctx {
129 struct atmel_aes_base_ctx base;
130
131 struct scatterlist src[2];
132 struct scatterlist dst[2];
133
134 u32 j0[AES_BLOCK_SIZE / sizeof(u32)];
135 u32 tag[AES_BLOCK_SIZE / sizeof(u32)];
136 u32 ghash[AES_BLOCK_SIZE / sizeof(u32)];
137 size_t textlen;
138
139 const u32 *ghash_in;
140 u32 *ghash_out;
141 atmel_aes_fn_t ghash_resume;
142 };
143
144 struct atmel_aes_xts_ctx {
145 struct atmel_aes_base_ctx base;
146
147 u32 key2[AES_KEYSIZE_256 / sizeof(u32)];
148 };
149
150 #ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
151 struct atmel_aes_authenc_ctx {
152 struct atmel_aes_base_ctx base;
153 struct atmel_sha_authenc_ctx *auth;
154 };
155 #endif
156
157 struct atmel_aes_reqctx {
158 unsigned long mode;
159 };
160
161 #ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
162 struct atmel_aes_authenc_reqctx {
163 struct atmel_aes_reqctx base;
164
165 struct scatterlist src[2];
166 struct scatterlist dst[2];
167 size_t textlen;
168 u32 digest[SHA512_DIGEST_SIZE / sizeof(u32)];
169
170 /* auth_req MUST be place last. */
171 struct ahash_request auth_req;
172 };
173 #endif
174
175 struct atmel_aes_dma {
176 struct dma_chan *chan;
177 struct scatterlist *sg;
178 int nents;
179 unsigned int remainder;
180 unsigned int sg_len;
181 };
182
183 struct atmel_aes_dev {
184 struct list_head list;
185 unsigned long phys_base;
186 void __iomem *io_base;
187
188 struct crypto_async_request *areq;
189 struct atmel_aes_base_ctx *ctx;
190
191 bool is_async;
192 atmel_aes_fn_t resume;
193 atmel_aes_fn_t cpu_transfer_complete;
194
195 struct device *dev;
196 struct clk *iclk;
197 int irq;
198
199 unsigned long flags;
200
201 spinlock_t lock;
202 struct crypto_queue queue;
203
204 struct tasklet_struct done_task;
205 struct tasklet_struct queue_task;
206
207 size_t total;
208 size_t datalen;
209 u32 *data;
210
211 struct atmel_aes_dma src;
212 struct atmel_aes_dma dst;
213
214 size_t buflen;
215 void *buf;
216 struct scatterlist aligned_sg;
217 struct scatterlist *real_dst;
218
219 struct atmel_aes_caps caps;
220
221 u32 hw_version;
222 };
223
224 struct atmel_aes_drv {
225 struct list_head dev_list;
226 spinlock_t lock;
227 };
228
229 static struct atmel_aes_drv atmel_aes = {
230 .dev_list = LIST_HEAD_INIT(atmel_aes.dev_list),
231 .lock = __SPIN_LOCK_UNLOCKED(atmel_aes.lock),
232 };
233
234 #ifdef VERBOSE_DEBUG
235 static const char *atmel_aes_reg_name(u32 offset, char *tmp, size_t sz)
236 {
237 switch (offset) {
238 case AES_CR:
239 return "CR";
240
241 case AES_MR:
242 return "MR";
243
244 case AES_ISR:
245 return "ISR";
246
247 case AES_IMR:
248 return "IMR";
249
250 case AES_IER:
251 return "IER";
252
253 case AES_IDR:
254 return "IDR";
255
256 case AES_KEYWR(0):
257 case AES_KEYWR(1):
258 case AES_KEYWR(2):
259 case AES_KEYWR(3):
260 case AES_KEYWR(4):
261 case AES_KEYWR(5):
262 case AES_KEYWR(6):
263 case AES_KEYWR(7):
264 snprintf(tmp, sz, "KEYWR[%u]", (offset - AES_KEYWR(0)) >> 2);
265 break;
266
267 case AES_IDATAR(0):
268 case AES_IDATAR(1):
269 case AES_IDATAR(2):
270 case AES_IDATAR(3):
271 snprintf(tmp, sz, "IDATAR[%u]", (offset - AES_IDATAR(0)) >> 2);
272 break;
273
274 case AES_ODATAR(0):
275 case AES_ODATAR(1):
276 case AES_ODATAR(2):
277 case AES_ODATAR(3):
278 snprintf(tmp, sz, "ODATAR[%u]", (offset - AES_ODATAR(0)) >> 2);
279 break;
280
281 case AES_IVR(0):
282 case AES_IVR(1):
283 case AES_IVR(2):
284 case AES_IVR(3):
285 snprintf(tmp, sz, "IVR[%u]", (offset - AES_IVR(0)) >> 2);
286 break;
287
288 case AES_AADLENR:
289 return "AADLENR";
290
291 case AES_CLENR:
292 return "CLENR";
293
294 case AES_GHASHR(0):
295 case AES_GHASHR(1):
296 case AES_GHASHR(2):
297 case AES_GHASHR(3):
298 snprintf(tmp, sz, "GHASHR[%u]", (offset - AES_GHASHR(0)) >> 2);
299 break;
300
301 case AES_TAGR(0):
302 case AES_TAGR(1):
303 case AES_TAGR(2):
304 case AES_TAGR(3):
305 snprintf(tmp, sz, "TAGR[%u]", (offset - AES_TAGR(0)) >> 2);
306 break;
307
308 case AES_CTRR:
309 return "CTRR";
310
311 case AES_GCMHR(0):
312 case AES_GCMHR(1):
313 case AES_GCMHR(2):
314 case AES_GCMHR(3):
315 snprintf(tmp, sz, "GCMHR[%u]", (offset - AES_GCMHR(0)) >> 2);
316 break;
317
318 case AES_EMR:
319 return "EMR";
320
321 case AES_TWR(0):
322 case AES_TWR(1):
323 case AES_TWR(2):
324 case AES_TWR(3):
325 snprintf(tmp, sz, "TWR[%u]", (offset - AES_TWR(0)) >> 2);
326 break;
327
328 case AES_ALPHAR(0):
329 case AES_ALPHAR(1):
330 case AES_ALPHAR(2):
331 case AES_ALPHAR(3):
332 snprintf(tmp, sz, "ALPHAR[%u]", (offset - AES_ALPHAR(0)) >> 2);
333 break;
334
335 default:
336 snprintf(tmp, sz, "0x%02x", offset);
337 break;
338 }
339
340 return tmp;
341 }
342 #endif /* VERBOSE_DEBUG */
343
344 /* Shared functions */
345
346 static inline u32 atmel_aes_read(struct atmel_aes_dev *dd, u32 offset)
347 {
348 u32 value = readl_relaxed(dd->io_base + offset);
349
350 #ifdef VERBOSE_DEBUG
351 if (dd->flags & AES_FLAGS_DUMP_REG) {
352 char tmp[16];
353
354 dev_vdbg(dd->dev, "read 0x%08x from %s\n", value,
355 atmel_aes_reg_name(offset, tmp, sizeof(tmp)));
356 }
357 #endif /* VERBOSE_DEBUG */
358
359 return value;
360 }
361
362 static inline void atmel_aes_write(struct atmel_aes_dev *dd,
363 u32 offset, u32 value)
364 {
365 #ifdef VERBOSE_DEBUG
366 if (dd->flags & AES_FLAGS_DUMP_REG) {
367 char tmp[16];
368
369 dev_vdbg(dd->dev, "write 0x%08x into %s\n", value,
370 atmel_aes_reg_name(offset, tmp, sizeof(tmp)));
371 }
372 #endif /* VERBOSE_DEBUG */
373
374 writel_relaxed(value, dd->io_base + offset);
375 }
376
377 static void atmel_aes_read_n(struct atmel_aes_dev *dd, u32 offset,
378 u32 *value, int count)
379 {
380 for (; count--; value++, offset += 4)
381 *value = atmel_aes_read(dd, offset);
382 }
383
384 static void atmel_aes_write_n(struct atmel_aes_dev *dd, u32 offset,
385 const u32 *value, int count)
386 {
387 for (; count--; value++, offset += 4)
388 atmel_aes_write(dd, offset, *value);
389 }
390
391 static inline void atmel_aes_read_block(struct atmel_aes_dev *dd, u32 offset,
392 u32 *value)
393 {
394 atmel_aes_read_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
395 }
396
397 static inline void atmel_aes_write_block(struct atmel_aes_dev *dd, u32 offset,
398 const u32 *value)
399 {
400 atmel_aes_write_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
401 }
402
403 static inline int atmel_aes_wait_for_data_ready(struct atmel_aes_dev *dd,
404 atmel_aes_fn_t resume)
405 {
406 u32 isr = atmel_aes_read(dd, AES_ISR);
407
408 if (unlikely(isr & AES_INT_DATARDY))
409 return resume(dd);
410
411 dd->resume = resume;
412 atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
413 return -EINPROGRESS;
414 }
415
416 static inline size_t atmel_aes_padlen(size_t len, size_t block_size)
417 {
418 len &= block_size - 1;
419 return len ? block_size - len : 0;
420 }
421
422 static struct atmel_aes_dev *atmel_aes_find_dev(struct atmel_aes_base_ctx *ctx)
423 {
424 struct atmel_aes_dev *aes_dd = NULL;
425 struct atmel_aes_dev *tmp;
426
427 spin_lock_bh(&atmel_aes.lock);
428 if (!ctx->dd) {
429 list_for_each_entry(tmp, &atmel_aes.dev_list, list) {
430 aes_dd = tmp;
431 break;
432 }
433 ctx->dd = aes_dd;
434 } else {
435 aes_dd = ctx->dd;
436 }
437
438 spin_unlock_bh(&atmel_aes.lock);
439
440 return aes_dd;
441 }
442
443 static int atmel_aes_hw_init(struct atmel_aes_dev *dd)
444 {
445 int err;
446
447 err = clk_enable(dd->iclk);
448 if (err)
449 return err;
450
451 if (!(dd->flags & AES_FLAGS_INIT)) {
452 atmel_aes_write(dd, AES_CR, AES_CR_SWRST);
453 atmel_aes_write(dd, AES_MR, 0xE << AES_MR_CKEY_OFFSET);
454 dd->flags |= AES_FLAGS_INIT;
455 }
456
457 return 0;
458 }
459
460 static inline unsigned int atmel_aes_get_version(struct atmel_aes_dev *dd)
461 {
462 return atmel_aes_read(dd, AES_HW_VERSION) & 0x00000fff;
463 }
464
465 static int atmel_aes_hw_version_init(struct atmel_aes_dev *dd)
466 {
467 int err;
468
469 err = atmel_aes_hw_init(dd);
470 if (err)
471 return err;
472
473 dd->hw_version = atmel_aes_get_version(dd);
474
475 dev_info(dd->dev, "version: 0x%x\n", dd->hw_version);
476
477 clk_disable(dd->iclk);
478 return 0;
479 }
480
481 static inline void atmel_aes_set_mode(struct atmel_aes_dev *dd,
482 const struct atmel_aes_reqctx *rctx)
483 {
484 /* Clear all but persistent flags and set request flags. */
485 dd->flags = (dd->flags & AES_FLAGS_PERSISTENT) | rctx->mode;
486 }
487
488 static inline bool atmel_aes_is_encrypt(const struct atmel_aes_dev *dd)
489 {
490 return (dd->flags & AES_FLAGS_ENCRYPT);
491 }
492
493 #ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
494 static void atmel_aes_authenc_complete(struct atmel_aes_dev *dd, int err);
495 #endif
496
497 static inline int atmel_aes_complete(struct atmel_aes_dev *dd, int err)
498 {
499 #ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
500 atmel_aes_authenc_complete(dd, err);
501 #endif
502
503 clk_disable(dd->iclk);
504 dd->flags &= ~AES_FLAGS_BUSY;
505
506 if (dd->is_async)
507 dd->areq->complete(dd->areq, err);
508
509 tasklet_schedule(&dd->queue_task);
510
511 return err;
512 }
513
514 static void atmel_aes_write_ctrl_key(struct atmel_aes_dev *dd, bool use_dma,
515 const u32 *iv, const u32 *key, int keylen)
516 {
517 u32 valmr = 0;
518
519 /* MR register must be set before IV registers */
520 if (keylen == AES_KEYSIZE_128)
521 valmr |= AES_MR_KEYSIZE_128;
522 else if (keylen == AES_KEYSIZE_192)
523 valmr |= AES_MR_KEYSIZE_192;
524 else
525 valmr |= AES_MR_KEYSIZE_256;
526
527 valmr |= dd->flags & AES_FLAGS_MODE_MASK;
528
529 if (use_dma) {
530 valmr |= AES_MR_SMOD_IDATAR0;
531 if (dd->caps.has_dualbuff)
532 valmr |= AES_MR_DUALBUFF;
533 } else {
534 valmr |= AES_MR_SMOD_AUTO;
535 }
536
537 atmel_aes_write(dd, AES_MR, valmr);
538
539 atmel_aes_write_n(dd, AES_KEYWR(0), key, SIZE_IN_WORDS(keylen));
540
