]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/crypto/atmel-sha.c
8874aa5ca0f71f64853a701960e02115ae6f0327
[mirror_ubuntu-bionic-kernel.git] / drivers / crypto / atmel-sha.c
1 /*
2 * Cryptographic API.
3 *
4 * Support for ATMEL SHA1/SHA256 HW acceleration.
5 *
6 * Copyright (c) 2012 Eukréa Electromatique - ATMEL
7 * Author: Nicolas Royer <nicolas@eukrea.com>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as published
11 * by the Free Software Foundation.
12 *
13 * Some ideas are from omap-sham.c drivers.
14 */
15
16
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/err.h>
21 #include <linux/clk.h>
22 #include <linux/io.h>
23 #include <linux/hw_random.h>
24 #include <linux/platform_device.h>
25
26 #include <linux/device.h>
27 #include <linux/init.h>
28 #include <linux/errno.h>
29 #include <linux/interrupt.h>
30 #include <linux/irq.h>
31 #include <linux/scatterlist.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/of_device.h>
34 #include <linux/delay.h>
35 #include <linux/crypto.h>
36 #include <linux/cryptohash.h>
37 #include <crypto/scatterwalk.h>
38 #include <crypto/algapi.h>
39 #include <crypto/sha.h>
40 #include <crypto/hash.h>
41 #include <crypto/internal/hash.h>
42 #include <linux/platform_data/crypto-atmel.h>
43 #include "atmel-sha-regs.h"
44 #include "atmel-authenc.h"
45
46 /* SHA flags */
47 #define SHA_FLAGS_BUSY BIT(0)
48 #define SHA_FLAGS_FINAL BIT(1)
49 #define SHA_FLAGS_DMA_ACTIVE BIT(2)
50 #define SHA_FLAGS_OUTPUT_READY BIT(3)
51 #define SHA_FLAGS_INIT BIT(4)
52 #define SHA_FLAGS_CPU BIT(5)
53 #define SHA_FLAGS_DMA_READY BIT(6)
54 #define SHA_FLAGS_DUMP_REG BIT(7)
55
56 /* bits[11:8] are reserved. */
57
58 #define SHA_FLAGS_FINUP BIT(16)
59 #define SHA_FLAGS_SG BIT(17)
60 #define SHA_FLAGS_ERROR BIT(23)
61 #define SHA_FLAGS_PAD BIT(24)
62 #define SHA_FLAGS_RESTORE BIT(25)
63 #define SHA_FLAGS_IDATAR0 BIT(26)
64 #define SHA_FLAGS_WAIT_DATARDY BIT(27)
65
66 #define SHA_OP_INIT 0
67 #define SHA_OP_UPDATE 1
68 #define SHA_OP_FINAL 2
69 #define SHA_OP_DIGEST 3
70
71 #define SHA_BUFFER_LEN (PAGE_SIZE / 16)
72
73 #define ATMEL_SHA_DMA_THRESHOLD 56
74
75 struct atmel_sha_caps {
76 bool has_dma;
77 bool has_dualbuff;
78 bool has_sha224;
79 bool has_sha_384_512;
80 bool has_uihv;
81 bool has_hmac;
82 };
83
84 struct atmel_sha_dev;
85
86 /*
87 * .statesize = sizeof(struct atmel_sha_reqctx) must be <= PAGE_SIZE / 8 as
88 * tested by the ahash_prepare_alg() function.
89 */
90 struct atmel_sha_reqctx {
91 struct atmel_sha_dev *dd;
92 unsigned long flags;
93 unsigned long op;
94
95 u8 digest[SHA512_DIGEST_SIZE] __aligned(sizeof(u32));
96 u64 digcnt[2];
97 size_t bufcnt;
98 size_t buflen;
99 dma_addr_t dma_addr;
100
101 /* walk state */
102 struct scatterlist *sg;
103 unsigned int offset; /* offset in current sg */
104 unsigned int total; /* total request */
105
106 size_t block_size;
107 size_t hash_size;
108
109 u8 buffer[SHA_BUFFER_LEN + SHA512_BLOCK_SIZE] __aligned(sizeof(u32));
110 };
111
112 typedef int (*atmel_sha_fn_t)(struct atmel_sha_dev *);
113
114 struct atmel_sha_ctx {
115 struct atmel_sha_dev *dd;
116 atmel_sha_fn_t start;
117
118 unsigned long flags;
119 };
120
121 #define ATMEL_SHA_QUEUE_LENGTH 50
122
123 struct atmel_sha_dma {
124 struct dma_chan *chan;
125 struct dma_slave_config dma_conf;
126 struct scatterlist *sg;
127 int nents;
128 unsigned int last_sg_length;
129 };
130
131 struct atmel_sha_dev {
132 struct list_head list;
133 unsigned long phys_base;
134 struct device *dev;
135 struct clk *iclk;
136 int irq;
137 void __iomem *io_base;
138
139 spinlock_t lock;
140 int err;
141 struct tasklet_struct done_task;
142 struct tasklet_struct queue_task;
143
144 unsigned long flags;
145 struct crypto_queue queue;
146 struct ahash_request *req;
147 bool is_async;
148 bool force_complete;
149 atmel_sha_fn_t resume;
150 atmel_sha_fn_t cpu_transfer_complete;
151
152 struct atmel_sha_dma dma_lch_in;
153
154 struct atmel_sha_caps caps;
155
