]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/crypto/atmel-aes.c
drm/i915/dg2: Add fake PCH
[mirror_ubuntu-jammy-kernel.git] / drivers / crypto / atmel-aes.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Cryptographic API.
4 *
5 * Support for ATMEL AES HW acceleration.
6 *
7 * Copyright (c) 2012 Eukréa Electromatique - ATMEL
8 * Author: Nicolas Royer <nicolas@eukrea.com>
9 *
10 * Some ideas are from omap-aes.c driver.
11 */
12
13
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/err.h>
18 #include <linux/clk.h>
19 #include <linux/io.h>
20 #include <linux/hw_random.h>
21 #include <linux/platform_device.h>
22
23 #include <linux/device.h>
24 #include <linux/dmaengine.h>
25 #include <linux/init.h>
26 #include <linux/errno.h>
27 #include <linux/interrupt.h>
28 #include <linux/irq.h>
29 #include <linux/scatterlist.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/of_device.h>
32 #include <linux/delay.h>
33 #include <linux/crypto.h>
34 #include <crypto/scatterwalk.h>
35 #include <crypto/algapi.h>
36 #include <crypto/aes.h>
37 #include <crypto/gcm.h>
38 #include <crypto/xts.h>
39 #include <crypto/internal/aead.h>
40 #include <crypto/internal/skcipher.h>
41 #include "atmel-aes-regs.h"
42 #include "atmel-authenc.h"
43
44 #define ATMEL_AES_PRIORITY 300
45
46 #define ATMEL_AES_BUFFER_ORDER 2
47 #define ATMEL_AES_BUFFER_SIZE (PAGE_SIZE << ATMEL_AES_BUFFER_ORDER)
48
49 #define CFB8_BLOCK_SIZE 1
50 #define CFB16_BLOCK_SIZE 2
51 #define CFB32_BLOCK_SIZE 4
52 #define CFB64_BLOCK_SIZE 8
53
54 #define SIZE_IN_WORDS(x) ((x) >> 2)
55
56 /* AES flags */
57 /* Reserve bits [18:16] [14:12] [1:0] for mode (same as for AES_MR) */
58 #define AES_FLAGS_ENCRYPT AES_MR_CYPHER_ENC
59 #define AES_FLAGS_GTAGEN AES_MR_GTAGEN
60 #define AES_FLAGS_OPMODE_MASK (AES_MR_OPMOD_MASK | AES_MR_CFBS_MASK)
61 #define AES_FLAGS_ECB AES_MR_OPMOD_ECB
62 #define AES_FLAGS_CBC AES_MR_OPMOD_CBC
63 #define AES_FLAGS_OFB AES_MR_OPMOD_OFB
64 #define AES_FLAGS_CFB128 (AES_MR_OPMOD_CFB | AES_MR_CFBS_128b)
65 #define AES_FLAGS_CFB64 (AES_MR_OPMOD_CFB | AES_MR_CFBS_64b)
66 #define AES_FLAGS_CFB32 (AES_MR_OPMOD_CFB | AES_MR_CFBS_32b)
67 #define AES_FLAGS_CFB16 (AES_MR_OPMOD_CFB | AES_MR_CFBS_16b)
68 #define AES_FLAGS_CFB8 (AES_MR_OPMOD_CFB | AES_MR_CFBS_8b)
69 #define AES_FLAGS_CTR AES_MR_OPMOD_CTR
70 #define AES_FLAGS_GCM AES_MR_OPMOD_GCM
71 #define AES_FLAGS_XTS AES_MR_OPMOD_XTS
72
73 #define AES_FLAGS_MODE_MASK (AES_FLAGS_OPMODE_MASK | \
74 AES_FLAGS_ENCRYPT | \
75 AES_FLAGS_GTAGEN)
76
77 #define AES_FLAGS_BUSY BIT(3)
78 #define AES_FLAGS_DUMP_REG BIT(4)
79 #define AES_FLAGS_OWN_SHA BIT(5)
80
81 #define AES_FLAGS_PERSISTENT AES_FLAGS_BUSY
82
83 #define ATMEL_AES_QUEUE_LENGTH 50
84
85 #define ATMEL_AES_DMA_THRESHOLD 256
86
87
88 struct atmel_aes_caps {
89 bool has_dualbuff;
90 bool has_cfb64;
91 bool has_gcm;
92 bool has_xts;
93 bool has_authenc;
94 u32 max_burst_size;
95 };
96
97 struct atmel_aes_dev;
98
99
100 typedef int (*atmel_aes_fn_t)(struct atmel_aes_dev *);
101
102
103 struct atmel_aes_base_ctx {
104 struct atmel_aes_dev *dd;
105 atmel_aes_fn_t start;
106 int keylen;
107 u32 key[AES_KEYSIZE_256 / sizeof(u32)];
108 u16 block_size;
109 bool is_aead;
110 };
111
112 struct atmel_aes_ctx {
113 struct atmel_aes_base_ctx base;
114 };
115
116 struct atmel_aes_ctr_ctx {
117 struct atmel_aes_base_ctx base;
118
119 __be32 iv[AES_BLOCK_SIZE / sizeof(u32)];
120 size_t offset;
121 struct scatterlist src[2];
122 struct scatterlist dst[2];
123 u32 blocks;
124 };
125
126 struct atmel_aes_gcm_ctx {
127 struct atmel_aes_base_ctx base;
128
129 struct scatterlist src[2];
130 struct scatterlist dst[2];
131
132 __be32 j0[AES_BLOCK_SIZE / sizeof(u32)];
133 u32 tag[AES_BLOCK_SIZE / sizeof(u32)];
134 __be32 ghash[AES_BLOCK_SIZE / sizeof(u32)];
135 size_t textlen;
136
137 const __be32 *ghash_in;
138 __be32 *ghash_out;
139 atmel_aes_fn_t ghash_resume;
140 };
141
142 struct atmel_aes_xts_ctx {
143 struct atmel_aes_base_ctx base;
144
145 u32 key2[AES_KEYSIZE_256 / sizeof(u32)];
146 };
147
148 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
149 struct atmel_aes_authenc_ctx {
150 struct atmel_aes_base_ctx base;
151 struct atmel_sha_authenc_ctx *auth;
152 };
153 #endif
154
155 struct atmel_aes_reqctx {
156 unsigned long mode;
157 u8 lastc[AES_BLOCK_SIZE];
158 };
159
160 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
161 struct atmel_aes_authenc_reqctx {
162 struct atmel_aes_reqctx base;
163
164 struct scatterlist src[2];
165 struct scatterlist dst[2];
166 size_t textlen;
167 u32 digest[SHA512_DIGEST_SIZE / sizeof(u32)];
168
169 /* auth_req MUST be place last. */
170 struct ahash_request auth_req;
171 };
172 #endif
173
174 struct atmel_aes_dma {
175 struct dma_chan *chan;
176 struct scatterlist *sg;
177 int nents;
178 unsigned int remainder;
179 unsigned int sg_len;
180 };
181
182 struct atmel_aes_dev {
183 struct list_head list;
184 unsigned long phys_base;
185 void __iomem *io_base;
186
187 struct crypto_async_request *areq;
188 struct atmel_aes_base_ctx *ctx;
189
190 bool is_async;
191 atmel_aes_fn_t resume;
192 atmel_aes_fn_t cpu_transfer_complete;
193
194 struct device *dev;
195 struct clk *iclk;
196 int irq;
197
198 unsigned long flags;
199
200 spinlock_t lock;
201 struct crypto_queue queue;
202
203 struct tasklet_struct done_task;
204 struct tasklet_struct queue_task;
205
206 size_t total;
207 size_t datalen;
208 u32 *data;
209
210 struct atmel_aes_dma src;
211 struct atmel_aes_dma dst;
212
213 size_t buflen;
214 void *buf;
215 struct scatterlist aligned_sg;
216 struct scatterlist *real_dst;
217
218 struct atmel_aes_caps caps;
219
220 u32 hw_version;
221 };
222
223 struct atmel_aes_drv {
224 struct list_head dev_list;
225 spinlock_t lock;
226 };
227
228 static struct atmel_aes_drv atmel_aes = {
229 .dev_list = LIST_HEAD_INIT(atmel_aes.dev_list),
230 .lock = __SPIN_LOCK_UNLOCKED(atmel_aes.lock),
231 };
232
233 #ifdef VERBOSE_DEBUG
234 static const char *atmel_aes_reg_name(u32 offset, char *tmp, size_t sz)
235 {
236 switch (offset) {
237 case AES_CR:
238 return "CR";
239
240 case AES_MR:
241 return "MR";
242
243 case AES_ISR:
244 return "ISR";
245
246 case AES_IMR:
247 return "IMR";
248
249 case AES_IER:
250 return "IER";
251
252 case AES_IDR:
253 return "IDR";
254
255 case AES_KEYWR(0):
256 case AES_KEYWR(1):
257 case AES_KEYWR(2):
258 case AES_KEYWR(3):
259 case AES_KEYWR(4):
260 case AES_KEYWR(5):
261 case AES_KEYWR(6):
262 case AES_KEYWR(7):
263 snprintf(tmp, sz, "KEYWR[%u]", (offset - AES_KEYWR(0)) >> 2);
264 break;
265
266 case AES_IDATAR(0):
267 case AES_IDATAR(1):
268 case AES_IDATAR(2):
269 case AES_IDATAR(3):
270 snprintf(tmp, sz, "IDATAR[%u]", (offset - AES_IDATAR(0)) >> 2);
271 break;
272
273 case AES_ODATAR(0):
274 case AES_ODATAR(1):
275 case AES_ODATAR(2):
276 case AES_ODATAR(3):
277 snprintf(tmp, sz, "ODATAR[%u]", (offset - AES_ODATAR(0)) >> 2);
278 break;
279
280 case AES_IVR(0):
281 case AES_IVR(1):
282 case AES_IVR(2):
283 case AES_IVR(3):
284 snprintf(tmp, sz, "IVR[%u]", (offset - AES_IVR(0)) >> 2);
285 break;
286
287 case AES_AADLENR:
288 return "AADLENR";
289
290 case AES_CLENR:
291 return "CLENR";
292
293 case AES_GHASHR(0):
294 case AES_GHASHR(1):
295 case AES_GHASHR(2):
296 case AES_GHASHR(3):
297 snprintf(tmp, sz, "GHASHR[%u]", (offset - AES_GHASHR(0)) >> 2);
298 break;
299
300 case AES_TAGR(0):
301 case AES_TAGR(1):
302 case AES_TAGR(2):
303 case AES_TAGR(3):
304 snprintf(tmp, sz, "TAGR[%u]", (offset - AES_TAGR(0)) >> 2);
305 break;
306
307 case AES_CTRR:
308 return "CTRR";
309
310 case AES_GCMHR(0):
311 case AES_GCMHR(1):
312 case AES_GCMHR(2):
313 case AES_GCMHR(3):
314 snprintf(tmp, sz, "GCMHR[%u]", (offset - AES_GCMHR(0)) >> 2);
315 break;
316
317 case AES_EMR:
318 return "EMR";
319
320 case AES_TWR(0):
321 case AES_TWR(1):
322 case AES_TWR(2):
323 case AES_TWR(3):
324 snprintf(tmp, sz, "TWR[%u]", (offset - AES_TWR(0)) >> 2);
325 break;
326
327 case AES_ALPHAR(0):
328 case AES_ALPHAR(1):
329 case AES_ALPHAR(2):
330 case AES_ALPHAR(3):
331 snprintf(tmp, sz, "ALPHAR[%u]", (offset - AES_ALPHAR(0)) >> 2);
332 break;
333
334 default:
335 snprintf(tmp, sz, "0x%02x", offset);
336 break;
337 }
338
339 return tmp;
340 }
341 #endif /* VERBOSE_DEBUG */
342
343 /* Shared functions */
344
345 static inline u32 atmel_aes_read(struct atmel_aes_dev *dd, u32 offset)
346 {
347 u32 value = readl_relaxed(dd->io_base + offset);
348
349 #ifdef VERBOSE_DEBUG
350 if (dd->flags & AES_FLAGS_DUMP_REG) {
351 char tmp[16];
352
353 dev_vdbg(dd->dev, "read 0x%08x from %s\n", value,
354 atmel_aes_reg_name(offset, tmp, sizeof(tmp)));
355 }
356 #endif /* VERBOSE_DEBUG */
357
358 return value;
359 }
360
361 static inline void atmel_aes_write(struct atmel_aes_dev *dd,
362 u32 offset, u32 value)
363 {
364 #ifdef VERBOSE_DEBUG
365 if (dd->flags & AES_FLAGS_DUMP_REG) {
366 char tmp[16];
367
368 dev_vdbg(dd->dev, "write 0x%08x into %s\n", value,
369 atmel_aes_reg_name(offset, tmp, sizeof(tmp)));
370 }
371 #endif /* VERBOSE_DEBUG */
372
