]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/crypto/atmel-sha.c
Merge tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
[mirror_ubuntu-hirsute-kernel.git] / drivers / crypto / atmel-sha.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Cryptographic API.
4 *
5 * Support for ATMEL SHA1/SHA256 HW acceleration.
6 *
7 * Copyright (c) 2012 Eukréa Electromatique - ATMEL
8 * Author: Nicolas Royer <nicolas@eukrea.com>
9 *
10 * Some ideas are from omap-sham.c drivers.
11 */
12
13
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/err.h>
18 #include <linux/clk.h>
19 #include <linux/io.h>
20 #include <linux/hw_random.h>
21 #include <linux/platform_device.h>
22
23 #include <linux/device.h>
24 #include <linux/dmaengine.h>
25 #include <linux/init.h>
26 #include <linux/errno.h>
27 #include <linux/interrupt.h>
28 #include <linux/irq.h>
29 #include <linux/scatterlist.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/of_device.h>
32 #include <linux/delay.h>
33 #include <linux/crypto.h>
34 #include <crypto/scatterwalk.h>
35 #include <crypto/algapi.h>
36 #include <crypto/sha.h>
37 #include <crypto/hash.h>
38 #include <crypto/internal/hash.h>
39 #include "atmel-sha-regs.h"
40 #include "atmel-authenc.h"
41
42 #define ATMEL_SHA_PRIORITY 300
43
44 /* SHA flags */
45 #define SHA_FLAGS_BUSY BIT(0)
46 #define SHA_FLAGS_FINAL BIT(1)
47 #define SHA_FLAGS_DMA_ACTIVE BIT(2)
48 #define SHA_FLAGS_OUTPUT_READY BIT(3)
49 #define SHA_FLAGS_INIT BIT(4)
50 #define SHA_FLAGS_CPU BIT(5)
51 #define SHA_FLAGS_DMA_READY BIT(6)
52 #define SHA_FLAGS_DUMP_REG BIT(7)
53
54 /* bits[11:8] are reserved. */
55
56 #define SHA_FLAGS_FINUP BIT(16)
57 #define SHA_FLAGS_SG BIT(17)
58 #define SHA_FLAGS_ERROR BIT(23)
59 #define SHA_FLAGS_PAD BIT(24)
60 #define SHA_FLAGS_RESTORE BIT(25)
61 #define SHA_FLAGS_IDATAR0 BIT(26)
62 #define SHA_FLAGS_WAIT_DATARDY BIT(27)
63
64 #define SHA_OP_INIT 0
65 #define SHA_OP_UPDATE 1
66 #define SHA_OP_FINAL 2
67 #define SHA_OP_DIGEST 3
68
69 #define SHA_BUFFER_LEN (PAGE_SIZE / 16)
70
71 #define ATMEL_SHA_DMA_THRESHOLD 56
72
73 struct atmel_sha_caps {
74 bool has_dma;
75 bool has_dualbuff;
76 bool has_sha224;
77 bool has_sha_384_512;
78 bool has_uihv;
79 bool has_hmac;
80 };
81
82 struct atmel_sha_dev;
83
84 /*
85 * .statesize = sizeof(struct atmel_sha_reqctx) must be <= PAGE_SIZE / 8 as
86 * tested by the ahash_prepare_alg() function.
87 */
88 struct atmel_sha_reqctx {
89 struct atmel_sha_dev *dd;
90 unsigned long flags;
91 unsigned long op;
92
93 u8 digest[SHA512_DIGEST_SIZE] __aligned(sizeof(u32));
94 u64 digcnt[2];
95 size_t bufcnt;
96 size_t buflen;
97 dma_addr_t dma_addr;
98
99 /* walk state */
100 struct scatterlist *sg;
101 unsigned int offset; /* offset in current sg */
102 unsigned int total; /* total request */
103
104 size_t block_size;
105 size_t hash_size;
106
107 u8 buffer[SHA_BUFFER_LEN + SHA512_BLOCK_SIZE] __aligned(sizeof(u32));
108 };
109
110 typedef int (*atmel_sha_fn_t)(struct atmel_sha_dev *);
111
112 struct atmel_sha_ctx {
113 struct atmel_sha_dev *dd;
114 atmel_sha_fn_t start;
115
116 unsigned long flags;
117 };
118
119 #define ATMEL_SHA_QUEUE_LENGTH 50
120
121 struct atmel_sha_dma {
122 struct dma_chan *chan;
123 struct dma_slave_config dma_conf;
124 struct scatterlist *sg;
125 int nents;
126 unsigned int last_sg_length;
127 };
128
129 struct atmel_sha_dev {
130 struct list_head list;
131 unsigned long phys_base;
132 struct device *dev;
133 struct clk *iclk;
134 int irq;
135 void __iomem *io_base;
136
137 spinlock_t lock;
138 struct tasklet_struct done_task;
139 struct tasklet_struct queue_task;
140
141 unsigned long flags;
142 struct crypto_queue queue;
143 struct ahash_request *req;
144 bool is_async;
145 bool force_complete;
146 atmel_sha_fn_t resume;
147 atmel_sha_fn_t cpu_transfer_complete;
148
149 struct atmel_sha_dma dma_lch_in;
150
151 struct atmel_sha_caps caps;
152
153 struct scatterlist tmp;
154
155 u32 hw_version;
156 };
157
158 struct atmel_sha_drv {
159 struct list_head dev_list;
160 spinlock_t lock;
161 };
162
163 static struct atmel_sha_drv atmel_sha = {
164 .dev_list = LIST_HEAD_INIT(atmel_sha.dev_list),
165 .lock = __SPIN_LOCK_UNLOCKED(atmel_sha.lock),
166 };
167
168 #ifdef VERBOSE_DEBUG
169 static const char *atmel_sha_reg_name(u32 offset, char *tmp, size_t sz, bool wr)
170 {
171 switch (offset) {
172 case SHA_CR:
173 return "CR";
174
175 case SHA_MR:
176 return "MR";
177
178 case SHA_IER:
179 return "IER";
180
181 case SHA_IDR:
182 return "IDR";
183
184 case SHA_IMR:
185 return "IMR";
186
187 case SHA_ISR:
188 return "ISR";
189
190 case SHA_MSR:
191 return "MSR";
192
193 case SHA_BCR:
194 return "BCR";
195
196 case SHA_REG_DIN(0):
197 case SHA_REG_DIN(1):
198 case SHA_REG_DIN(2):
199 case SHA_REG_DIN(3):
200 case SHA_REG_DIN(4):
201 case SHA_REG_DIN(5):
202 case SHA_REG_DIN(6):
203 case SHA_REG_DIN(7):
204 case SHA_REG_DIN(8):
205 case SHA_REG_DIN(9):
206 case SHA_REG_DIN(10):
207 case SHA_REG_DIN(11):
208 case SHA_REG_DIN(12):
209 case SHA_REG_DIN(13):
210 case SHA_REG_DIN(14):
211 case SHA_REG_DIN(15):
212 snprintf(tmp, sz, "IDATAR[%u]", (offset - SHA_REG_DIN(0)) >> 2);
213 break;
214
215 case SHA_REG_DIGEST(0):
216 case SHA_REG_DIGEST(1):
217 case SHA_REG_DIGEST(2):
218 case SHA_REG_DIGEST(3):
219 case SHA_REG_DIGEST(4):
220 case SHA_REG_DIGEST(5):
221 case SHA_REG_DIGEST(6):
222 case SHA_REG_DIGEST(7):
223 case SHA_REG_DIGEST(8):
224 case SHA_REG_DIGEST(9):
225 case SHA_REG_DIGEST(10):
226 case SHA_REG_DIGEST(11):
227 case SHA_REG_DIGEST(12):
228 case SHA_REG_DIGEST(13):
229 case SHA_REG_DIGEST(14):
230 case SHA_REG_DIGEST(15):
231 if (wr)
232 snprintf(tmp, sz, "IDATAR[%u]",
233 16u + ((offset - SHA_REG_DIGEST(0)) >> 2));
234 else
235 snprintf(tmp, sz, "ODATAR[%u]",
236 (offset - SHA_REG_DIGEST(0)) >> 2);
237 break;
238
239 case SHA_HW_VERSION:
240 return "HWVER";
241
242 default:
243 snprintf(tmp, sz, "0x%02x", offset);
244 break;
245 }
246
247 return tmp;
248 }
249
250 #endif /* VERBOSE_DEBUG */
251
252 static inline u32 atmel_sha_read(struct atmel_sha_dev *dd, u32 offset)
253 {
254 u32 value = readl_relaxed(dd->io_base + offset);
255
256 #ifdef VERBOSE_DEBUG
257 if (dd->flags & SHA_FLAGS_DUMP_REG) {
258 char tmp[16];
259
260 dev_vdbg(dd->dev, "read 0x%08x from %s\n", value,
261 atmel_sha_reg_name(offset, tmp, sizeof(tmp), false));
262 }
263 #endif /* VERBOSE_DEBUG */
264
265 return value;
266 }
267
268 static inline void atmel_sha_write(struct atmel_sha_dev *dd,
269 u32 offset, u32 value)
270 {
271 #ifdef VERBOSE_DEBUG
272 if (dd->flags & SHA_FLAGS_DUMP_REG) {
273 char tmp[16];
274
275 dev_vdbg(dd->dev, "write 0x%08x into %s\n", value,
276 atmel_sha_reg_name(offset, tmp, sizeof(tmp), true));
277 }
278 #endif /* VERBOSE_DEBUG */
279
280 writel_relaxed(value, dd->io_base + offset);
281 }
282
283 static inline int atmel_sha_complete(struct atmel_sha_dev *dd, int err)
284 {
285 struct ahash_request *req = dd->req;
286
287 dd->flags &= ~(SHA_FLAGS_BUSY | SHA_FLAGS_FINAL | SHA_FLAGS_CPU |
288 SHA_FLAGS_DMA_READY | SHA_FLAGS_OUTPUT_READY |
289 SHA_FLAGS_DUMP_REG);
290
291 clk_disable(dd->iclk);
292
293 if ((dd->is_async || dd->force_complete) && req->base.complete)
294 req->base.complete(&req->base, err);
295
296 /* handle new request */
297 tasklet_schedule(&dd->queue_task);
298
299 return err;
300 }
301
302 static size_t atmel_sha_append_sg(struct atmel_sha_reqctx *ctx)
303 {
304 size_t count;
305
306 while ((ctx->bufcnt < ctx->buflen) && ctx->total) {
307 count = min(ctx->sg->length - ctx->offset, ctx->total);
308 count = min(count, ctx->buflen - ctx->bufcnt);
309
310 if (count <= 0) {
311 /*
312 * Check if count <= 0 because the buffer is full or
313 * because the sg length is 0. In the latest case,
314 * check if there is another sg in the list, a 0 length
315 * sg doesn't necessarily mean the end of the sg list.
316 */
317 if ((ctx->sg->length == 0) && !sg_is_last(ctx->sg)) {
318 ctx->sg = sg_next(ctx->sg);
319 continue;
320 } else {
321 break;
322 }
323 }
324
325 scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, ctx->sg,
326 ctx->offset, count, 0);
327
328 ctx->bufcnt += count;
329 ctx->offset += count;
330 ctx->total -= count;
331
332 if (ctx->offset == ctx->sg->length) {
333 ctx->sg = sg_next(ctx->sg);
334 if (ctx->sg)
335 ctx->offset = 0;
336 else
337 ctx->total = 0;
338 }
339 }
340
341 return 0;
342 }
343
344 /*
345 * The purpose of this padding is to ensure that the padded message is a
346 * multiple of 512 bits (SHA1/SHA224/SHA256) or 1024 bits (SHA384/SHA512).
347 * The bit "1" is appended at the end of the message followed by
348 * "padlen-1" zero bits. Then a 64 bits block (SHA1/SHA224/SHA256) or
349 * 128 bits block (SHA384/SHA512) equals to the message length in bits
350 * is appended.