156 struct scatterlist tmp;
157
158 u32 hw_version;
159 };
160
161 struct atmel_sha_drv {
162 struct list_head dev_list;
163 spinlock_t lock;
164 };
165
166 static struct atmel_sha_drv atmel_sha = {
167 .dev_list = LIST_HEAD_INIT(atmel_sha.dev_list),
168 .lock = __SPIN_LOCK_UNLOCKED(atmel_sha.lock),
169 };
170
171 #ifdef VERBOSE_DEBUG
172 static const char *atmel_sha_reg_name(u32 offset, char *tmp, size_t sz, bool wr)
173 {
174 switch (offset) {
175 case SHA_CR:
176 return "CR";
177
178 case SHA_MR:
179 return "MR";
180
181 case SHA_IER:
182 return "IER";
183
184 case SHA_IDR:
185 return "IDR";
186
187 case SHA_IMR:
188 return "IMR";
189
190 case SHA_ISR:
191 return "ISR";
192
193 case SHA_MSR:
194 return "MSR";
195
196 case SHA_BCR:
197 return "BCR";
198
199 case SHA_REG_DIN(0):
200 case SHA_REG_DIN(1):
201 case SHA_REG_DIN(2):
202 case SHA_REG_DIN(3):
203 case SHA_REG_DIN(4):
204 case SHA_REG_DIN(5):
205 case SHA_REG_DIN(6):
206 case SHA_REG_DIN(7):
207 case SHA_REG_DIN(8):
208 case SHA_REG_DIN(9):
209 case SHA_REG_DIN(10):
210 case SHA_REG_DIN(11):
211 case SHA_REG_DIN(12):
212 case SHA_REG_DIN(13):
213 case SHA_REG_DIN(14):
214 case SHA_REG_DIN(15):
215 snprintf(tmp, sz, "IDATAR[%u]", (offset - SHA_REG_DIN(0)) >> 2);
216 break;
217
218 case SHA_REG_DIGEST(0):
219 case SHA_REG_DIGEST(1):
220 case SHA_REG_DIGEST(2):
221 case SHA_REG_DIGEST(3):
222 case SHA_REG_DIGEST(4):
223 case SHA_REG_DIGEST(5):
224 case SHA_REG_DIGEST(6):
225 case SHA_REG_DIGEST(7):
226 case SHA_REG_DIGEST(8):
227 case SHA_REG_DIGEST(9):
228 case SHA_REG_DIGEST(10):
229 case SHA_REG_DIGEST(11):
230 case SHA_REG_DIGEST(12):
231 case SHA_REG_DIGEST(13):
232 case SHA_REG_DIGEST(14):
233 case SHA_REG_DIGEST(15):
234 if (wr)
235 snprintf(tmp, sz, "IDATAR[%u]",
236 16u + ((offset - SHA_REG_DIGEST(0)) >> 2));
237 else
238 snprintf(tmp, sz, "ODATAR[%u]",
239 (offset - SHA_REG_DIGEST(0)) >> 2);
240 break;
241
242 case SHA_HW_VERSION:
243 return "HWVER";
244
245 default:
246 snprintf(tmp, sz, "0x%02x", offset);
247 break;
248 }
249
250 return tmp;
251 }
252
253 #endif /* VERBOSE_DEBUG */
254
255 static inline u32 atmel_sha_read(struct atmel_sha_dev *dd, u32 offset)
256 {
257 u32 value = readl_relaxed(dd->io_base + offset);
258
259 #ifdef VERBOSE_DEBUG
260 if (dd->flags & SHA_FLAGS_DUMP_REG) {
261 char tmp[16];
262
263 dev_vdbg(dd->dev, "read 0x%08x from %s\n", value,
264 atmel_sha_reg_name(offset, tmp, sizeof(tmp), false));
265 }
266 #endif /* VERBOSE_DEBUG */
267
268 return value;
269 }
270
271 static inline void atmel_sha_write(struct atmel_sha_dev *dd,
272 u32 offset, u32 value)
273 {
274 #ifdef VERBOSE_DEBUG
275 if (dd->flags & SHA_FLAGS_DUMP_REG) {
276 char tmp[16];
277
278 dev_vdbg(dd->dev, "write 0x%08x into %s\n", value,
279 atmel_sha_reg_name(offset, tmp, sizeof(tmp), true));
280 }
281 #endif /* VERBOSE_DEBUG */
282
283 writel_relaxed(value, dd->io_base + offset);
284 }
285
286 static inline int atmel_sha_complete(struct atmel_sha_dev *dd, int err)
287 {
288 struct ahash_request *req = dd->req;
289
290 dd->flags &= ~(SHA_FLAGS_BUSY | SHA_FLAGS_FINAL | SHA_FLAGS_CPU |
291 SHA_FLAGS_DMA_READY | SHA_FLAGS_OUTPUT_READY |
292 SHA_FLAGS_DUMP_REG);
293
294 clk_disable(dd->iclk);
295
296 if ((dd->is_async || dd->force_complete) && req->base.complete)
297 req->base.complete(&req->base, err);
298
299 /* handle new request */
300 tasklet_schedule(&dd->queue_task);
301
302 return err;
303 }
304
305 static size_t atmel_sha_append_sg(struct atmel_sha_reqctx *ctx)
306 {
307 size_t count;
308
309 while ((ctx->bufcnt < ctx->buflen) && ctx->total) {
310 count = min(ctx->sg->length - ctx->offset, ctx->total);
311 count = min(count, ctx->buflen - ctx->bufcnt);
312
313 if (count <= 0) {
314 /*
315 * Check if count <= 0 because the buffer is full or
316 * because the sg length is 0. In the latest case,
317 * check if there is another sg in the list, a 0 length
318 * sg doesn't necessarily mean the end of the sg list.