373 writel_relaxed(value, dd->io_base + offset);
374 }
375
376 static void atmel_aes_read_n(struct atmel_aes_dev *dd, u32 offset,
377 u32 *value, int count)
378 {
379 for (; count--; value++, offset += 4)
380 *value = atmel_aes_read(dd, offset);
381 }
382
383 static void atmel_aes_write_n(struct atmel_aes_dev *dd, u32 offset,
384 const u32 *value, int count)
385 {
386 for (; count--; value++, offset += 4)
387 atmel_aes_write(dd, offset, *value);
388 }
389
390 static inline void atmel_aes_read_block(struct atmel_aes_dev *dd, u32 offset,
391 void *value)
392 {
393 atmel_aes_read_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
394 }
395
396 static inline void atmel_aes_write_block(struct atmel_aes_dev *dd, u32 offset,
397 const void *value)
398 {
399 atmel_aes_write_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
400 }
401
402 static inline int atmel_aes_wait_for_data_ready(struct atmel_aes_dev *dd,
403 atmel_aes_fn_t resume)
404 {
405 u32 isr = atmel_aes_read(dd, AES_ISR);
406
407 if (unlikely(isr & AES_INT_DATARDY))
408 return resume(dd);
409
410 dd->resume = resume;
411 atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
412 return -EINPROGRESS;
413 }
414
415 static inline size_t atmel_aes_padlen(size_t len, size_t block_size)
416 {
417 len &= block_size - 1;
418 return len ? block_size - len : 0;
419 }
420
421 static struct atmel_aes_dev *atmel_aes_find_dev(struct atmel_aes_base_ctx *ctx)
422 {
423 struct atmel_aes_dev *aes_dd = NULL;
424 struct atmel_aes_dev *tmp;
425
426 spin_lock_bh(&atmel_aes.lock);
427 if (!ctx->dd) {
428 list_for_each_entry(tmp, &atmel_aes.dev_list, list) {
429 aes_dd = tmp;
430 break;
431 }
432 ctx->dd = aes_dd;
433 } else {
434 aes_dd = ctx->dd;
435 }
436
437 spin_unlock_bh(&atmel_aes.lock);
438
439 return aes_dd;
440 }
441
442 static int atmel_aes_hw_init(struct atmel_aes_dev *dd)
443 {
444 int err;
445
446 err = clk_enable(dd->iclk);
447 if (err)
448 return err;
449
450 atmel_aes_write(dd, AES_CR, AES_CR_SWRST);
451 atmel_aes_write(dd, AES_MR, 0xE << AES_MR_CKEY_OFFSET);
452
453 return 0;
454 }
455
456 static inline unsigned int atmel_aes_get_version(struct atmel_aes_dev *dd)
457 {
458 return atmel_aes_read(dd, AES_HW_VERSION) & 0x00000fff;
459 }
460
461 static int atmel_aes_hw_version_init(struct atmel_aes_dev *dd)
462 {
463 int err;
464
465 err = atmel_aes_hw_init(dd);
466 if (err)
467 return err;
468
469 dd->hw_version = atmel_aes_get_version(dd);
470
471 dev_info(dd->dev, "version: 0x%x\n", dd->hw_version);
472
473 clk_disable(dd->iclk);
474 return 0;
475 }
476
477 static inline void atmel_aes_set_mode(struct atmel_aes_dev *dd,
478 const struct atmel_aes_reqctx *rctx)
479 {
480 /* Clear all but persistent flags and set request flags. */
481 dd->flags = (dd->flags & AES_FLAGS_PERSISTENT) | rctx->mode;
482 }
483
484 static inline bool atmel_aes_is_encrypt(const struct atmel_aes_dev *dd)
485 {
486 return (dd->flags & AES_FLAGS_ENCRYPT);
487 }
488
489 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
490 static void atmel_aes_authenc_complete(struct atmel_aes_dev *dd, int err);
491 #endif
492
493 static void atmel_aes_set_iv_as_last_ciphertext_block(struct atmel_aes_dev *dd)
494 {
495 struct skcipher_request *req = skcipher_request_cast(dd->areq);
496 struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
497 struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
498 unsigned int ivsize = crypto_skcipher_ivsize(skcipher);
499
500 if (req->cryptlen < ivsize)
501 return;
502
503 if (rctx->mode & AES_FLAGS_ENCRYPT) {
504 scatterwalk_map_and_copy(req->iv, req->dst,
505 req->cryptlen - ivsize, ivsize, 0);
506 } else {
507 if (req->src == req->dst)
508 memcpy(req->iv, rctx->lastc, ivsize);
509 else
510 scatterwalk_map_and_copy(req->iv, req->src,
511 req->cryptlen - ivsize,
512 ivsize, 0);
513 }
514 }
515
516 static inline struct atmel_aes_ctr_ctx *
517 atmel_aes_ctr_ctx_cast(struct atmel_aes_base_ctx *ctx)
518 {
519 return container_of(ctx, struct atmel_aes_ctr_ctx, base);
520 }
521
522 static void atmel_aes_ctr_update_req_iv(struct atmel_aes_dev *dd)
523 {
524 struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
525 struct skcipher_request *req = skcipher_request_cast(dd->areq);
526 struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
527 unsigned int ivsize = crypto_skcipher_ivsize(skcipher);
528 int i;
529
530 /*
531 * The CTR transfer works in fragments of data of maximum 1 MByte
532 * because of the 16 bit CTR counter embedded in the IP. When reaching
533 * here, ctx->blocks contains the number of blocks of the last fragment
534 * processed, there is no need to explicit cast it to u16.
535 */
536 for (i = 0; i < ctx->blocks; i++)
537 crypto_inc((u8 *)ctx->iv, AES_BLOCK_SIZE);
538
539 memcpy(req->iv, ctx->iv, ivsize);
540 }
541
542 static inline int atmel_aes_complete(struct atmel_aes_dev *dd, int err)
543 {
544 struct skcipher_request *req = skcipher_request_cast(dd->areq);
545 struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
546
547 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
548 if (dd->ctx->is_aead)
549 atmel_aes_authenc_complete(dd, err);
550 #endif
551
552 clk_disable(dd->iclk);
553 dd->flags &= ~AES_FLAGS_BUSY;
554
555 if (!err && !dd->ctx->is_aead &&
556 (rctx->mode & AES_FLAGS_OPMODE_MASK) != AES_FLAGS_ECB) {
557 if ((rctx->mode & AES_FLAGS_OPMODE_MASK) != AES_FLAGS_CTR)
558 atmel_aes_set_iv_as_last_ciphertext_block(dd);
559 else
560 atmel_aes_ctr_update_req_iv(dd);
561 }
562
563 if (dd->is_async)
564 dd->areq->complete(dd->areq, err);
565
566 tasklet_schedule(&dd->queue_task);
567
568 return err;
569 }
570
571 static void atmel_aes_write_ctrl_key(struct atmel_aes_dev *dd, bool use_dma,
572 const __be32 *iv, const u32 *key, int keylen)
573 {
574 u32 valmr = 0;
575
576 /* MR register must be set before IV registers */
577 if (keylen == AES_KEYSIZE_128)
578 valmr |= AES_MR_KEYSIZE_128;
579 else if (keylen == AES_KEYSIZE_192)
580 valmr |= AES_MR_KEYSIZE_192;
581 else
582 valmr |= AES_MR_KEYSIZE_256;
583
584 valmr |= dd->flags & AES_FLAGS_MODE_MASK;
585
586 if (use_dma) {
587 valmr |= AES_MR_SMOD_IDATAR0;
588 if (dd->caps.has_dualbuff)
589 valmr |= AES_MR_DUALBUFF;
590 } else {
591 valmr |= AES_MR_SMOD_AUTO;
592 }
593
594 atmel_aes_write(dd, AES_MR, valmr);
595
596 atmel_aes_write_n(dd, AES_KEYWR(0), key, SIZE_IN_WORDS(keylen));
597
598 if (iv && (valmr & AES_MR_OPMOD_MASK) != AES_MR_OPMOD_ECB)
599 atmel_aes_write_block(dd, AES_IVR(0), iv);
600 }
601
602 static inline void atmel_aes_write_ctrl(struct atmel_aes_dev *dd, bool use_dma,
603 const __be32 *iv)
604
605 {
606 atmel_aes_write_ctrl_key(dd, use_dma, iv,
607 dd->ctx->key, dd->ctx->keylen);
608 }
609
610 /* CPU transfer */
611
612 static int atmel_aes_cpu_transfer(struct atmel_aes_dev *dd)
613 {
614 int err = 0;
615 u32 isr;
616
617 for (;;) {
618 atmel_aes_read_block(dd, AES_ODATAR(0), dd->data);
619 dd->data += 4;
620 dd->datalen -= AES_BLOCK_SIZE;
621
622 if (dd->datalen < AES_BLOCK_SIZE)
623 break;
624
625 atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
626
627 isr = atmel_aes_read(dd, AES_ISR);
628 if (!(isr & AES_INT_DATARDY)) {
629 dd->resume = atmel_aes_cpu_transfer;
630 atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
631 return -EINPROGRESS;
632 }
633 }
634
635 if (!sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
636 dd->buf, dd->total))
637 err = -EINVAL;
638
639 if (err)
640 return atmel_aes_complete(dd, err);
641
642 return dd->cpu_transfer_complete(dd);
643 }
644
645 static int atmel_aes_cpu_start(struct atmel_aes_dev *dd,
646 struct scatterlist *src,
647 struct scatterlist *dst,
648 size_t len,
649 atmel_aes_fn_t resume)
650 {
651 size_t padlen = atmel_aes_padlen(len, AES_BLOCK_SIZE);
652
653 if (unlikely(len == 0))
654 return -EINVAL;
655
656 sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
657
658 dd->total = len;
659 dd->real_dst = dst;
660 dd->cpu_transfer_complete = resume;
661 dd->datalen = len + padlen;
662 dd->data = (u32 *)dd->buf;
663 atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
664 return atmel_aes_wait_for_data_ready(dd, atmel_aes_cpu_transfer);
665 }
666
667
668 /* DMA transfer */
669
670 static void atmel_aes_dma_callback(void *data);
671
672 static bool atmel_aes_check_aligned(struct atmel_aes_dev *dd,
673 struct scatterlist *sg,
674 size_t len,
675 struct atmel_aes_dma *dma)
676 {
677 int nents;
678
679 if (!IS_ALIGNED(len, dd->ctx->block_size))
680 return false;
681
682 for (nents = 0; sg; sg = sg_next(sg), ++nents) {
683 if (!IS_ALIGNED(sg->offset, sizeof(u32)))
684 return false;
685
686 if (len <= sg->length) {
687 if (!IS_ALIGNED(len, dd->ctx->block_size))
688 return false;
689
690 dma->nents = nents+1;
691 dma->remainder = sg->length - len;
692 sg->length = len;
693 return true;
694 }
695
696 if (!IS_ALIGNED(sg->length, dd->ctx->block_size))
697 return false;
698
699 len -= sg->length;
700 }
701
702 return false;
703 }
704
705 static inline void atmel_aes_restore_sg(const struct atmel_aes_dma *dma)
706 {