541 if (iv && (valmr & AES_MR_OPMOD_MASK) != AES_MR_OPMOD_ECB)
542 atmel_aes_write_block(dd, AES_IVR(0), iv);
543 }
544
545 static inline void atmel_aes_write_ctrl(struct atmel_aes_dev *dd, bool use_dma,
546 const u32 *iv)
547
548 {
549 atmel_aes_write_ctrl_key(dd, use_dma, iv,
550 dd->ctx->key, dd->ctx->keylen);
551 }
552
553 /* CPU transfer */
554
555 static int atmel_aes_cpu_transfer(struct atmel_aes_dev *dd)
556 {
557 int err = 0;
558 u32 isr;
559
560 for (;;) {
561 atmel_aes_read_block(dd, AES_ODATAR(0), dd->data);
562 dd->data += 4;
563 dd->datalen -= AES_BLOCK_SIZE;
564
565 if (dd->datalen < AES_BLOCK_SIZE)
566 break;
567
568 atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
569
570 isr = atmel_aes_read(dd, AES_ISR);
571 if (!(isr & AES_INT_DATARDY)) {
572 dd->resume = atmel_aes_cpu_transfer;
573 atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
574 return -EINPROGRESS;
575 }
576 }
577
578 if (!sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
579 dd->buf, dd->total))
580 err = -EINVAL;
581
582 if (err)
583 return atmel_aes_complete(dd, err);
584
585 return dd->cpu_transfer_complete(dd);
586 }
587
588 static int atmel_aes_cpu_start(struct atmel_aes_dev *dd,
589 struct scatterlist *src,
590 struct scatterlist *dst,
591 size_t len,
592 atmel_aes_fn_t resume)
593 {
594 size_t padlen = atmel_aes_padlen(len, AES_BLOCK_SIZE);
595
596 if (unlikely(len == 0))
597 return -EINVAL;
598
599 sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
600
601 dd->total = len;
602 dd->real_dst = dst;
603 dd->cpu_transfer_complete = resume;
604 dd->datalen = len + padlen;
605 dd->data = (u32 *)dd->buf;
606 atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
607 return atmel_aes_wait_for_data_ready(dd, atmel_aes_cpu_transfer);
608 }
609
610
611 /* DMA transfer */
612
613 static void atmel_aes_dma_callback(void *data);
614
615 static bool atmel_aes_check_aligned(struct atmel_aes_dev *dd,
616 struct scatterlist *sg,
617 size_t len,
618 struct atmel_aes_dma *dma)
619 {
620 int nents;
621
622 if (!IS_ALIGNED(len, dd->ctx->block_size))
623 return false;
624
625 for (nents = 0; sg; sg = sg_next(sg), ++nents) {
626 if (!IS_ALIGNED(sg->offset, sizeof(u32)))
627 return false;
628
629 if (len <= sg->length) {
630 if (!IS_ALIGNED(len, dd->ctx->block_size))
631 return false;
632
633 dma->nents = nents+1;
634 dma->remainder = sg->length - len;
635 sg->length = len;
636 return true;
637 }
638
639 if (!IS_ALIGNED(sg->length, dd->ctx->block_size))
640 return false;
641
642 len -= sg->length;
643 }
644
645 return false;
646 }
647
648 static inline void atmel_aes_restore_sg(const struct atmel_aes_dma *dma)
649 {
650 struct scatterlist *sg = dma->sg;
651 int nents = dma->nents;
652
653 if (!dma->remainder)
654 return;
655
656 while (--nents > 0 && sg)
657 sg = sg_next(sg);
658
659 if (!sg)
660 return;
661
662 sg->length += dma->remainder;
663 }
664
665 static int atmel_aes_map(struct atmel_aes_dev *dd,
666 struct scatterlist *src,
667 struct scatterlist *dst,
668 size_t len)
669 {
670 bool src_aligned, dst_aligned;
671 size_t padlen;
672
673 dd->total = len;
674 dd->src.sg = src;
675 dd->dst.sg = dst;
676 dd->real_dst = dst;
677
678 src_aligned = atmel_aes_check_aligned(dd, src, len, &dd->src);
679 if (src == dst)
680 dst_aligned = src_aligned;
681 else
682 dst_aligned = atmel_aes_check_aligned(dd, dst, len, &dd->dst);
683 if (!src_aligned || !dst_aligned) {
684 padlen = atmel_aes_padlen(len, dd->ctx->block_size);
685
686 if (dd->buflen < len + padlen)
687 return -ENOMEM;
688
689 if (!src_aligned) {
690 sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
691 dd->src.sg = &dd->aligned_sg;
692 dd->src.nents = 1;
693 dd->src.remainder = 0;
694 }
695
696 if (!dst_aligned) {
697 dd->dst.sg = &dd->aligned_sg;
698 dd->dst.nents = 1;
699 dd->dst.remainder = 0;
700 }
701
702 sg_init_table(&dd->aligned_sg, 1);
703 sg_set_buf(&dd->aligned_sg, dd->buf, len + padlen);
704 }
705
706 if (dd->src.sg == dd->dst.sg) {
707 dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
708 DMA_BIDIRECTIONAL);
709 dd->dst.sg_len = dd->src.sg_len;
710 if (!dd->src.sg_len)
711 return -EFAULT;
712 } else {
713 dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
714 DMA_TO_DEVICE);
715 if (!dd->src.sg_len)
716 return -EFAULT;
717
718 dd->dst.sg_len = dma_map_sg(dd->dev, dd->dst.sg, dd->dst.nents,
719 DMA_FROM_DEVICE);
720 if (!dd->dst.sg_len) {
721 dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
722 DMA_TO_DEVICE);
723 return -EFAULT;
724 }
725 }
726
727 return 0;
728 }
729
730 static void atmel_aes_unmap(struct atmel_aes_dev *dd)
731 {
732 if (dd->src.sg == dd->dst.sg) {
733 dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
734 DMA_BIDIRECTIONAL);
735
736 if (dd->src.sg != &dd->aligned_sg)
737 atmel_aes_restore_sg(&dd->src);
738 } else {
739 dma_unmap_sg(dd->dev, dd->dst.sg, dd->dst.nents,
740 DMA_FROM_DEVICE);
741
742 if (dd->dst.sg != &dd->aligned_sg)
743 atmel_aes_restore_sg(&dd->dst);
744
745 dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
746 DMA_TO_DEVICE);
747
748 if (dd->src.sg != &dd->aligned_sg)
749 atmel_aes_restore_sg(&dd->src);
750 }
751
752 if (dd->dst.sg == &dd->aligned_sg)
753 sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
754 dd->buf, dd->total);
755 }
756
757 static int atmel_aes_dma_transfer_start(struct atmel_aes_dev *dd,
758 enum dma_slave_buswidth addr_width,
759 enum dma_transfer_direction dir,
760 u32 maxburst)
761 {
762 struct dma_async_tx_descriptor *desc;
763 struct dma_slave_config config;
764 dma_async_tx_callback callback;
765 struct atmel_aes_dma *dma;
766 int err;
767
768 memset(&config, 0, sizeof(config));
769 config.direction = dir;
770 config.src_addr_width = addr_width;
771 config.dst_addr_width = addr_width;
772 config.src_maxburst = maxburst;
773 config.dst_maxburst = maxburst;
774
775 switch (dir) {
776 case DMA_MEM_TO_DEV:
777 dma = &dd->src;
778 callback = NULL;
779 config.dst_addr = dd->phys_base + AES_IDATAR(0);
780 break;
781
782 case DMA_DEV_TO_MEM:
783 dma = &dd->dst;
784 callback = atmel_aes_dma_callback;
785 config.src_addr = dd->phys_base + AES_ODATAR(0);
786 break;
787
788 default:
789 return -EINVAL;
790 }
791
792 err = dmaengine_slave_config(dma->chan, &config);
793 if (err)
794 return err;
795
796 desc = dmaengine_prep_slave_sg(dma->chan, dma->sg, dma->sg_len, dir,
797 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
798 if (!desc)
799 return -ENOMEM;
800
801 desc->callback = callback;
802 desc->callback_param = dd;
803 dmaengine_submit(desc);
804 dma_async_issue_pending(dma->chan);
805
806 return 0;
807 }
808
809 static void atmel_aes_dma_transfer_stop(struct atmel_aes_dev *dd,
810 enum dma_transfer_direction dir)
811 {
812 struct atmel_aes_dma *dma;
813
814 switch (dir) {
815 case DMA_MEM_TO_DEV:
816 dma = &dd->src;
817 break;
818
819 case DMA_DEV_TO_MEM:
820 dma = &dd->dst;
821 break;
822
823 default:
824 return;
825 }
826
827 dmaengine_terminate_all(dma->chan);
828 }
829
830 static int atmel_aes_dma_start(struct atmel_aes_dev *dd,
831 struct scatterlist *src,
832 struct scatterlist *dst,
833 size_t len,
834 atmel_aes_fn_t resume)
835 {
836 enum dma_slave_buswidth addr_width;
837 u32 maxburst;
838 int err;
839
840 switch (dd->ctx->block_size) {
841 case CFB8_BLOCK_SIZE:
842 addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
843 maxburst = 1;
844 break;
845
846 case CFB16_BLOCK_SIZE:
847 addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
848 maxburst = 1;
849 break;
850
851 case CFB32_BLOCK_SIZE:
852 case CFB64_BLOCK_SIZE:
853 addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
854 maxburst = 1;
855 break;
856
857 case AES_BLOCK_SIZE:
858 addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
859 maxburst = dd->caps.max_burst_size;
860 break;
861
862 default:
863 err = -EINVAL;
864 goto exit;
865 }
866
867 err = atmel_aes_map(dd, src, dst, len);
868 if (err)
869 goto exit;
870
871 dd->resume = resume;
872
873 /* Set output DMA transfer first */
874 err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_DEV_TO_MEM,
875 maxburst);
876 if (err)
877 goto unmap;
878
879 /* Then set input DMA transfer */
880 err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_MEM_TO_DEV,
881 maxburst);
882 if (err)
883 goto output_transfer_stop;
884
885 return -EINPROGRESS;
886
887 output_transfer_stop:
888 atmel_aes_dma_transfer_stop(dd, DMA_DEV_TO_MEM);
889 unmap:
890 atmel_aes_unmap(dd);
891 exit:
892 return atmel_aes_complete(dd, err);
893 }
894
895 static void atmel_aes_dma_stop(struct atmel_aes_dev *dd)
896 {
897 atmel_aes_dma_transfer_stop(dd, DMA_MEM_TO_DEV);
898 atmel_aes_dma_transfer_stop(dd, DMA_DEV_TO_MEM);
899 atmel_aes_unmap(dd);
900 }
901
902 static void atmel_aes_dma_callback(void *data)
903 {
904 struct atmel_aes_dev *dd = data;
905
906 atmel_aes_dma_stop(dd);
907 dd->is_async = true;
908 (void)dd->resume(dd);
909 }
910
911 static int atmel_aes_handle_queue(struct atmel_aes_dev *dd,
912 struct crypto_async_request *new_areq)
913 {
914 struct crypto_async_request *areq, *backlog;
915 struct atmel_aes_base_ctx *ctx;
916 unsigned long flags;
917 bool start_async;
918 int err, ret = 0;
919
920 spin_lock_irqsave(&dd->lock, flags);
921 if (new_areq)
922 ret = crypto_enqueue_request(&dd->queue, new_areq);
923 if (dd->flags & AES_FLAGS_BUSY) {
924 spin_unlock_irqrestore(&dd->lock, flags);
925 return ret;
926 }
927 backlog = crypto_get_backlog(&dd->queue);
928 areq = crypto_dequeue_request(&dd->queue);
929 if (areq)
930 dd->flags |= AES_FLAGS_BUSY;
931 spin_unlock_irqrestore(&dd->lock, flags);
932
933 if (!areq)
934 return ret;
935
936 if (backlog)
937 backlog->complete(backlog, -EINPROGRESS);
938
939 ctx = crypto_tfm_ctx(areq->tfm);
940
941 dd->areq = areq;
942 dd->ctx = ctx;
943 start_async = (areq != new_areq);