319 */
320 if ((ctx->sg->length == 0) && !sg_is_last(ctx->sg)) {
321 ctx->sg = sg_next(ctx->sg);
322 continue;
323 } else {
324 break;
325 }
326 }
327
328 scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, ctx->sg,
329 ctx->offset, count, 0);
330
331 ctx->bufcnt += count;
332 ctx->offset += count;
333 ctx->total -= count;
334
335 if (ctx->offset == ctx->sg->length) {
336 ctx->sg = sg_next(ctx->sg);
337 if (ctx->sg)
338 ctx->offset = 0;
339 else
340 ctx->total = 0;
341 }
342 }
343
344 return 0;
345 }
346
347 /*
348 * The purpose of this padding is to ensure that the padded message is a
349 * multiple of 512 bits (SHA1/SHA224/SHA256) or 1024 bits (SHA384/SHA512).
350 * The bit "1" is appended at the end of the message followed by
351 * "padlen-1" zero bits. Then a 64 bits block (SHA1/SHA224/SHA256) or
352 * 128 bits block (SHA384/SHA512) equals to the message length in bits
353 * is appended.
354 *
355 * For SHA1/SHA224/SHA256, padlen is calculated as followed:
356 * - if message length < 56 bytes then padlen = 56 - message length
357 * - else padlen = 64 + 56 - message length
358 *
359 * For SHA384/SHA512, padlen is calculated as followed:
360 * - if message length < 112 bytes then padlen = 112 - message length
361 * - else padlen = 128 + 112 - message length
362 */
363 static void atmel_sha_fill_padding(struct atmel_sha_reqctx *ctx, int length)
364 {
365 unsigned int index, padlen;
366 u64 bits[2];
367 u64 size[2];
368
369 size[0] = ctx->digcnt[0];
370 size[1] = ctx->digcnt[1];
371
372 size[0] += ctx->bufcnt;
373 if (size[0] < ctx->bufcnt)
374 size[1]++;
375
376 size[0] += length;
377 if (size[0] < length)
378 size[1]++;
379
380 bits[1] = cpu_to_be64(size[0] << 3);
381 bits[0] = cpu_to_be64(size[1] << 3 | size[0] >> 61);
382
383 switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
384 case SHA_FLAGS_SHA384:
385 case SHA_FLAGS_SHA512:
386 index = ctx->bufcnt & 0x7f;
387 padlen = (index < 112) ? (112 - index) : ((128+112) - index);
388 *(ctx->buffer + ctx->bufcnt) = 0x80;
389 memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen-1);
390 memcpy(ctx->buffer + ctx->bufcnt + padlen, bits, 16);
391 ctx->bufcnt += padlen + 16;
392 ctx->flags |= SHA_FLAGS_PAD;
393 break;
394
395 default:
396 index = ctx->bufcnt & 0x3f;
397 padlen = (index < 56) ? (56 - index) : ((64+56) - index);
398 *(ctx->buffer + ctx->bufcnt) = 0x80;
399 memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen-1);
400 memcpy(ctx->buffer + ctx->bufcnt + padlen, &bits[1], 8);
401 ctx->bufcnt += padlen + 8;
402 ctx->flags |= SHA_FLAGS_PAD;
403 break;
404 }
405 }
406
407 static struct atmel_sha_dev *atmel_sha_find_dev(struct atmel_sha_ctx *tctx)
408 {
409 struct atmel_sha_dev *dd = NULL;
410 struct atmel_sha_dev *tmp;
411
412 spin_lock_bh(&atmel_sha.lock);
413 if (!tctx->dd) {
414 list_for_each_entry(tmp, &atmel_sha.dev_list, list) {
415 dd = tmp;
416 break;
417 }
418 tctx->dd = dd;
419 } else {
420 dd = tctx->dd;
421 }
422
423 spin_unlock_bh(&atmel_sha.lock);
424
425 return dd;
426 }
427
428 static int atmel_sha_init(struct ahash_request *req)
429 {
430 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
431 struct atmel_sha_ctx *tctx = crypto_ahash_ctx(tfm);