351 *
352 * For SHA1/SHA224/SHA256, padlen is calculated as followed:
353 * - if message length < 56 bytes then padlen = 56 - message length
354 * - else padlen = 64 + 56 - message length
355 *
356 * For SHA384/SHA512, padlen is calculated as followed:
357 * - if message length < 112 bytes then padlen = 112 - message length
358 * - else padlen = 128 + 112 - message length
359 */
360 static void atmel_sha_fill_padding(struct atmel_sha_reqctx *ctx, int length)
361 {
362 unsigned int index, padlen;
363 __be64 bits[2];
364 u64 size[2];
365
366 size[0] = ctx->digcnt[0];
367 size[1] = ctx->digcnt[1];
368
369 size[0] += ctx->bufcnt;
370 if (size[0] < ctx->bufcnt)
371 size[1]++;
372
373 size[0] += length;
374 if (size[0] < length)
375 size[1]++;
376
377 bits[1] = cpu_to_be64(size[0] << 3);
378 bits[0] = cpu_to_be64(size[1] << 3 | size[0] >> 61);
379
380 switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
381 case SHA_FLAGS_SHA384:
382 case SHA_FLAGS_SHA512:
383 index = ctx->bufcnt & 0x7f;
384 padlen = (index < 112) ? (112 - index) : ((128+112) - index);
385 *(ctx->buffer + ctx->bufcnt) = 0x80;
386 memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen-1);
387 memcpy(ctx->buffer + ctx->bufcnt + padlen, bits, 16);
388 ctx->bufcnt += padlen + 16;
389 ctx->flags |= SHA_FLAGS_PAD;
390 break;
391
392 default:
393 index = ctx->bufcnt & 0x3f;
394 padlen = (index < 56) ? (56 - index) : ((64+56) - index);
395 *(ctx->buffer + ctx->bufcnt) = 0x80;
396 memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen-1);
397 memcpy(ctx->buffer + ctx->bufcnt + padlen, &bits[1], 8);
398 ctx->bufcnt += padlen + 8;
399 ctx->flags |= SHA_FLAGS_PAD;
400 break;
401 }
402 }
403
404 static struct atmel_sha_dev *atmel_sha_find_dev(struct atmel_sha_ctx *tctx)
405 {
406 struct atmel_sha_dev *dd = NULL;
407 struct atmel_sha_dev *tmp;
408
409 spin_lock_bh(&atmel_sha.lock);
410 if (!tctx->dd) {
411 list_for_each_entry(tmp, &atmel_sha.dev_list, list) {
412 dd = tmp;
413 break;
414 }
415 tctx->dd = dd;
416 } else {
417 dd = tctx->dd;
418 }
419
420 spin_unlock_bh(&atmel_sha.lock);
421
422 return dd;
423 }
424
425 static int atmel_sha_init(struct ahash_request *req)
426 {
427 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
428 struct atmel_sha_ctx *tctx = crypto_ahash_ctx(tfm);
429 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
430 struct atmel_sha_dev *dd = atmel_sha_find_dev(tctx);
431
432 ctx->dd = dd;
433
434 ctx->flags = 0;
435
436 dev_dbg(dd->dev, "init: digest size: %d\n",
437 crypto_ahash_digestsize(tfm));
438
439 switch (crypto_ahash_digestsize(tfm)) {
440 case SHA1_DIGEST_SIZE:
441 ctx->flags |= SHA_FLAGS_SHA1;
442 ctx->block_size = SHA1_BLOCK_SIZE;
443 break;
444 case SHA224_DIGEST_SIZE:
445 ctx->flags |= SHA_FLAGS_SHA224;
446 ctx->block_size = SHA224_BLOCK_SIZE;
447 break;
448 case SHA256_DIGEST_SIZE:
449 ctx->flags |= SHA_FLAGS_SHA256;
450 ctx->block_size = SHA256_BLOCK_SIZE;
451 break;
452 case SHA384_DIGEST_SIZE:
453 ctx->flags |= SHA_FLAGS_SHA384;
454 ctx->block_size = SHA384_BLOCK_SIZE;
455 break;
456 case SHA512_DIGEST_SIZE:
457 ctx->flags |= SHA_FLAGS_SHA512;
458 ctx->block_size = SHA512_BLOCK_SIZE;
459 break;
460 default:
461 return -EINVAL;
462 break;
463 }
464
465 ctx->bufcnt = 0;
466 ctx->digcnt[0] = 0;
467 ctx->digcnt[1] = 0;
468 ctx->buflen = SHA_BUFFER_LEN;
469
470 return 0;
471 }
472
473 static void atmel_sha_write_ctrl(struct atmel_sha_dev *dd, int dma)
474 {
475 struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
476 u32 valmr = SHA_MR_MODE_AUTO;
477 unsigned int i, hashsize = 0;
478
479 if (likely(dma)) {
480 if (!dd->caps.has_dma)
481 atmel_sha_write(dd, SHA_IER, SHA_INT_TXBUFE);
482 valmr = SHA_MR_MODE_PDC;
483 if (dd->caps.has_dualbuff)
484 valmr |= SHA_MR_DUALBUFF;
485 } else {
486 atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
487 }
488
489 switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
490 case SHA_FLAGS_SHA1:
491 valmr |= SHA_MR_ALGO_SHA1;
492 hashsize = SHA1_DIGEST_SIZE;
493 break;
494
495 case SHA_FLAGS_SHA224:
496 valmr |= SHA_MR_ALGO_SHA224;
497 hashsize = SHA256_DIGEST_SIZE;
498 break;
499
500 case SHA_FLAGS_SHA256:
501 valmr |= SHA_MR_ALGO_SHA256;
502 hashsize = SHA256_DIGEST_SIZE;
503 break;
504
505 case SHA_FLAGS_SHA384:
506 valmr |= SHA_MR_ALGO_SHA384;
507 hashsize = SHA512_DIGEST_SIZE;
508 break;
509
510 case SHA_FLAGS_SHA512:
511 valmr |= SHA_MR_ALGO_SHA512;
512 hashsize = SHA512_DIGEST_SIZE;
513 break;
514
515 default:
516 break;
517 }
518
519 /* Setting CR_FIRST only for the first iteration */
520 if (!(ctx->digcnt[0] || ctx->digcnt[1])) {
521 atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
522 } else if (dd->caps.has_uihv && (ctx->flags & SHA_FLAGS_RESTORE)) {
523 const u32 *hash = (const u32 *)ctx->digest;
524
525 /*
526 * Restore the hardware context: update the User Initialize
527 * Hash Value (UIHV) with the value saved when the latest
528 * 'update' operation completed on this very same crypto
529 * request.
530 */
531 ctx->flags &= ~SHA_FLAGS_RESTORE;
532 atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
533 for (i = 0; i < hashsize / sizeof(u32); ++i)
534 atmel_sha_write(dd, SHA_REG_DIN(i), hash[i]);
535 atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
536 valmr |= SHA_MR_UIHV;
537 }
538 /*
539 * WARNING: If the UIHV feature is not available, the hardware CANNOT
540 * process concurrent requests: the internal registers used to store
541 * the hash/digest are still set to the partial digest output values
542 * computed during the latest round.
543 */
544
545 atmel_sha_write(dd, SHA_MR, valmr);
546 }
547
548 static inline int atmel_sha_wait_for_data_ready(struct atmel_sha_dev *dd,
549 atmel_sha_fn_t resume)
550 {
551 u32 isr = atmel_sha_read(dd, SHA_ISR);
552
553 if (unlikely(isr & SHA_INT_DATARDY))
554 return resume(dd);
555
556 dd->resume = resume;
557 atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
558 return -EINPROGRESS;
559 }
560
561 static int atmel_sha_xmit_cpu(struct atmel_sha_dev *dd, const u8 *buf,
562 size_t length, int final)
563 {
564 struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
565 int count, len32;
566 const u32 *buffer = (const u32 *)buf;
567
568 dev_dbg(dd->dev, "xmit_cpu: digcnt: 0x%llx 0x%llx, length: %zd, final: %d\n",
569 ctx->digcnt[1], ctx->digcnt[0], length, final);
570
571 atmel_sha_write_ctrl(dd, 0);
572
573 /* should be non-zero before next lines to disable clocks later */
574 ctx->digcnt[0] += length;
575 if (ctx->digcnt[0] < length)
576 ctx->digcnt[1]++;
577
578 if (final)
579 dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
580
581 len32 = DIV_ROUND_UP(length, sizeof(u32));
582
583 dd->flags |= SHA_FLAGS_CPU;
584
585 for (count = 0; count < len32; count++)
586 atmel_sha_write(dd, SHA_REG_DIN(count), buffer[count]);
587
588 return -EINPROGRESS;
589 }
590
591 static int atmel_sha_xmit_pdc(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
592 size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
593 {
594 struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
595 int len32;
596
597 dev_dbg(dd->dev, "xmit_pdc: digcnt: 0x%llx 0x%llx, length: %zd, final: %d\n",
598 ctx->digcnt[1], ctx->digcnt[0], length1, final);
599
600 len32 = DIV_ROUND_UP(length1, sizeof(u32));
601 atmel_sha_write(dd, SHA_PTCR, SHA_PTCR_TXTDIS);
602 atmel_sha_write(dd, SHA_TPR, dma_addr1);
603 atmel_sha_write(dd, SHA_TCR, len32);
604
605 len32 = DIV_ROUND_UP(length2, sizeof(u32));
606 atmel_sha_write(dd, SHA_TNPR, dma_addr2);
607 atmel_sha_write(dd, SHA_TNCR, len32);
608
609 atmel_sha_write_ctrl(dd, 1);
610
611 /* should be non-zero before next lines to disable clocks later */
612 ctx->digcnt[0] += length1;
613 if (ctx->digcnt[0] < length1)
614 ctx->digcnt[1]++;
615
616 if (final)
617 dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
618
619 dd->flags |= SHA_FLAGS_DMA_ACTIVE;
620
621 /* Start DMA transfer */
622 atmel_sha_write(dd, SHA_PTCR, SHA_PTCR_TXTEN);
623
624 return -EINPROGRESS;
625 }
626
627 static void atmel_sha_dma_callback(void *data)
628 {
629 struct atmel_sha_dev *dd = data;
630
631 dd->is_async = true;
632
633 /* dma_lch_in - completed - wait DATRDY */
634 atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
635 }
636
637 static int atmel_sha_xmit_dma(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
638 size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
639 {
640 struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
641 struct dma_async_tx_descriptor *in_desc;
642 struct scatterlist sg[2];
643
644 dev_dbg(dd->dev, "xmit_dma: digcnt: 0x%llx 0x%llx, length: %zd, final: %d\n",
645 ctx->digcnt[1], ctx->digcnt[0], length1, final);
646
647 dd->dma_lch_in.dma_conf.src_maxburst = 16;
648 dd->dma_lch_in.dma_conf.dst_maxburst = 16;
649
650 dmaengine_slave_config(dd->dma_lch_in.chan, &dd->dma_lch_in.dma_conf);
651
652 if (length2) {
653 sg_init_table(sg, 2);
654 sg_dma_address(&sg[0]) = dma_addr1;
655 sg_dma_len(&sg[0]) = length1;
656 sg_dma_address(&sg[1]) = dma_addr2;
657 sg_dma_len(&sg[1]) = length2;
658 in_desc = dmaengine_prep_slave_sg(dd->dma_lch_in.chan, sg, 2,
659 DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
660 } else {
661 sg_init_table(sg, 1);
662 sg_dma_address(&sg[0]) = dma_addr1;
663 sg_dma_len(&sg[0]) = length1;
664 in_desc = dmaengine_prep_slave_sg(dd->dma_lch_in.chan, sg, 1,
665 DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
666 }
667 if (!in_desc)
668 return atmel_sha_complete(dd, -EINVAL);
669
670 in_desc->callback = atmel_sha_dma_callback;
671 in_desc->callback_param = dd;
672
673 atmel_sha_write_ctrl(dd, 1);
674
675 /* should be non-zero before next lines to disable clocks later */
676 ctx->digcnt[0] += length1;
677 if (ctx->digcnt[0] < length1)
678 ctx->digcnt[1]++;
679
680 if (final)
681 dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
682
683 dd->flags |= SHA_FLAGS_DMA_ACTIVE;
684
685 /* Start DMA transfer */
686 dmaengine_submit(in_desc);
687 dma_async_issue_pending(dd->dma_lch_in.chan);
688
689 return -EINPROGRESS;
690 }
691
692 static int atmel_sha_xmit_start(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
693 size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
694 {
695 if (dd->caps.has_dma)
696 return atmel_sha_xmit_dma(dd, dma_addr1, length1,
697 dma_addr2, length2, final);
698 else
699 return atmel_sha_xmit_pdc(dd, dma_addr1, length1,
700 dma_addr2, length2, final);
701 }
702
703 static int atmel_sha_update_cpu(struct atmel_sha_dev *dd)
704 {
705 struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
706 int bufcnt;
707
708 atmel_sha_append_sg(ctx);
709 atmel_sha_fill_padding(ctx, 0);
710 bufcnt = ctx->bufcnt;
711 ctx->bufcnt = 0;
712
713 return atmel_sha_xmit_cpu(dd, ctx->buffer, bufcnt, 1);
714 }
715
716 static int atmel_sha_xmit_dma_map(struct atmel_sha_dev *dd,
717 struct atmel_sha_reqctx *ctx,
718 size_t length, int final)