944 dd->is_async = start_async;
945
946 /* WARNING: ctx->start() MAY change dd->is_async. */
947 err = ctx->start(dd);
948 return (start_async) ? ret : err;
949 }
950
951
952 /* AES async block ciphers */
953
954 static int atmel_aes_transfer_complete(struct atmel_aes_dev *dd)
955 {
956 return atmel_aes_complete(dd, 0);
957 }
958
959 static int atmel_aes_start(struct atmel_aes_dev *dd)
960 {
961 struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
962 struct atmel_aes_reqctx *rctx = ablkcipher_request_ctx(req);
963 bool use_dma = (req->nbytes >= ATMEL_AES_DMA_THRESHOLD ||
964 dd->ctx->block_size != AES_BLOCK_SIZE);
965 int err;
966
967 atmel_aes_set_mode(dd, rctx);
968
969 err = atmel_aes_hw_init(dd);
970 if (err)
971 return atmel_aes_complete(dd, err);
972
973 atmel_aes_write_ctrl(dd, use_dma, req->info);
974 if (use_dma)
975 return atmel_aes_dma_start(dd, req->src, req->dst, req->nbytes,
976 atmel_aes_transfer_complete);
977
978 return atmel_aes_cpu_start(dd, req->src, req->dst, req->nbytes,
979 atmel_aes_transfer_complete);
980 }
981
982 static inline struct atmel_aes_ctr_ctx *
983 atmel_aes_ctr_ctx_cast(struct atmel_aes_base_ctx *ctx)
984 {
985 return container_of(ctx, struct atmel_aes_ctr_ctx, base);
986 }
987
988 static int atmel_aes_ctr_transfer(struct atmel_aes_dev *dd)
989 {
990 struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
991 struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
992 struct scatterlist *src, *dst;
993 u32 ctr, blocks;
994 size_t datalen;
995 bool use_dma, fragmented = false;
996
997 /* Check for transfer completion. */
998 ctx->offset += dd->total;
999 if (ctx->offset >= req->nbytes)
1000 return atmel_aes_transfer_complete(dd);
1001
1002 /* Compute data length. */
1003 datalen = req->nbytes - ctx->offset;
1004 blocks = DIV_ROUND_UP(datalen, AES_BLOCK_SIZE);
1005 ctr = be32_to_cpu(ctx->iv[3]);
1006 if (dd->caps.has_ctr32) {
1007 /* Check 32bit counter overflow. */
1008 u32 start = ctr;
1009 u32 end = start + blocks - 1;
1010
1011 if (end < start) {
1012 ctr |= 0xffffffff;
1013 datalen = AES_BLOCK_SIZE * -start;
1014 fragmented = true;
1015 }
1016 } else {
1017 /* Check 16bit counter overflow. */
1018 u16 start = ctr & 0xffff;
1019 u16 end = start + (u16)blocks - 1;
1020
1021 if (blocks >> 16 || end < start) {
1022 ctr |= 0xffff;
1023 datalen = AES_BLOCK_SIZE * (0x10000-start);
1024 fragmented = true;
1025 }
1026 }
1027 use_dma = (datalen >= ATMEL_AES_DMA_THRESHOLD);
1028
1029 /* Jump to offset. */
1030 src = scatterwalk_ffwd(ctx->src, req->src, ctx->offset);
1031 dst = ((req->src == req->dst) ? src :
1032 scatterwalk_ffwd(ctx->dst, req->dst, ctx->offset));
1033
1034 /* Configure hardware. */
1035 atmel_aes_write_ctrl(dd, use_dma, ctx->iv);
1036 if (unlikely(fragmented)) {
1037 /*
1038 * Increment the counter manually to cope with the hardware
1039 * counter overflow.
1040 */
1041 ctx->iv[3] = cpu_to_be32(ctr);
1042 crypto_inc((u8 *)ctx->iv, AES_BLOCK_SIZE);
1043 }
1044
1045 if (use_dma)
1046 return atmel_aes_dma_start(dd, src, dst, datalen,
1047 atmel_aes_ctr_transfer);
1048
1049 return atmel_aes_cpu_start(dd, src, dst, datalen,
1050 atmel_aes_ctr_transfer);
1051 }
1052
1053 static int atmel_aes_ctr_start(struct atmel_aes_dev *dd)
1054 {
1055 struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
1056 struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
1057 struct atmel_aes_reqctx *rctx = ablkcipher_request_ctx(req);
1058 int err;
1059
1060 atmel_aes_set_mode(dd, rctx);
1061
1062 err = atmel_aes_hw_init(dd);
1063 if (err)
1064 return atmel_aes_complete(dd, err);
1065
1066 memcpy(ctx->iv, req->info, AES_BLOCK_SIZE);
1067 ctx->offset = 0;
1068 dd->total = 0;
1069 return atmel_aes_ctr_transfer(dd);
1070 }
1071
1072 static int atmel_aes_crypt(struct ablkcipher_request *req, unsigned long mode)
1073 {
1074 struct atmel_aes_base_ctx *ctx;
1075 struct atmel_aes_reqctx *rctx;
1076 struct atmel_aes_dev *dd;
1077
1078 ctx = crypto_ablkcipher_ctx(crypto_ablkcipher_reqtfm(req));
1079 switch (mode & AES_FLAGS_OPMODE_MASK) {
1080 case AES_FLAGS_CFB8:
1081 ctx->block_size = CFB8_BLOCK_SIZE;
1082 break;
1083
1084 case AES_FLAGS_CFB16:
1085 ctx->block_size = CFB16_BLOCK_SIZE;
1086 break;
1087
1088 case AES_FLAGS_CFB32:
1089 ctx->block_size = CFB32_BLOCK_SIZE;
1090 break;
1091
1092 case AES_FLAGS_CFB64:
1093 ctx->block_size = CFB64_BLOCK_SIZE;
1094 break;
1095
1096 default:
1097 ctx->block_size = AES_BLOCK_SIZE;
1098 break;
1099 }
1100
1101 dd = atmel_aes_find_dev(ctx);
1102 if (!dd)
1103 return -ENODEV;
1104
1105 rctx = ablkcipher_request_ctx(req);
1106 rctx->mode = mode;
1107
1108 return atmel_aes_handle_queue(dd, &req->base);
1109 }
1110
1111 static int atmel_aes_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
1112 unsigned int keylen)
1113 {
1114 struct atmel_aes_base_ctx *ctx = crypto_ablkcipher_ctx(tfm);
1115
1116 if (keylen != AES_KEYSIZE_128 &&
1117 keylen != AES_KEYSIZE_192 &&
1118 keylen != AES_KEYSIZE_256) {
1119 crypto_ablkcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
1120 return -EINVAL;
1121 }
1122
1123 memcpy(ctx->key, key, keylen);
1124 ctx->keylen = keylen;
1125
1126 return 0;
1127 }
1128
1129 static int atmel_aes_ecb_encrypt(struct ablkcipher_request *req)
1130 {
1131 return atmel_aes_crypt(req, AES_FLAGS_ECB | AES_FLAGS_ENCRYPT);
1132 }
1133
1134 static int atmel_aes_ecb_decrypt(struct ablkcipher_request *req)
1135 {
1136 return atmel_aes_crypt(req, AES_FLAGS_ECB);
1137 }
1138
1139 static int atmel_aes_cbc_encrypt(struct ablkcipher_request *req)
1140 {
1141 return atmel_aes_crypt(req, AES_FLAGS_CBC | AES_FLAGS_ENCRYPT);
1142 }
1143
1144 static int atmel_aes_cbc_decrypt(struct ablkcipher_request *req)
1145 {
1146 return atmel_aes_crypt(req, AES_FLAGS_CBC);
1147 }
1148
1149 static int atmel_aes_ofb_encrypt(struct ablkcipher_request *req)
1150 {
1151 return atmel_aes_crypt(req, AES_FLAGS_OFB | AES_FLAGS_ENCRYPT);
1152 }
1153
1154 static int atmel_aes_ofb_decrypt(struct ablkcipher_request *req)
1155 {
1156 return atmel_aes_crypt(req, AES_FLAGS_OFB);
1157 }
1158
1159 static int atmel_aes_cfb_encrypt(struct ablkcipher_request *req)
1160 {
1161 return atmel_aes_crypt(req, AES_FLAGS_CFB128 | AES_FLAGS_ENCRYPT);
1162 }
1163
1164 static int atmel_aes_cfb_decrypt(struct ablkcipher_request *req)
1165 {
1166 return atmel_aes_crypt(req, AES_FLAGS_CFB128);
1167 }
1168
1169 static int atmel_aes_cfb64_encrypt(struct ablkcipher_request *req)
1170 {
1171 return atmel_aes_crypt(req, AES_FLAGS_CFB64 | AES_FLAGS_ENCRYPT);
1172 }
1173
1174 static int atmel_aes_cfb64_decrypt(struct ablkcipher_request *req)
1175 {
1176 return atmel_aes_crypt(req, AES_FLAGS_CFB64);
1177 }
1178
1179 static int atmel_aes_cfb32_encrypt(struct ablkcipher_request *req)
1180 {
1181 return atmel_aes_crypt(req, AES_FLAGS_CFB32 | AES_FLAGS_ENCRYPT);
1182 }
1183
1184 static int atmel_aes_cfb32_decrypt(struct ablkcipher_request *req)
1185 {
1186 return atmel_aes_crypt(req, AES_FLAGS_CFB32);
1187 }
1188
1189 static int atmel_aes_cfb16_encrypt(struct ablkcipher_request *req)
1190 {
1191 return atmel_aes_crypt(req, AES_FLAGS_CFB16 | AES_FLAGS_ENCRYPT);
1192 }
1193
1194 static int atmel_aes_cfb16_decrypt(struct ablkcipher_request *req)
1195 {
1196 return atmel_aes_crypt(req, AES_FLAGS_CFB16);
1197 }
1198
1199 static int atmel_aes_cfb8_encrypt(struct ablkcipher_request *req)
1200 {
1201 return atmel_aes_crypt(req, AES_FLAGS_CFB8 | AES_FLAGS_ENCRYPT);
1202 }
1203
1204 static int atmel_aes_cfb8_decrypt(struct ablkcipher_request *req)
1205 {
1206 return atmel_aes_crypt(req, AES_FLAGS_CFB8);
1207 }
1208
1209 static int atmel_aes_ctr_encrypt(struct ablkcipher_request *req)
1210 {
1211 return atmel_aes_crypt(req, AES_FLAGS_CTR | AES_FLAGS_ENCRYPT);
1212 }
1213
1214 static int atmel_aes_ctr_decrypt(struct ablkcipher_request *req)
1215 {
1216 return atmel_aes_crypt(req, AES_FLAGS_CTR);
1217 }
1218
1219 static int atmel_aes_cra_init(struct crypto_tfm *tfm)
1220 {
1221 struct atmel_aes_ctx *ctx = crypto_tfm_ctx(tfm);
1222
1223 tfm->crt_ablkcipher.reqsize = sizeof(struct atmel_aes_reqctx);
1224 ctx->base.start = atmel_aes_start;
1225
1226 return 0;
1227 }
1228
1229 static int atmel_aes_ctr_cra_init(struct crypto_tfm *tfm)
1230 {
1231 struct atmel_aes_ctx *ctx = crypto_tfm_ctx(tfm);
1232
1233 tfm->crt_ablkcipher.reqsize = sizeof(struct atmel_aes_reqctx);
1234 ctx->base.start = atmel_aes_ctr_start;
1235
1236 return 0;
1237 }
1238
1239 static void atmel_aes_cra_exit(struct crypto_tfm *tfm)
1240 {
1241 }
1242
1243 static struct crypto_alg aes_algs[] = {
1244 {
1245 .cra_name = "ecb(aes)",
1246 .cra_driver_name = "atmel-ecb-aes",
1247 .cra_priority = ATMEL_AES_PRIORITY,
1248 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1249 .cra_blocksize = AES_BLOCK_SIZE,
1250 .cra_ctxsize = sizeof(struct atmel_aes_ctx),
1251 .cra_alignmask = 0xf,
1252 .cra_type = &crypto_ablkcipher_type,
1253 .cra_module = THIS_MODULE,
1254 .cra_init = atmel_aes_cra_init,
1255 .cra_exit = atmel_aes_cra_exit,
1256 .cra_u.ablkcipher = {
1257 .min_keysize = AES_MIN_KEY_SIZE,
1258 .max_keysize = AES_MAX_KEY_SIZE,
1259 .setkey = atmel_aes_setkey,
1260 .encrypt = atmel_aes_ecb_encrypt,
1261 .decrypt = atmel_aes_ecb_decrypt,
1262 }
1263 },
1264 {
1265 .cra_name = "cbc(aes)",
1266 .cra_driver_name = "atmel-cbc-aes",
1267 .cra_priority = ATMEL_AES_PRIORITY,
1268 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1269 .cra_blocksize = AES_BLOCK_SIZE,
1270 .cra_ctxsize = sizeof(struct atmel_aes_ctx),
1271 .cra_alignmask = 0xf,
1272 .cra_type = &crypto_ablkcipher_type,
1273 .cra_module = THIS_MODULE,
1274 .cra_init = atmel_aes_cra_init,
1275 .cra_exit = atmel_aes_cra_exit,
1276 .cra_u.ablkcipher = {
1277 .min_keysize = AES_MIN_KEY_SIZE,
1278 .max_keysize = AES_MAX_KEY_SIZE,