432 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
433 struct atmel_sha_dev *dd = atmel_sha_find_dev(tctx);
434
435 ctx->dd = dd;
436
437 ctx->flags = 0;
438
439 dev_dbg(dd->dev, "init: digest size: %d\n",
440 crypto_ahash_digestsize(tfm));
441
442 switch (crypto_ahash_digestsize(tfm)) {
443 case SHA1_DIGEST_SIZE:
444 ctx->flags |= SHA_FLAGS_SHA1;
445 ctx->block_size = SHA1_BLOCK_SIZE;
446 break;
447 case SHA224_DIGEST_SIZE:
448 ctx->flags |= SHA_FLAGS_SHA224;
449 ctx->block_size = SHA224_BLOCK_SIZE;
450 break;
451 case SHA256_DIGEST_SIZE:
452 ctx->flags |= SHA_FLAGS_SHA256;
453 ctx->block_size = SHA256_BLOCK_SIZE;
454 break;
455 case SHA384_DIGEST_SIZE:
456 ctx->flags |= SHA_FLAGS_SHA384;
457 ctx->block_size = SHA384_BLOCK_SIZE;
458 break;
459 case SHA512_DIGEST_SIZE:
460 ctx->flags |= SHA_FLAGS_SHA512;
461 ctx->block_size = SHA512_BLOCK_SIZE;
462 break;
463 default:
464 return -EINVAL;
465 break;
466 }
467
468 ctx->bufcnt = 0;
469 ctx->digcnt[0] = 0;
470 ctx->digcnt[1] = 0;
471 ctx->buflen = SHA_BUFFER_LEN;
472
473 return 0;
474 }
475
476 static void atmel_sha_write_ctrl(struct atmel_sha_dev *dd, int dma)
477 {
478 struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
479 u32 valmr = SHA_MR_MODE_AUTO;
480 unsigned int i, hashsize = 0;
481
482 if (likely(dma)) {
483 if (!dd->caps.has_dma)
484 atmel_sha_write(dd, SHA_IER, SHA_INT_TXBUFE);
485 valmr = SHA_MR_MODE_PDC;
486 if (dd->caps.has_dualbuff)
487 valmr |= SHA_MR_DUALBUFF;
488 } else {
489 atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
490 }
491
492 switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
493 case SHA_FLAGS_SHA1:
494 valmr |= SHA_MR_ALGO_SHA1;
495 hashsize = SHA1_DIGEST_SIZE;
496 break;
497
498 case SHA_FLAGS_SHA224:
499 valmr |= SHA_MR_ALGO_SHA224;
500 hashsize = SHA256_DIGEST_SIZE;
501 break;
502
503 case SHA_FLAGS_SHA256:
504 valmr |= SHA_MR_ALGO_SHA256;
505 hashsize = SHA256_DIGEST_SIZE;
506 break;
507
508 case SHA_FLAGS_SHA384:
509 valmr |= SHA_MR_ALGO_SHA384;
510 hashsize = SHA512_DIGEST_SIZE;
511 break;
512
513 case SHA_FLAGS_SHA512:
514 valmr |= SHA_MR_ALGO_SHA512;
515 hashsize = SHA512_DIGEST_SIZE;
516 break;
517
518 default:
519 break;
520 }
521
522 /* Setting CR_FIRST only for the first iteration */
523 if (!(ctx->digcnt[0] || ctx->digcnt[1])) {
524 atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
525 } else if (dd->caps.has_uihv && (ctx->flags & SHA_FLAGS_RESTORE)) {
526 const u32 *hash = (const u32 *)ctx->digest;
527
528 /*
529 * Restore the hardware context: update the User Initialize
530 * Hash Value (UIHV) with the value saved when the latest
531 * 'update' operation completed on this very same crypto
532 * request.
533 */
534 ctx->flags &= ~SHA_FLAGS_RESTORE;
535 atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
536 for (i = 0; i < hashsize / sizeof(u32); ++i)
537 atmel_sha_write(dd, SHA_REG_DIN(i), hash[i]);
538 atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
539 valmr |= SHA_MR_UIHV;
540 }
541 /*
542 * WARNING: If the UIHV feature is not available, the hardware CANNOT
543 * process concurrent requests: the internal registers used to store
544 * the hash/digest are still set to the partial digest output values
545 * computed during the latest round.