707 struct scatterlist *sg = dma->sg;
708 int nents = dma->nents;
709
710 if (!dma->remainder)
711 return;
712
713 while (--nents > 0 && sg)
714 sg = sg_next(sg);
715
716 if (!sg)
717 return;
718
719 sg->length += dma->remainder;
720 }
721
722 static int atmel_aes_map(struct atmel_aes_dev *dd,
723 struct scatterlist *src,
724 struct scatterlist *dst,
725 size_t len)
726 {
727 bool src_aligned, dst_aligned;
728 size_t padlen;
729
730 dd->total = len;
731 dd->src.sg = src;
732 dd->dst.sg = dst;
733 dd->real_dst = dst;
734
735 src_aligned = atmel_aes_check_aligned(dd, src, len, &dd->src);
736 if (src == dst)
737 dst_aligned = src_aligned;
738 else
739 dst_aligned = atmel_aes_check_aligned(dd, dst, len, &dd->dst);
740 if (!src_aligned || !dst_aligned) {
741 padlen = atmel_aes_padlen(len, dd->ctx->block_size);
742
743 if (dd->buflen < len + padlen)
744 return -ENOMEM;
745
746 if (!src_aligned) {
747 sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
748 dd->src.sg = &dd->aligned_sg;
749 dd->src.nents = 1;
750 dd->src.remainder = 0;
751 }
752
753 if (!dst_aligned) {
754 dd->dst.sg = &dd->aligned_sg;
755 dd->dst.nents = 1;
756 dd->dst.remainder = 0;
757 }
758
759 sg_init_table(&dd->aligned_sg, 1);
760 sg_set_buf(&dd->aligned_sg, dd->buf, len + padlen);
761 }
762
763 if (dd->src.sg == dd->dst.sg) {
764 dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
765 DMA_BIDIRECTIONAL);
766 dd->dst.sg_len = dd->src.sg_len;
767 if (!dd->src.sg_len)
768 return -EFAULT;
769 } else {
770 dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
771 DMA_TO_DEVICE);
772 if (!dd->src.sg_len)
773 return -EFAULT;
774
775 dd->dst.sg_len = dma_map_sg(dd->dev, dd->dst.sg, dd->dst.nents,
776 DMA_FROM_DEVICE);
777 if (!dd->dst.sg_len) {
778 dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
779 DMA_TO_DEVICE);
780 return -EFAULT;
781 }
782 }
783
784 return 0;
785 }
786
787 static void atmel_aes_unmap(struct atmel_aes_dev *dd)
788 {
789 if (dd->src.sg == dd->dst.sg) {
790 dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
791 DMA_BIDIRECTIONAL);
792
793 if (dd->src.sg != &dd->aligned_sg)
794 atmel_aes_restore_sg(&dd->src);
795 } else {
796 dma_unmap_sg(dd->dev, dd->dst.sg, dd->dst.nents,
797 DMA_FROM_DEVICE);
798
799 if (dd->dst.sg != &dd->aligned_sg)
800 atmel_aes_restore_sg(&dd->dst);
801
802 dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
803 DMA_TO_DEVICE);
804
805 if (dd->src.sg != &dd->aligned_sg)
806 atmel_aes_restore_sg(&dd->src);
807 }
808
809 if (dd->dst.sg == &dd->aligned_sg)
810 sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
811 dd->buf, dd->total);
812 }
813
814 static int atmel_aes_dma_transfer_start(struct atmel_aes_dev *dd,
815 enum dma_slave_buswidth addr_width,
816 enum dma_transfer_direction dir,
817 u32 maxburst)
818 {
819 struct dma_async_tx_descriptor *desc;
820 struct dma_slave_config config;
821 dma_async_tx_callback callback;
822 struct atmel_aes_dma *dma;
823 int err;
824
825 memset(&config, 0, sizeof(config));
826 config.src_addr_width = addr_width;
827 config.dst_addr_width = addr_width;
828 config.src_maxburst = maxburst;
829 config.dst_maxburst = maxburst;
830
831 switch (dir) {
832 case DMA_MEM_TO_DEV:
833 dma = &dd->src;
834 callback = NULL;
835 config.dst_addr = dd->phys_base + AES_IDATAR(0);
836 break;
837
838 case DMA_DEV_TO_MEM:
839 dma = &dd->dst;
840 callback = atmel_aes_dma_callback;
841 config.src_addr = dd->phys_base + AES_ODATAR(0);
842 break;
843
844 default:
845 return -EINVAL;
846 }
847
848 err = dmaengine_slave_config(dma->chan, &config);
849 if (err)
850 return err;
851
852 desc = dmaengine_prep_slave_sg(dma->chan, dma->sg, dma->sg_len, dir,
853 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
854 if (!desc)
855 return -ENOMEM;
856
857 desc->callback = callback;
858 desc->callback_param = dd;
859 dmaengine_submit(desc);
860 dma_async_issue_pending(dma->chan);
861
862 return 0;
863 }
864
865 static int atmel_aes_dma_start(struct atmel_aes_dev *dd,
866 struct scatterlist *src,
867 struct scatterlist *dst,
868 size_t len,
869 atmel_aes_fn_t resume)
870 {
871 enum dma_slave_buswidth addr_width;
872 u32 maxburst;
873 int err;
874
875 switch (dd->ctx->block_size) {
876 case CFB8_BLOCK_SIZE:
877 addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
878 maxburst = 1;
879 break;
880
881 case CFB16_BLOCK_SIZE:
882 addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
883 maxburst = 1;
884 break;
885
886 case CFB32_BLOCK_SIZE:
887 case CFB64_BLOCK_SIZE:
888 addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
889 maxburst = 1;
890 break;
891
892 case AES_BLOCK_SIZE:
893 addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
894 maxburst = dd->caps.max_burst_size;
895 break;
896
897 default:
898 err = -EINVAL;
899 goto exit;
900 }
901
902 err = atmel_aes_map(dd, src, dst, len);
903 if (err)
904 goto exit;
905
906 dd->resume = resume;
907
908 /* Set output DMA transfer first */
909 err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_DEV_TO_MEM,
910 maxburst);
911 if (err)
912 goto unmap;
913
914 /* Then set input DMA transfer */
915 err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_MEM_TO_DEV,
916 maxburst);
917 if (err)
918 goto output_transfer_stop;
919
920 return -EINPROGRESS;
921
922 output_transfer_stop:
923 dmaengine_terminate_sync(dd->dst.chan);
924 unmap:
925 atmel_aes_unmap(dd);
926 exit:
927 return atmel_aes_complete(dd, err);
928 }
929
930 static void atmel_aes_dma_callback(void *data)
931 {
932 struct atmel_aes_dev *dd = data;
933
934 atmel_aes_unmap(dd);
935 dd->is_async = true;
936 (void)dd->resume(dd);
937 }
938
939 static int atmel_aes_handle_queue(struct atmel_aes_dev *dd,
940 struct crypto_async_request *new_areq)
941 {
942 struct crypto_async_request *areq, *backlog;
943 struct atmel_aes_base_ctx *ctx;
944 unsigned long flags;
945 bool start_async;
946 int err, ret = 0;
947
948 spin_lock_irqsave(&dd->lock, flags);
949 if (new_areq)
950 ret = crypto_enqueue_request(&dd->queue, new_areq);
951 if (dd->flags & AES_FLAGS_BUSY) {
952 spin_unlock_irqrestore(&dd->lock, flags);
953 return ret;
954 }
955 backlog = crypto_get_backlog(&dd->queue);
956 areq = crypto_dequeue_request(&dd->queue);
957 if (areq)
958 dd->flags |= AES_FLAGS_BUSY;
959 spin_unlock_irqrestore(&dd->lock, flags);
960
961 if (!areq)
962 return ret;
963
964 if (backlog)
965 backlog->complete(backlog, -EINPROGRESS);
966
967 ctx = crypto_tfm_ctx(areq->tfm);
968
969 dd->areq = areq;
970 dd->ctx = ctx;
971 start_async = (areq != new_areq);
972 dd->is_async = start_async;
973
974 /* WARNING: ctx->start() MAY change dd->is_async. */
975 err = ctx->start(dd);
976 return (start_async) ? ret : err;
977 }
978
979
980 /* AES async block ciphers */
981
982 static int atmel_aes_transfer_complete(struct atmel_aes_dev *dd)
983 {
984 return atmel_aes_complete(dd, 0);
985 }
986
987 static int atmel_aes_start(struct atmel_aes_dev *dd)
988 {
989 struct skcipher_request *req = skcipher_request_cast(dd->areq);
990 struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
991 bool use_dma = (req->cryptlen >= ATMEL_AES_DMA_THRESHOLD ||
992 dd->ctx->block_size != AES_BLOCK_SIZE);
993 int err;
994
995 atmel_aes_set_mode(dd, rctx);
996
997 err = atmel_aes_hw_init(dd);
998 if (err)
999 return atmel_aes_complete(dd, err);
1000
1001 atmel_aes_write_ctrl(dd, use_dma, (void *)req->iv);
1002 if (use_dma)
1003 return atmel_aes_dma_start(dd, req->src, req->dst,
1004 req->cryptlen,
1005 atmel_aes_transfer_complete);
1006
1007 return atmel_aes_cpu_start(dd, req->src, req->dst, req->cryptlen,
1008 atmel_aes_transfer_complete);
1009 }
1010
1011 static int atmel_aes_ctr_transfer(struct atmel_aes_dev *dd)
1012 {
1013 struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
1014 struct skcipher_request *req = skcipher_request_cast(dd->areq);
1015 struct scatterlist *src, *dst;
1016 size_t datalen;
1017 u32 ctr;
1018 u16 start, end;
1019 bool use_dma, fragmented = false;
1020
1021 /* Check for transfer completion. */
1022 ctx->offset += dd->total;
1023 if (ctx->offset >= req->cryptlen)
1024 return atmel_aes_transfer_complete(dd);
1025
1026 /* Compute data length. */
1027 datalen = req->cryptlen - ctx->offset;
1028 ctx->blocks = DIV_ROUND_UP(datalen, AES_BLOCK_SIZE);
1029 ctr = be32_to_cpu(ctx->iv[3]);
1030
1031 /* Check 16bit counter overflow. */
1032 start = ctr & 0xffff;
1033 end = start + ctx->blocks - 1;
1034
1035 if (ctx->blocks >> 16 || end < start) {
1036 ctr |= 0xffff;
1037 datalen = AES_BLOCK_SIZE * (0x10000 - start);
1038 fragmented = true;
1039 }
1040
1041 use_dma = (datalen >= ATMEL_AES_DMA_THRESHOLD);
1042
1043 /* Jump to offset. */
1044 src = scatterwalk_ffwd(ctx->src, req->src, ctx->offset);
1045 dst = ((req->src == req->dst) ? src :
1046 scatterwalk_ffwd(ctx->dst, req->dst, ctx->offset));
1047
1048 /* Configure hardware. */
1049 atmel_aes_write_ctrl(dd, use_dma, ctx->iv);
1050 if (unlikely(fragmented)) {
1051 /*
1052 * Increment the counter manually to cope with the hardware
1053 * counter overflow.