719 {
720 ctx->dma_addr = dma_map_single(dd->dev, ctx->buffer,
721 ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
722 if (dma_mapping_error(dd->dev, ctx->dma_addr)) {
723 dev_err(dd->dev, "dma %zu bytes error\n", ctx->buflen +
724 ctx->block_size);
725 return atmel_sha_complete(dd, -EINVAL);
726 }
727
728 ctx->flags &= ~SHA_FLAGS_SG;
729
730 /* next call does not fail... so no unmap in the case of error */
731 return atmel_sha_xmit_start(dd, ctx->dma_addr, length, 0, 0, final);
732 }
733
734 static int atmel_sha_update_dma_slow(struct atmel_sha_dev *dd)
735 {
736 struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
737 unsigned int final;
738 size_t count;
739
740 atmel_sha_append_sg(ctx);
741
742 final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;
743
744 dev_dbg(dd->dev, "slow: bufcnt: %zu, digcnt: 0x%llx 0x%llx, final: %d\n",
745 ctx->bufcnt, ctx->digcnt[1], ctx->digcnt[0], final);
746
747 if (final)
748 atmel_sha_fill_padding(ctx, 0);
749
750 if (final || (ctx->bufcnt == ctx->buflen)) {
751 count = ctx->bufcnt;
752 ctx->bufcnt = 0;
753 return atmel_sha_xmit_dma_map(dd, ctx, count, final);
754 }
755
756 return 0;
757 }
758
759 static int atmel_sha_update_dma_start(struct atmel_sha_dev *dd)
760 {
761 struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
762 unsigned int length, final, tail;
763 struct scatterlist *sg;
764 unsigned int count;
765
766 if (!ctx->total)
767 return 0;
768
769 if (ctx->bufcnt || ctx->offset)
770 return atmel_sha_update_dma_slow(dd);
771
772 dev_dbg(dd->dev, "fast: digcnt: 0x%llx 0x%llx, bufcnt: %zd, total: %u\n",
773 ctx->digcnt[1], ctx->digcnt[0], ctx->bufcnt, ctx->total);
774
775 sg = ctx->sg;
776
777 if (!IS_ALIGNED(sg->offset, sizeof(u32)))
778 return atmel_sha_update_dma_slow(dd);
779
780 if (!sg_is_last(sg) && !IS_ALIGNED(sg->length, ctx->block_size))
781 /* size is not ctx->block_size aligned */
782 return atmel_sha_update_dma_slow(dd);
783
784 length = min(ctx->total, sg->length);
785
786 if (sg_is_last(sg)) {
787 if (!(ctx->flags & SHA_FLAGS_FINUP)) {
788 /* not last sg must be ctx->block_size aligned */
789 tail = length & (ctx->block_size - 1);
790 length -= tail;
791 }
792 }
793
794 ctx->total -= length;
795 ctx->offset = length; /* offset where to start slow */
796
797 final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;
798
799 /* Add padding */
800 if (final) {
801 tail = length & (ctx->block_size - 1);
802 length -= tail;
803 ctx->total += tail;
804 ctx->offset = length; /* offset where to start slow */
805
806 sg = ctx->sg;
807 atmel_sha_append_sg(ctx);
808
809 atmel_sha_fill_padding(ctx, length);
810
811 ctx->dma_addr = dma_map_single(dd->dev, ctx->buffer,
812 ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
813 if (dma_mapping_error(dd->dev, ctx->dma_addr)) {
814 dev_err(dd->dev, "dma %zu bytes error\n",
815 ctx->buflen + ctx->block_size);
816 return atmel_sha_complete(dd, -EINVAL);
817 }
818
819 if (length == 0) {
820 ctx->flags &= ~SHA_FLAGS_SG;
821 count = ctx->bufcnt;
822 ctx->bufcnt = 0;
823 return atmel_sha_xmit_start(dd, ctx->dma_addr, count, 0,
824 0, final);
825 } else {
826 ctx->sg = sg;
827 if (!dma_map_sg(dd->dev, ctx->sg, 1,
828 DMA_TO_DEVICE)) {
829 dev_err(dd->dev, "dma_map_sg error\n");
830 return atmel_sha_complete(dd, -EINVAL);
831 }
832
833 ctx->flags |= SHA_FLAGS_SG;
834
835 count = ctx->bufcnt;
836 ctx->bufcnt = 0;
837 return atmel_sha_xmit_start(dd, sg_dma_address(ctx->sg),
838 length, ctx->dma_addr, count, final);
839 }
840 }
841
842 if (!dma_map_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE)) {
843 dev_err(dd->dev, "dma_map_sg error\n");
844 return atmel_sha_complete(dd, -EINVAL);
845 }
846
847 ctx->flags |= SHA_FLAGS_SG;
848
849 /* next call does not fail... so no unmap in the case of error */
850 return atmel_sha_xmit_start(dd, sg_dma_address(ctx->sg), length, 0,
851 0, final);
852 }
853
854 static void atmel_sha_update_dma_stop(struct atmel_sha_dev *dd)
855 {
856 struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
857
858 if (ctx->flags & SHA_FLAGS_SG) {
859 dma_unmap_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE);
860 if (ctx->sg->length == ctx->offset) {
861 ctx->sg = sg_next(ctx->sg);
862 if (ctx->sg)
863 ctx->offset = 0;
864 }
865 if (ctx->flags & SHA_FLAGS_PAD) {
866 dma_unmap_single(dd->dev, ctx->dma_addr,
867 ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
868 }
869 } else {
870 dma_unmap_single(dd->dev, ctx->dma_addr, ctx->buflen +
871 ctx->block_size, DMA_TO_DEVICE);
872 }
873 }
874
875 static int atmel_sha_update_req(struct atmel_sha_dev *dd)
876 {
877 struct ahash_request *req = dd->req;
878 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
879 int err;
880
881 dev_dbg(dd->dev, "update_req: total: %u, digcnt: 0x%llx 0x%llx\n",
882 ctx->total, ctx->digcnt[1], ctx->digcnt[0]);
883
884 if (ctx->flags & SHA_FLAGS_CPU)
885 err = atmel_sha_update_cpu(dd);
886 else
887 err = atmel_sha_update_dma_start(dd);
888
889 /* wait for dma completion before can take more data */
890 dev_dbg(dd->dev, "update: err: %d, digcnt: 0x%llx 0%llx\n",
891 err, ctx->digcnt[1], ctx->digcnt[0]);
892
893 return err;
894 }
895
896 static int atmel_sha_final_req(struct atmel_sha_dev *dd)
897 {
898 struct ahash_request *req = dd->req;
899 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
900 int err = 0;
901 int count;
902
903 if (ctx->bufcnt >= ATMEL_SHA_DMA_THRESHOLD) {
904 atmel_sha_fill_padding(ctx, 0);
905 count = ctx->bufcnt;
906 ctx->bufcnt = 0;
907 err = atmel_sha_xmit_dma_map(dd, ctx, count, 1);
908 }
909 /* faster to handle last block with cpu */
910 else {
911 atmel_sha_fill_padding(ctx, 0);
912 count = ctx->bufcnt;
913 ctx->bufcnt = 0;
914 err = atmel_sha_xmit_cpu(dd, ctx->buffer, count, 1);
915 }
916
917 dev_dbg(dd->dev, "final_req: err: %d\n", err);
918
919 return err;
920 }
921
922 static void atmel_sha_copy_hash(struct ahash_request *req)
923 {
924 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
925 u32 *hash = (u32 *)ctx->digest;
926 unsigned int i, hashsize;
927
928 switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
929 case SHA_FLAGS_SHA1:
930 hashsize = SHA1_DIGEST_SIZE;
931 break;
932
933 case SHA_FLAGS_SHA224:
934 case SHA_FLAGS_SHA256:
935 hashsize = SHA256_DIGEST_SIZE;
936 break;
937
938 case SHA_FLAGS_SHA384:
939 case SHA_FLAGS_SHA512:
940 hashsize = SHA512_DIGEST_SIZE;
941 break;
942
943 default:
944 /* Should not happen... */
945 return;
946 }
947
948 for (i = 0; i < hashsize / sizeof(u32); ++i)
949 hash[i] = atmel_sha_read(ctx->dd, SHA_REG_DIGEST(i));
950 ctx->flags |= SHA_FLAGS_RESTORE;
951 }
952
953 static void atmel_sha_copy_ready_hash(struct ahash_request *req)
954 {
955 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
956
957 if (!req->result)
958 return;
959
960 switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
961 default:
962 case SHA_FLAGS_SHA1:
963 memcpy(req->result, ctx->digest, SHA1_DIGEST_SIZE);
964 break;
965
966 case SHA_FLAGS_SHA224:
967 memcpy(req->result, ctx->digest, SHA224_DIGEST_SIZE);
968 break;
969
970 case SHA_FLAGS_SHA256:
971 memcpy(req->result, ctx->digest, SHA256_DIGEST_SIZE);
972 break;
973
974 case SHA_FLAGS_SHA384:
975 memcpy(req->result, ctx->digest, SHA384_DIGEST_SIZE);
976 break;
977
978 case SHA_FLAGS_SHA512:
979 memcpy(req->result, ctx->digest, SHA512_DIGEST_SIZE);
980 break;
981 }
982 }
983
984 static int atmel_sha_finish(struct ahash_request *req)
985 {
986 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
987 struct atmel_sha_dev *dd = ctx->dd;
988
989 if (ctx->digcnt[0] || ctx->digcnt[1])
990 atmel_sha_copy_ready_hash(req);
991
992 dev_dbg(dd->dev, "digcnt: 0x%llx 0x%llx, bufcnt: %zd\n", ctx->digcnt[1],
993 ctx->digcnt[0], ctx->bufcnt);
994
995 return 0;
996 }
997
998 static void atmel_sha_finish_req(struct ahash_request *req, int err)
999 {
1000 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1001 struct atmel_sha_dev *dd = ctx->dd;
1002
1003 if (!err) {
1004 atmel_sha_copy_hash(req);
1005 if (SHA_FLAGS_FINAL & dd->flags)
1006 err = atmel_sha_finish(req);
1007 } else {
1008 ctx->flags |= SHA_FLAGS_ERROR;
1009 }
1010
1011 /* atomic operation is not needed here */
1012 (void)atmel_sha_complete(dd, err);
1013 }
1014
1015 static int atmel_sha_hw_init(struct atmel_sha_dev *dd)
1016 {
1017 int err;
1018
1019 err = clk_enable(dd->iclk);
1020 if (err)
1021 return err;
1022
1023 if (!(SHA_FLAGS_INIT & dd->flags)) {
1024 atmel_sha_write(dd, SHA_CR, SHA_CR_SWRST);
1025 dd->flags |= SHA_FLAGS_INIT;
1026 }
1027
1028 return 0;
1029 }
1030
1031 static inline unsigned int atmel_sha_get_version(struct atmel_sha_dev *dd)
1032 {
1033 return atmel_sha_read(dd, SHA_HW_VERSION) & 0x00000fff;
1034 }
1035
1036 static int atmel_sha_hw_version_init(struct atmel_sha_dev *dd)
1037 {
1038 int err;
1039
1040 err = atmel_sha_hw_init(dd);
1041 if (err)
1042 return err;
1043
1044 dd->hw_version = atmel_sha_get_version(dd);
1045
1046 dev_info(dd->dev,
1047 "version: 0x%x\n", dd->hw_version);
1048
1049 clk_disable(dd->iclk);
1050
1051 return 0;
1052 }
1053
1054 static int atmel_sha_handle_queue(struct atmel_sha_dev *dd,
1055 struct ahash_request *req)
1056 {
1057 struct crypto_async_request *async_req, *backlog;
1058 struct atmel_sha_ctx *ctx;
1059 unsigned long flags;
1060 bool start_async;
1061 int err = 0, ret = 0;
1062
1063 spin_lock_irqsave(&dd->lock, flags);
1064 if (req)
1065 ret = ahash_enqueue_request(&dd->queue, req);
1066
1067 if (SHA_FLAGS_BUSY & dd->flags) {
1068 spin_unlock_irqrestore(&dd->lock, flags);
1069 return ret;
1070 }
1071
1072 backlog = crypto_get_backlog(&dd->queue);
1073 async_req = crypto_dequeue_request(&dd->queue);
1074 if (async_req)
1075 dd->flags |= SHA_FLAGS_BUSY;
1076
1077 spin_unlock_irqrestore(&dd->lock, flags);
1078
1079 if (!async_req)
1080 return ret;
1081
1082 if (backlog)
1083 backlog->complete(backlog, -EINPROGRESS);
1084
1085 ctx = crypto_tfm_ctx(async_req->tfm);
1086
1087 dd->req = ahash_request_cast(async_req);
1088 start_async = (dd->req != req);
1089 dd->is_async = start_async;
1090 dd->force_complete = false;
1091
1092 /* WARNING: ctx->start() MAY change dd->is_async. */
1093 err = ctx->start(dd);
1094 return (start_async) ? ret : err;
1095 }
1096
1097 static int atmel_sha_done(struct atmel_sha_dev *dd);
1098
1099 static int atmel_sha_start(struct atmel_sha_dev *dd)
1100 {
1101 struct ahash_request *req = dd->req;
1102 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1103 int err;
1104
1105 dev_dbg(dd->dev, "handling new req, op: %lu, nbytes: %d\n",
1106 ctx->op, req->nbytes);
1107
1108 err = atmel_sha_hw_init(dd);
1109 if (err)
1110 return atmel_sha_complete(dd, err);
1111
1112 /*
1113 * atmel_sha_update_req() and atmel_sha_final_req() can return either:
1114 * -EINPROGRESS: the hardware is busy and the SHA driver will resume
1115 * its job later in the done_task.