546 */
547
548 atmel_sha_write(dd, SHA_MR, valmr);
549 }
550
551 static inline int atmel_sha_wait_for_data_ready(struct atmel_sha_dev *dd,
552 atmel_sha_fn_t resume)
553 {
554 u32 isr = atmel_sha_read(dd, SHA_ISR);
555
556 if (unlikely(isr & SHA_INT_DATARDY))
557 return resume(dd);
558
559 dd->resume = resume;
560 atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
561 return -EINPROGRESS;
562 }
563
564 static int atmel_sha_xmit_cpu(struct atmel_sha_dev *dd, const u8 *buf,
565 size_t length, int final)
566 {
567 struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
568 int count, len32;
569 const u32 *buffer = (const u32 *)buf;
570
571 dev_dbg(dd->dev, "xmit_cpu: digcnt: 0x%llx 0x%llx, length: %zd, final: %d\n",
572 ctx->digcnt[1], ctx->digcnt[0], length, final);
573
574 atmel_sha_write_ctrl(dd, 0);
575
576 /* should be non-zero before next lines to disable clocks later */
577 ctx->digcnt[0] += length;
578 if (ctx->digcnt[0] < length)
579 ctx->digcnt[1]++;
580
581 if (final)
582 dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
583
584 len32 = DIV_ROUND_UP(length, sizeof(u32));
585
586 dd->flags |= SHA_FLAGS_CPU;
587
588 for (count = 0; count < len32; count++)
589 atmel_sha_write(dd, SHA_REG_DIN(count), buffer[count]);
590
591 return -EINPROGRESS;
592 }
593
594 static int atmel_sha_xmit_pdc(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
595 size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
596 {
597 struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
598 int len32;
599
600 dev_dbg(dd->dev, "xmit_pdc: digcnt: 0x%llx 0x%llx, length: %zd, final: %d\n",
601 ctx->digcnt[1], ctx->digcnt[0], length1, final);
602
603 len32 = DIV_ROUND_UP(length1, sizeof(u32));
604 atmel_sha_write(dd, SHA_PTCR, SHA_PTCR_TXTDIS);
605 atmel_sha_write(dd, SHA_TPR, dma_addr1);
606 atmel_sha_write(dd, SHA_TCR, len32);
607
608 len32 = DIV_ROUND_UP(length2, sizeof(u32));
609 atmel_sha_write(dd, SHA_TNPR, dma_addr2);
610 atmel_sha_write(dd, SHA_TNCR, len32);
611
612 atmel_sha_write_ctrl(dd, 1);
613
614 /* should be non-zero before next lines to disable clocks later */
615 ctx->digcnt[0] += length1;
616 if (ctx->digcnt[0] < length1)
617 ctx->digcnt[1]++;
618
619 if (final)
620 dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
621
622 dd->flags |= SHA_FLAGS_DMA_ACTIVE;
623
624 /* Start DMA transfer */
625 atmel_sha_write(dd, SHA_PTCR, SHA_PTCR_TXTEN);
626
627 return -EINPROGRESS;
628 }
629
630 static void atmel_sha_dma_callback(void *data)
631 {
632 struct atmel_sha_dev *dd = data;
633
634 dd->is_async = true;
635
636 /* dma_lch_in - completed - wait DATRDY */
637 atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
638 }
639
640 static int atmel_sha_xmit_dma(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
641 size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
642 {
643 struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
644 struct dma_async_tx_descriptor *in_desc;
645 struct scatterlist sg[2];
646
647 dev_dbg(dd->dev, "xmit_dma: digcnt: 0x%llx 0x%llx, length: %zd, final: %d\n",
648 ctx->digcnt[1], ctx->digcnt[0], length1, final);
649
650 dd->dma_lch_in.dma_conf.src_maxburst = 16;
651 dd->dma_lch_in.dma_conf.dst_maxburst = 16;
652
653 dmaengine_slave_config(dd->dma_lch_in.chan, &dd->dma_lch_in.dma_conf);
654
655 if (length2) {
656 sg_init_table(sg, 2);
657 sg_dma_address(&sg[0]) = dma_addr1;
658 sg_dma_len(&sg[0]) = length1;
659 sg_dma_address(&sg[1]) = dma_addr2;
660 sg_dma_len(&sg[1]) = length2;
661 in_desc = dmaengine_prep_slave_sg(dd->dma_lch_in.chan, sg, 2,
662 DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
663 } else {
664 sg_init_table(sg, 1);
665 sg_dma_address(&sg[0]) = dma_addr1;
666 sg_dma_len(&sg[0]) = length1;
667 in_desc = dmaengine_prep_slave_sg(dd->dma_lch_in.chan, sg, 1,
668 DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
669 }
670 if (!in_desc)
671 return atmel_sha_complete(dd, -EINVAL);
672
673 in_desc->callback = atmel_sha_dma_callback;
674 in_desc->callback_param = dd;
675
676 atmel_sha_write_ctrl(dd, 1);
677
678 /* should be non-zero before next lines to disable clocks later */
679 ctx->digcnt[0] += length1;
680 if (ctx->digcnt[0] < length1)
681 ctx->digcnt[1]++;
682
683 if (final)
684 dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
685
686 dd->flags |= SHA_FLAGS_DMA_ACTIVE;
687
688 /* Start DMA transfer */
689 dmaengine_submit(in_desc);