1054 */
1055 ctx->iv[3] = cpu_to_be32(ctr);
1056 crypto_inc((u8 *)ctx->iv, AES_BLOCK_SIZE);
1057 }
1058
1059 if (use_dma)
1060 return atmel_aes_dma_start(dd, src, dst, datalen,
1061 atmel_aes_ctr_transfer);
1062
1063 return atmel_aes_cpu_start(dd, src, dst, datalen,
1064 atmel_aes_ctr_transfer);
1065 }
1066
1067 static int atmel_aes_ctr_start(struct atmel_aes_dev *dd)
1068 {
1069 struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
1070 struct skcipher_request *req = skcipher_request_cast(dd->areq);
1071 struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
1072 int err;
1073
1074 atmel_aes_set_mode(dd, rctx);
1075
1076 err = atmel_aes_hw_init(dd);
1077 if (err)
1078 return atmel_aes_complete(dd, err);
1079
1080 memcpy(ctx->iv, req->iv, AES_BLOCK_SIZE);
1081 ctx->offset = 0;
1082 dd->total = 0;
1083 return atmel_aes_ctr_transfer(dd);
1084 }
1085
1086 static int atmel_aes_crypt(struct skcipher_request *req, unsigned long mode)
1087 {
1088 struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
1089 struct atmel_aes_base_ctx *ctx = crypto_skcipher_ctx(skcipher);
1090 struct atmel_aes_reqctx *rctx;
1091 struct atmel_aes_dev *dd;
1092
1093 switch (mode & AES_FLAGS_OPMODE_MASK) {
1094 case AES_FLAGS_CFB8:
1095 ctx->block_size = CFB8_BLOCK_SIZE;
1096 break;
1097
1098 case AES_FLAGS_CFB16:
1099 ctx->block_size = CFB16_BLOCK_SIZE;
1100 break;
1101
1102 case AES_FLAGS_CFB32:
1103 ctx->block_size = CFB32_BLOCK_SIZE;
1104 break;
1105
1106 case AES_FLAGS_CFB64:
1107 ctx->block_size = CFB64_BLOCK_SIZE;
1108 break;
1109
1110 default:
1111 ctx->block_size = AES_BLOCK_SIZE;
1112 break;
1113 }
1114 ctx->is_aead = false;
1115
1116 dd = atmel_aes_find_dev(ctx);
1117 if (!dd)
1118 return -ENODEV;
1119
1120 rctx = skcipher_request_ctx(req);
1121 rctx->mode = mode;
1122
1123 if ((mode & AES_FLAGS_OPMODE_MASK) != AES_FLAGS_ECB &&
1124 !(mode & AES_FLAGS_ENCRYPT) && req->src == req->dst) {
1125 unsigned int ivsize = crypto_skcipher_ivsize(skcipher);
1126
1127 if (req->cryptlen >= ivsize)
1128 scatterwalk_map_and_copy(rctx->lastc, req->src,
1129 req->cryptlen - ivsize,
1130 ivsize, 0);
1131 }
1132
1133 return atmel_aes_handle_queue(dd, &req->base);
1134 }
1135
1136 static int atmel_aes_setkey(struct crypto_skcipher *tfm, const u8 *key,
1137 unsigned int keylen)
1138 {
1139 struct atmel_aes_base_ctx *ctx = crypto_skcipher_ctx(tfm);
1140
1141 if (keylen != AES_KEYSIZE_128 &&
1142 keylen != AES_KEYSIZE_192 &&
1143 keylen != AES_KEYSIZE_256)
1144 return -EINVAL;
1145
1146 memcpy(ctx->key, key, keylen);
1147 ctx->keylen = keylen;
1148
1149 return 0;
1150 }
1151
1152 static int atmel_aes_ecb_encrypt(struct skcipher_request *req)
1153 {
1154 return atmel_aes_crypt(req, AES_FLAGS_ECB | AES_FLAGS_ENCRYPT);
1155 }
1156
1157 static int atmel_aes_ecb_decrypt(struct skcipher_request *req)
1158 {
1159 return atmel_aes_crypt(req, AES_FLAGS_ECB);
1160 }
1161
1162 static int atmel_aes_cbc_encrypt(struct skcipher_request *req)
1163 {
1164 return atmel_aes_crypt(req, AES_FLAGS_CBC | AES_FLAGS_ENCRYPT);
1165 }
1166
1167 static int atmel_aes_cbc_decrypt(struct skcipher_request *req)
1168 {
1169 return atmel_aes_crypt(req, AES_FLAGS_CBC);
1170 }
1171
1172 static int atmel_aes_ofb_encrypt(struct skcipher_request *req)
1173 {
1174 return atmel_aes_crypt(req, AES_FLAGS_OFB | AES_FLAGS_ENCRYPT);
1175 }
1176
1177 static int atmel_aes_ofb_decrypt(struct skcipher_request *req)
1178 {
1179 return atmel_aes_crypt(req, AES_FLAGS_OFB);
1180 }
1181
1182 static int atmel_aes_cfb_encrypt(struct skcipher_request *req)
1183 {
1184 return atmel_aes_crypt(req, AES_FLAGS_CFB128 | AES_FLAGS_ENCRYPT);
1185 }
1186
1187 static int atmel_aes_cfb_decrypt(struct skcipher_request *req)
1188 {
1189 return atmel_aes_crypt(req, AES_FLAGS_CFB128);
1190 }
1191
1192 static int atmel_aes_cfb64_encrypt(struct skcipher_request *req)
1193 {
1194 return atmel_aes_crypt(req, AES_FLAGS_CFB64 | AES_FLAGS_ENCRYPT);
1195 }
1196
1197 static int atmel_aes_cfb64_decrypt(struct skcipher_request *req)
1198 {
1199 return atmel_aes_crypt(req, AES_FLAGS_CFB64);
1200 }
1201
1202 static int atmel_aes_cfb32_encrypt(struct skcipher_request *req)
1203 {
1204 return atmel_aes_crypt(req, AES_FLAGS_CFB32 | AES_FLAGS_ENCRYPT);
1205 }
1206
1207 static int atmel_aes_cfb32_decrypt(struct skcipher_request *req)
1208 {
1209 return atmel_aes_crypt(req, AES_FLAGS_CFB32);
1210 }
1211
1212 static int atmel_aes_cfb16_encrypt(struct skcipher_request *req)
1213 {
1214 return atmel_aes_crypt(req, AES_FLAGS_CFB16 | AES_FLAGS_ENCRYPT);
1215 }
1216
1217 static int atmel_aes_cfb16_decrypt(struct skcipher_request *req)
1218 {
1219 return atmel_aes_crypt(req, AES_FLAGS_CFB16);
1220 }
1221
1222 static int atmel_aes_cfb8_encrypt(struct skcipher_request *req)
1223 {
1224 return atmel_aes_crypt(req, AES_FLAGS_CFB8 | AES_FLAGS_ENCRYPT);
1225 }
1226
1227 static int atmel_aes_cfb8_decrypt(struct skcipher_request *req)
1228 {
1229 return atmel_aes_crypt(req, AES_FLAGS_CFB8);
1230 }
1231
1232 static int atmel_aes_ctr_encrypt(struct skcipher_request *req)
1233 {
1234 return atmel_aes_crypt(req, AES_FLAGS_CTR | AES_FLAGS_ENCRYPT);
1235 }
1236
1237 static int atmel_aes_ctr_decrypt(struct skcipher_request *req)
1238 {
1239 return atmel_aes_crypt(req, AES_FLAGS_CTR);
1240 }
1241
1242 static int atmel_aes_init_tfm(struct crypto_skcipher *tfm)
1243 {
1244 struct atmel_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
1245
1246 crypto_skcipher_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1247 ctx->base.start = atmel_aes_start;
1248
1249 return 0;
1250 }
1251
1252 static int atmel_aes_ctr_init_tfm(struct crypto_skcipher *tfm)
1253 {
1254 struct atmel_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
1255
1256 crypto_skcipher_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1257 ctx->base.start = atmel_aes_ctr_start;
1258
1259 return 0;
1260 }
1261
1262 static struct skcipher_alg aes_algs[] = {
1263 {
1264 .base.cra_name = "ecb(aes)",
1265 .base.cra_driver_name = "atmel-ecb-aes",
1266 .base.cra_blocksize = AES_BLOCK_SIZE,
1267 .base.cra_ctxsize = sizeof(struct atmel_aes_ctx),
1268
1269 .init = atmel_aes_init_tfm,
1270 .min_keysize = AES_MIN_KEY_SIZE,
1271 .max_keysize = AES_MAX_KEY_SIZE,
1272 .setkey = atmel_aes_setkey,
1273 .encrypt = atmel_aes_ecb_encrypt,
1274 .decrypt = atmel_aes_ecb_decrypt,
1275 },
1276 {
1277 .base.cra_name = "cbc(aes)",
1278 .base.cra_driver_name = "atmel-cbc-aes",
1279 .base.cra_blocksize = AES_BLOCK_SIZE,
1280 .base.cra_ctxsize = sizeof(struct atmel_aes_ctx),
1281
1282 .init = atmel_aes_init_tfm,
1283 .min_keysize = AES_MIN_KEY_SIZE,
1284 .max_keysize = AES_MAX_KEY_SIZE,
1285 .setkey = atmel_aes_setkey,
1286 .encrypt = atmel_aes_cbc_encrypt,
1287 .decrypt = atmel_aes_cbc_decrypt,
1288 .ivsize = AES_BLOCK_SIZE,
1289 },
1290 {
1291 .base.cra_name = "ofb(aes)",
1292 .base.cra_driver_name = "atmel-ofb-aes",
1293 .base.cra_blocksize = AES_BLOCK_SIZE,
1294 .base.cra_ctxsize = sizeof(struct atmel_aes_ctx),
1295
1296 .init = atmel_aes_init_tfm,
1297 .min_keysize = AES_MIN_KEY_SIZE,
1298 .max_keysize = AES_MAX_KEY_SIZE,
1299 .setkey = atmel_aes_setkey,
1300 .encrypt = atmel_aes_ofb_encrypt,
1301 .decrypt = atmel_aes_ofb_decrypt,
1302 .ivsize = AES_BLOCK_SIZE,
1303 },
1304 {
1305 .base.cra_name = "cfb(aes)",
1306 .base.cra_driver_name = "atmel-cfb-aes",
1307 .base.cra_blocksize = AES_BLOCK_SIZE,
1308 .base.cra_ctxsize = sizeof(struct atmel_aes_ctx),
1309
1310 .init = atmel_aes_init_tfm,
1311 .min_keysize = AES_MIN_KEY_SIZE,
1312 .max_keysize = AES_MAX_KEY_SIZE,
1313 .setkey = atmel_aes_setkey,
1314 .encrypt = atmel_aes_cfb_encrypt,
1315 .decrypt = atmel_aes_cfb_decrypt,
1316 .ivsize = AES_BLOCK_SIZE,
1317 },
1318 {
1319 .base.cra_name = "cfb32(aes)",
1320 .base.cra_driver_name = "atmel-cfb32-aes",
1321 .base.cra_blocksize = CFB32_BLOCK_SIZE,
1322 .base.cra_ctxsize = sizeof(struct atmel_aes_ctx),
1323
1324 .init = atmel_aes_init_tfm,
1325 .min_keysize = AES_MIN_KEY_SIZE,
1326 .max_keysize = AES_MAX_KEY_SIZE,
1327 .setkey = atmel_aes_setkey,
1328 .encrypt = atmel_aes_cfb32_encrypt,
1329 .decrypt = atmel_aes_cfb32_decrypt,
1330 .ivsize = AES_BLOCK_SIZE,
1331 },
1332 {
1333 .base.cra_name = "cfb16(aes)",
1334 .base.cra_driver_name = "atmel-cfb16-aes",
1335 .base.cra_blocksize = CFB16_BLOCK_SIZE,
1336 .base.cra_ctxsize = sizeof(struct atmel_aes_ctx),
1337
1338 .init = atmel_aes_init_tfm,
1339 .min_keysize = AES_MIN_KEY_SIZE,
1340 .max_keysize = AES_MAX_KEY_SIZE,
1341 .setkey = atmel_aes_setkey,
1342 .encrypt = atmel_aes_cfb16_encrypt,
1343 .decrypt = atmel_aes_cfb16_decrypt,
1344 .ivsize = AES_BLOCK_SIZE,
1345 },
1346 {
1347 .base.cra_name = "cfb8(aes)",
1348 .base.cra_driver_name = "atmel-cfb8-aes",
1349 .base.cra_blocksize = CFB8_BLOCK_SIZE,
1350 .base.cra_ctxsize = sizeof(struct atmel_aes_ctx),
1351
1352 .init = atmel_aes_init_tfm,
1353 .min_keysize = AES_MIN_KEY_SIZE,
1354 .max_keysize = AES_MAX_KEY_SIZE,
1355 .setkey = atmel_aes_setkey,
1356 .encrypt = atmel_aes_cfb8_encrypt,
1357 .decrypt = atmel_aes_cfb8_decrypt,
1358 .ivsize = AES_BLOCK_SIZE,
1359 },
1360 {
1361 .base.cra_name = "ctr(aes)",
1362 .base.cra_driver_name = "atmel-ctr-aes",
1363 .base.cra_blocksize = 1,
1364 .base.cra_ctxsize = sizeof(struct atmel_aes_ctr_ctx),
1365
1366 .init = atmel_aes_ctr_init_tfm,
1367 .min_keysize = AES_MIN_KEY_SIZE,
1368 .max_keysize = AES_MAX_KEY_SIZE,
1369 .setkey = atmel_aes_setkey,