1116 * This is the main path.
1117 *
1118 * 0: the SHA driver can continue its job then release the hardware
1119 * later, if needed, with atmel_sha_finish_req().
1120 * This is the alternate path.
1121 *
1122 * < 0: an error has occurred so atmel_sha_complete(dd, err) has already
1123 * been called, hence the hardware has been released.
1124 * The SHA driver must stop its job without calling
1125 * atmel_sha_finish_req(), otherwise atmel_sha_complete() would be
1126 * called a second time.
1127 *
1128 * Please note that currently, atmel_sha_final_req() never returns 0.
1129 */
1130
1131 dd->resume = atmel_sha_done;
1132 if (ctx->op == SHA_OP_UPDATE) {
1133 err = atmel_sha_update_req(dd);
1134 if (!err && (ctx->flags & SHA_FLAGS_FINUP))
1135 /* no final() after finup() */
1136 err = atmel_sha_final_req(dd);
1137 } else if (ctx->op == SHA_OP_FINAL) {
1138 err = atmel_sha_final_req(dd);
1139 }
1140
1141 if (!err)
1142 /* done_task will not finish it, so do it here */
1143 atmel_sha_finish_req(req, err);
1144
1145 dev_dbg(dd->dev, "exit, err: %d\n", err);
1146
1147 return err;
1148 }
1149
1150 static int atmel_sha_enqueue(struct ahash_request *req, unsigned int op)
1151 {
1152 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1153 struct atmel_sha_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
1154 struct atmel_sha_dev *dd = tctx->dd;
1155
1156 ctx->op = op;
1157
1158 return atmel_sha_handle_queue(dd, req);
1159 }
1160
1161 static int atmel_sha_update(struct ahash_request *req)
1162 {
1163 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1164
1165 if (!req->nbytes)
1166 return 0;
1167
1168 ctx->total = req->nbytes;
1169 ctx->sg = req->src;
1170 ctx->offset = 0;
1171
1172 if (ctx->flags & SHA_FLAGS_FINUP) {
1173 if (ctx->bufcnt + ctx->total < ATMEL_SHA_DMA_THRESHOLD)
1174 /* faster to use CPU for short transfers */
1175 ctx->flags |= SHA_FLAGS_CPU;
1176 } else if (ctx->bufcnt + ctx->total < ctx->buflen) {
1177 atmel_sha_append_sg(ctx);
1178 return 0;
1179 }
1180 return atmel_sha_enqueue(req, SHA_OP_UPDATE);
1181 }
1182
1183 static int atmel_sha_final(struct ahash_request *req)
1184 {
1185 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1186
1187 ctx->flags |= SHA_FLAGS_FINUP;
1188
1189 if (ctx->flags & SHA_FLAGS_ERROR)
1190 return 0; /* uncompleted hash is not needed */
1191
1192 if (ctx->flags & SHA_FLAGS_PAD)
1193 /* copy ready hash (+ finalize hmac) */
1194 return atmel_sha_finish(req);
1195
1196 return atmel_sha_enqueue(req, SHA_OP_FINAL);
1197 }
1198
1199 static int atmel_sha_finup(struct ahash_request *req)
1200 {
1201 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1202 int err1, err2;
1203
1204 ctx->flags |= SHA_FLAGS_FINUP;
1205
1206 err1 = atmel_sha_update(req);
1207 if (err1 == -EINPROGRESS ||
1208 (err1 == -EBUSY && (ahash_request_flags(req) &
1209 CRYPTO_TFM_REQ_MAY_BACKLOG)))
1210 return err1;
1211
1212 /*
1213 * final() has to be always called to cleanup resources
1214 * even if udpate() failed, except EINPROGRESS
1215 */
1216 err2 = atmel_sha_final(req);
1217
1218 return err1 ?: err2;
1219 }
1220
1221 static int atmel_sha_digest(struct ahash_request *req)
1222 {
1223 return atmel_sha_init(req) ?: atmel_sha_finup(req);
1224 }
1225
1226
1227 static int atmel_sha_export(struct ahash_request *req, void *out)
1228 {
1229 const struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1230
1231 memcpy(out, ctx, sizeof(*ctx));
1232 return 0;
1233 }
1234
1235 static int atmel_sha_import(struct ahash_request *req, const void *in)
1236 {
1237 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1238
1239 memcpy(ctx, in, sizeof(*ctx));
1240 return 0;
1241 }
1242
1243 static int atmel_sha_cra_init(struct crypto_tfm *tfm)
1244 {
1245 struct atmel_sha_ctx *ctx = crypto_tfm_ctx(tfm);
1246
1247 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1248 sizeof(struct atmel_sha_reqctx));
1249 ctx->start = atmel_sha_start;
1250
1251 return 0;
1252 }
1253
1254 static void atmel_sha_alg_init(struct ahash_alg *alg)
1255 {
1256 alg->halg.base.cra_priority = ATMEL_SHA_PRIORITY;
1257 alg->halg.base.cra_flags = CRYPTO_ALG_ASYNC;
1258 alg->halg.base.cra_ctxsize = sizeof(struct atmel_sha_ctx);
1259 alg->halg.base.cra_module = THIS_MODULE;
1260 alg->halg.base.cra_init = atmel_sha_cra_init;
1261
1262 alg->halg.statesize = sizeof(struct atmel_sha_reqctx);
1263
1264 alg->init = atmel_sha_init;
1265 alg->update = atmel_sha_update;
1266 alg->final = atmel_sha_final;
1267 alg->finup = atmel_sha_finup;
1268 alg->digest = atmel_sha_digest;
1269 alg->export = atmel_sha_export;
1270 alg->import = atmel_sha_import;
1271 }
1272
1273 static struct ahash_alg sha_1_256_algs[] = {
1274 {
1275 .halg.base.cra_name = "sha1",
1276 .halg.base.cra_driver_name = "atmel-sha1",
1277 .halg.base.cra_blocksize = SHA1_BLOCK_SIZE,
1278
1279 .halg.digestsize = SHA1_DIGEST_SIZE,
1280 },
1281 {
1282 .halg.base.cra_name = "sha256",
1283 .halg.base.cra_driver_name = "atmel-sha256",
1284 .halg.base.cra_blocksize = SHA256_BLOCK_SIZE,
1285
1286 .halg.digestsize = SHA256_DIGEST_SIZE,
1287 },
1288 };
1289
1290 static struct ahash_alg sha_224_alg = {
1291 .halg.base.cra_name = "sha224",
1292 .halg.base.cra_driver_name = "atmel-sha224",
1293 .halg.base.cra_blocksize = SHA224_BLOCK_SIZE,
1294
1295 .halg.digestsize = SHA224_DIGEST_SIZE,
1296 };
1297
1298 static struct ahash_alg sha_384_512_algs[] = {
1299 {
1300 .halg.base.cra_name = "sha384",
1301 .halg.base.cra_driver_name = "atmel-sha384",
1302 .halg.base.cra_blocksize = SHA384_BLOCK_SIZE,
1303 .halg.base.cra_alignmask = 0x3,
1304
1305 .halg.digestsize = SHA384_DIGEST_SIZE,
1306 },
1307 {
1308 .halg.base.cra_name = "sha512",
1309 .halg.base.cra_driver_name = "atmel-sha512",
1310 .halg.base.cra_blocksize = SHA512_BLOCK_SIZE,
1311 .halg.base.cra_alignmask = 0x3,
1312
1313 .halg.digestsize = SHA512_DIGEST_SIZE,
1314 },
1315 };
1316
1317 static void atmel_sha_queue_task(unsigned long data)
1318 {
1319 struct atmel_sha_dev *dd = (struct atmel_sha_dev *)data;
1320
1321 atmel_sha_handle_queue(dd, NULL);
1322 }
1323
1324 static int atmel_sha_done(struct atmel_sha_dev *dd)
1325 {
1326 int err = 0;
1327
1328 if (SHA_FLAGS_CPU & dd->flags) {
1329 if (SHA_FLAGS_OUTPUT_READY & dd->flags) {
1330 dd->flags &= ~SHA_FLAGS_OUTPUT_READY;
1331 goto finish;
1332 }
1333 } else if (SHA_FLAGS_DMA_READY & dd->flags) {
1334 if (SHA_FLAGS_DMA_ACTIVE & dd->flags) {
1335 dd->flags &= ~SHA_FLAGS_DMA_ACTIVE;
1336 atmel_sha_update_dma_stop(dd);
1337 }
1338 if (SHA_FLAGS_OUTPUT_READY & dd->flags) {
1339 /* hash or semi-hash ready */
1340 dd->flags &= ~(SHA_FLAGS_DMA_READY |
1341 SHA_FLAGS_OUTPUT_READY);
1342 err = atmel_sha_update_dma_start(dd);
1343 if (err != -EINPROGRESS)
1344 goto finish;
1345 }
1346 }
1347 return err;
1348
1349 finish:
1350 /* finish curent request */
1351 atmel_sha_finish_req(dd->req, err);
1352
1353 return err;
1354 }
1355
1356 static void atmel_sha_done_task(unsigned long data)
1357 {
1358 struct atmel_sha_dev *dd = (struct atmel_sha_dev *)data;
1359
1360 dd->is_async = true;
1361 (void)dd->resume(dd);
1362 }
1363
1364 static irqreturn_t atmel_sha_irq(int irq, void *dev_id)
1365 {
1366 struct atmel_sha_dev *sha_dd = dev_id;
1367 u32 reg;
1368
1369 reg = atmel_sha_read(sha_dd, SHA_ISR);
1370 if (reg & atmel_sha_read(sha_dd, SHA_IMR)) {
1371 atmel_sha_write(sha_dd, SHA_IDR, reg);
1372 if (SHA_FLAGS_BUSY & sha_dd->flags) {
1373 sha_dd->flags |= SHA_FLAGS_OUTPUT_READY;
1374 if (!(SHA_FLAGS_CPU & sha_dd->flags))
1375 sha_dd->flags |= SHA_FLAGS_DMA_READY;
1376 tasklet_schedule(&sha_dd->done_task);
1377 } else {
1378 dev_warn(sha_dd->dev, "SHA interrupt when no active requests.\n");
1379 }
1380 return IRQ_HANDLED;
1381 }
1382
1383 return IRQ_NONE;
1384 }
1385
1386
1387 /* DMA transfer functions */
1388
1389 static bool atmel_sha_dma_check_aligned(struct atmel_sha_dev *dd,
1390 struct scatterlist *sg,
1391 size_t len)
1392 {
1393 struct atmel_sha_dma *dma = &dd->dma_lch_in;
1394 struct ahash_request *req = dd->req;
1395 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1396 size_t bs = ctx->block_size;
1397 int nents;
1398
1399 for (nents = 0; sg; sg = sg_next(sg), ++nents) {
1400 if (!IS_ALIGNED(sg->offset, sizeof(u32)))
1401 return false;
1402
1403 /*
1404 * This is the last sg, the only one that is allowed to
1405 * have an unaligned length.