690 dma_async_issue_pending(dd->dma_lch_in.chan);
691
692 return -EINPROGRESS;
693 }
694
695 static int atmel_sha_xmit_start(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
696 size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
697 {
698 if (dd->caps.has_dma)
699 return atmel_sha_xmit_dma(dd, dma_addr1, length1,
700 dma_addr2, length2, final);
701 else
702 return atmel_sha_xmit_pdc(dd, dma_addr1, length1,
703 dma_addr2, length2, final);
704 }
705
706 static int atmel_sha_update_cpu(struct atmel_sha_dev *dd)
707 {
708 struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
709 int bufcnt;
710
711 atmel_sha_append_sg(ctx);
712 atmel_sha_fill_padding(ctx, 0);
713 bufcnt = ctx->bufcnt;
714 ctx->bufcnt = 0;
715
716 return atmel_sha_xmit_cpu(dd, ctx->buffer, bufcnt, 1);
717 }
718
719 static int atmel_sha_xmit_dma_map(struct atmel_sha_dev *dd,
720 struct atmel_sha_reqctx *ctx,
721 size_t length, int final)
722 {
723 ctx->dma_addr = dma_map_single(dd->dev, ctx->buffer,
724 ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
725 if (dma_mapping_error(dd->dev, ctx->dma_addr)) {
726 dev_err(dd->dev, "dma %zu bytes error\n", ctx->buflen +
727 ctx->block_size);
728 return atmel_sha_complete(dd, -EINVAL);
729 }
730
731 ctx->flags &= ~SHA_FLAGS_SG;
732
733 /* next call does not fail... so no unmap in the case of error */
734 return atmel_sha_xmit_start(dd, ctx->dma_addr, length, 0, 0, final);
735 }
736
737 static int atmel_sha_update_dma_slow(struct atmel_sha_dev *dd)
738 {
739 struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
740 unsigned int final;
741 size_t count;
742
743 atmel_sha_append_sg(ctx);
744
745 final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;
746
747 dev_dbg(dd->dev, "slow: bufcnt: %zu, digcnt: 0x%llx 0x%llx, final: %d\n",
748 ctx->bufcnt, ctx->digcnt[1], ctx->digcnt[0], final);
749
750 if (final)
751 atmel_sha_fill_padding(ctx, 0);
752
753 if (final || (ctx->bufcnt == ctx->buflen)) {
754 count = ctx->bufcnt;
755 ctx->bufcnt = 0;
756 return atmel_sha_xmit_dma_map(dd, ctx, count, final);
757 }
758
759 return 0;
760 }
761
762 static int atmel_sha_update_dma_start(struct atmel_sha_dev *dd)
763 {
764 struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
765 unsigned int length, final, tail;
766 struct scatterlist *sg;
767 unsigned int count;
768
769 if (!ctx->total)
770 return 0;
771
772 if (ctx->bufcnt || ctx->offset)
773 return atmel_sha_update_dma_slow(dd);
774
775 dev_dbg(dd->dev, "fast: digcnt: 0x%llx 0x%llx, bufcnt: %zd, total: %u\n",
776 ctx->digcnt[1], ctx->digcnt[0], ctx->bufcnt, ctx->total);
777
778 sg = ctx->sg;
779
780 if (!IS_ALIGNED(sg->offset, sizeof(u32)))
781 return atmel_sha_update_dma_slow(dd);
782
783 if (!sg_is_last(sg) && !IS_ALIGNED(sg->length, ctx->block_size))
784 /* size is not ctx->block_size aligned */
785 return atmel_sha_update_dma_slow(dd);
786
787 length = min(ctx->total, sg->length);
788
789 if (sg_is_last(sg)) {
790 if (!(ctx->flags & SHA_FLAGS_FINUP)) {
791 /* not last sg must be ctx->block_size aligned */
792 tail = length & (ctx->block_size - 1);
793 length -= tail;
794 }
795 }
796
797 ctx->total -= length;
798 ctx->offset = length; /* offset where to start slow */
799
800 final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;
801
802 /* Add padding */
803 if (final) {
804 tail = length & (ctx->block_size - 1);
805 length -= tail;
806 ctx->total += tail;
807 ctx->offset = length; /* offset where to start slow */
808
809 sg = ctx->sg;
810 atmel_sha_append_sg(ctx);
811
812 atmel_sha_fill_padding(ctx, length);
813
814 ctx->dma_addr = dma_map_single(dd->dev, ctx->buffer,
815 ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
816 if (dma_mapping_error(dd->dev, ctx->dma_addr)) {
817 dev_err(dd->dev, "dma %zu bytes error\n",
818 ctx->buflen + ctx->block_size);
819 return atmel_sha_complete(dd, -EINVAL);
820 }
821
822 if (length == 0) {
823 ctx->flags &= ~SHA_FLAGS_SG;
824 count = ctx->bufcnt;
825 ctx->bufcnt = 0;
826 return atmel_sha_xmit_start(dd, ctx->dma_addr, count, 0,
827 0, final);
828 } else {
829 ctx->sg = sg;
830 if (!dma_map_sg(dd->dev, ctx->sg, 1,
831 DMA_TO_DEVICE)) {
832 dev_err(dd->dev, "dma_map_sg error\n");
833 return atmel_sha_complete(dd, -EINVAL);
834 }
835
836 ctx->flags |= SHA_FLAGS_SG;
837
838 count = ctx->bufcnt;
839 ctx->bufcnt = 0;
840 return atmel_sha_xmit_start(dd, sg_dma_address(ctx->sg),