1370 .encrypt = atmel_aes_ctr_encrypt,
1371 .decrypt = atmel_aes_ctr_decrypt,
1372 .ivsize = AES_BLOCK_SIZE,
1373 },
1374 };
1375
1376 static struct skcipher_alg aes_cfb64_alg = {
1377 .base.cra_name = "cfb64(aes)",
1378 .base.cra_driver_name = "atmel-cfb64-aes",
1379 .base.cra_blocksize = CFB64_BLOCK_SIZE,
1380 .base.cra_ctxsize = sizeof(struct atmel_aes_ctx),
1381
1382 .init = atmel_aes_init_tfm,
1383 .min_keysize = AES_MIN_KEY_SIZE,
1384 .max_keysize = AES_MAX_KEY_SIZE,
1385 .setkey = atmel_aes_setkey,
1386 .encrypt = atmel_aes_cfb64_encrypt,
1387 .decrypt = atmel_aes_cfb64_decrypt,
1388 .ivsize = AES_BLOCK_SIZE,
1389 };
1390
1391
1392 /* gcm aead functions */
1393
1394 static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd,
1395 const u32 *data, size_t datalen,
1396 const __be32 *ghash_in, __be32 *ghash_out,
1397 atmel_aes_fn_t resume);
1398 static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd);
1399 static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd);
1400
1401 static int atmel_aes_gcm_start(struct atmel_aes_dev *dd);
1402 static int atmel_aes_gcm_process(struct atmel_aes_dev *dd);
1403 static int atmel_aes_gcm_length(struct atmel_aes_dev *dd);
1404 static int atmel_aes_gcm_data(struct atmel_aes_dev *dd);
1405 static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd);
1406 static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd);
1407 static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd);
1408
1409 static inline struct atmel_aes_gcm_ctx *
1410 atmel_aes_gcm_ctx_cast(struct atmel_aes_base_ctx *ctx)
1411 {
1412 return container_of(ctx, struct atmel_aes_gcm_ctx, base);
1413 }
1414
1415 static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd,
1416 const u32 *data, size_t datalen,
1417 const __be32 *ghash_in, __be32 *ghash_out,
1418 atmel_aes_fn_t resume)
1419 {
1420 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1421
1422 dd->data = (u32 *)data;
1423 dd->datalen = datalen;
1424 ctx->ghash_in = ghash_in;
1425 ctx->ghash_out = ghash_out;
1426 ctx->ghash_resume = resume;
1427
1428 atmel_aes_write_ctrl(dd, false, NULL);
1429 return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_ghash_init);
1430 }
1431
1432 static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd)
1433 {
1434 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1435
1436 /* Set the data length. */
1437 atmel_aes_write(dd, AES_AADLENR, dd->total);
1438 atmel_aes_write(dd, AES_CLENR, 0);
1439
1440 /* If needed, overwrite the GCM Intermediate Hash Word Registers */
1441 if (ctx->ghash_in)
1442 atmel_aes_write_block(dd, AES_GHASHR(0), ctx->ghash_in);
1443
1444 return atmel_aes_gcm_ghash_finalize(dd);
1445 }
1446
1447 static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd)
1448 {
1449 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1450 u32 isr;
1451
1452 /* Write data into the Input Data Registers. */
1453 while (dd->datalen > 0) {
1454 atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
1455 dd->data += 4;
1456 dd->datalen -= AES_BLOCK_SIZE;
1457
1458 isr = atmel_aes_read(dd, AES_ISR);
1459 if (!(isr & AES_INT_DATARDY)) {
1460 dd->resume = atmel_aes_gcm_ghash_finalize;
1461 atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
1462 return -EINPROGRESS;
1463 }
1464 }
1465
1466 /* Read the computed hash from GHASHRx. */
1467 atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash_out);
1468
1469 return ctx->ghash_resume(dd);
1470 }
1471
1472
1473 static int atmel_aes_gcm_start(struct atmel_aes_dev *dd)
1474 {
1475 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1476 struct aead_request *req = aead_request_cast(dd->areq);
1477 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1478 struct atmel_aes_reqctx *rctx = aead_request_ctx(req);
1479 size_t ivsize = crypto_aead_ivsize(tfm);
1480 size_t datalen, padlen;
1481 const void *iv = req->iv;
1482 u8 *data = dd->buf;
1483 int err;
1484
1485 atmel_aes_set_mode(dd, rctx);
1486
1487 err = atmel_aes_hw_init(dd);
1488 if (err)
1489 return atmel_aes_complete(dd, err);
1490
1491 if (likely(ivsize == GCM_AES_IV_SIZE)) {
1492 memcpy(ctx->j0, iv, ivsize);
1493 ctx->j0[3] = cpu_to_be32(1);
1494 return atmel_aes_gcm_process(dd);
1495 }
1496
1497 padlen = atmel_aes_padlen(ivsize, AES_BLOCK_SIZE);
1498 datalen = ivsize + padlen + AES_BLOCK_SIZE;
1499 if (datalen > dd->buflen)
1500 return atmel_aes_complete(dd, -EINVAL);
1501
1502 memcpy(data, iv, ivsize);
1503 memset(data + ivsize, 0, padlen + sizeof(u64));
1504 ((__be64 *)(data + datalen))[-1] = cpu_to_be64(ivsize * 8);
1505
1506 return atmel_aes_gcm_ghash(dd, (const u32 *)data, datalen,
1507 NULL, ctx->j0, atmel_aes_gcm_process);
1508 }
1509
1510 static int atmel_aes_gcm_process(struct atmel_aes_dev *dd)
1511 {
1512 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1513 struct aead_request *req = aead_request_cast(dd->areq);
1514 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1515 bool enc = atmel_aes_is_encrypt(dd);
1516 u32 authsize;
1517
1518 /* Compute text length. */
1519 authsize = crypto_aead_authsize(tfm);
1520 ctx->textlen = req->cryptlen - (enc ? 0 : authsize);
1521
1522 /*
1523 * According to tcrypt test suite, the GCM Automatic Tag Generation
1524 * fails when both the message and its associated data are empty.
1525 */
1526 if (likely(req->assoclen != 0 || ctx->textlen != 0))
1527 dd->flags |= AES_FLAGS_GTAGEN;
1528
1529 atmel_aes_write_ctrl(dd, false, NULL);
1530 return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_length);
1531 }
1532
1533 static int atmel_aes_gcm_length(struct atmel_aes_dev *dd)
1534 {
1535 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1536 struct aead_request *req = aead_request_cast(dd->areq);
1537 __be32 j0_lsw, *j0 = ctx->j0;
1538 size_t padlen;
1539
1540 /* Write incr32(J0) into IV. */
1541 j0_lsw = j0[3];
1542 be32_add_cpu(&j0[3], 1);
1543 atmel_aes_write_block(dd, AES_IVR(0), j0);
1544 j0[3] = j0_lsw;
1545
1546 /* Set aad and text lengths. */
1547 atmel_aes_write(dd, AES_AADLENR, req->assoclen);
1548 atmel_aes_write(dd, AES_CLENR, ctx->textlen);
1549
1550 /* Check whether AAD are present. */
1551 if (unlikely(req->assoclen == 0)) {
1552 dd->datalen = 0;
1553 return atmel_aes_gcm_data(dd);
1554 }
1555
1556 /* Copy assoc data and add padding. */
1557 padlen = atmel_aes_padlen(req->assoclen, AES_BLOCK_SIZE);
1558 if (unlikely(req->assoclen + padlen > dd->buflen))
1559 return atmel_aes_complete(dd, -EINVAL);
1560 sg_copy_to_buffer(req->src, sg_nents(req->src), dd->buf, req->assoclen);
1561
1562 /* Write assoc data into the Input Data register. */
1563 dd->data = (u32 *)dd->buf;
1564 dd->datalen = req->assoclen + padlen;
1565 return atmel_aes_gcm_data(dd);
1566 }
1567
1568 static int atmel_aes_gcm_data(struct atmel_aes_dev *dd)
1569 {
1570 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1571 struct aead_request *req = aead_request_cast(dd->areq);
1572 bool use_dma = (ctx->textlen >= ATMEL_AES_DMA_THRESHOLD);
1573 struct scatterlist *src, *dst;
1574 u32 isr, mr;
1575
1576 /* Write AAD first. */
1577 while (dd->datalen > 0) {
1578 atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
1579 dd->data += 4;
1580 dd->datalen -= AES_BLOCK_SIZE;
1581
1582 isr = atmel_aes_read(dd, AES_ISR);
1583 if (!(isr & AES_INT_DATARDY)) {
1584 dd->resume = atmel_aes_gcm_data;
1585 atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
1586 return -EINPROGRESS;
1587 }
1588 }
1589
1590 /* GMAC only. */
1591 if (unlikely(ctx->textlen == 0))
1592 return atmel_aes_gcm_tag_init(dd);
1593
1594 /* Prepare src and dst scatter lists to transfer cipher/plain texts */
1595 src = scatterwalk_ffwd(ctx->src, req->src, req->assoclen);
1596 dst = ((req->src == req->dst) ? src :
1597 scatterwalk_ffwd(ctx->dst, req->dst, req->assoclen));
1598
1599 if (use_dma) {
1600 /* Update the Mode Register for DMA transfers. */
1601 mr = atmel_aes_read(dd, AES_MR);
1602 mr &= ~(AES_MR_SMOD_MASK | AES_MR_DUALBUFF);
1603 mr |= AES_MR_SMOD_IDATAR0;
1604 if (dd->caps.has_dualbuff)
1605 mr |= AES_MR_DUALBUFF;
1606 atmel_aes_write(dd, AES_MR, mr);
1607
1608 return atmel_aes_dma_start(dd, src, dst, ctx->textlen,
1609 atmel_aes_gcm_tag_init);
1610 }
1611
1612 return atmel_aes_cpu_start(dd, src, dst, ctx->textlen,
1613 atmel_aes_gcm_tag_init);
1614 }
1615
1616 static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd)
1617 {
1618 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1619 struct aead_request *req = aead_request_cast(dd->areq);
1620 __be64 *data = dd->buf;
1621
1622 if (likely(dd->flags & AES_FLAGS_GTAGEN)) {
1623 if (!(atmel_aes_read(dd, AES_ISR) & AES_INT_TAGRDY)) {
1624 dd->resume = atmel_aes_gcm_tag_init;
1625 atmel_aes_write(dd, AES_IER, AES_INT_TAGRDY);
1626 return -EINPROGRESS;
1627 }
1628
1629 return atmel_aes_gcm_finalize(dd);
1630 }
1631
1632 /* Read the GCM Intermediate Hash Word Registers. */
1633 atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash);
1634
1635 data[0] = cpu_to_be64(req->assoclen * 8);
1636 data[1] = cpu_to_be64(ctx->textlen * 8);
1637
1638 return atmel_aes_gcm_ghash(dd, (const u32 *)data, AES_BLOCK_SIZE,
1639 ctx->ghash, ctx->ghash, atmel_aes_gcm_tag);
1640 }
1641
1642 static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd)
1643 {
1644 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1645 unsigned long flags;
1646
1647 /*
1648 * Change mode to CTR to complete the tag generation.
1649 * Use J0 as Initialization Vector.