1406 */
1407 if (len <= sg->length) {
1408 dma->nents = nents + 1;
1409 dma->last_sg_length = sg->length;
1410 sg->length = ALIGN(len, sizeof(u32));
1411 return true;
1412 }
1413
1414 /* All other sg lengths MUST be aligned to the block size. */
1415 if (!IS_ALIGNED(sg->length, bs))
1416 return false;
1417
1418 len -= sg->length;
1419 }
1420
1421 return false;
1422 }
1423
1424 static void atmel_sha_dma_callback2(void *data)
1425 {
1426 struct atmel_sha_dev *dd = data;
1427 struct atmel_sha_dma *dma = &dd->dma_lch_in;
1428 struct scatterlist *sg;
1429 int nents;
1430
1431 dma_unmap_sg(dd->dev, dma->sg, dma->nents, DMA_TO_DEVICE);
1432
1433 sg = dma->sg;
1434 for (nents = 0; nents < dma->nents - 1; ++nents)
1435 sg = sg_next(sg);
1436 sg->length = dma->last_sg_length;
1437
1438 dd->is_async = true;
1439 (void)atmel_sha_wait_for_data_ready(dd, dd->resume);
1440 }
1441
1442 static int atmel_sha_dma_start(struct atmel_sha_dev *dd,
1443 struct scatterlist *src,
1444 size_t len,
1445 atmel_sha_fn_t resume)
1446 {
1447 struct atmel_sha_dma *dma = &dd->dma_lch_in;
1448 struct dma_slave_config *config = &dma->dma_conf;
1449 struct dma_chan *chan = dma->chan;
1450 struct dma_async_tx_descriptor *desc;
1451 dma_cookie_t cookie;
1452 unsigned int sg_len;
1453 int err;
1454
1455 dd->resume = resume;
1456
1457 /*
1458 * dma->nents has already been initialized by
1459 * atmel_sha_dma_check_aligned().
1460 */
1461 dma->sg = src;
1462 sg_len = dma_map_sg(dd->dev, dma->sg, dma->nents, DMA_TO_DEVICE);
1463 if (!sg_len) {
1464 err = -ENOMEM;
1465 goto exit;
1466 }
1467
1468 config->src_maxburst = 16;
1469 config->dst_maxburst = 16;
1470 err = dmaengine_slave_config(chan, config);
1471 if (err)
1472 goto unmap_sg;
1473
1474 desc = dmaengine_prep_slave_sg(chan, dma->sg, sg_len, DMA_MEM_TO_DEV,
1475 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1476 if (!desc) {
1477 err = -ENOMEM;
1478 goto unmap_sg;
1479 }
1480
1481 desc->callback = atmel_sha_dma_callback2;
1482 desc->callback_param = dd;
1483 cookie = dmaengine_submit(desc);
1484 err = dma_submit_error(cookie);
1485 if (err)
1486 goto unmap_sg;
1487
1488 dma_async_issue_pending(chan);
1489
1490 return -EINPROGRESS;
1491
1492 unmap_sg:
1493 dma_unmap_sg(dd->dev, dma->sg, dma->nents, DMA_TO_DEVICE);
1494 exit:
1495 return atmel_sha_complete(dd, err);
1496 }
1497
1498
1499 /* CPU transfer functions */
1500
1501 static int atmel_sha_cpu_transfer(struct atmel_sha_dev *dd)
1502 {
1503 struct ahash_request *req = dd->req;
1504 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1505 const u32 *words = (const u32 *)ctx->buffer;
1506 size_t i, num_words;
1507 u32 isr, din, din_inc;
1508
1509 din_inc = (ctx->flags & SHA_FLAGS_IDATAR0) ? 0 : 1;
1510 for (;;) {
1511 /* Write data into the Input Data Registers. */
1512 num_words = DIV_ROUND_UP(ctx->bufcnt, sizeof(u32));
1513 for (i = 0, din = 0; i < num_words; ++i, din += din_inc)
1514 atmel_sha_write(dd, SHA_REG_DIN(din), words[i]);
1515
1516 ctx->offset += ctx->bufcnt;
1517 ctx->total -= ctx->bufcnt;
1518
1519 if (!ctx->total)
1520 break;
1521
1522 /*
1523 * Prepare next block:
1524 * Fill ctx->buffer now with the next data to be written into
1525 * IDATARx: it gives time for the SHA hardware to process
1526 * the current data so the SHA_INT_DATARDY flag might be set
1527 * in SHA_ISR when polling this register at the beginning of
1528 * the next loop.
1529 */
1530 ctx->bufcnt = min_t(size_t, ctx->block_size, ctx->total);
1531 scatterwalk_map_and_copy(ctx->buffer, ctx->sg,
1532 ctx->offset, ctx->bufcnt, 0);
1533
1534 /* Wait for hardware to be ready again. */
1535 isr = atmel_sha_read(dd, SHA_ISR);
1536 if (!(isr & SHA_INT_DATARDY)) {
1537 /* Not ready yet. */
1538 dd->resume = atmel_sha_cpu_transfer;
1539 atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
1540 return -EINPROGRESS;
1541 }
1542 }
1543
1544 if (unlikely(!(ctx->flags & SHA_FLAGS_WAIT_DATARDY)))
1545 return dd->cpu_transfer_complete(dd);
1546
1547 return atmel_sha_wait_for_data_ready(dd, dd->cpu_transfer_complete);
1548 }
1549
1550 static int atmel_sha_cpu_start(struct atmel_sha_dev *dd,
1551 struct scatterlist *sg,
1552 unsigned int len,
1553 bool idatar0_only,
1554 bool wait_data_ready,
1555 atmel_sha_fn_t resume)
1556 {
1557 struct ahash_request *req = dd->req;
1558 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1559
1560 if (!len)
1561 return resume(dd);
1562
1563 ctx->flags &= ~(SHA_FLAGS_IDATAR0 | SHA_FLAGS_WAIT_DATARDY);
1564
1565 if (idatar0_only)
1566 ctx->flags |= SHA_FLAGS_IDATAR0;
1567
1568 if (wait_data_ready)
1569 ctx->flags |= SHA_FLAGS_WAIT_DATARDY;
1570
1571 ctx->sg = sg;
1572 ctx->total = len;
1573 ctx->offset = 0;
1574
1575 /* Prepare the first block to be written. */
1576 ctx->bufcnt = min_t(size_t, ctx->block_size, ctx->total);
1577 scatterwalk_map_and_copy(ctx->buffer, ctx->sg,
1578 ctx->offset, ctx->bufcnt, 0);
1579
1580 dd->cpu_transfer_complete = resume;
1581 return atmel_sha_cpu_transfer(dd);
1582 }
1583
1584 static int atmel_sha_cpu_hash(struct atmel_sha_dev *dd,
1585 const void *data, unsigned int datalen,
1586 bool auto_padding,
1587 atmel_sha_fn_t resume)
1588 {
1589 struct ahash_request *req = dd->req;
1590 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1591 u32 msglen = (auto_padding) ? datalen : 0;
1592 u32 mr = SHA_MR_MODE_AUTO;
1593
1594 if (!(IS_ALIGNED(datalen, ctx->block_size) || auto_padding))
1595 return atmel_sha_complete(dd, -EINVAL);
1596
1597 mr |= (ctx->flags & SHA_FLAGS_ALGO_MASK);
1598 atmel_sha_write(dd, SHA_MR, mr);
1599 atmel_sha_write(dd, SHA_MSR, msglen);
1600 atmel_sha_write(dd, SHA_BCR, msglen);
1601 atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
1602
1603 sg_init_one(&dd->tmp, data, datalen);
1604 return atmel_sha_cpu_start(dd, &dd->tmp, datalen, false, true, resume);
1605 }
1606
1607
1608 /* hmac functions */
1609
1610 struct atmel_sha_hmac_key {
1611 bool valid;
1612 unsigned int keylen;
1613 u8 buffer[SHA512_BLOCK_SIZE];
1614 u8 *keydup;
1615 };
1616
1617 static inline void atmel_sha_hmac_key_init(struct atmel_sha_hmac_key *hkey)
1618 {
1619 memset(hkey, 0, sizeof(*hkey));
1620 }
1621
1622 static inline void atmel_sha_hmac_key_release(struct atmel_sha_hmac_key *hkey)
1623 {
1624 kfree(hkey->keydup);
1625 memset(hkey, 0, sizeof(*hkey));
1626 }
1627
1628 static inline int atmel_sha_hmac_key_set(struct atmel_sha_hmac_key *hkey,
1629 const u8 *key,
1630 unsigned int keylen)
1631 {
1632 atmel_sha_hmac_key_release(hkey);
1633
1634 if (keylen > sizeof(hkey->buffer)) {
1635 hkey->keydup = kmemdup(key, keylen, GFP_KERNEL);
1636 if (!hkey->keydup)
1637 return -ENOMEM;
1638
1639 } else {
1640 memcpy(hkey->buffer, key, keylen);
1641 }
1642
1643 hkey->valid = true;
1644 hkey->keylen = keylen;
1645 return 0;
1646 }
1647
1648 static inline bool atmel_sha_hmac_key_get(const struct atmel_sha_hmac_key *hkey,
1649 const u8 **key,
1650 unsigned int *keylen)
1651 {
1652 if (!hkey->valid)
1653 return false;
1654
1655 *keylen = hkey->keylen;
1656 *key = (hkey->keydup) ? hkey->keydup : hkey->buffer;
1657 return true;
1658 }
1659
1660
1661 struct atmel_sha_hmac_ctx {
1662 struct atmel_sha_ctx base;
1663
1664 struct atmel_sha_hmac_key hkey;
1665 u32 ipad[SHA512_BLOCK_SIZE / sizeof(u32)];
1666 u32 opad[SHA512_BLOCK_SIZE / sizeof(u32)];
1667 atmel_sha_fn_t resume;
1668 };
1669
1670 static int atmel_sha_hmac_setup(struct atmel_sha_dev *dd,
1671 atmel_sha_fn_t resume);
1672 static int atmel_sha_hmac_prehash_key(struct atmel_sha_dev *dd,
1673 const u8 *key, unsigned int keylen);
1674 static int atmel_sha_hmac_prehash_key_done(struct atmel_sha_dev *dd);
1675 static int atmel_sha_hmac_compute_ipad_hash(struct atmel_sha_dev *dd);
1676 static int atmel_sha_hmac_compute_opad_hash(struct atmel_sha_dev *dd);
1677 static int atmel_sha_hmac_setup_done(struct atmel_sha_dev *dd);
1678
1679 static int atmel_sha_hmac_init_done(struct atmel_sha_dev *dd);
1680 static int atmel_sha_hmac_final(struct atmel_sha_dev *dd);
1681 static int atmel_sha_hmac_final_done(struct atmel_sha_dev *dd);
1682 static int atmel_sha_hmac_digest2(struct atmel_sha_dev *dd);
1683
1684 static int atmel_sha_hmac_setup(struct atmel_sha_dev *dd,
1685 atmel_sha_fn_t resume)
1686 {
1687 struct ahash_request *req = dd->req;
1688 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1689 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1690 struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1691 unsigned int keylen;
1692 const u8 *key;
1693 size_t bs;
1694
1695 hmac->resume = resume;
1696 switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
1697 case SHA_FLAGS_SHA1:
1698 ctx->block_size = SHA1_BLOCK_SIZE;
1699 ctx->hash_size = SHA1_DIGEST_SIZE;
1700 break;
1701
1702 case SHA_FLAGS_SHA224:
1703 ctx->block_size = SHA224_BLOCK_SIZE;
1704 ctx->hash_size = SHA256_DIGEST_SIZE;
1705 break;
1706
1707 case SHA_FLAGS_SHA256:
1708 ctx->block_size = SHA256_BLOCK_SIZE;
1709 ctx->hash_size = SHA256_DIGEST_SIZE;
1710 break;
1711
1712 case SHA_FLAGS_SHA384:
1713 ctx->block_size = SHA384_BLOCK_SIZE;
1714 ctx->hash_size = SHA512_DIGEST_SIZE;
1715 break;
1716
1717 case SHA_FLAGS_SHA512:
1718 ctx->block_size = SHA512_BLOCK_SIZE;
1719 ctx->hash_size = SHA512_DIGEST_SIZE;
1720 break;
1721
1722 default:
1723 return atmel_sha_complete(dd, -EINVAL);
1724 }
1725 bs = ctx->block_size;
1726
1727 if (likely(!atmel_sha_hmac_key_get(&hmac->hkey, &key, &keylen)))
1728 return resume(dd);
1729
1730 /* Compute K' from K. */
1731 if (unlikely(keylen > bs))
1732 return atmel_sha_hmac_prehash_key(dd, key, keylen);
1733
1734 /* Prepare ipad. */
1735 memcpy((u8 *)hmac->ipad, key, keylen);
1736 memset((u8 *)hmac->ipad + keylen, 0, bs - keylen);
1737 return atmel_sha_hmac_compute_ipad_hash(dd);
1738 }
1739
1740 static int atmel_sha_hmac_prehash_key(struct atmel_sha_dev *dd,
1741 const u8 *key, unsigned int keylen)
1742 {
1743 return atmel_sha_cpu_hash(dd, key, keylen, true,
1744 atmel_sha_hmac_prehash_key_done);
1745 }
1746
1747 static int atmel_sha_hmac_prehash_key_done(struct atmel_sha_dev *dd)
1748 {
1749 struct ahash_request *req = dd->req;
1750 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1751 struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1752 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1753 size_t ds = crypto_ahash_digestsize(tfm);
1754 size_t bs = ctx->block_size;
1755 size_t i, num_words = ds / sizeof(u32);
1756
1757 /* Prepare ipad. */
1758 for (i = 0; i < num_words; ++i)
1759 hmac->ipad[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
1760 memset((u8 *)hmac->ipad + ds, 0, bs - ds);
1761 return atmel_sha_hmac_compute_ipad_hash(dd);
1762 }
1763
1764 static int atmel_sha_hmac_compute_ipad_hash(struct atmel_sha_dev *dd)
1765 {
1766 struct ahash_request *req = dd->req;
1767 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1768 struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1769 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1770 size_t bs = ctx->block_size;