841 length, ctx->dma_addr, count, final);
842 }
843 }
844
845 if (!dma_map_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE)) {
846 dev_err(dd->dev, "dma_map_sg error\n");
847 return atmel_sha_complete(dd, -EINVAL);
848 }
849
850 ctx->flags |= SHA_FLAGS_SG;
851
852 /* next call does not fail... so no unmap in the case of error */
853 return atmel_sha_xmit_start(dd, sg_dma_address(ctx->sg), length, 0,
854 0, final);
855 }
856
857 static int atmel_sha_update_dma_stop(struct atmel_sha_dev *dd)
858 {
859 struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
860
861 if (ctx->flags & SHA_FLAGS_SG) {
862 dma_unmap_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE);
863 if (ctx->sg->length == ctx->offset) {
864 ctx->sg = sg_next(ctx->sg);
865 if (ctx->sg)
866 ctx->offset = 0;
867 }
868 if (ctx->flags & SHA_FLAGS_PAD) {
869 dma_unmap_single(dd->dev, ctx->dma_addr,
870 ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
871 }
872 } else {
873 dma_unmap_single(dd->dev, ctx->dma_addr, ctx->buflen +
874 ctx->block_size, DMA_TO_DEVICE);
875 }
876
877 return 0;
878 }
879
880 static int atmel_sha_update_req(struct atmel_sha_dev *dd)
881 {
882 struct ahash_request *req = dd->req;
883 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
884 int err;
885
886 dev_dbg(dd->dev, "update_req: total: %u, digcnt: 0x%llx 0x%llx\n",
887 ctx->total, ctx->digcnt[1], ctx->digcnt[0]);
888
889 if (ctx->flags & SHA_FLAGS_CPU)
890 err = atmel_sha_update_cpu(dd);
891 else
892 err = atmel_sha_update_dma_start(dd);
893
894 /* wait for dma completion before can take more data */
895 dev_dbg(dd->dev, "update: err: %d, digcnt: 0x%llx 0%llx\n",
896 err, ctx->digcnt[1], ctx->digcnt[0]);
897
898 return err;
899 }
900
901 static int atmel_sha_final_req(struct atmel_sha_dev *dd)
902 {
903 struct ahash_request *req = dd->req;
904 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
905 int err = 0;
906 int count;
907
908 if (ctx->bufcnt >= ATMEL_SHA_DMA_THRESHOLD) {
909 atmel_sha_fill_padding(ctx, 0);
910 count = ctx->bufcnt;
911 ctx->bufcnt = 0;
912 err = atmel_sha_xmit_dma_map(dd, ctx, count, 1);
913 }
914 /* faster to handle last block with cpu */
915 else {
916 atmel_sha_fill_padding(ctx, 0);
917 count = ctx->bufcnt;
918 ctx->bufcnt = 0;
919 err = atmel_sha_xmit_cpu(dd, ctx->buffer, count, 1);
920 }
921
922 dev_dbg(dd->dev, "final_req: err: %d\n", err);
923
924 return err;
925 }
926
927 static void atmel_sha_copy_hash(struct ahash_request *req)
928 {
929 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
930 u32 *hash = (u32 *)ctx->digest;
931 unsigned int i, hashsize;
932
933 switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
934 case SHA_FLAGS_SHA1:
935 hashsize = SHA1_DIGEST_SIZE;
936 break;
937
938 case SHA_FLAGS_SHA224:
939 case SHA_FLAGS_SHA256:
940 hashsize = SHA256_DIGEST_SIZE;
941 break;
942
943 case SHA_FLAGS_SHA384:
944 case SHA_FLAGS_SHA512:
945 hashsize = SHA512_DIGEST_SIZE;
946 break;
947
948 default:
949 /* Should not happen... */
950 return;
951 }
952
953 for (i = 0; i < hashsize / sizeof(u32); ++i)
954 hash[i] = atmel_sha_read(ctx->dd, SHA_REG_DIGEST(i));
955 ctx->flags |= SHA_FLAGS_RESTORE;
956 }
957
958 static void atmel_sha_copy_ready_hash(struct ahash_request *req)
959 {
960 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
961
962 if (!req->result)
963 return;
964
965 switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
966 default:
967 case SHA_FLAGS_SHA1:
968 memcpy(req->result, ctx->digest, SHA1_DIGEST_SIZE);
969 break;
970
971 case SHA_FLAGS_SHA224:
972 memcpy(req->result, ctx->digest, SHA224_DIGEST_SIZE);
973 break;
974
975 case SHA_FLAGS_SHA256:
976 memcpy(req->result, ctx->digest, SHA256_DIGEST_SIZE);
977 break;
978
979 case SHA_FLAGS_SHA384:
980 memcpy(req->result, ctx->digest, SHA384_DIGEST_SIZE);
981 break;
982
983 case SHA_FLAGS_SHA512:
984 memcpy(req->result, ctx->digest, SHA512_DIGEST_SIZE);
985 break;
986 }
987 }
988
989 static int atmel_sha_finish(struct ahash_request *req)
990 {
991 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
992 struct atmel_sha_dev *dd = ctx->dd;
993
994 if (ctx->digcnt[0] || ctx->digcnt[1])
995 atmel_sha_copy_ready_hash(req);
996
997 dev_dbg(dd->dev, "digcnt: 0x%llx 0x%llx, bufcnt: %zd\n", ctx->digcnt[1],
998 ctx->digcnt[0], ctx->bufcnt);
999
1000 return 0;
1001 }
1002
1003 static void atmel_sha_finish_req(struct ahash_request *req, int err)
1004 {