1650 */
1651 flags = dd->flags;
1652 dd->flags &= ~(AES_FLAGS_OPMODE_MASK | AES_FLAGS_GTAGEN);
1653 dd->flags |= AES_FLAGS_CTR;
1654 atmel_aes_write_ctrl(dd, false, ctx->j0);
1655 dd->flags = flags;
1656
1657 atmel_aes_write_block(dd, AES_IDATAR(0), ctx->ghash);
1658 return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_finalize);
1659 }
1660
1661 static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd)
1662 {
1663 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1664 struct aead_request *req = aead_request_cast(dd->areq);
1665 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1666 bool enc = atmel_aes_is_encrypt(dd);
1667 u32 offset, authsize, itag[4], *otag = ctx->tag;
1668 int err;
1669
1670 /* Read the computed tag. */
1671 if (likely(dd->flags & AES_FLAGS_GTAGEN))
1672 atmel_aes_read_block(dd, AES_TAGR(0), ctx->tag);
1673 else
1674 atmel_aes_read_block(dd, AES_ODATAR(0), ctx->tag);
1675
1676 offset = req->assoclen + ctx->textlen;
1677 authsize = crypto_aead_authsize(tfm);
1678 if (enc) {
1679 scatterwalk_map_and_copy(otag, req->dst, offset, authsize, 1);
1680 err = 0;
1681 } else {
1682 scatterwalk_map_and_copy(itag, req->src, offset, authsize, 0);
1683 err = crypto_memneq(itag, otag, authsize) ? -EBADMSG : 0;
1684 }
1685
1686 return atmel_aes_complete(dd, err);
1687 }
1688
1689 static int atmel_aes_gcm_crypt(struct aead_request *req,
1690 unsigned long mode)
1691 {
1692 struct atmel_aes_base_ctx *ctx;
1693 struct atmel_aes_reqctx *rctx;
1694 struct atmel_aes_dev *dd;
1695
1696 ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
1697 ctx->block_size = AES_BLOCK_SIZE;
1698 ctx->is_aead = true;
1699
1700 dd = atmel_aes_find_dev(ctx);
1701 if (!dd)
1702 return -ENODEV;
1703
1704 rctx = aead_request_ctx(req);
1705 rctx->mode = AES_FLAGS_GCM | mode;
1706
1707 return atmel_aes_handle_queue(dd, &req->base);
1708 }
1709
1710 static int atmel_aes_gcm_setkey(struct crypto_aead *tfm, const u8 *key,
1711 unsigned int keylen)
1712 {
1713 struct atmel_aes_base_ctx *ctx = crypto_aead_ctx(tfm);
1714
1715 if (keylen != AES_KEYSIZE_256 &&
1716 keylen != AES_KEYSIZE_192 &&
1717 keylen != AES_KEYSIZE_128)
1718 return -EINVAL;
1719
1720 memcpy(ctx->key, key, keylen);
1721 ctx->keylen = keylen;
1722
1723 return 0;
1724 }
1725
1726 static int atmel_aes_gcm_setauthsize(struct crypto_aead *tfm,
1727 unsigned int authsize)
1728 {
1729 return crypto_gcm_check_authsize(authsize);
1730 }
1731
1732 static int atmel_aes_gcm_encrypt(struct aead_request *req)
1733 {
1734 return atmel_aes_gcm_crypt(req, AES_FLAGS_ENCRYPT);
1735 }
1736
1737 static int atmel_aes_gcm_decrypt(struct aead_request *req)
1738 {
1739 return atmel_aes_gcm_crypt(req, 0);
1740 }
1741
1742 static int atmel_aes_gcm_init(struct crypto_aead *tfm)
1743 {
1744 struct atmel_aes_gcm_ctx *ctx = crypto_aead_ctx(tfm);
1745
1746 crypto_aead_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1747 ctx->base.start = atmel_aes_gcm_start;
1748
1749 return 0;
1750 }
1751
1752 static struct aead_alg aes_gcm_alg = {
1753 .setkey = atmel_aes_gcm_setkey,
1754 .setauthsize = atmel_aes_gcm_setauthsize,
1755 .encrypt = atmel_aes_gcm_encrypt,
1756 .decrypt = atmel_aes_gcm_decrypt,
1757 .init = atmel_aes_gcm_init,
1758 .ivsize = GCM_AES_IV_SIZE,
1759 .maxauthsize = AES_BLOCK_SIZE,
1760
1761 .base = {
1762 .cra_name = "gcm(aes)",
1763 .cra_driver_name = "atmel-gcm-aes",
1764 .cra_blocksize = 1,
1765 .cra_ctxsize = sizeof(struct atmel_aes_gcm_ctx),
1766 },
1767 };
1768
1769
1770 /* xts functions */
1771
1772 static inline struct atmel_aes_xts_ctx *
1773 atmel_aes_xts_ctx_cast(struct atmel_aes_base_ctx *ctx)
1774 {
1775 return container_of(ctx, struct atmel_aes_xts_ctx, base);
1776 }
1777
1778 static int atmel_aes_xts_process_data(struct atmel_aes_dev *dd);
1779
1780 static int atmel_aes_xts_start(struct atmel_aes_dev *dd)
1781 {
1782 struct atmel_aes_xts_ctx *ctx = atmel_aes_xts_ctx_cast(dd->ctx);
1783 struct skcipher_request *req = skcipher_request_cast(dd->areq);
1784 struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
1785 unsigned long flags;
1786 int err;
1787
1788 atmel_aes_set_mode(dd, rctx);
1789
1790 err = atmel_aes_hw_init(dd);
1791 if (err)
1792 return atmel_aes_complete(dd, err);
1793
1794 /* Compute the tweak value from req->iv with ecb(aes). */
1795 flags = dd->flags;
1796 dd->flags &= ~AES_FLAGS_MODE_MASK;
1797 dd->flags |= (AES_FLAGS_ECB | AES_FLAGS_ENCRYPT);
1798 atmel_aes_write_ctrl_key(dd, false, NULL,
1799 ctx->key2, ctx->base.keylen);
1800 dd->flags = flags;
1801
1802 atmel_aes_write_block(dd, AES_IDATAR(0), req->iv);
1803 return atmel_aes_wait_for_data_ready(dd, atmel_aes_xts_process_data);
1804 }
1805
1806 static int atmel_aes_xts_process_data(struct atmel_aes_dev *dd)
1807 {
1808 struct skcipher_request *req = skcipher_request_cast(dd->areq);
1809 bool use_dma = (req->cryptlen >= ATMEL_AES_DMA_THRESHOLD);
1810 u32 tweak[AES_BLOCK_SIZE / sizeof(u32)];
1811 static const __le32 one[AES_BLOCK_SIZE / sizeof(u32)] = {cpu_to_le32(1), };
1812 u8 *tweak_bytes = (u8 *)tweak;
1813 int i;
1814
1815 /* Read the computed ciphered tweak value. */
1816 atmel_aes_read_block(dd, AES_ODATAR(0), tweak);
1817 /*
1818 * Hardware quirk:
1819 * the order of the ciphered tweak bytes need to be reversed before
1820 * writing them into the ODATARx registers.
1821 */
1822 for (i = 0; i < AES_BLOCK_SIZE/2; ++i) {
1823 u8 tmp = tweak_bytes[AES_BLOCK_SIZE - 1 - i];
1824
1825 tweak_bytes[AES_BLOCK_SIZE - 1 - i] = tweak_bytes[i];
1826 tweak_bytes[i] = tmp;
1827 }
1828
1829 /* Process the data. */
1830 atmel_aes_write_ctrl(dd, use_dma, NULL);
1831 atmel_aes_write_block(dd, AES_TWR(0), tweak);
1832 atmel_aes_write_block(dd, AES_ALPHAR(0), one);
1833 if (use_dma)
1834 return atmel_aes_dma_start(dd, req->src, req->dst,
1835 req->cryptlen,
1836 atmel_aes_transfer_complete);
1837
1838 return atmel_aes_cpu_start(dd, req->src, req->dst, req->cryptlen,
1839 atmel_aes_transfer_complete);
1840 }
1841
1842 static int atmel_aes_xts_setkey(struct crypto_skcipher *tfm, const u8 *key,
1843 unsigned int keylen)
1844 {
1845 struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
1846 int err;
1847
1848 err = xts_check_key(crypto_skcipher_tfm(tfm), key, keylen);
1849 if (err)
1850 return err;
1851
1852 memcpy(ctx->base.key, key, keylen/2);
1853 memcpy(ctx->key2, key + keylen/2, keylen/2);
1854 ctx->base.keylen = keylen/2;
1855
1856 return 0;
1857 }
1858
1859 static int atmel_aes_xts_encrypt(struct skcipher_request *req)
1860 {
1861 return atmel_aes_crypt(req, AES_FLAGS_XTS | AES_FLAGS_ENCRYPT);
1862 }
1863
1864 static int atmel_aes_xts_decrypt(struct skcipher_request *req)
1865 {
1866 return atmel_aes_crypt(req, AES_FLAGS_XTS);
1867 }
1868
1869 static int atmel_aes_xts_init_tfm(struct crypto_skcipher *tfm)
1870 {
1871 struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
1872
1873 crypto_skcipher_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1874 ctx->base.start = atmel_aes_xts_start;
1875
1876 return 0;
1877 }
1878
1879 static struct skcipher_alg aes_xts_alg = {
1880 .base.cra_name = "xts(aes)",
1881 .base.cra_driver_name = "atmel-xts-aes",
1882 .base.cra_blocksize = AES_BLOCK_SIZE,
1883 .base.cra_ctxsize = sizeof(struct atmel_aes_xts_ctx),
1884
1885 .min_keysize = 2 * AES_MIN_KEY_SIZE,
1886 .max_keysize = 2 * AES_MAX_KEY_SIZE,
1887 .ivsize = AES_BLOCK_SIZE,
1888 .setkey = atmel_aes_xts_setkey,
1889 .encrypt = atmel_aes_xts_encrypt,
1890 .decrypt = atmel_aes_xts_decrypt,
1891 .init = atmel_aes_xts_init_tfm,
1892 };
1893
1894 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
1895 /* authenc aead functions */
1896
1897 static int atmel_aes_authenc_start(struct atmel_aes_dev *dd);
1898 static int atmel_aes_authenc_init(struct atmel_aes_dev *dd, int err,
1899 bool is_async);
1900 static int atmel_aes_authenc_transfer(struct atmel_aes_dev *dd, int err,
1901 bool is_async);
1902 static int atmel_aes_authenc_digest(struct atmel_aes_dev *dd);
1903 static int atmel_aes_authenc_final(struct atmel_aes_dev *dd, int err,
1904 bool is_async);
1905
1906 static void atmel_aes_authenc_complete(struct atmel_aes_dev *dd, int err)
1907 {
1908 struct aead_request *req = aead_request_cast(dd->areq);
1909 struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1910
1911 if (err && (dd->flags & AES_FLAGS_OWN_SHA))
1912 atmel_sha_authenc_abort(&rctx->auth_req);
1913 dd->flags &= ~AES_FLAGS_OWN_SHA;
1914 }
1915
1916 static int atmel_aes_authenc_start(struct atmel_aes_dev *dd)
1917 {
1918 struct aead_request *req = aead_request_cast(dd->areq);
1919 struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1920 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1921 struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
1922 int err;
1923
1924 atmel_aes_set_mode(dd, &rctx->base);
1925
1926 err = atmel_aes_hw_init(dd);
1927 if (err)
1928 return atmel_aes_complete(dd, err);
1929
1930 return atmel_sha_authenc_schedule(&rctx->auth_req, ctx->auth,
1931 atmel_aes_authenc_init, dd);
1932 }
1933
1934 static int atmel_aes_authenc_init(struct atmel_aes_dev *dd, int err,
1935 bool is_async)
1936 {
1937 struct aead_request *req = aead_request_cast(dd->areq);
1938 struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1939
1940 if (is_async)
1941 dd->is_async = true;
1942 if (err)
1943 return atmel_aes_complete(dd, err);
1944
1945 /* If here, we've got the ownership of the SHA device. */
1946 dd->flags |= AES_FLAGS_OWN_SHA;
1947
1948 /* Configure the SHA device. */
1949 return atmel_sha_authenc_init(&rctx->auth_req,
1950 req->src, req->assoclen,
1951 rctx->textlen,
1952 atmel_aes_authenc_transfer, dd);
1953 }
1954
1955 static int atmel_aes_authenc_transfer(struct atmel_aes_dev *dd, int err,
1956 bool is_async)
1957 {
1958 struct aead_request *req = aead_request_cast(dd->areq);
1959 struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1960 bool enc = atmel_aes_is_encrypt(dd);
1961 struct scatterlist *src, *dst;
1962 __be32 iv[AES_BLOCK_SIZE / sizeof(u32)];
1963 u32 emr;
1964
1965 if (is_async)
1966 dd->is_async = true;
1967 if (err)
1968 return atmel_aes_complete(dd, err);
1969
1970 /* Prepare src and dst scatter-lists to transfer cipher/plain texts. */
1971 src = scatterwalk_ffwd(rctx->src, req->src, req->assoclen);
1972 dst = src;
1973
1974 if (req->src != req->dst)
1975 dst = scatterwalk_ffwd(rctx->dst, req->dst, req->assoclen);
1976
1977 /* Configure the AES device. */
1978 memcpy(iv, req->iv, sizeof(iv));
1979
1980 /*
1981 * Here we always set the 2nd parameter of atmel_aes_write_ctrl() to
1982 * 'true' even if the data transfer is actually performed by the CPU (so
1983 * not by the DMA) because we must force the AES_MR_SMOD bitfield to the
1984 * value AES_MR_SMOD_IDATAR0. Indeed, both AES_MR_SMOD and SHA_MR_SMOD
1985 * must be set to *_MR_SMOD_IDATAR0.