1279 .ivsize = AES_BLOCK_SIZE,
1280 .setkey = atmel_aes_setkey,
1281 .encrypt = atmel_aes_cbc_encrypt,
1282 .decrypt = atmel_aes_cbc_decrypt,
1283 }
1284 },
1285 {
1286 .cra_name = "ofb(aes)",
1287 .cra_driver_name = "atmel-ofb-aes",
1288 .cra_priority = ATMEL_AES_PRIORITY,
1289 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1290 .cra_blocksize = AES_BLOCK_SIZE,
1291 .cra_ctxsize = sizeof(struct atmel_aes_ctx),
1292 .cra_alignmask = 0xf,
1293 .cra_type = &crypto_ablkcipher_type,
1294 .cra_module = THIS_MODULE,
1295 .cra_init = atmel_aes_cra_init,
1296 .cra_exit = atmel_aes_cra_exit,
1297 .cra_u.ablkcipher = {
1298 .min_keysize = AES_MIN_KEY_SIZE,
1299 .max_keysize = AES_MAX_KEY_SIZE,
1300 .ivsize = AES_BLOCK_SIZE,
1301 .setkey = atmel_aes_setkey,
1302 .encrypt = atmel_aes_ofb_encrypt,
1303 .decrypt = atmel_aes_ofb_decrypt,
1304 }
1305 },
1306 {
1307 .cra_name = "cfb(aes)",
1308 .cra_driver_name = "atmel-cfb-aes",
1309 .cra_priority = ATMEL_AES_PRIORITY,
1310 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1311 .cra_blocksize = AES_BLOCK_SIZE,
1312 .cra_ctxsize = sizeof(struct atmel_aes_ctx),
1313 .cra_alignmask = 0xf,
1314 .cra_type = &crypto_ablkcipher_type,
1315 .cra_module = THIS_MODULE,
1316 .cra_init = atmel_aes_cra_init,
1317 .cra_exit = atmel_aes_cra_exit,
1318 .cra_u.ablkcipher = {
1319 .min_keysize = AES_MIN_KEY_SIZE,
1320 .max_keysize = AES_MAX_KEY_SIZE,
1321 .ivsize = AES_BLOCK_SIZE,
1322 .setkey = atmel_aes_setkey,
1323 .encrypt = atmel_aes_cfb_encrypt,
1324 .decrypt = atmel_aes_cfb_decrypt,
1325 }
1326 },
1327 {
1328 .cra_name = "cfb32(aes)",
1329 .cra_driver_name = "atmel-cfb32-aes",
1330 .cra_priority = ATMEL_AES_PRIORITY,
1331 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1332 .cra_blocksize = CFB32_BLOCK_SIZE,
1333 .cra_ctxsize = sizeof(struct atmel_aes_ctx),
1334 .cra_alignmask = 0x3,
1335 .cra_type = &crypto_ablkcipher_type,
1336 .cra_module = THIS_MODULE,
1337 .cra_init = atmel_aes_cra_init,
1338 .cra_exit = atmel_aes_cra_exit,
1339 .cra_u.ablkcipher = {
1340 .min_keysize = AES_MIN_KEY_SIZE,
1341 .max_keysize = AES_MAX_KEY_SIZE,
1342 .ivsize = AES_BLOCK_SIZE,
1343 .setkey = atmel_aes_setkey,
1344 .encrypt = atmel_aes_cfb32_encrypt,
1345 .decrypt = atmel_aes_cfb32_decrypt,
1346 }
1347 },
1348 {
1349 .cra_name = "cfb16(aes)",
1350 .cra_driver_name = "atmel-cfb16-aes",
1351 .cra_priority = ATMEL_AES_PRIORITY,
1352 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1353 .cra_blocksize = CFB16_BLOCK_SIZE,
1354 .cra_ctxsize = sizeof(struct atmel_aes_ctx),
1355 .cra_alignmask = 0x1,
1356 .cra_type = &crypto_ablkcipher_type,
1357 .cra_module = THIS_MODULE,
1358 .cra_init = atmel_aes_cra_init,
1359 .cra_exit = atmel_aes_cra_exit,
1360 .cra_u.ablkcipher = {
1361 .min_keysize = AES_MIN_KEY_SIZE,
1362 .max_keysize = AES_MAX_KEY_SIZE,
1363 .ivsize = AES_BLOCK_SIZE,
1364 .setkey = atmel_aes_setkey,
1365 .encrypt = atmel_aes_cfb16_encrypt,
1366 .decrypt = atmel_aes_cfb16_decrypt,
1367 }
1368 },
1369 {
1370 .cra_name = "cfb8(aes)",
1371 .cra_driver_name = "atmel-cfb8-aes",
1372 .cra_priority = ATMEL_AES_PRIORITY,
1373 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1374 .cra_blocksize = CFB8_BLOCK_SIZE,
1375 .cra_ctxsize = sizeof(struct atmel_aes_ctx),
1376 .cra_alignmask = 0x0,
1377 .cra_type = &crypto_ablkcipher_type,
1378 .cra_module = THIS_MODULE,
1379 .cra_init = atmel_aes_cra_init,
1380 .cra_exit = atmel_aes_cra_exit,
1381 .cra_u.ablkcipher = {
1382 .min_keysize = AES_MIN_KEY_SIZE,
1383 .max_keysize = AES_MAX_KEY_SIZE,
1384 .ivsize = AES_BLOCK_SIZE,
1385 .setkey = atmel_aes_setkey,
1386 .encrypt = atmel_aes_cfb8_encrypt,
1387 .decrypt = atmel_aes_cfb8_decrypt,
1388 }
1389 },
1390 {
1391 .cra_name = "ctr(aes)",
1392 .cra_driver_name = "atmel-ctr-aes",
1393 .cra_priority = ATMEL_AES_PRIORITY,
1394 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1395 .cra_blocksize = 1,
1396 .cra_ctxsize = sizeof(struct atmel_aes_ctr_ctx),
1397 .cra_alignmask = 0xf,
1398 .cra_type = &crypto_ablkcipher_type,
1399 .cra_module = THIS_MODULE,
1400 .cra_init = atmel_aes_ctr_cra_init,
1401 .cra_exit = atmel_aes_cra_exit,
1402 .cra_u.ablkcipher = {
1403 .min_keysize = AES_MIN_KEY_SIZE,
1404 .max_keysize = AES_MAX_KEY_SIZE,
1405 .ivsize = AES_BLOCK_SIZE,
1406 .setkey = atmel_aes_setkey,
1407 .encrypt = atmel_aes_ctr_encrypt,
1408 .decrypt = atmel_aes_ctr_decrypt,
1409 }
1410 },
1411 };
1412
1413 static struct crypto_alg aes_cfb64_alg = {
1414 .cra_name = "cfb64(aes)",
1415 .cra_driver_name = "atmel-cfb64-aes",
1416 .cra_priority = ATMEL_AES_PRIORITY,
1417 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1418 .cra_blocksize = CFB64_BLOCK_SIZE,
1419 .cra_ctxsize = sizeof(struct atmel_aes_ctx),
1420 .cra_alignmask = 0x7,
1421 .cra_type = &crypto_ablkcipher_type,
1422 .cra_module = THIS_MODULE,
1423 .cra_init = atmel_aes_cra_init,
1424 .cra_exit = atmel_aes_cra_exit,
1425 .cra_u.ablkcipher = {
1426 .min_keysize = AES_MIN_KEY_SIZE,
1427 .max_keysize = AES_MAX_KEY_SIZE,
1428 .ivsize = AES_BLOCK_SIZE,
1429 .setkey = atmel_aes_setkey,
1430 .encrypt = atmel_aes_cfb64_encrypt,
1431 .decrypt = atmel_aes_cfb64_decrypt,
1432 }
1433 };
1434
1435
1436 /* gcm aead functions */
1437
1438 static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd,
1439 const u32 *data, size_t datalen,
1440 const u32 *ghash_in, u32 *ghash_out,
1441 atmel_aes_fn_t resume);
1442 static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd);
1443 static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd);
1444
1445 static int atmel_aes_gcm_start(struct atmel_aes_dev *dd);
1446 static int atmel_aes_gcm_process(struct atmel_aes_dev *dd);
1447 static int atmel_aes_gcm_length(struct atmel_aes_dev *dd);
1448 static int atmel_aes_gcm_data(struct atmel_aes_dev *dd);
1449 static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd);
1450 static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd);
1451 static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd);
1452
1453 static inline struct atmel_aes_gcm_ctx *
1454 atmel_aes_gcm_ctx_cast(struct atmel_aes_base_ctx *ctx)
1455 {
1456 return container_of(ctx, struct atmel_aes_gcm_ctx, base);
1457 }
1458
1459 static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd,
1460 const u32 *data, size_t datalen,
1461 const u32 *ghash_in, u32 *ghash_out,
1462 atmel_aes_fn_t resume)
1463 {
1464 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1465
1466 dd->data = (u32 *)data;
1467 dd->datalen = datalen;
1468 ctx->ghash_in = ghash_in;
1469 ctx->ghash_out = ghash_out;
1470 ctx->ghash_resume = resume;
1471
1472 atmel_aes_write_ctrl(dd, false, NULL);
1473 return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_ghash_init);
1474 }
1475
1476 static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd)
1477 {
1478 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1479
1480 /* Set the data length. */
1481 atmel_aes_write(dd, AES_AADLENR, dd->total);
1482 atmel_aes_write(dd, AES_CLENR, 0);
1483
1484 /* If needed, overwrite the GCM Intermediate Hash Word Registers */
1485 if (ctx->ghash_in)
1486 atmel_aes_write_block(dd, AES_GHASHR(0), ctx->ghash_in);
1487
1488 return atmel_aes_gcm_ghash_finalize(dd);
1489 }
1490
1491 static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd)
1492 {
1493 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1494 u32 isr;
1495
1496 /* Write data into the Input Data Registers. */
1497 while (dd->datalen > 0) {
1498 atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
1499 dd->data += 4;
1500 dd->datalen -= AES_BLOCK_SIZE;
1501
1502 isr = atmel_aes_read(dd, AES_ISR);
1503 if (!(isr & AES_INT_DATARDY)) {
1504 dd->resume = atmel_aes_gcm_ghash_finalize;
1505 atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
1506 return -EINPROGRESS;
1507 }
1508 }
1509
1510 /* Read the computed hash from GHASHRx. */
1511 atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash_out);
1512
1513 return ctx->ghash_resume(dd);
1514 }
1515
1516
1517 static int atmel_aes_gcm_start(struct atmel_aes_dev *dd)
1518 {
1519 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1520 struct aead_request *req = aead_request_cast(dd->areq);
1521 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1522 struct atmel_aes_reqctx *rctx = aead_request_ctx(req);
1523 size_t ivsize = crypto_aead_ivsize(tfm);
1524 size_t datalen, padlen;
1525 const void *iv = req->iv;
1526 u8 *data = dd->buf;
1527 int err;
1528
1529 atmel_aes_set_mode(dd, rctx);
1530
1531 err = atmel_aes_hw_init(dd);
1532 if (err)
1533 return atmel_aes_complete(dd, err);
1534
1535 if (likely(ivsize == 12)) {
1536 memcpy(ctx->j0, iv, ivsize);
1537 ctx->j0[3] = cpu_to_be32(1);
1538 return atmel_aes_gcm_process(dd);
1539 }
1540
1541 padlen = atmel_aes_padlen(ivsize, AES_BLOCK_SIZE);
1542 datalen = ivsize + padlen + AES_BLOCK_SIZE;
1543 if (datalen > dd->buflen)
1544 return atmel_aes_complete(dd, -EINVAL);
1545
1546 memcpy(data, iv, ivsize);
1547 memset(data + ivsize, 0, padlen + sizeof(u64));
1548 ((u64 *)(data + datalen))[-1] = cpu_to_be64(ivsize * 8);
1549
1550 return atmel_aes_gcm_ghash(dd, (const u32 *)data, datalen,
1551 NULL, ctx->j0, atmel_aes_gcm_process);
1552 }
1553
1554 static int atmel_aes_gcm_process(struct atmel_aes_dev *dd)
1555 {
1556 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1557 struct aead_request *req = aead_request_cast(dd->areq);
1558 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1559 bool enc = atmel_aes_is_encrypt(dd);
1560 u32 authsize;
1561
1562 /* Compute text length. */
1563 authsize = crypto_aead_authsize(tfm);
1564 ctx->textlen = req->cryptlen - (enc ? 0 : authsize);
1565
1566 /*
1567 * According to tcrypt test suite, the GCM Automatic Tag Generation
1568 * fails when both the message and its associated data are empty.