1771 size_t i, num_words = bs / sizeof(u32);
1772
1773 memcpy(hmac->opad, hmac->ipad, bs);
1774 for (i = 0; i < num_words; ++i) {
1775 hmac->ipad[i] ^= 0x36363636;
1776 hmac->opad[i] ^= 0x5c5c5c5c;
1777 }
1778
1779 return atmel_sha_cpu_hash(dd, hmac->ipad, bs, false,
1780 atmel_sha_hmac_compute_opad_hash);
1781 }
1782
1783 static int atmel_sha_hmac_compute_opad_hash(struct atmel_sha_dev *dd)
1784 {
1785 struct ahash_request *req = dd->req;
1786 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1787 struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1788 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1789 size_t bs = ctx->block_size;
1790 size_t hs = ctx->hash_size;
1791 size_t i, num_words = hs / sizeof(u32);
1792
1793 for (i = 0; i < num_words; ++i)
1794 hmac->ipad[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
1795 return atmel_sha_cpu_hash(dd, hmac->opad, bs, false,
1796 atmel_sha_hmac_setup_done);
1797 }
1798
1799 static int atmel_sha_hmac_setup_done(struct atmel_sha_dev *dd)
1800 {
1801 struct ahash_request *req = dd->req;
1802 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1803 struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1804 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1805 size_t hs = ctx->hash_size;
1806 size_t i, num_words = hs / sizeof(u32);
1807
1808 for (i = 0; i < num_words; ++i)
1809 hmac->opad[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
1810 atmel_sha_hmac_key_release(&hmac->hkey);
1811 return hmac->resume(dd);
1812 }
1813
1814 static int atmel_sha_hmac_start(struct atmel_sha_dev *dd)
1815 {
1816 struct ahash_request *req = dd->req;
1817 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1818 int err;
1819
1820 err = atmel_sha_hw_init(dd);
1821 if (err)
1822 return atmel_sha_complete(dd, err);
1823
1824 switch (ctx->op) {
1825 case SHA_OP_INIT:
1826 err = atmel_sha_hmac_setup(dd, atmel_sha_hmac_init_done);
1827 break;
1828
1829 case SHA_OP_UPDATE:
1830 dd->resume = atmel_sha_done;
1831 err = atmel_sha_update_req(dd);
1832 break;
1833
1834 case SHA_OP_FINAL:
1835 dd->resume = atmel_sha_hmac_final;
1836 err = atmel_sha_final_req(dd);
1837 break;
1838
1839 case SHA_OP_DIGEST:
1840 err = atmel_sha_hmac_setup(dd, atmel_sha_hmac_digest2);
1841 break;
1842
1843 default:
1844 return atmel_sha_complete(dd, -EINVAL);
1845 }
1846
1847 return err;
1848 }
1849
1850 static int atmel_sha_hmac_setkey(struct crypto_ahash *tfm, const u8 *key,
1851 unsigned int keylen)
1852 {
1853 struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1854
1855 return atmel_sha_hmac_key_set(&hmac->hkey, key, keylen);
1856 }
1857
1858 static int atmel_sha_hmac_init(struct ahash_request *req)
1859 {
1860 int err;
1861
1862 err = atmel_sha_init(req);
1863 if (err)
1864 return err;
1865
1866 return atmel_sha_enqueue(req, SHA_OP_INIT);
1867 }
1868
1869 static int atmel_sha_hmac_init_done(struct atmel_sha_dev *dd)
1870 {
1871 struct ahash_request *req = dd->req;
1872 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1873 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1874 struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1875 size_t bs = ctx->block_size;
1876 size_t hs = ctx->hash_size;
1877
1878 ctx->bufcnt = 0;
1879 ctx->digcnt[0] = bs;
1880 ctx->digcnt[1] = 0;
1881 ctx->flags |= SHA_FLAGS_RESTORE;
1882 memcpy(ctx->digest, hmac->ipad, hs);
1883 return atmel_sha_complete(dd, 0);
1884 }
1885
1886 static int atmel_sha_hmac_final(struct atmel_sha_dev *dd)
1887 {
1888 struct ahash_request *req = dd->req;
1889 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1890 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1891 struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1892 u32 *digest = (u32 *)ctx->digest;
1893 size_t ds = crypto_ahash_digestsize(tfm);
1894 size_t bs = ctx->block_size;
1895 size_t hs = ctx->hash_size;
1896 size_t i, num_words;
1897 u32 mr;
1898
1899 /* Save d = SHA((K' + ipad) | msg). */
1900 num_words = ds / sizeof(u32);
1901 for (i = 0; i < num_words; ++i)
1902 digest[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
1903
1904 /* Restore context to finish computing SHA((K' + opad) | d). */
1905 atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
1906 num_words = hs / sizeof(u32);
1907 for (i = 0; i < num_words; ++i)
1908 atmel_sha_write(dd, SHA_REG_DIN(i), hmac->opad[i]);
1909
1910 mr = SHA_MR_MODE_AUTO | SHA_MR_UIHV;
1911 mr |= (ctx->flags & SHA_FLAGS_ALGO_MASK);
1912 atmel_sha_write(dd, SHA_MR, mr);
1913 atmel_sha_write(dd, SHA_MSR, bs + ds);
1914 atmel_sha_write(dd, SHA_BCR, ds);
1915 atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
1916
1917 sg_init_one(&dd->tmp, digest, ds);
1918 return atmel_sha_cpu_start(dd, &dd->tmp, ds, false, true,
1919 atmel_sha_hmac_final_done);
1920 }
1921
1922 static int atmel_sha_hmac_final_done(struct atmel_sha_dev *dd)
1923 {
1924 /*
1925 * req->result might not be sizeof(u32) aligned, so copy the
1926 * digest into ctx->digest[] before memcpy() the data into
1927 * req->result.
1928 */
1929 atmel_sha_copy_hash(dd->req);
1930 atmel_sha_copy_ready_hash(dd->req);
1931 return atmel_sha_complete(dd, 0);
1932 }
1933
1934 static int atmel_sha_hmac_digest(struct ahash_request *req)
1935 {
1936 int err;
1937
1938 err = atmel_sha_init(req);
1939 if (err)
1940 return err;
1941
1942 return atmel_sha_enqueue(req, SHA_OP_DIGEST);
1943 }
1944
1945 static int atmel_sha_hmac_digest2(struct atmel_sha_dev *dd)
1946 {
1947 struct ahash_request *req = dd->req;
1948 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1949 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1950 struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1951 size_t hs = ctx->hash_size;
1952 size_t i, num_words = hs / sizeof(u32);
1953 bool use_dma = false;
1954 u32 mr;
1955
1956 /* Special case for empty message. */
1957 if (!req->nbytes)
1958 return atmel_sha_complete(dd, -EINVAL); // TODO:
1959
1960 /* Check DMA threshold and alignment. */
1961 if (req->nbytes > ATMEL_SHA_DMA_THRESHOLD &&
1962 atmel_sha_dma_check_aligned(dd, req->src, req->nbytes))
1963 use_dma = true;
1964
1965 /* Write both initial hash values to compute a HMAC. */
1966 atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
1967 for (i = 0; i < num_words; ++i)
1968 atmel_sha_write(dd, SHA_REG_DIN(i), hmac->ipad[i]);
1969
1970 atmel_sha_write(dd, SHA_CR, SHA_CR_WUIEHV);
1971 for (i = 0; i < num_words; ++i)
1972 atmel_sha_write(dd, SHA_REG_DIN(i), hmac->opad[i]);
1973
1974 /* Write the Mode, Message Size, Bytes Count then Control Registers. */
1975 mr = (SHA_MR_HMAC | SHA_MR_DUALBUFF);
1976 mr |= ctx->flags & SHA_FLAGS_ALGO_MASK;
1977 if (use_dma)
1978 mr |= SHA_MR_MODE_IDATAR0;
1979 else
1980 mr |= SHA_MR_MODE_AUTO;
1981 atmel_sha_write(dd, SHA_MR, mr);
1982
1983 atmel_sha_write(dd, SHA_MSR, req->nbytes);
1984 atmel_sha_write(dd, SHA_BCR, req->nbytes);
1985
1986 atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
1987
1988 /* Process data. */
1989 if (use_dma)
1990 return atmel_sha_dma_start(dd, req->src, req->nbytes,
1991 atmel_sha_hmac_final_done);
1992
1993 return atmel_sha_cpu_start(dd, req->src, req->nbytes, false, true,
1994 atmel_sha_hmac_final_done);
1995 }
1996
1997 static int atmel_sha_hmac_cra_init(struct crypto_tfm *tfm)
1998 {
1999 struct atmel_sha_hmac_ctx *hmac = crypto_tfm_ctx(tfm);
2000
2001 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
2002 sizeof(struct atmel_sha_reqctx));
2003 hmac->base.start = atmel_sha_hmac_start;
2004 atmel_sha_hmac_key_init(&hmac->hkey);
2005
2006 return 0;
2007 }
2008
2009 static void atmel_sha_hmac_cra_exit(struct crypto_tfm *tfm)
2010 {
2011 struct atmel_sha_hmac_ctx *hmac = crypto_tfm_ctx(tfm);
2012
2013 atmel_sha_hmac_key_release(&hmac->hkey);
2014 }
2015
2016 static void atmel_sha_hmac_alg_init(struct ahash_alg *alg)
2017 {
2018 alg->halg.base.cra_priority = ATMEL_SHA_PRIORITY;
2019 alg->halg.base.cra_flags = CRYPTO_ALG_ASYNC;
2020 alg->halg.base.cra_ctxsize = sizeof(struct atmel_sha_hmac_ctx);
2021 alg->halg.base.cra_module = THIS_MODULE;
2022 alg->halg.base.cra_init = atmel_sha_hmac_cra_init;
2023 alg->halg.base.cra_exit = atmel_sha_hmac_cra_exit;
2024
2025 alg->halg.statesize = sizeof(struct atmel_sha_reqctx);
2026
2027 alg->init = atmel_sha_hmac_init;
2028 alg->update = atmel_sha_update;
2029 alg->final = atmel_sha_final;
2030 alg->digest = atmel_sha_hmac_digest;
2031 alg->setkey = atmel_sha_hmac_setkey;
2032 alg->export = atmel_sha_export;
2033 alg->import = atmel_sha_import;
2034 }
2035
2036 static struct ahash_alg sha_hmac_algs[] = {
2037 {
2038 .halg.base.cra_name = "hmac(sha1)",
2039 .halg.base.cra_driver_name = "atmel-hmac-sha1",
2040 .halg.base.cra_blocksize = SHA1_BLOCK_SIZE,
2041
2042 .halg.digestsize = SHA1_DIGEST_SIZE,
2043 },
2044 {
2045 .halg.base.cra_name = "hmac(sha224)",
2046 .halg.base.cra_driver_name = "atmel-hmac-sha224",
2047 .halg.base.cra_blocksize = SHA224_BLOCK_SIZE,
2048
2049 .halg.digestsize = SHA224_DIGEST_SIZE,
2050 },
2051 {
2052 .halg.base.cra_name = "hmac(sha256)",
2053 .halg.base.cra_driver_name = "atmel-hmac-sha256",
2054 .halg.base.cra_blocksize = SHA256_BLOCK_SIZE,
2055
2056 .halg.digestsize = SHA256_DIGEST_SIZE,
2057 },
2058 {
2059 .halg.base.cra_name = "hmac(sha384)",
2060 .halg.base.cra_driver_name = "atmel-hmac-sha384",
2061 .halg.base.cra_blocksize = SHA384_BLOCK_SIZE,
2062
2063 .halg.digestsize = SHA384_DIGEST_SIZE,
2064 },
2065 {
2066 .halg.base.cra_name = "hmac(sha512)",
2067 .halg.base.cra_driver_name = "atmel-hmac-sha512",
2068 .halg.base.cra_blocksize = SHA512_BLOCK_SIZE,
2069
2070 .halg.digestsize = SHA512_DIGEST_SIZE,
2071 },
2072 };
2073
2074 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2075 /* authenc functions */
2076
2077 static int atmel_sha_authenc_init2(struct atmel_sha_dev *dd);
2078 static int atmel_sha_authenc_init_done(struct atmel_sha_dev *dd);
2079 static int atmel_sha_authenc_final_done(struct atmel_sha_dev *dd);
2080
2081
2082 struct atmel_sha_authenc_ctx {
2083 struct crypto_ahash *tfm;
2084 };
2085
2086 struct atmel_sha_authenc_reqctx {
2087 struct atmel_sha_reqctx base;
2088
2089 atmel_aes_authenc_fn_t cb;
2090 struct atmel_aes_dev *aes_dev;
2091
2092 /* _init() parameters. */
2093 struct scatterlist *assoc;
2094 u32 assoclen;
2095 u32 textlen;
2096
2097 /* _final() parameters. */
2098 u32 *digest;
2099 unsigned int digestlen;
2100 };
2101
2102 static void atmel_sha_authenc_complete(struct crypto_async_request *areq,
2103 int err)
2104 {
2105 struct ahash_request *req = areq->data;
2106 struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2107
2108 authctx->cb(authctx->aes_dev, err, authctx->base.dd->is_async);
2109 }
2110
2111 static int atmel_sha_authenc_start(struct atmel_sha_dev *dd)
2112 {
2113 struct ahash_request *req = dd->req;
2114 struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2115 int err;
2116
2117 /*
2118 * Force atmel_sha_complete() to call req->base.complete(), ie
2119 * atmel_sha_authenc_complete(), which in turn calls authctx->cb().