1986 */
1987 atmel_aes_write_ctrl(dd, true, iv);
1988 emr = AES_EMR_PLIPEN;
1989 if (!enc)
1990 emr |= AES_EMR_PLIPD;
1991 atmel_aes_write(dd, AES_EMR, emr);
1992
1993 /* Transfer data. */
1994 return atmel_aes_dma_start(dd, src, dst, rctx->textlen,
1995 atmel_aes_authenc_digest);
1996 }
1997
1998 static int atmel_aes_authenc_digest(struct atmel_aes_dev *dd)
1999 {
2000 struct aead_request *req = aead_request_cast(dd->areq);
2001 struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2002
2003 /* atmel_sha_authenc_final() releases the SHA device. */
2004 dd->flags &= ~AES_FLAGS_OWN_SHA;
2005 return atmel_sha_authenc_final(&rctx->auth_req,
2006 rctx->digest, sizeof(rctx->digest),
2007 atmel_aes_authenc_final, dd);
2008 }
2009
2010 static int atmel_aes_authenc_final(struct atmel_aes_dev *dd, int err,
2011 bool is_async)
2012 {
2013 struct aead_request *req = aead_request_cast(dd->areq);
2014 struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2015 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2016 bool enc = atmel_aes_is_encrypt(dd);
2017 u32 idigest[SHA512_DIGEST_SIZE / sizeof(u32)], *odigest = rctx->digest;
2018 u32 offs, authsize;
2019
2020 if (is_async)
2021 dd->is_async = true;
2022 if (err)
2023 goto complete;
2024
2025 offs = req->assoclen + rctx->textlen;
2026 authsize = crypto_aead_authsize(tfm);
2027 if (enc) {
2028 scatterwalk_map_and_copy(odigest, req->dst, offs, authsize, 1);
2029 } else {
2030 scatterwalk_map_and_copy(idigest, req->src, offs, authsize, 0);
2031 if (crypto_memneq(idigest, odigest, authsize))
2032 err = -EBADMSG;
2033 }
2034
2035 complete:
2036 return atmel_aes_complete(dd, err);
2037 }
2038
2039 static int atmel_aes_authenc_setkey(struct crypto_aead *tfm, const u8 *key,
2040 unsigned int keylen)
2041 {
2042 struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
2043 struct crypto_authenc_keys keys;
2044 int err;
2045
2046 if (crypto_authenc_extractkeys(&keys, key, keylen) != 0)
2047 goto badkey;
2048
2049 if (keys.enckeylen > sizeof(ctx->base.key))
2050 goto badkey;
2051
2052 /* Save auth key. */
2053 err = atmel_sha_authenc_setkey(ctx->auth,
2054 keys.authkey, keys.authkeylen,
2055 crypto_aead_get_flags(tfm));
2056 if (err) {
2057 memzero_explicit(&keys, sizeof(keys));
2058 return err;
2059 }
2060
2061 /* Save enc key. */
2062 ctx->base.keylen = keys.enckeylen;
2063 memcpy(ctx->base.key, keys.enckey, keys.enckeylen);
2064
2065 memzero_explicit(&keys, sizeof(keys));
2066 return 0;
2067
2068 badkey:
2069 memzero_explicit(&keys, sizeof(keys));
2070 return -EINVAL;
2071 }
2072
2073 static int atmel_aes_authenc_init_tfm(struct crypto_aead *tfm,
2074 unsigned long auth_mode)
2075 {
2076 struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
2077 unsigned int auth_reqsize = atmel_sha_authenc_get_reqsize();
2078
2079 ctx->auth = atmel_sha_authenc_spawn(auth_mode);
2080 if (IS_ERR(ctx->auth))
2081 return PTR_ERR(ctx->auth);
2082
2083 crypto_aead_set_reqsize(tfm, (sizeof(struct atmel_aes_authenc_reqctx) +
2084 auth_reqsize));
2085 ctx->base.start = atmel_aes_authenc_start;
2086
2087 return 0;
2088 }
2089
2090 static int atmel_aes_authenc_hmac_sha1_init_tfm(struct crypto_aead *tfm)
2091 {
2092 return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA1);
2093 }
2094
2095 static int atmel_aes_authenc_hmac_sha224_init_tfm(struct crypto_aead *tfm)
2096 {
2097 return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA224);
2098 }
2099
2100 static int atmel_aes_authenc_hmac_sha256_init_tfm(struct crypto_aead *tfm)
2101 {
2102 return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA256);
2103 }
2104
2105 static int atmel_aes_authenc_hmac_sha384_init_tfm(struct crypto_aead *tfm)
2106 {
2107 return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA384);
2108 }
2109
2110 static int atmel_aes_authenc_hmac_sha512_init_tfm(struct crypto_aead *tfm)
2111 {
2112 return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA512);
2113 }
2114
2115 static void atmel_aes_authenc_exit_tfm(struct crypto_aead *tfm)
2116 {
2117 struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
2118
2119 atmel_sha_authenc_free(ctx->auth);
2120 }
2121
2122 static int atmel_aes_authenc_crypt(struct aead_request *req,
2123 unsigned long mode)
2124 {
2125 struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2126 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2127 struct atmel_aes_base_ctx *ctx = crypto_aead_ctx(tfm);
2128 u32 authsize = crypto_aead_authsize(tfm);
2129 bool enc = (mode & AES_FLAGS_ENCRYPT);
2130 struct atmel_aes_dev *dd;
2131
2132 /* Compute text length. */
2133 if (!enc && req->cryptlen < authsize)
2134 return -EINVAL;
2135 rctx->textlen = req->cryptlen - (enc ? 0 : authsize);
2136
2137 /*
2138 * Currently, empty messages are not supported yet:
2139 * the SHA auto-padding can be used only on non-empty messages.
2140 * Hence a special case needs to be implemented for empty message.
2141 */
2142 if (!rctx->textlen && !req->assoclen)
2143 return -EINVAL;
2144
2145 rctx->base.mode = mode;
2146 ctx->block_size = AES_BLOCK_SIZE;
2147 ctx->is_aead = true;
2148
2149 dd = atmel_aes_find_dev(ctx);
2150 if (!dd)
2151 return -ENODEV;
2152
2153 return atmel_aes_handle_queue(dd, &req->base);
2154 }
2155
2156 static int atmel_aes_authenc_cbc_aes_encrypt(struct aead_request *req)
2157 {
2158 return atmel_aes_authenc_crypt(req, AES_FLAGS_CBC | AES_FLAGS_ENCRYPT);
2159 }
2160
2161 static int atmel_aes_authenc_cbc_aes_decrypt(struct aead_request *req)
2162 {
2163 return atmel_aes_authenc_crypt(req, AES_FLAGS_CBC);
2164 }
2165
2166 static struct aead_alg aes_authenc_algs[] = {
2167 {
2168 .setkey = atmel_aes_authenc_setkey,
2169 .encrypt = atmel_aes_authenc_cbc_aes_encrypt,
2170 .decrypt = atmel_aes_authenc_cbc_aes_decrypt,
2171 .init = atmel_aes_authenc_hmac_sha1_init_tfm,
2172 .exit = atmel_aes_authenc_exit_tfm,
2173 .ivsize = AES_BLOCK_SIZE,
2174 .maxauthsize = SHA1_DIGEST_SIZE,
2175
2176 .base = {
2177 .cra_name = "authenc(hmac(sha1),cbc(aes))",
2178 .cra_driver_name = "atmel-authenc-hmac-sha1-cbc-aes",
2179 .cra_blocksize = AES_BLOCK_SIZE,
2180 .cra_ctxsize = sizeof(struct atmel_aes_authenc_ctx),
2181 },
2182 },
2183 {
2184 .setkey = atmel_aes_authenc_setkey,
2185 .encrypt = atmel_aes_authenc_cbc_aes_encrypt,
2186 .decrypt = atmel_aes_authenc_cbc_aes_decrypt,
2187 .init = atmel_aes_authenc_hmac_sha224_init_tfm,
2188 .exit = atmel_aes_authenc_exit_tfm,
2189 .ivsize = AES_BLOCK_SIZE,
2190 .maxauthsize = SHA224_DIGEST_SIZE,
2191
2192 .base = {
2193 .cra_name = "authenc(hmac(sha224),cbc(aes))",
2194 .cra_driver_name = "atmel-authenc-hmac-sha224-cbc-aes",
2195 .cra_blocksize = AES_BLOCK_SIZE,
2196 .cra_ctxsize = sizeof(struct atmel_aes_authenc_ctx),
2197 },
2198 },
2199 {
2200 .setkey = atmel_aes_authenc_setkey,
2201 .encrypt = atmel_aes_authenc_cbc_aes_encrypt,
2202 .decrypt = atmel_aes_authenc_cbc_aes_decrypt,
2203 .init = atmel_aes_authenc_hmac_sha256_init_tfm,
2204 .exit = atmel_aes_authenc_exit_tfm,
2205 .ivsize = AES_BLOCK_SIZE,
2206 .maxauthsize = SHA256_DIGEST_SIZE,
2207
2208 .base = {
2209 .cra_name = "authenc(hmac(sha256),cbc(aes))",
2210 .cra_driver_name = "atmel-authenc-hmac-sha256-cbc-aes",
2211 .cra_blocksize = AES_BLOCK_SIZE,
2212 .cra_ctxsize = sizeof(struct atmel_aes_authenc_ctx),
2213 },
2214 },
2215 {
2216 .setkey = atmel_aes_authenc_setkey,
2217 .encrypt = atmel_aes_authenc_cbc_aes_encrypt,
2218 .decrypt = atmel_aes_authenc_cbc_aes_decrypt,
2219 .init = atmel_aes_authenc_hmac_sha384_init_tfm,
2220 .exit = atmel_aes_authenc_exit_tfm,
2221 .ivsize = AES_BLOCK_SIZE,
2222 .maxauthsize = SHA384_DIGEST_SIZE,
2223
2224 .base = {
2225 .cra_name = "authenc(hmac(sha384),cbc(aes))",
2226 .cra_driver_name = "atmel-authenc-hmac-sha384-cbc-aes",
2227 .cra_blocksize = AES_BLOCK_SIZE,
2228 .cra_ctxsize = sizeof(struct atmel_aes_authenc_ctx),
2229 },
2230 },
2231 {
2232 .setkey = atmel_aes_authenc_setkey,
2233 .encrypt = atmel_aes_authenc_cbc_aes_encrypt,
2234 .decrypt = atmel_aes_authenc_cbc_aes_decrypt,
2235 .init = atmel_aes_authenc_hmac_sha512_init_tfm,
2236 .exit = atmel_aes_authenc_exit_tfm,
2237 .ivsize = AES_BLOCK_SIZE,
2238 .maxauthsize = SHA512_DIGEST_SIZE,
2239
2240 .base = {
2241 .cra_name = "authenc(hmac(sha512),cbc(aes))",
2242 .cra_driver_name = "atmel-authenc-hmac-sha512-cbc-aes",
2243 .cra_blocksize = AES_BLOCK_SIZE,
2244 .cra_ctxsize = sizeof(struct atmel_aes_authenc_ctx),
2245 },
2246 },
2247 };
2248 #endif /* CONFIG_CRYPTO_DEV_ATMEL_AUTHENC */
2249
2250 /* Probe functions */
2251
2252 static int atmel_aes_buff_init(struct atmel_aes_dev *dd)
2253 {
2254 dd->buf = (void *)__get_free_pages(GFP_KERNEL, ATMEL_AES_BUFFER_ORDER);
2255 dd->buflen = ATMEL_AES_BUFFER_SIZE;
2256 dd->buflen &= ~(AES_BLOCK_SIZE - 1);
2257
2258 if (!dd->buf) {
2259 dev_err(dd->dev, "unable to alloc pages.\n");
2260 return -ENOMEM;
2261 }
2262
2263 return 0;
2264 }
2265
2266 static void atmel_aes_buff_cleanup(struct atmel_aes_dev *dd)
2267 {
2268 free_page((unsigned long)dd->buf);
2269 }
2270
2271 static int atmel_aes_dma_init(struct atmel_aes_dev *dd)
2272 {
2273 int ret;
2274
2275 /* Try to grab 2 DMA channels */
2276 dd->src.chan = dma_request_chan(dd->dev, "tx");
2277 if (IS_ERR(dd->src.chan)) {
2278 ret = PTR_ERR(dd->src.chan);
2279 goto err_dma_in;
2280 }
2281
2282 dd->dst.chan = dma_request_chan(dd->dev, "rx");
2283 if (IS_ERR(dd->dst.chan)) {
2284 ret = PTR_ERR(dd->dst.chan);
2285 goto err_dma_out;