1569 */
1570 if (likely(req->assoclen != 0 || ctx->textlen != 0))
1571 dd->flags |= AES_FLAGS_GTAGEN;
1572
1573 atmel_aes_write_ctrl(dd, false, NULL);
1574 return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_length);
1575 }
1576
1577 static int atmel_aes_gcm_length(struct atmel_aes_dev *dd)
1578 {
1579 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1580 struct aead_request *req = aead_request_cast(dd->areq);
1581 u32 j0_lsw, *j0 = ctx->j0;
1582 size_t padlen;
1583
1584 /* Write incr32(J0) into IV. */
1585 j0_lsw = j0[3];
1586 j0[3] = cpu_to_be32(be32_to_cpu(j0[3]) + 1);
1587 atmel_aes_write_block(dd, AES_IVR(0), j0);
1588 j0[3] = j0_lsw;
1589
1590 /* Set aad and text lengths. */
1591 atmel_aes_write(dd, AES_AADLENR, req->assoclen);
1592 atmel_aes_write(dd, AES_CLENR, ctx->textlen);
1593
1594 /* Check whether AAD are present. */
1595 if (unlikely(req->assoclen == 0)) {
1596 dd->datalen = 0;
1597 return atmel_aes_gcm_data(dd);
1598 }
1599
1600 /* Copy assoc data and add padding. */
1601 padlen = atmel_aes_padlen(req->assoclen, AES_BLOCK_SIZE);
1602 if (unlikely(req->assoclen + padlen > dd->buflen))
1603 return atmel_aes_complete(dd, -EINVAL);
1604 sg_copy_to_buffer(req->src, sg_nents(req->src), dd->buf, req->assoclen);
1605
1606 /* Write assoc data into the Input Data register. */
1607 dd->data = (u32 *)dd->buf;
1608 dd->datalen = req->assoclen + padlen;
1609 return atmel_aes_gcm_data(dd);
1610 }
1611
1612 static int atmel_aes_gcm_data(struct atmel_aes_dev *dd)
1613 {
1614 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1615 struct aead_request *req = aead_request_cast(dd->areq);
1616 bool use_dma = (ctx->textlen >= ATMEL_AES_DMA_THRESHOLD);
1617 struct scatterlist *src, *dst;
1618 u32 isr, mr;
1619
1620 /* Write AAD first. */
1621 while (dd->datalen > 0) {
1622 atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
1623 dd->data += 4;
1624 dd->datalen -= AES_BLOCK_SIZE;
1625
1626 isr = atmel_aes_read(dd, AES_ISR);
1627 if (!(isr & AES_INT_DATARDY)) {
1628 dd->resume = atmel_aes_gcm_data;
1629 atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
1630 return -EINPROGRESS;
1631 }
1632 }
1633
1634 /* GMAC only. */
1635 if (unlikely(ctx->textlen == 0))
1636 return atmel_aes_gcm_tag_init(dd);
1637
1638 /* Prepare src and dst scatter lists to transfer cipher/plain texts */
1639 src = scatterwalk_ffwd(ctx->src, req->src, req->assoclen);
1640 dst = ((req->src == req->dst) ? src :
1641 scatterwalk_ffwd(ctx->dst, req->dst, req->assoclen));
1642
1643 if (use_dma) {
1644 /* Update the Mode Register for DMA transfers. */
1645 mr = atmel_aes_read(dd, AES_MR);
1646 mr &= ~(AES_MR_SMOD_MASK | AES_MR_DUALBUFF);
1647 mr |= AES_MR_SMOD_IDATAR0;
1648 if (dd->caps.has_dualbuff)
1649 mr |= AES_MR_DUALBUFF;
1650 atmel_aes_write(dd, AES_MR, mr);
1651
1652 return atmel_aes_dma_start(dd, src, dst, ctx->textlen,
1653 atmel_aes_gcm_tag_init);
1654 }
1655
1656 return atmel_aes_cpu_start(dd, src, dst, ctx->textlen,
1657 atmel_aes_gcm_tag_init);
1658 }
1659
1660 static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd)
1661 {
1662 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1663 struct aead_request *req = aead_request_cast(dd->areq);
1664 u64 *data = dd->buf;
1665
1666 if (likely(dd->flags & AES_FLAGS_GTAGEN)) {
1667 if (!(atmel_aes_read(dd, AES_ISR) & AES_INT_TAGRDY)) {
1668 dd->resume = atmel_aes_gcm_tag_init;
1669 atmel_aes_write(dd, AES_IER, AES_INT_TAGRDY);
1670 return -EINPROGRESS;
1671 }
1672
1673 return atmel_aes_gcm_finalize(dd);
1674 }
1675
1676 /* Read the GCM Intermediate Hash Word Registers. */
1677 atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash);
1678
1679 data[0] = cpu_to_be64(req->assoclen * 8);
1680 data[1] = cpu_to_be64(ctx->textlen * 8);
1681
1682 return atmel_aes_gcm_ghash(dd, (const u32 *)data, AES_BLOCK_SIZE,
1683 ctx->ghash, ctx->ghash, atmel_aes_gcm_tag);
1684 }
1685
1686 static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd)
1687 {
1688 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1689 unsigned long flags;
1690
1691 /*
1692 * Change mode to CTR to complete the tag generation.
1693 * Use J0 as Initialization Vector.
1694 */
1695 flags = dd->flags;
1696 dd->flags &= ~(AES_FLAGS_OPMODE_MASK | AES_FLAGS_GTAGEN);
1697 dd->flags |= AES_FLAGS_CTR;
1698 atmel_aes_write_ctrl(dd, false, ctx->j0);
1699 dd->flags = flags;
1700
1701 atmel_aes_write_block(dd, AES_IDATAR(0), ctx->ghash);
1702 return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_finalize);
1703 }
1704
1705 static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd)
1706 {
1707 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1708 struct aead_request *req = aead_request_cast(dd->areq);
1709 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1710 bool enc = atmel_aes_is_encrypt(dd);
1711 u32 offset, authsize, itag[4], *otag = ctx->tag;
1712 int err;
1713
1714 /* Read the computed tag. */
1715 if (likely(dd->flags & AES_FLAGS_GTAGEN))
1716 atmel_aes_read_block(dd, AES_TAGR(0), ctx->tag);
1717 else
1718 atmel_aes_read_block(dd, AES_ODATAR(0), ctx->tag);
1719
1720 offset = req->assoclen + ctx->textlen;
1721 authsize = crypto_aead_authsize(tfm);
1722 if (enc) {
1723 scatterwalk_map_and_copy(otag, req->dst, offset, authsize, 1);
1724 err = 0;
1725 } else {
1726 scatterwalk_map_and_copy(itag, req->src, offset, authsize, 0);
1727 err = crypto_memneq(itag, otag, authsize) ? -EBADMSG : 0;
1728 }
1729
1730 return atmel_aes_complete(dd, err);
1731 }
1732
1733 static int atmel_aes_gcm_crypt(struct aead_request *req,
1734 unsigned long mode)
1735 {
1736 struct atmel_aes_base_ctx *ctx;
1737 struct atmel_aes_reqctx *rctx;
1738 struct atmel_aes_dev *dd;
1739
1740 ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
1741 ctx->block_size = AES_BLOCK_SIZE;
1742
1743 dd = atmel_aes_find_dev(ctx);
1744 if (!dd)
1745 return -ENODEV;
1746
1747 rctx = aead_request_ctx(req);
1748 rctx->mode = AES_FLAGS_GCM | mode;
1749
1750 return atmel_aes_handle_queue(dd, &req->base);
1751 }
1752
1753 static int atmel_aes_gcm_setkey(struct crypto_aead *tfm, const u8 *key,
1754 unsigned int keylen)
1755 {
1756 struct atmel_aes_base_ctx *ctx = crypto_aead_ctx(tfm);
1757
1758 if (keylen != AES_KEYSIZE_256 &&
1759 keylen != AES_KEYSIZE_192 &&
1760 keylen != AES_KEYSIZE_128) {
1761 crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
1762 return -EINVAL;
1763 }
1764
1765 memcpy(ctx->key, key, keylen);
1766 ctx->keylen = keylen;
1767
1768 return 0;
1769 }
1770
1771 static int atmel_aes_gcm_setauthsize(struct crypto_aead *tfm,
1772 unsigned int authsize)
1773 {
1774 /* Same as crypto_gcm_authsize() from crypto/gcm.c */
1775 switch (authsize) {
1776 case 4:
1777 case 8:
1778 case 12:
1779 case 13:
1780 case 14:
1781 case 15:
1782 case 16:
1783 break;
1784 default:
1785 return -EINVAL;
1786 }
1787
1788 return 0;
1789 }
1790
1791 static int atmel_aes_gcm_encrypt(struct aead_request *req)
1792 {
1793 return atmel_aes_gcm_crypt(req, AES_FLAGS_ENCRYPT);
1794 }
1795
1796 static int atmel_aes_gcm_decrypt(struct aead_request *req)
1797 {
1798 return atmel_aes_gcm_crypt(req, 0);
1799 }
1800
1801 static int atmel_aes_gcm_init(struct crypto_aead *tfm)
1802 {
1803 struct atmel_aes_gcm_ctx *ctx = crypto_aead_ctx(tfm);
1804
1805 crypto_aead_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1806 ctx->base.start = atmel_aes_gcm_start;
1807
1808 return 0;
1809 }
1810
1811 static void atmel_aes_gcm_exit(struct crypto_aead *tfm)
1812 {
1813
1814 }
1815
1816 static struct aead_alg aes_gcm_alg = {
1817 .setkey = atmel_aes_gcm_setkey,
1818 .setauthsize = atmel_aes_gcm_setauthsize,
1819 .encrypt = atmel_aes_gcm_encrypt,
1820 .decrypt = atmel_aes_gcm_decrypt,
1821 .init = atmel_aes_gcm_init,
1822 .exit = atmel_aes_gcm_exit,
1823 .ivsize = 12,
1824 .maxauthsize = AES_BLOCK_SIZE,
1825
1826 .base = {
1827 .cra_name = "gcm(aes)",
1828 .cra_driver_name = "atmel-gcm-aes",
1829 .cra_priority = ATMEL_AES_PRIORITY,
1830 .cra_flags = CRYPTO_ALG_ASYNC,
1831 .cra_blocksize = 1,
1832 .cra_ctxsize = sizeof(struct atmel_aes_gcm_ctx),
1833 .cra_alignmask = 0xf,
1834 .cra_module = THIS_MODULE,
1835 },
1836 };
1837
1838
1839 /* xts functions */
1840
1841 static inline struct atmel_aes_xts_ctx *
1842 atmel_aes_xts_ctx_cast(struct atmel_aes_base_ctx *ctx)
1843 {
1844 return container_of(ctx, struct atmel_aes_xts_ctx, base);
1845 }
1846
1847 static int atmel_aes_xts_process_data(struct atmel_aes_dev *dd);
1848
1849 static int atmel_aes_xts_start(struct atmel_aes_dev *dd)
1850 {
1851 struct atmel_aes_xts_ctx *ctx = atmel_aes_xts_ctx_cast(dd->ctx);
1852 struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
1853 struct atmel_aes_reqctx *rctx = ablkcipher_request_ctx(req);
1854 unsigned long flags;
1855 int err;
1856
1857 atmel_aes_set_mode(dd, rctx);
1858
1859 err = atmel_aes_hw_init(dd);
1860 if (err)
1861 return atmel_aes_complete(dd, err);
1862
1863 /* Compute the tweak value from req->info with ecb(aes). */
1864 flags = dd->flags;
1865 dd->flags &= ~AES_FLAGS_MODE_MASK;
1866 dd->flags |= (AES_FLAGS_ECB | AES_FLAGS_ENCRYPT);
1867 atmel_aes_write_ctrl_key(dd, false, NULL,
1868 ctx->key2, ctx->base.keylen);
1869 dd->flags = flags;
1870
1871 atmel_aes_write_block(dd, AES_IDATAR(0), req->info);
1872 return atmel_aes_wait_for_data_ready(dd, atmel_aes_xts_process_data);
1873 }
1874
1875 static int atmel_aes_xts_process_data(struct atmel_aes_dev *dd)
1876 {
1877 struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
1878 bool use_dma = (req->nbytes >= ATMEL_AES_DMA_THRESHOLD);
1879 u32 tweak[AES_BLOCK_SIZE / sizeof(u32)];
1880 static const u32 one[AES_BLOCK_SIZE / sizeof(u32)] = {cpu_to_le32(1), };
1881 u8 *tweak_bytes = (u8 *)tweak;
1882 int i;
1883
1884 /* Read the computed ciphered tweak value. */
1885 atmel_aes_read_block(dd, AES_ODATAR(0), tweak);
1886 /*
1887 * Hardware quirk:
1888 * the order of the ciphered tweak bytes need to be reversed before
1889 * writing them into the ODATARx registers.