2120 */
2121 dd->force_complete = true;
2122
2123 err = atmel_sha_hw_init(dd);
2124 return authctx->cb(authctx->aes_dev, err, dd->is_async);
2125 }
2126
2127 bool atmel_sha_authenc_is_ready(void)
2128 {
2129 struct atmel_sha_ctx dummy;
2130
2131 dummy.dd = NULL;
2132 return (atmel_sha_find_dev(&dummy) != NULL);
2133 }
2134 EXPORT_SYMBOL_GPL(atmel_sha_authenc_is_ready);
2135
2136 unsigned int atmel_sha_authenc_get_reqsize(void)
2137 {
2138 return sizeof(struct atmel_sha_authenc_reqctx);
2139 }
2140 EXPORT_SYMBOL_GPL(atmel_sha_authenc_get_reqsize);
2141
2142 struct atmel_sha_authenc_ctx *atmel_sha_authenc_spawn(unsigned long mode)
2143 {
2144 struct atmel_sha_authenc_ctx *auth;
2145 struct crypto_ahash *tfm;
2146 struct atmel_sha_ctx *tctx;
2147 const char *name;
2148 int err = -EINVAL;
2149
2150 switch (mode & SHA_FLAGS_MODE_MASK) {
2151 case SHA_FLAGS_HMAC_SHA1:
2152 name = "atmel-hmac-sha1";
2153 break;
2154
2155 case SHA_FLAGS_HMAC_SHA224:
2156 name = "atmel-hmac-sha224";
2157 break;
2158
2159 case SHA_FLAGS_HMAC_SHA256:
2160 name = "atmel-hmac-sha256";
2161 break;
2162
2163 case SHA_FLAGS_HMAC_SHA384:
2164 name = "atmel-hmac-sha384";
2165 break;
2166
2167 case SHA_FLAGS_HMAC_SHA512:
2168 name = "atmel-hmac-sha512";
2169 break;
2170
2171 default:
2172 goto error;
2173 }
2174
2175 tfm = crypto_alloc_ahash(name, 0, 0);
2176 if (IS_ERR(tfm)) {
2177 err = PTR_ERR(tfm);
2178 goto error;
2179 }
2180 tctx = crypto_ahash_ctx(tfm);
2181 tctx->start = atmel_sha_authenc_start;
2182 tctx->flags = mode;
2183
2184 auth = kzalloc(sizeof(*auth), GFP_KERNEL);
2185 if (!auth) {
2186 err = -ENOMEM;
2187 goto err_free_ahash;
2188 }
2189 auth->tfm = tfm;
2190
2191 return auth;
2192
2193 err_free_ahash:
2194 crypto_free_ahash(tfm);
2195 error:
2196 return ERR_PTR(err);
2197 }
2198 EXPORT_SYMBOL_GPL(atmel_sha_authenc_spawn);
2199
2200 void atmel_sha_authenc_free(struct atmel_sha_authenc_ctx *auth)
2201 {
2202 if (auth)
2203 crypto_free_ahash(auth->tfm);
2204 kfree(auth);
2205 }
2206 EXPORT_SYMBOL_GPL(atmel_sha_authenc_free);
2207
2208 int atmel_sha_authenc_setkey(struct atmel_sha_authenc_ctx *auth,
2209 const u8 *key, unsigned int keylen, u32 flags)
2210 {
2211 struct crypto_ahash *tfm = auth->tfm;
2212
2213 crypto_ahash_clear_flags(tfm, CRYPTO_TFM_REQ_MASK);
2214 crypto_ahash_set_flags(tfm, flags & CRYPTO_TFM_REQ_MASK);
2215 return crypto_ahash_setkey(tfm, key, keylen);
2216 }
2217 EXPORT_SYMBOL_GPL(atmel_sha_authenc_setkey);
2218
2219 int atmel_sha_authenc_schedule(struct ahash_request *req,
2220 struct atmel_sha_authenc_ctx *auth,
2221 atmel_aes_authenc_fn_t cb,
2222 struct atmel_aes_dev *aes_dev)
2223 {
2224 struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2225 struct atmel_sha_reqctx *ctx = &authctx->base;
2226 struct crypto_ahash *tfm = auth->tfm;
2227 struct atmel_sha_ctx *tctx = crypto_ahash_ctx(tfm);
2228 struct atmel_sha_dev *dd;
2229
2230 /* Reset request context (MUST be done first). */
2231 memset(authctx, 0, sizeof(*authctx));
2232
2233 /* Get SHA device. */
2234 dd = atmel_sha_find_dev(tctx);
2235 if (!dd)
2236 return cb(aes_dev, -ENODEV, false);
2237
2238 /* Init request context. */
2239 ctx->dd = dd;
2240 ctx->buflen = SHA_BUFFER_LEN;
2241 authctx->cb = cb;
2242 authctx->aes_dev = aes_dev;
2243 ahash_request_set_tfm(req, tfm);
2244 ahash_request_set_callback(req, 0, atmel_sha_authenc_complete, req);
2245
2246 return atmel_sha_handle_queue(dd, req);
2247 }
2248 EXPORT_SYMBOL_GPL(atmel_sha_authenc_schedule);
2249
2250 int atmel_sha_authenc_init(struct ahash_request *req,
2251 struct scatterlist *assoc, unsigned int assoclen,
2252 unsigned int textlen,
2253 atmel_aes_authenc_fn_t cb,
2254 struct atmel_aes_dev *aes_dev)
2255 {
2256 struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2257 struct atmel_sha_reqctx *ctx = &authctx->base;
2258 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2259 struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
2260 struct atmel_sha_dev *dd = ctx->dd;
2261
2262 if (unlikely(!IS_ALIGNED(assoclen, sizeof(u32))))
2263 return atmel_sha_complete(dd, -EINVAL);
2264
2265 authctx->cb = cb;
2266 authctx->aes_dev = aes_dev;
2267 authctx->assoc = assoc;
2268 authctx->assoclen = assoclen;
2269 authctx->textlen = textlen;
2270
2271 ctx->flags = hmac->base.flags;
2272 return atmel_sha_hmac_setup(dd, atmel_sha_authenc_init2);
2273 }
2274 EXPORT_SYMBOL_GPL(atmel_sha_authenc_init);
2275
2276 static int atmel_sha_authenc_init2(struct atmel_sha_dev *dd)
2277 {
2278 struct ahash_request *req = dd->req;
2279 struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2280 struct atmel_sha_reqctx *ctx = &authctx->base;
2281 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2282 struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
2283 size_t hs = ctx->hash_size;
2284 size_t i, num_words = hs / sizeof(u32);
2285 u32 mr, msg_size;
2286
2287 atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
2288 for (i = 0; i < num_words; ++i)
2289 atmel_sha_write(dd, SHA_REG_DIN(i), hmac->ipad[i]);
2290
2291 atmel_sha_write(dd, SHA_CR, SHA_CR_WUIEHV);
2292 for (i = 0; i < num_words; ++i)
2293 atmel_sha_write(dd, SHA_REG_DIN(i), hmac->opad[i]);
2294
2295 mr = (SHA_MR_MODE_IDATAR0 |
2296 SHA_MR_HMAC |
2297 SHA_MR_DUALBUFF);
2298 mr |= ctx->flags & SHA_FLAGS_ALGO_MASK;
2299 atmel_sha_write(dd, SHA_MR, mr);
2300
2301 msg_size = authctx->assoclen + authctx->textlen;
2302 atmel_sha_write(dd, SHA_MSR, msg_size);
2303 atmel_sha_write(dd, SHA_BCR, msg_size);
2304
2305 atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
2306
2307 /* Process assoc data. */
2308 return atmel_sha_cpu_start(dd, authctx->assoc, authctx->assoclen,
2309 true, false,
2310 atmel_sha_authenc_init_done);
2311 }
2312
2313 static int atmel_sha_authenc_init_done(struct atmel_sha_dev *dd)
2314 {
2315 struct ahash_request *req = dd->req;
2316 struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2317
2318 return authctx->cb(authctx->aes_dev, 0, dd->is_async);
2319 }
2320
2321 int atmel_sha_authenc_final(struct ahash_request *req,
2322 u32 *digest, unsigned int digestlen,
2323 atmel_aes_authenc_fn_t cb,
2324 struct atmel_aes_dev *aes_dev)
2325 {
2326 struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2327 struct atmel_sha_reqctx *ctx = &authctx->base;
2328 struct atmel_sha_dev *dd = ctx->dd;
2329
2330 switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
2331 case SHA_FLAGS_SHA1:
2332 authctx->digestlen = SHA1_DIGEST_SIZE;
2333 break;
2334
2335 case SHA_FLAGS_SHA224:
2336 authctx->digestlen = SHA224_DIGEST_SIZE;
2337 break;
2338
2339 case SHA_FLAGS_SHA256:
2340 authctx->digestlen = SHA256_DIGEST_SIZE;
2341 break;
2342
2343 case SHA_FLAGS_SHA384:
2344 authctx->digestlen = SHA384_DIGEST_SIZE;
2345 break;
2346
2347 case SHA_FLAGS_SHA512:
2348 authctx->digestlen = SHA512_DIGEST_SIZE;
2349 break;
2350
2351 default:
2352 return atmel_sha_complete(dd, -EINVAL);
2353 }
2354 if (authctx->digestlen > digestlen)
2355 authctx->digestlen = digestlen;
2356
2357 authctx->cb = cb;
2358 authctx->aes_dev = aes_dev;
2359 authctx->digest = digest;
2360 return atmel_sha_wait_for_data_ready(dd,
2361 atmel_sha_authenc_final_done);
2362 }
2363 EXPORT_SYMBOL_GPL(atmel_sha_authenc_final);
2364
2365 static int atmel_sha_authenc_final_done(struct atmel_sha_dev *dd)
2366 {
2367 struct ahash_request *req = dd->req;
2368 struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2369 size_t i, num_words = authctx->digestlen / sizeof(u32);
2370
2371 for (i = 0; i < num_words; ++i)
2372 authctx->digest[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
2373
2374 return atmel_sha_complete(dd, 0);
2375 }
2376
2377 void atmel_sha_authenc_abort(struct ahash_request *req)
2378 {
2379 struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2380 struct atmel_sha_reqctx *ctx = &authctx->base;
2381 struct atmel_sha_dev *dd = ctx->dd;
2382
2383 /* Prevent atmel_sha_complete() from calling req->base.complete(). */
2384 dd->is_async = false;
2385 dd->force_complete = false;
2386 (void)atmel_sha_complete(dd, 0);
2387 }
2388 EXPORT_SYMBOL_GPL(atmel_sha_authenc_abort);
2389
2390 #endif /* CONFIG_CRYPTO_DEV_ATMEL_AUTHENC */
2391
2392
2393 static void atmel_sha_unregister_algs(struct atmel_sha_dev *dd)
2394 {
2395 int i;
2396
2397 if (dd->caps.has_hmac)