2286 }
2287
2288 return 0;
2289
2290 err_dma_out:
2291 dma_release_channel(dd->src.chan);
2292 err_dma_in:
2293 dev_err(dd->dev, "no DMA channel available\n");
2294 return ret;
2295 }
2296
2297 static void atmel_aes_dma_cleanup(struct atmel_aes_dev *dd)
2298 {
2299 dma_release_channel(dd->dst.chan);
2300 dma_release_channel(dd->src.chan);
2301 }
2302
2303 static void atmel_aes_queue_task(unsigned long data)
2304 {
2305 struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
2306
2307 atmel_aes_handle_queue(dd, NULL);
2308 }
2309
2310 static void atmel_aes_done_task(unsigned long data)
2311 {
2312 struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
2313
2314 dd->is_async = true;
2315 (void)dd->resume(dd);
2316 }
2317
2318 static irqreturn_t atmel_aes_irq(int irq, void *dev_id)
2319 {
2320 struct atmel_aes_dev *aes_dd = dev_id;
2321 u32 reg;
2322
2323 reg = atmel_aes_read(aes_dd, AES_ISR);
2324 if (reg & atmel_aes_read(aes_dd, AES_IMR)) {
2325 atmel_aes_write(aes_dd, AES_IDR, reg);
2326 if (AES_FLAGS_BUSY & aes_dd->flags)
2327 tasklet_schedule(&aes_dd->done_task);
2328 else
2329 dev_warn(aes_dd->dev, "AES interrupt when no active requests.\n");
2330 return IRQ_HANDLED;
2331 }
2332
2333 return IRQ_NONE;
2334 }
2335
2336 static void atmel_aes_unregister_algs(struct atmel_aes_dev *dd)
2337 {
2338 int i;
2339
2340 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2341 if (dd->caps.has_authenc)
2342 for (i = 0; i < ARRAY_SIZE(aes_authenc_algs); i++)
2343 crypto_unregister_aead(&aes_authenc_algs[i]);
2344 #endif
2345
2346 if (dd->caps.has_xts)
2347 crypto_unregister_skcipher(&aes_xts_alg);
2348
2349 if (dd->caps.has_gcm)
2350 crypto_unregister_aead(&aes_gcm_alg);
2351
2352 if (dd->caps.has_cfb64)
2353 crypto_unregister_skcipher(&aes_cfb64_alg);
2354
2355 for (i = 0; i < ARRAY_SIZE(aes_algs); i++)
2356 crypto_unregister_skcipher(&aes_algs[i]);
2357 }
2358
2359 static void atmel_aes_crypto_alg_init(struct crypto_alg *alg)
2360 {
2361 alg->cra_flags = CRYPTO_ALG_ASYNC;
2362 alg->cra_alignmask = 0xf;
2363 alg->cra_priority = ATMEL_AES_PRIORITY;
2364 alg->cra_module = THIS_MODULE;
2365 }
2366
2367 static int atmel_aes_register_algs(struct atmel_aes_dev *dd)
2368 {
2369 int err, i, j;
2370
2371 for (i = 0; i < ARRAY_SIZE(aes_algs); i++) {
2372 atmel_aes_crypto_alg_init(&aes_algs[i].base);
2373
2374 err = crypto_register_skcipher(&aes_algs[i]);
2375 if (err)
2376 goto err_aes_algs;
2377 }
2378
2379 if (dd->caps.has_cfb64) {
2380 atmel_aes_crypto_alg_init(&aes_cfb64_alg.base);
2381
2382 err = crypto_register_skcipher(&aes_cfb64_alg);
2383 if (err)
2384 goto err_aes_cfb64_alg;
2385 }
2386
2387 if (dd->caps.has_gcm) {
2388 atmel_aes_crypto_alg_init(&aes_gcm_alg.base);
2389
2390 err = crypto_register_aead(&aes_gcm_alg);
2391 if (err)
2392 goto err_aes_gcm_alg;
2393 }
2394
2395 if (dd->caps.has_xts) {
2396 atmel_aes_crypto_alg_init(&aes_xts_alg.base);
2397
2398 err = crypto_register_skcipher(&aes_xts_alg);
2399 if (err)
2400 goto err_aes_xts_alg;
2401 }
2402
2403 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2404 if (dd->caps.has_authenc) {
2405 for (i = 0; i < ARRAY_SIZE(aes_authenc_algs); i++) {
2406 atmel_aes_crypto_alg_init(&aes_authenc_algs[i].base);
2407
2408 err = crypto_register_aead(&aes_authenc_algs[i]);
2409 if (err)
2410 goto err_aes_authenc_alg;
2411 }
2412 }
2413 #endif
2414
2415 return 0;
2416
2417 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2418 /* i = ARRAY_SIZE(aes_authenc_algs); */
2419 err_aes_authenc_alg:
2420 for (j = 0; j < i; j++)
2421 crypto_unregister_aead(&aes_authenc_algs[j]);
2422 crypto_unregister_skcipher(&aes_xts_alg);
2423 #endif
2424 err_aes_xts_alg:
2425 crypto_unregister_aead(&aes_gcm_alg);
2426 err_aes_gcm_alg:
2427 crypto_unregister_skcipher(&aes_cfb64_alg);
2428 err_aes_cfb64_alg:
2429 i = ARRAY_SIZE(aes_algs);
2430 err_aes_algs:
2431 for (j = 0; j < i; j++)
2432 crypto_unregister_skcipher(&aes_algs[j]);
2433
2434 return err;
2435 }
2436
2437 static void atmel_aes_get_cap(struct atmel_aes_dev *dd)
2438 {
2439 dd->caps.has_dualbuff = 0;
2440 dd->caps.has_cfb64 = 0;
2441 dd->caps.has_gcm = 0;
2442 dd->caps.has_xts = 0;
2443 dd->caps.has_authenc = 0;
2444 dd->caps.max_burst_size = 1;
2445
2446 /* keep only major version number */
2447 switch (dd->hw_version & 0xff0) {
2448 case 0x500:
2449 dd->caps.has_dualbuff = 1;
2450 dd->caps.has_cfb64 = 1;
2451 dd->caps.has_gcm = 1;
2452 dd->caps.has_xts = 1;
2453 dd->caps.has_authenc = 1;
2454 dd->caps.max_burst_size = 4;
2455 break;
2456 case 0x200:
2457 dd->caps.has_dualbuff = 1;
2458 dd->caps.has_cfb64 = 1;
2459 dd->caps.has_gcm = 1;
2460 dd->caps.max_burst_size = 4;
2461 break;
2462 case 0x130:
2463 dd->caps.has_dualbuff = 1;
2464 dd->caps.has_cfb64 = 1;
2465 dd->caps.max_burst_size = 4;
2466 break;
2467 case 0x120:
2468 break;
2469 default:
2470 dev_warn(dd->dev,
2471 "Unmanaged aes version, set minimum capabilities\n");
2472 break;
2473 }
2474 }
2475
2476 #if defined(CONFIG_OF)
2477 static const struct of_device_id atmel_aes_dt_ids[] = {
2478 { .compatible = "atmel,at91sam9g46-aes" },
2479 { /* sentinel */ }
2480 };
2481 MODULE_DEVICE_TABLE(of, atmel_aes_dt_ids);
2482 #endif
2483
2484 static int atmel_aes_probe(struct platform_device *pdev)
2485 {
2486 struct atmel_aes_dev *aes_dd;
2487 struct device *dev = &pdev->dev;
2488 struct resource *aes_res;
2489 int err;
2490
2491 aes_dd = devm_kzalloc(&pdev->dev, sizeof(*aes_dd), GFP_KERNEL);
2492 if (!aes_dd)
2493 return -ENOMEM;
2494
2495 aes_dd->dev = dev;
2496
2497 platform_set_drvdata(pdev, aes_dd);
2498
2499 INIT_LIST_HEAD(&aes_dd->list);
2500 spin_lock_init(&aes_dd->lock);
2501
2502 tasklet_init(&aes_dd->done_task, atmel_aes_done_task,
2503 (unsigned long)aes_dd);
2504 tasklet_init(&aes_dd->queue_task, atmel_aes_queue_task,
2505 (unsigned long)aes_dd);
2506
2507 crypto_init_queue(&aes_dd->queue, ATMEL_AES_QUEUE_LENGTH);
2508
2509 /* Get the base address */
2510 aes_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2511 if (!aes_res) {
2512 dev_err(dev, "no MEM resource info\n");
2513 err = -ENODEV;
2514 goto err_tasklet_kill;
2515 }
2516 aes_dd->phys_base = aes_res->start;
2517
2518 /* Get the IRQ */
2519 aes_dd->irq = platform_get_irq(pdev, 0);
2520 if (aes_dd->irq < 0) {
2521 err = aes_dd->irq;
2522 goto err_tasklet_kill;
2523 }
2524
2525 err = devm_request_irq(&pdev->dev, aes_dd->irq, atmel_aes_irq,
2526 IRQF_SHARED, "atmel-aes", aes_dd);
2527 if (err) {
2528 dev_err(dev, "unable to request aes irq.\n");
2529 goto err_tasklet_kill;
2530 }
2531
2532 /* Initializing the clock */
2533 aes_dd->iclk = devm_clk_get(&pdev->dev, "aes_clk");
2534 if (IS_ERR(aes_dd->iclk)) {
2535 dev_err(dev, "clock initialization failed.\n");
2536 err = PTR_ERR(aes_dd->iclk);
2537 goto err_tasklet_kill;
2538 }
2539
2540 aes_dd->io_base = devm_ioremap_resource(&pdev->dev, aes_res);
2541 if (IS_ERR(aes_dd->io_base)) {
2542 dev_err(dev, "can't ioremap\n");
2543 err = PTR_ERR(aes_dd->io_base);
2544 goto err_tasklet_kill;
2545 }
2546
2547 err = clk_prepare(aes_dd->iclk);
2548 if (err)
2549 goto err_tasklet_kill;
2550
2551 err = atmel_aes_hw_version_init(aes_dd);
2552 if (err)
2553 goto err_iclk_unprepare;
2554
2555 atmel_aes_get_cap(aes_dd);
2556
2557 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2558 if (aes_dd->caps.has_authenc && !atmel_sha_authenc_is_ready()) {
2559 err = -EPROBE_DEFER;
2560 goto err_iclk_unprepare;
2561 }
2562 #endif
2563
2564 err = atmel_aes_buff_init(aes_dd);
2565 if (err)
2566 goto err_iclk_unprepare;
2567
2568 err = atmel_aes_dma_init(aes_dd);
2569 if (err)
2570 goto err_buff_cleanup;
2571
2572 spin_lock(&atmel_aes.lock);
2573 list_add_tail(&aes_dd->list, &atmel_aes.dev_list);
2574 spin_unlock(&atmel_aes.lock);
2575
2576 err = atmel_aes_register_algs(aes_dd);
2577 if (err)
2578 goto err_algs;
2579
2580 dev_info(dev, "Atmel AES - Using %s, %s for DMA transfers\n",
2581 dma_chan_name(aes_dd->src.chan),
2582 dma_chan_name(aes_dd->dst.chan));
2583
2584 return 0;
2585
2586 err_algs:
2587 spin_lock(&atmel_aes.lock);
2588 list_del(&aes_dd->list);
2589 spin_unlock(&atmel_aes.lock);
2590 atmel_aes_dma_cleanup(aes_dd);
2591 err_buff_cleanup:
2592 atmel_aes_buff_cleanup(aes_dd);
2593 err_iclk_unprepare:
2594 clk_unprepare(aes_dd->iclk);
2595 err_tasklet_kill:
2596 tasklet_kill(&aes_dd->done_task);
2597 tasklet_kill(&aes_dd->queue_task);
2598
2599 return err;
2600 }
2601
2602 static int atmel_aes_remove(struct platform_device *pdev)
2603 {
2604 struct atmel_aes_dev *aes_dd;
2605
2606 aes_dd = platform_get_drvdata(pdev);
2607 if (!aes_dd)
2608 return -ENODEV;
2609 spin_lock(&atmel_aes.lock);
2610 list_del(&aes_dd->list);
2611 spin_unlock(&atmel_aes.lock);
2612
2613 atmel_aes_unregister_algs(aes_dd);
2614
2615 tasklet_kill(&aes_dd->done_task);
2616 tasklet_kill(&aes_dd->queue_task);
2617
2618 atmel_aes_dma_cleanup(aes_dd);
2619 atmel_aes_buff_cleanup(aes_dd);
2620
2621 clk_unprepare(aes_dd->iclk);
2622
2623 return 0;
2624 }
2625
2626 static struct platform_driver atmel_aes_driver = {
2627 .probe = atmel_aes_probe,
2628 .remove = atmel_aes_remove,
2629 .driver = {
2630 .name = "atmel_aes",
2631 .of_match_table = of_match_ptr(atmel_aes_dt_ids),
2632 },
2633 };
2634
2635 module_platform_driver(atmel_aes_driver);
2636
2637 MODULE_DESCRIPTION("Atmel AES hw acceleration support.");
2638 MODULE_LICENSE("GPL v2");
2639 MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");