1890 */
1891 for (i = 0; i < AES_BLOCK_SIZE/2; ++i) {
1892 u8 tmp = tweak_bytes[AES_BLOCK_SIZE - 1 - i];
1893
1894 tweak_bytes[AES_BLOCK_SIZE - 1 - i] = tweak_bytes[i];
1895 tweak_bytes[i] = tmp;
1896 }
1897
1898 /* Process the data. */
1899 atmel_aes_write_ctrl(dd, use_dma, NULL);
1900 atmel_aes_write_block(dd, AES_TWR(0), tweak);
1901 atmel_aes_write_block(dd, AES_ALPHAR(0), one);
1902 if (use_dma)
1903 return atmel_aes_dma_start(dd, req->src, req->dst, req->nbytes,
1904 atmel_aes_transfer_complete);
1905
1906 return atmel_aes_cpu_start(dd, req->src, req->dst, req->nbytes,
1907 atmel_aes_transfer_complete);
1908 }
1909
1910 static int atmel_aes_xts_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
1911 unsigned int keylen)
1912 {
1913 struct atmel_aes_xts_ctx *ctx = crypto_ablkcipher_ctx(tfm);
1914 int err;
1915
1916 err = xts_check_key(crypto_ablkcipher_tfm(tfm), key, keylen);
1917 if (err)
1918 return err;
1919
1920 memcpy(ctx->base.key, key, keylen/2);
1921 memcpy(ctx->key2, key + keylen/2, keylen/2);
1922 ctx->base.keylen = keylen/2;
1923
1924 return 0;
1925 }
1926
1927 static int atmel_aes_xts_encrypt(struct ablkcipher_request *req)
1928 {
1929 return atmel_aes_crypt(req, AES_FLAGS_XTS | AES_FLAGS_ENCRYPT);
1930 }
1931
1932 static int atmel_aes_xts_decrypt(struct ablkcipher_request *req)
1933 {
1934 return atmel_aes_crypt(req, AES_FLAGS_XTS);
1935 }
1936
1937 static int atmel_aes_xts_cra_init(struct crypto_tfm *tfm)
1938 {
1939 struct atmel_aes_xts_ctx *ctx = crypto_tfm_ctx(tfm);
1940
1941 tfm->crt_ablkcipher.reqsize = sizeof(struct atmel_aes_reqctx);
1942 ctx->base.start = atmel_aes_xts_start;
1943
1944 return 0;
1945 }
1946
1947 static struct crypto_alg aes_xts_alg = {
1948 .cra_name = "xts(aes)",
1949 .cra_driver_name = "atmel-xts-aes",
1950 .cra_priority = ATMEL_AES_PRIORITY,
1951 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1952 .cra_blocksize = AES_BLOCK_SIZE,
1953 .cra_ctxsize = sizeof(struct atmel_aes_xts_ctx),
1954 .cra_alignmask = 0xf,
1955 .cra_type = &crypto_ablkcipher_type,
1956 .cra_module = THIS_MODULE,
1957 .cra_init = atmel_aes_xts_cra_init,
1958 .cra_exit = atmel_aes_cra_exit,
1959 .cra_u.ablkcipher = {
1960 .min_keysize = 2 * AES_MIN_KEY_SIZE,
1961 .max_keysize = 2 * AES_MAX_KEY_SIZE,
1962 .ivsize = AES_BLOCK_SIZE,
1963 .setkey = atmel_aes_xts_setkey,
1964 .encrypt = atmel_aes_xts_encrypt,
1965 .decrypt = atmel_aes_xts_decrypt,
1966 }
1967 };
1968
1969 #ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
1970 /* authenc aead functions */
1971
1972 static int atmel_aes_authenc_start(struct atmel_aes_dev *dd);
1973 static int atmel_aes_authenc_init(struct atmel_aes_dev *dd, int err,
1974 bool is_async);
1975 static int atmel_aes_authenc_transfer(struct atmel_aes_dev *dd, int err,
1976 bool is_async);
1977 static int atmel_aes_authenc_digest(struct atmel_aes_dev *dd);
1978 static int atmel_aes_authenc_final(struct atmel_aes_dev *dd, int err,
1979 bool is_async);
1980
1981 static void atmel_aes_authenc_complete(struct atmel_aes_dev *dd, int err)
1982 {
1983 struct aead_request *req = aead_request_cast(dd->areq);
1984 struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1985
1986 if (err && (dd->flags & AES_FLAGS_OWN_SHA))
1987 atmel_sha_authenc_abort(&rctx->auth_req);
1988 dd->flags &= ~AES_FLAGS_OWN_SHA;
1989 }
1990
1991 static int atmel_aes_authenc_start(struct atmel_aes_dev *dd)
1992 {
1993 struct aead_request *req = aead_request_cast(dd->areq);
1994 struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1995 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1996 struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
1997 int err;
1998
1999 atmel_aes_set_mode(dd, &rctx->base);
2000
2001 err = atmel_aes_hw_init(dd);
2002 if (err)
2003 return atmel_aes_complete(dd, err);
2004
2005 return atmel_sha_authenc_schedule(&rctx->auth_req, ctx->auth,
2006 atmel_aes_authenc_init, dd);
2007 }
2008
2009 static int atmel_aes_authenc_init(struct atmel_aes_dev *dd, int err,
2010 bool is_async)
2011 {
2012 struct aead_request *req = aead_request_cast(dd->areq);
2013 struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2014
2015 if (is_async)
2016 dd->is_async = true;
2017 if (err)
2018 return atmel_aes_complete(dd, err);
2019
2020 /* If here, we've got the ownership of the SHA device. */
2021 dd->flags |= AES_FLAGS_OWN_SHA;
2022
2023 /* Configure the SHA device. */
2024 return atmel_sha_authenc_init(&rctx->auth_req,
2025 req->src, req->assoclen,
2026 rctx->textlen,
2027 atmel_aes_authenc_transfer, dd);
2028 }
2029
2030 static int atmel_aes_authenc_transfer(struct atmel_aes_dev *dd, int err,
2031 bool is_async)
2032 {
2033 struct aead_request *req = aead_request_cast(dd->areq);
2034 struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2035 bool enc = atmel_aes_is_encrypt(dd);
2036 struct scatterlist *src, *dst;
2037 u32 iv[AES_BLOCK_SIZE / sizeof(u32)];
2038 u32 emr;
2039
2040 if (is_async)
2041 dd->is_async = true;
2042 if (err)
2043 return atmel_aes_complete(dd, err);
2044
2045 /* Prepare src and dst scatter-lists to transfer cipher/plain texts. */
2046 src = scatterwalk_ffwd(rctx->src, req->src, req->assoclen);
2047 dst = src;
2048
2049 if (req->src != req->dst)
2050 dst = scatterwalk_ffwd(rctx->dst, req->dst, req->assoclen);
2051
2052 /* Configure the AES device. */
2053 memcpy(iv, req->iv, sizeof(iv));
2054
2055 /*
2056 * Here we always set the 2nd parameter of atmel_aes_write_ctrl() to
2057 * 'true' even if the data transfer is actually performed by the CPU (so
2058 * not by the DMA) because we must force the AES_MR_SMOD bitfield to the
2059 * value AES_MR_SMOD_IDATAR0. Indeed, both AES_MR_SMOD and SHA_MR_SMOD
2060 * must be set to *_MR_SMOD_IDATAR0.
2061 */
2062 atmel_aes_write_ctrl(dd, true, iv);
2063 emr = AES_EMR_PLIPEN;
2064 if (!enc)
2065 emr |= AES_EMR_PLIPD;
2066 atmel_aes_write(dd, AES_EMR, emr);
2067
2068 /* Transfer data. */
2069 return atmel_aes_dma_start(dd, src, dst, rctx->textlen,
2070 atmel_aes_authenc_digest);
2071 }
2072
2073 static int atmel_aes_authenc_digest(struct atmel_aes_dev *dd)
2074 {
2075 struct aead_request *req = aead_request_cast(dd->areq);
2076 struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2077
2078 /* atmel_sha_authenc_final() releases the SHA device. */
2079 dd->flags &= ~AES_FLAGS_OWN_SHA;
2080 return atmel_sha_authenc_final(&rctx->auth_req,
2081 rctx->digest, sizeof(rctx->digest),
2082 atmel_aes_authenc_final, dd);
2083 }
2084
2085 static int atmel_aes_authenc_final(struct atmel_aes_dev *dd, int err,
2086 bool is_async)
2087 {
2088 struct aead_request *req = aead_request_cast(dd->areq);
2089 struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2090 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2091 bool enc = atmel_aes_is_encrypt(dd);
2092 u32 idigest[SHA512_DIGEST_SIZE / sizeof(u32)], *odigest = rctx->digest;
2093 u32 offs, authsize;
2094
2095 if (is_async)
2096 dd->is_async = true;
2097 if (err)
2098 goto complete;
2099
2100 offs = req->assoclen + rctx->textlen;
2101 authsize = crypto_aead_authsize(tfm);
2102 if (enc) {
2103 scatterwalk_map_and_copy(odigest, req->dst, offs, authsize, 1);
2104 } else {
2105 scatterwalk_map_and_copy(idigest, req->src, offs, authsize, 0);
2106 if (crypto_memneq(idigest, odigest, authsize))
2107 err = -EBADMSG;
2108 }
2109
2110 complete:
2111 return atmel_aes_complete(dd, err);
2112 }
2113
2114 static int atmel_aes_authenc_setkey(struct crypto_aead *tfm, const u8 *key,
2115 unsigned int keylen)
2116 {
2117 struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
2118 struct crypto_authenc_keys keys;
2119 u32 flags;
2120 int err;
2121
2122 if (crypto_authenc_extractkeys(&keys, key, keylen) != 0)
2123 goto badkey;
2124
2125 if (keys.enckeylen > sizeof(ctx->base.key))
2126 goto badkey;
2127
2128 /* Save auth key. */
2129 flags = crypto_aead_get_flags(tfm);
2130 err = atmel_sha_authenc_setkey(ctx->auth,
2131 keys.authkey, keys.authkeylen,
2132 &flags);
2133 crypto_aead_set_flags(tfm, flags & CRYPTO_TFM_RES_MASK);
2134 if (err) {
2135 memzero_explicit(&keys, sizeof(keys));
2136 return err;
2137 }
2138
2139 /* Save enc key. */
2140 ctx->base.keylen = keys.enckeylen;
2141 memcpy(ctx->base.key, keys.enckey, keys.enckeylen);
2142
2143 memzero_explicit(&keys, sizeof(keys));
2144 return 0;
2145
2146 badkey:
2147 crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
2148 memzero_explicit(&key, sizeof(keys));
2149 return -EINVAL;
2150 }
2151
2152 static int atmel_aes_authenc_init_tfm(struct crypto_aead *tfm,
2153 unsigned long auth_mode)
2154 {
2155 struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
2156 unsigned int auth_reqsize = atmel_sha_authenc_get_reqsize();
2157
2158 ctx->auth = atmel_sha_authenc_spawn(auth_mode);
2159 if (IS_ERR(ctx->auth))
2160 return PTR_ERR(ctx->auth);
2161
2162 crypto_aead_set_reqsize(tfm, (sizeof(struct atmel_aes_authenc_reqctx) +
2163 auth_reqsize));
2164 ctx->base.start = atmel_aes_authenc_start;
2165
2166 return 0;
2167 }
2168
2169 static int atmel_aes_authenc_hmac_sha1_init_tfm(struct crypto_aead *tfm)
2170 {
2171 return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA1);
2172 }
2173
2174 static int atmel_aes_authenc_hmac_sha224_init_tfm(struct crypto_aead *tfm)
2175 {
2176 return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA224);
2177 }
2178
2179 static int atmel_aes_authenc_hmac_sha256_init_tfm(struct crypto_aead *tfm)
2180 {
2181 return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA256);
2182 }
2183
2184 static int atmel_aes_authenc_hmac_sha384_init_tfm(struct crypto_aead *tfm)
2185 {
2186 return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA384);
2187 }
2188
2189 static int atmel_aes_authenc_hmac_sha512_init_tfm(struct crypto_aead *tfm)
2190 {
2191 return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA512);
2192 }
2193
2194 static void atmel_aes_authenc_exit_tfm(struct crypto_aead *tfm)
2195 {
2196 struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
2197
2198 atmel_sha_authenc_free(ctx->auth);
2199 }
2200
2201 static int atmel_aes_authenc_crypt(struct aead_request *req,
2202 unsigned long mode)
2203 {
2204 struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2205 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2206 struct atmel_aes_base_ctx *ctx = crypto_aead_ctx(tfm);
2207 u32 authsize = crypto_aead_authsize(tfm);
2208 bool enc = (mode & AES_FLAGS_ENCRYPT);
2209 struct atmel_aes_dev *dd;
2210
2211 /* Compute text length. */
2212 if (!enc && req->cryptlen < authsize)
2213 return -EINVAL;
2214 rctx->textlen = req->cryptlen - (enc ? 0 : authsize);
2215
2216 /*
2217 * Currently, empty messages are not supported yet:
2218 * the SHA auto-padding can be used only on non-empty messages.