2398 for (i = 0; i < ARRAY_SIZE(sha_hmac_algs); i++)
2399 crypto_unregister_ahash(&sha_hmac_algs[i]);
2400
2401 for (i = 0; i < ARRAY_SIZE(sha_1_256_algs); i++)
2402 crypto_unregister_ahash(&sha_1_256_algs[i]);
2403
2404 if (dd->caps.has_sha224)
2405 crypto_unregister_ahash(&sha_224_alg);
2406
2407 if (dd->caps.has_sha_384_512) {
2408 for (i = 0; i < ARRAY_SIZE(sha_384_512_algs); i++)
2409 crypto_unregister_ahash(&sha_384_512_algs[i]);
2410 }
2411 }
2412
2413 static int atmel_sha_register_algs(struct atmel_sha_dev *dd)
2414 {
2415 int err, i, j;
2416
2417 for (i = 0; i < ARRAY_SIZE(sha_1_256_algs); i++) {
2418 atmel_sha_alg_init(&sha_1_256_algs[i]);
2419
2420 err = crypto_register_ahash(&sha_1_256_algs[i]);
2421 if (err)
2422 goto err_sha_1_256_algs;
2423 }
2424
2425 if (dd->caps.has_sha224) {
2426 atmel_sha_alg_init(&sha_224_alg);
2427
2428 err = crypto_register_ahash(&sha_224_alg);
2429 if (err)
2430 goto err_sha_224_algs;
2431 }
2432
2433 if (dd->caps.has_sha_384_512) {
2434 for (i = 0; i < ARRAY_SIZE(sha_384_512_algs); i++) {
2435 atmel_sha_alg_init(&sha_384_512_algs[i]);
2436
2437 err = crypto_register_ahash(&sha_384_512_algs[i]);
2438 if (err)
2439 goto err_sha_384_512_algs;
2440 }
2441 }
2442
2443 if (dd->caps.has_hmac) {
2444 for (i = 0; i < ARRAY_SIZE(sha_hmac_algs); i++) {
2445 atmel_sha_hmac_alg_init(&sha_hmac_algs[i]);
2446
2447 err = crypto_register_ahash(&sha_hmac_algs[i]);
2448 if (err)
2449 goto err_sha_hmac_algs;
2450 }
2451 }
2452
2453 return 0;
2454
2455 /*i = ARRAY_SIZE(sha_hmac_algs);*/
2456 err_sha_hmac_algs:
2457 for (j = 0; j < i; j++)
2458 crypto_unregister_ahash(&sha_hmac_algs[j]);
2459 i = ARRAY_SIZE(sha_384_512_algs);
2460 err_sha_384_512_algs:
2461 for (j = 0; j < i; j++)
2462 crypto_unregister_ahash(&sha_384_512_algs[j]);
2463 crypto_unregister_ahash(&sha_224_alg);
2464 err_sha_224_algs:
2465 i = ARRAY_SIZE(sha_1_256_algs);
2466 err_sha_1_256_algs:
2467 for (j = 0; j < i; j++)
2468 crypto_unregister_ahash(&sha_1_256_algs[j]);
2469
2470 return err;
2471 }
2472
2473 static int atmel_sha_dma_init(struct atmel_sha_dev *dd)
2474 {
2475 dd->dma_lch_in.chan = dma_request_chan(dd->dev, "tx");
2476 if (IS_ERR(dd->dma_lch_in.chan)) {
2477 dev_err(dd->dev, "DMA channel is not available\n");
2478 return PTR_ERR(dd->dma_lch_in.chan);
2479 }
2480
2481 dd->dma_lch_in.dma_conf.dst_addr = dd->phys_base +
2482 SHA_REG_DIN(0);
2483 dd->dma_lch_in.dma_conf.src_maxburst = 1;
2484 dd->dma_lch_in.dma_conf.src_addr_width =
2485 DMA_SLAVE_BUSWIDTH_4_BYTES;
2486 dd->dma_lch_in.dma_conf.dst_maxburst = 1;
2487 dd->dma_lch_in.dma_conf.dst_addr_width =
2488 DMA_SLAVE_BUSWIDTH_4_BYTES;
2489 dd->dma_lch_in.dma_conf.device_fc = false;
2490
2491 return 0;
2492 }
2493
2494 static void atmel_sha_dma_cleanup(struct atmel_sha_dev *dd)
2495 {
2496 dma_release_channel(dd->dma_lch_in.chan);
2497 }
2498
2499 static void atmel_sha_get_cap(struct atmel_sha_dev *dd)
2500 {
2501
2502 dd->caps.has_dma = 0;
2503 dd->caps.has_dualbuff = 0;
2504 dd->caps.has_sha224 = 0;
2505 dd->caps.has_sha_384_512 = 0;
2506 dd->caps.has_uihv = 0;
2507 dd->caps.has_hmac = 0;
2508
2509 /* keep only major version number */
2510 switch (dd->hw_version & 0xff0) {
2511 case 0x510:
2512 dd->caps.has_dma = 1;
2513 dd->caps.has_dualbuff = 1;
2514 dd->caps.has_sha224 = 1;
2515 dd->caps.has_sha_384_512 = 1;
2516 dd->caps.has_uihv = 1;
2517 dd->caps.has_hmac = 1;
2518 break;
2519 case 0x420:
2520 dd->caps.has_dma = 1;
2521 dd->caps.has_dualbuff = 1;
2522 dd->caps.has_sha224 = 1;
2523 dd->caps.has_sha_384_512 = 1;
2524 dd->caps.has_uihv = 1;
2525 break;
2526 case 0x410:
2527 dd->caps.has_dma = 1;
2528 dd->caps.has_dualbuff = 1;
2529 dd->caps.has_sha224 = 1;
2530 dd->caps.has_sha_384_512 = 1;
2531 break;
2532 case 0x400:
2533 dd->caps.has_dma = 1;
2534 dd->caps.has_dualbuff = 1;
2535 dd->caps.has_sha224 = 1;
2536 break;
2537 case 0x320:
2538 break;
2539 default:
2540 dev_warn(dd->dev,
2541 "Unmanaged sha version, set minimum capabilities\n");
2542 break;
2543 }
2544 }
2545
2546 #if defined(CONFIG_OF)
2547 static const struct of_device_id atmel_sha_dt_ids[] = {
2548 { .compatible = "atmel,at91sam9g46-sha" },
2549 { /* sentinel */ }
2550 };
2551
2552 MODULE_DEVICE_TABLE(of, atmel_sha_dt_ids);
2553 #endif
2554
2555 static int atmel_sha_probe(struct platform_device *pdev)
2556 {
2557 struct atmel_sha_dev *sha_dd;
2558 struct device *dev = &pdev->dev;
2559 struct resource *sha_res;
2560 int err;
2561
2562 sha_dd = devm_kzalloc(&pdev->dev, sizeof(*sha_dd), GFP_KERNEL);
2563 if (!sha_dd)
2564 return -ENOMEM;
2565
2566 sha_dd->dev = dev;
2567
2568 platform_set_drvdata(pdev, sha_dd);
2569
2570 INIT_LIST_HEAD(&sha_dd->list);
2571 spin_lock_init(&sha_dd->lock);
2572
2573 tasklet_init(&sha_dd->done_task, atmel_sha_done_task,
2574 (unsigned long)sha_dd);
2575 tasklet_init(&sha_dd->queue_task, atmel_sha_queue_task,
2576 (unsigned long)sha_dd);
2577
2578 crypto_init_queue(&sha_dd->queue, ATMEL_SHA_QUEUE_LENGTH);
2579
2580 /* Get the base address */
2581 sha_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2582 if (!sha_res) {
2583 dev_err(dev, "no MEM resource info\n");
2584 err = -ENODEV;
2585 goto err_tasklet_kill;
2586 }
2587 sha_dd->phys_base = sha_res->start;
2588
2589 /* Get the IRQ */
2590 sha_dd->irq = platform_get_irq(pdev, 0);
2591 if (sha_dd->irq < 0) {
2592 err = sha_dd->irq;
2593 goto err_tasklet_kill;
2594 }
2595
2596 err = devm_request_irq(&pdev->dev, sha_dd->irq, atmel_sha_irq,
2597 IRQF_SHARED, "atmel-sha", sha_dd);
2598 if (err) {
2599 dev_err(dev, "unable to request sha irq.\n");
2600 goto err_tasklet_kill;
2601 }
2602
2603 /* Initializing the clock */
2604 sha_dd->iclk = devm_clk_get(&pdev->dev, "sha_clk");
2605 if (IS_ERR(sha_dd->iclk)) {
2606 dev_err(dev, "clock initialization failed.\n");
2607 err = PTR_ERR(sha_dd->iclk);
2608 goto err_tasklet_kill;
2609 }
2610
2611 sha_dd->io_base = devm_ioremap_resource(&pdev->dev, sha_res);
2612 if (IS_ERR(sha_dd->io_base)) {
2613 dev_err(dev, "can't ioremap\n");
2614 err = PTR_ERR(sha_dd->io_base);
2615 goto err_tasklet_kill;
2616 }
2617
2618 err = clk_prepare(sha_dd->iclk);
2619 if (err)
2620 goto err_tasklet_kill;
2621
2622 err = atmel_sha_hw_version_init(sha_dd);
2623 if (err)
2624 goto err_iclk_unprepare;
2625
2626 atmel_sha_get_cap(sha_dd);
2627
2628 if (sha_dd->caps.has_dma) {
2629 err = atmel_sha_dma_init(sha_dd);
2630 if (err)
2631 goto err_iclk_unprepare;
2632
2633 dev_info(dev, "using %s for DMA transfers\n",
2634 dma_chan_name(sha_dd->dma_lch_in.chan));
2635 }
2636
2637 spin_lock(&atmel_sha.lock);
2638 list_add_tail(&sha_dd->list, &atmel_sha.dev_list);
2639 spin_unlock(&atmel_sha.lock);
2640
2641 err = atmel_sha_register_algs(sha_dd);
2642 if (err)
2643 goto err_algs;
2644
2645 dev_info(dev, "Atmel SHA1/SHA256%s%s\n",
2646 sha_dd->caps.has_sha224 ? "/SHA224" : "",
2647 sha_dd->caps.has_sha_384_512 ? "/SHA384/SHA512" : "");
2648
2649 return 0;
2650
2651 err_algs:
2652 spin_lock(&atmel_sha.lock);
2653 list_del(&sha_dd->list);
2654 spin_unlock(&atmel_sha.lock);
2655 if (sha_dd->caps.has_dma)
2656 atmel_sha_dma_cleanup(sha_dd);
2657 err_iclk_unprepare:
2658 clk_unprepare(sha_dd->iclk);
2659 err_tasklet_kill:
2660 tasklet_kill(&sha_dd->queue_task);
2661 tasklet_kill(&sha_dd->done_task);
2662
2663 return err;
2664 }
2665
2666 static int atmel_sha_remove(struct platform_device *pdev)
2667 {
2668 struct atmel_sha_dev *sha_dd;
2669
2670 sha_dd = platform_get_drvdata(pdev);
2671 if (!sha_dd)
2672 return -ENODEV;
2673 spin_lock(&atmel_sha.lock);
2674 list_del(&sha_dd->list);
2675 spin_unlock(&atmel_sha.lock);
2676
2677 atmel_sha_unregister_algs(sha_dd);
2678
2679 tasklet_kill(&sha_dd->queue_task);
2680 tasklet_kill(&sha_dd->done_task);
2681
2682 if (sha_dd->caps.has_dma)
2683 atmel_sha_dma_cleanup(sha_dd);
2684
2685 clk_unprepare(sha_dd->iclk);
2686
2687 return 0;
2688 }
2689
2690 static struct platform_driver atmel_sha_driver = {
2691 .probe = atmel_sha_probe,
2692 .remove = atmel_sha_remove,
2693 .driver = {
2694 .name = "atmel_sha",
2695 .of_match_table = of_match_ptr(atmel_sha_dt_ids),
2696 },
2697 };
2698
2699 module_platform_driver(atmel_sha_driver);
2700
2701 MODULE_DESCRIPTION("Atmel SHA (1/256/224/384/512) hw acceleration support.");
2702 MODULE_LICENSE("GPL v2");
2703 MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");