2219 * Hence a special case needs to be implemented for empty message.
2220 */
2221 if (!rctx->textlen && !req->assoclen)
2222 return -EINVAL;
2223
2224 rctx->base.mode = mode;
2225 ctx->block_size = AES_BLOCK_SIZE;
2226
2227 dd = atmel_aes_find_dev(ctx);
2228 if (!dd)
2229 return -ENODEV;
2230
2231 return atmel_aes_handle_queue(dd, &req->base);
2232 }
2233
2234 static int atmel_aes_authenc_cbc_aes_encrypt(struct aead_request *req)
2235 {
2236 return atmel_aes_authenc_crypt(req, AES_FLAGS_CBC | AES_FLAGS_ENCRYPT);
2237 }
2238
2239 static int atmel_aes_authenc_cbc_aes_decrypt(struct aead_request *req)
2240 {
2241 return atmel_aes_authenc_crypt(req, AES_FLAGS_CBC);
2242 }
2243
2244 static struct aead_alg aes_authenc_algs[] = {
2245 {
2246 .setkey = atmel_aes_authenc_setkey,
2247 .encrypt = atmel_aes_authenc_cbc_aes_encrypt,
2248 .decrypt = atmel_aes_authenc_cbc_aes_decrypt,
2249 .init = atmel_aes_authenc_hmac_sha1_init_tfm,
2250 .exit = atmel_aes_authenc_exit_tfm,
2251 .ivsize = AES_BLOCK_SIZE,
2252 .maxauthsize = SHA1_DIGEST_SIZE,
2253
2254 .base = {
2255 .cra_name = "authenc(hmac(sha1),cbc(aes))",
2256 .cra_driver_name = "atmel-authenc-hmac-sha1-cbc-aes",
2257 .cra_priority = ATMEL_AES_PRIORITY,
2258 .cra_flags = CRYPTO_ALG_ASYNC,
2259 .cra_blocksize = AES_BLOCK_SIZE,
2260 .cra_ctxsize = sizeof(struct atmel_aes_authenc_ctx),
2261 .cra_alignmask = 0xf,
2262 .cra_module = THIS_MODULE,
2263 },
2264 },
2265 {
2266 .setkey = atmel_aes_authenc_setkey,
2267 .encrypt = atmel_aes_authenc_cbc_aes_encrypt,
2268 .decrypt = atmel_aes_authenc_cbc_aes_decrypt,
2269 .init = atmel_aes_authenc_hmac_sha224_init_tfm,
2270 .exit = atmel_aes_authenc_exit_tfm,
2271 .ivsize = AES_BLOCK_SIZE,
2272 .maxauthsize = SHA224_DIGEST_SIZE,
2273
2274 .base = {
2275 .cra_name = "authenc(hmac(sha224),cbc(aes))",
2276 .cra_driver_name = "atmel-authenc-hmac-sha224-cbc-aes",
2277 .cra_priority = ATMEL_AES_PRIORITY,
2278 .cra_flags = CRYPTO_ALG_ASYNC,
2279 .cra_blocksize = AES_BLOCK_SIZE,
2280 .cra_ctxsize = sizeof(struct atmel_aes_authenc_ctx),
2281 .cra_alignmask = 0xf,
2282 .cra_module = THIS_MODULE,
2283 },
2284 },
2285 {
2286 .setkey = atmel_aes_authenc_setkey,
2287 .encrypt = atmel_aes_authenc_cbc_aes_encrypt,
2288 .decrypt = atmel_aes_authenc_cbc_aes_decrypt,
2289 .init = atmel_aes_authenc_hmac_sha256_init_tfm,
2290 .exit = atmel_aes_authenc_exit_tfm,
2291 .ivsize = AES_BLOCK_SIZE,
2292 .maxauthsize = SHA256_DIGEST_SIZE,
2293
2294 .base = {
2295 .cra_name = "authenc(hmac(sha256),cbc(aes))",
2296 .cra_driver_name = "atmel-authenc-hmac-sha256-cbc-aes",
2297 .cra_priority = ATMEL_AES_PRIORITY,
2298 .cra_flags = CRYPTO_ALG_ASYNC,
2299 .cra_blocksize = AES_BLOCK_SIZE,
2300 .cra_ctxsize = sizeof(struct atmel_aes_authenc_ctx),
2301 .cra_alignmask = 0xf,
2302 .cra_module = THIS_MODULE,
2303 },
2304 },
2305 {
2306 .setkey = atmel_aes_authenc_setkey,
2307 .encrypt = atmel_aes_authenc_cbc_aes_encrypt,
2308 .decrypt = atmel_aes_authenc_cbc_aes_decrypt,
2309 .init = atmel_aes_authenc_hmac_sha384_init_tfm,
2310 .exit = atmel_aes_authenc_exit_tfm,
2311 .ivsize = AES_BLOCK_SIZE,
2312 .maxauthsize = SHA384_DIGEST_SIZE,
2313
2314 .base = {
2315 .cra_name = "authenc(hmac(sha384),cbc(aes))",
2316 .cra_driver_name = "atmel-authenc-hmac-sha384-cbc-aes",
2317 .cra_priority = ATMEL_AES_PRIORITY,
2318 .cra_flags = CRYPTO_ALG_ASYNC,
2319 .cra_blocksize = AES_BLOCK_SIZE,
2320 .cra_ctxsize = sizeof(struct atmel_aes_authenc_ctx),
2321 .cra_alignmask = 0xf,
2322 .cra_module = THIS_MODULE,
2323 },
2324 },
2325 {
2326 .setkey = atmel_aes_authenc_setkey,
2327 .encrypt = atmel_aes_authenc_cbc_aes_encrypt,
2328 .decrypt = atmel_aes_authenc_cbc_aes_decrypt,
2329 .init = atmel_aes_authenc_hmac_sha512_init_tfm,
2330 .exit = atmel_aes_authenc_exit_tfm,
2331 .ivsize = AES_BLOCK_SIZE,
2332 .maxauthsize = SHA512_DIGEST_SIZE,
2333
2334 .base = {
2335 .cra_name = "authenc(hmac(sha512),cbc(aes))",
2336 .cra_driver_name = "atmel-authenc-hmac-sha512-cbc-aes",
2337 .cra_priority = ATMEL_AES_PRIORITY,
2338 .cra_flags = CRYPTO_ALG_ASYNC,
2339 .cra_blocksize = AES_BLOCK_SIZE,
2340 .cra_ctxsize = sizeof(struct atmel_aes_authenc_ctx),
2341 .cra_alignmask = 0xf,
2342 .cra_module = THIS_MODULE,
2343 },
2344 },
2345 };
2346 #endif /* CONFIG_CRYPTO_DEV_ATMEL_AUTHENC */
2347
2348 /* Probe functions */
2349
2350 static int atmel_aes_buff_init(struct atmel_aes_dev *dd)
2351 {
2352 dd->buf = (void *)__get_free_pages(GFP_KERNEL, ATMEL_AES_BUFFER_ORDER);
2353 dd->buflen = ATMEL_AES_BUFFER_SIZE;
2354 dd->buflen &= ~(AES_BLOCK_SIZE - 1);
2355
2356 if (!dd->buf) {
2357 dev_err(dd->dev, "unable to alloc pages.\n");
2358 return -ENOMEM;
2359 }
2360
2361 return 0;
2362 }
2363
2364 static void atmel_aes_buff_cleanup(struct atmel_aes_dev *dd)
2365 {
2366 free_page((unsigned long)dd->buf);
2367 }
2368
2369 static bool atmel_aes_filter(struct dma_chan *chan, void *slave)
2370 {
2371 struct at_dma_slave *sl = slave;
2372
2373 if (sl && sl->dma_dev == chan->device->dev) {
2374 chan->private = sl;
2375 return true;
2376 } else {
2377 return false;
2378 }
2379 }
2380
2381 static int atmel_aes_dma_init(struct atmel_aes_dev *dd,
2382 struct crypto_platform_data *pdata)
2383 {
2384 struct at_dma_slave *slave;
2385 int err = -ENOMEM;
2386 dma_cap_mask_t mask;
2387
2388 dma_cap_zero(mask);
2389 dma_cap_set(DMA_SLAVE, mask);
2390
2391 /* Try to grab 2 DMA channels */
2392 slave = &pdata->dma_slave->rxdata;
2393 dd->src.chan = dma_request_slave_channel_compat(mask, atmel_aes_filter,
2394 slave, dd->dev, "tx");
2395 if (!dd->src.chan)
2396 goto err_dma_in;
2397
2398 slave = &pdata->dma_slave->txdata;
2399 dd->dst.chan = dma_request_slave_channel_compat(mask, atmel_aes_filter,
2400 slave, dd->dev, "rx");
2401 if (!dd->dst.chan)
2402 goto err_dma_out;
2403
2404 return 0;
2405
2406 err_dma_out:
2407 dma_release_channel(dd->src.chan);
2408 err_dma_in:
2409 dev_warn(dd->dev, "no DMA channel available\n");
2410 return err;
2411 }
2412
2413 static void atmel_aes_dma_cleanup(struct atmel_aes_dev *dd)
2414 {
2415 dma_release_channel(dd->dst.chan);
2416 dma_release_channel(dd->src.chan);
2417 }
2418
2419 static void atmel_aes_queue_task(unsigned long data)
2420 {
2421 struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
2422
2423 atmel_aes_handle_queue(dd, NULL);
2424 }
2425
2426 static void atmel_aes_done_task(unsigned long data)
2427 {
2428 struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
2429
2430 dd->is_async = true;
2431 (void)dd->resume(dd);
2432 }
2433
2434 static irqreturn_t atmel_aes_irq(int irq, void *dev_id)
2435 {
2436 struct atmel_aes_dev *aes_dd = dev_id;
2437 u32 reg;
2438
2439 reg = atmel_aes_read(aes_dd, AES_ISR);
2440 if (reg & atmel_aes_read(aes_dd, AES_IMR)) {
2441 atmel_aes_write(aes_dd, AES_IDR, reg);
2442 if (AES_FLAGS_BUSY & aes_dd->flags)
2443 tasklet_schedule(&aes_dd->done_task);
2444 else
2445 dev_warn(aes_dd->dev, "AES interrupt when no active requests.\n");
2446 return IRQ_HANDLED;
2447 }
2448
2449 return IRQ_NONE;
2450 }
2451
2452 static void atmel_aes_unregister_algs(struct atmel_aes_dev *dd)
2453 {
2454 int i;
2455
2456 #ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
2457 if (dd->caps.has_authenc)
2458 for (i = 0; i < ARRAY_SIZE(aes_authenc_algs); i++)
2459 crypto_unregister_aead(&aes_authenc_algs[i]);
2460 #endif
2461
2462 if (dd->caps.has_xts)
2463 crypto_unregister_alg(&aes_xts_alg);
2464
2465 if (dd->caps.has_gcm)
2466 crypto_unregister_aead(&aes_gcm_alg);
2467
2468 if (dd->caps.has_cfb64)
2469 crypto_unregister_alg(&aes_cfb64_alg);
2470
2471 for (i = 0; i < ARRAY_SIZE(aes_algs); i++)
2472 crypto_unregister_alg(&aes_algs[i]);
2473 }
2474
2475 static int atmel_aes_register_algs(struct atmel_aes_dev *dd)
2476 {
2477 int err, i, j;
2478
2479 for (i = 0; i < ARRAY_SIZE(aes_algs); i++) {
2480 err = crypto_register_alg(&aes_algs[i]);
2481 if (err)
2482 goto err_aes_algs;
2483 }
2484
2485 if (dd->caps.has_cfb64) {
2486 err = crypto_register_alg(&aes_cfb64_alg);
2487 if (err)
2488 goto err_aes_cfb64_alg;
2489 }
2490
2491 if (dd->caps.has_gcm) {
2492 err = crypto_register_aead(&aes_gcm_alg);
2493 if (err)
2494 goto err_aes_gcm_alg;
2495 }
2496
2497 if (dd->caps.has_xts) {
2498 err = crypto_register_alg(&aes_xts_alg);
2499 if (err)
2500 goto err_aes_xts_alg;
2501 }
2502
2503 #ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
2504 if (dd->caps.has_authenc) {
2505 for (i = 0; i < ARRAY_SIZE(aes_authenc_algs); i++) {
2506 err = crypto_register_aead(&aes_authenc_algs[i]);
2507 if (err)
2508 goto err_aes_authenc_alg;
2509 }
2510 }
2511 #endif
2512
2513 return 0;
2514
2515 #ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
2516 /* i = ARRAY_SIZE(aes_authenc_algs); */
2517 err_aes_authenc_alg:
2518 for (j = 0; j < i; j++)
2519 crypto_unregister_aead(&aes_authenc_algs[j]);
2520 crypto_unregister_alg(&aes_xts_alg);
2521 #endif
2522 err_aes_xts_alg:
2523 crypto_unregister_aead(&aes_gcm_alg);
2524 err_aes_gcm_alg:
2525 crypto_unregister_alg(&aes_cfb64_alg);
2526 err_aes_cfb64_alg:
2527 i = ARRAY_SIZE(aes_algs);
2528 err_aes_algs:
2529 for (j = 0; j < i; j++)
2530 crypto_unregister_alg(&aes_algs[j]);
2531
2532 return err;
2533 }
2534
2535 static void atmel_aes_get_cap(struct atmel_aes_dev *dd)
2536 {
2537 dd->caps.has_dualbuff = 0;
2538 dd->caps.has_cfb64 = 0;
2539 dd->caps.has_ctr32 = 0;
2540 dd->caps.has_gcm = 0;
2541 dd->caps.has_xts = 0;
2542 dd->caps.has_authenc = 0;
2543 dd->caps.max_burst_size = 1;
2544
2545 /* keep only major version number */
2546 switch (dd->hw_version & 0xff0) {
2547 case 0x500:
2548 dd->caps.has_dualbuff = 1;
2549 dd->caps.has_cfb64 = 1;
2550 dd->caps.has_ctr32 = 1;
2551 dd->caps.has_gcm = 1;
2552 dd->caps.has_xts = 1;
2553 dd->caps.has_authenc = 1;
2554 dd->caps.max_burst_size = 4;
2555 break;
2556 case 0x200:
2557 dd->caps.has_dualbuff = 1;
2558 dd->caps.has_cfb64 = 1;
2559 dd->caps.has_ctr32 = 1;
2560 dd->caps.has_gcm = 1;
2561 dd->caps.max_burst_size = 4;
2562 break;
2563 case 0x130:
2564 dd->caps.has_dualbuff = 1;
2565 dd->caps.has_cfb64 = 1;
2566 dd->caps.max_burst_size = 4;
2567 break;
2568 case 0x120:
2569 break;
2570 default:
2571 dev_warn(dd->dev,
2572 "Unmanaged aes version, set minimum capabilities\n");
2573 break;
2574 }
2575 }
2576
2577 #if defined(CONFIG_OF)
2578 static const struct of_device_id atmel_aes_dt_ids[] = {
2579 { .compatible = "atmel,at91sam9g46-aes" },
2580 { /* sentinel */ }
2581 };
2582 MODULE_DEVICE_TABLE(of, atmel_aes_dt_ids);
2583
2584 static struct crypto_platform_data *atmel_aes_of_init(struct platform_device *pdev)
2585 {
2586 struct device_node *np = pdev->dev.of_node;
2587 struct crypto_platform_data *pdata;
2588
2589 if (!np) {
2590 dev_err(&pdev->dev, "device node not found\n");
2591 return ERR_PTR(-EINVAL);
2592 }
2593
2594 pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
2595 if (!pdata) {
2596 dev_err(&pdev->dev, "could not allocate memory for pdata\n");
2597 return ERR_PTR(-ENOMEM);
2598 }
2599
2600 pdata->dma_slave = devm_kzalloc(&pdev->dev,
2601 sizeof(*(pdata->dma_slave)),
2602 GFP_KERNEL);
2603 if (!pdata->dma_slave) {
2604 dev_err(&pdev->dev, "could not allocate memory for dma_slave\n");
2605 devm_kfree(&pdev->dev, pdata);
2606 return ERR_PTR(-ENOMEM);
2607 }
2608
2609 return pdata;
2610 }
2611 #else
2612 static inline struct crypto_platform_data *atmel_aes_of_init(struct platform_device *pdev)
2613 {
2614 return ERR_PTR(-EINVAL);
2615 }
2616 #endif
2617
2618 static int atmel_aes_probe(struct platform_device *pdev)
2619 {
2620 struct atmel_aes_dev *aes_dd;
2621 struct crypto_platform_data *pdata;
2622 struct device *dev = &pdev->dev;
2623 struct resource *aes_res;
2624 int err;
2625
2626 pdata = pdev->dev.platform_data;
2627 if (!pdata) {
2628 pdata = atmel_aes_of_init(pdev);
2629 if (IS_ERR(pdata)) {
2630 err = PTR_ERR(pdata);
2631 goto aes_dd_err;
2632 }
2633 }
2634
2635 if (!pdata->dma_slave) {
2636 err = -ENXIO;
2637 goto aes_dd_err;
2638 }
2639
2640 aes_dd = devm_kzalloc(&pdev->dev, sizeof(*aes_dd), GFP_KERNEL);
2641 if (aes_dd == NULL) {
2642 dev_err(dev, "unable to alloc data struct.\n");
2643 err = -ENOMEM;
2644 goto aes_dd_err;
2645 }
2646
2647 aes_dd->dev = dev;
2648
2649 platform_set_drvdata(pdev, aes_dd);
2650
2651 INIT_LIST_HEAD(&aes_dd->list);
2652 spin_lock_init(&aes_dd->lock);
2653
2654 tasklet_init(&aes_dd->done_task, atmel_aes_done_task,
2655 (unsigned long)aes_dd);
2656 tasklet_init(&aes_dd->queue_task, atmel_aes_queue_task,
2657 (unsigned long)aes_dd);
2658
2659 crypto_init_queue(&aes_dd->queue, ATMEL_AES_QUEUE_LENGTH);
2660
2661 aes_dd->irq = -1;
2662
2663 /* Get the base address */
2664 aes_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2665 if (!aes_res) {
2666 dev_err(dev, "no MEM resource info\n");
2667 err = -ENODEV;
2668 goto res_err;
2669 }
2670 aes_dd->phys_base = aes_res->start;
2671
2672 /* Get the IRQ */
2673 aes_dd->irq = platform_get_irq(pdev, 0);
2674 if (aes_dd->irq < 0) {
2675 dev_err(dev, "no IRQ resource info\n");
2676 err = aes_dd->irq;
2677 goto res_err;
2678 }
2679
2680 err = devm_request_irq(&pdev->dev, aes_dd->irq, atmel_aes_irq,
2681 IRQF_SHARED, "atmel-aes", aes_dd);
2682 if (err) {
2683 dev_err(dev, "unable to request aes irq.\n");
2684 goto res_err;
2685 }
2686
2687 /* Initializing the clock */
2688 aes_dd->iclk = devm_clk_get(&pdev->dev, "aes_clk");
2689 if (IS_ERR(aes_dd->iclk)) {
2690 dev_err(dev, "clock initialization failed.\n");
2691 err = PTR_ERR(aes_dd->iclk);
2692 goto res_err;
2693 }
2694
2695 aes_dd->io_base = devm_ioremap_resource(&pdev->dev, aes_res);
2696 if (IS_ERR(aes_dd->io_base)) {
2697 dev_err(dev, "can't ioremap\n");
2698 err = PTR_ERR(aes_dd->io_base);
2699 goto res_err;
2700 }
2701
2702 err = clk_prepare(aes_dd->iclk);
2703 if (err)
2704 goto res_err;
2705
2706 err = atmel_aes_hw_version_init(aes_dd);
2707 if (err)
2708 goto iclk_unprepare;
2709
2710 atmel_aes_get_cap(aes_dd);
2711
2712 #ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
2713 if (aes_dd->caps.has_authenc && !atmel_sha_authenc_is_ready()) {
2714 err = -EPROBE_DEFER;
2715 goto iclk_unprepare;
2716 }
2717 #endif
2718
2719 err = atmel_aes_buff_init(aes_dd);
2720 if (err)
2721 goto err_aes_buff;
2722
2723 err = atmel_aes_dma_init(aes_dd, pdata);
2724 if (err)
2725 goto err_aes_dma;
2726
2727 spin_lock(&atmel_aes.lock);
2728 list_add_tail(&aes_dd->list, &atmel_aes.dev_list);
2729 spin_unlock(&atmel_aes.lock);
2730
2731 err = atmel_aes_register_algs(aes_dd);
2732 if (err)
2733 goto err_algs;
2734
2735 dev_info(dev, "Atmel AES - Using %s, %s for DMA transfers\n",
2736 dma_chan_name(aes_dd->src.chan),
2737 dma_chan_name(aes_dd->dst.chan));
2738
2739 return 0;
2740
2741 err_algs:
2742 spin_lock(&atmel_aes.lock);
2743 list_del(&aes_dd->list);
2744 spin_unlock(&atmel_aes.lock);
2745 atmel_aes_dma_cleanup(aes_dd);
2746 err_aes_dma:
2747 atmel_aes_buff_cleanup(aes_dd);
2748 err_aes_buff:
2749 iclk_unprepare:
2750 clk_unprepare(aes_dd->iclk);
2751 res_err:
2752 tasklet_kill(&aes_dd->done_task);
2753 tasklet_kill(&aes_dd->queue_task);
2754 aes_dd_err:
2755 if (err != -EPROBE_DEFER)
2756 dev_err(dev, "initialization failed.\n");
2757
2758 return err;
2759 }
2760
2761 static int atmel_aes_remove(struct platform_device *pdev)
2762 {
2763 struct atmel_aes_dev *aes_dd;
2764
2765 aes_dd = platform_get_drvdata(pdev);
2766 if (!aes_dd)
2767 return -ENODEV;
2768 spin_lock(&atmel_aes.lock);
2769 list_del(&aes_dd->list);
2770 spin_unlock(&atmel_aes.lock);
2771
2772 atmel_aes_unregister_algs(aes_dd);
2773
2774 tasklet_kill(&aes_dd->done_task);
2775 tasklet_kill(&aes_dd->queue_task);
2776
2777 atmel_aes_dma_cleanup(aes_dd);
2778 atmel_aes_buff_cleanup(aes_dd);
2779
2780 clk_unprepare(aes_dd->iclk);
2781
2782 return 0;
2783 }
2784
2785 static struct platform_driver atmel_aes_driver = {
2786 .probe = atmel_aes_probe,
2787 .remove = atmel_aes_remove,
2788 .driver = {
2789 .name = "atmel_aes",
2790 .of_match_table = of_match_ptr(atmel_aes_dt_ids),
2791 },
2792 };
2793
2794 module_platform_driver(atmel_aes_driver);
2795
2796 MODULE_DESCRIPTION("Atmel AES hw acceleration support.");
2797 MODULE_LICENSE("GPL v2");
2798 MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");