1005 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1006 struct atmel_sha_dev *dd = ctx->dd;
1007
1008 if (!err) {
1009 atmel_sha_copy_hash(req);
1010 if (SHA_FLAGS_FINAL & dd->flags)
1011 err = atmel_sha_finish(req);
1012 } else {
1013 ctx->flags |= SHA_FLAGS_ERROR;
1014 }
1015
1016 /* atomic operation is not needed here */
1017 (void)atmel_sha_complete(dd, err);
1018 }
1019
1020 static int atmel_sha_hw_init(struct atmel_sha_dev *dd)
1021 {
1022 int err;
1023
1024 err = clk_enable(dd->iclk);
1025 if (err)
1026 return err;
1027
1028 if (!(SHA_FLAGS_INIT & dd->flags)) {
1029 atmel_sha_write(dd, SHA_CR, SHA_CR_SWRST);
1030 dd->flags |= SHA_FLAGS_INIT;
1031 dd->err = 0;
1032 }
1033
1034 return 0;
1035 }
1036
1037 static inline unsigned int atmel_sha_get_version(struct atmel_sha_dev *dd)
1038 {
1039 return atmel_sha_read(dd, SHA_HW_VERSION) & 0x00000fff;
1040 }
1041
1042 static void atmel_sha_hw_version_init(struct atmel_sha_dev *dd)
1043 {
1044 atmel_sha_hw_init(dd);
1045
1046 dd->hw_version = atmel_sha_get_version(dd);
1047
1048 dev_info(dd->dev,
1049 "version: 0x%x\n", dd->hw_version);
1050
1051 clk_disable(dd->iclk);
1052 }
1053
1054 static int atmel_sha_handle_queue(struct atmel_sha_dev *dd,
1055 struct ahash_request *req)
1056 {
1057 struct crypto_async_request *async_req, *backlog;
1058 struct atmel_sha_ctx *ctx;
1059 unsigned long flags;
1060 bool start_async;
1061 int err = 0, ret = 0;
1062
1063 spin_lock_irqsave(&dd->lock, flags);
1064 if (req)
1065 ret = ahash_enqueue_request(&dd->queue, req);
1066
1067 if (SHA_FLAGS_BUSY & dd->flags) {
1068 spin_unlock_irqrestore(&dd->lock, flags);
1069 return ret;
1070 }
1071
1072 backlog = crypto_get_backlog(&dd->queue);
1073 async_req = crypto_dequeue_request(&dd->queue);
1074 if (async_req)
1075 dd->flags |= SHA_FLAGS_BUSY;
1076
1077 spin_unlock_irqrestore(&dd->lock, flags);
1078
1079 if (!async_req)
1080 return ret;
1081
1082 if (backlog)
1083 backlog->complete(backlog, -EINPROGRESS);
1084
1085 ctx = crypto_tfm_ctx(async_req->tfm);
1086
1087 dd->req = ahash_request_cast(async_req);
1088 start_async = (dd->req != req);
1089 dd->is_async = start_async;
1090 dd->force_complete = false;
1091
1092 /* WARNING: ctx->start() MAY change dd->is_async. */
1093 err = ctx->start(dd);
1094 return (start_async) ? ret : err;
1095 }
1096
1097 static int atmel_sha_done(struct atmel_sha_dev *dd);
1098
1099 static int atmel_sha_start(struct atmel_sha_dev *dd)
1100 {
1101 struct ahash_request *req = dd->req;
1102 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1103 int err;
1104
1105 dev_dbg(dd->dev, "handling new req, op: %lu, nbytes: %d\n",
1106 ctx->op, req->nbytes);
1107
1108 err = atmel_sha_hw_init(dd);
1109 if (err)
1110 return atmel_sha_complete(dd, err);
1111
1112 /*
1113 * atmel_sha_update_req() and atmel_sha_final_req() can return either:
1114 * -EINPROGRESS: the hardware is busy and the SHA driver will resume
1115 * its job later in the done_task.
1116 * This is the main path.
1117 *
1118 * 0: the SHA driver can continue its job then release the hardware
1119 * later, if needed, with atmel_sha_finish_req().
1120 * This is the alternate path.
1121 *
1122 * < 0: an error has occurred so atmel_sha_complete(dd, err) has already
1123 * been called, hence the hardware has been released.
1124 * The SHA driver must stop its job without calling
1125 * atmel_sha_finish_req(), otherwise atmel_sha_complete() would be
1126 * called a second time.
1127 *
1128 * Please note that currently, atmel_sha_final_req() never returns 0.
1129 */
1130
1131 dd->resume = atmel_sha_done;
1132 if (ctx->op == SHA_OP_UPDATE) {
1133 err = atmel_sha_update_req(dd);
1134 if (!err && (ctx->flags & SHA_FLAGS_FINUP))
1135 /* no final() after finup() */
1136 err = atmel_sha_final_req(dd);
1137 } else if (ctx->op == SHA_OP_FINAL) {
1138 err = atmel_sha_final_req(dd);
1139 }
1140
1141 if (!err)
1142 /* done_task will not finish it, so do it here */
1143 atmel_sha_finish_req(req, err);
1144
1145 dev_dbg(dd->dev, "exit, err: %d\n", err);
1146
1147 return err;
1148 }
1149
1150 static int atmel_sha_enqueue(struct ahash_request *req, unsigned int op)
1151 {
1152 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1153 struct atmel_sha_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
1154 struct atmel_sha_dev *dd = tctx->dd;
1155
1156 ctx->op = op;
1157
1158 return atmel_sha_handle_queue(dd, req);
1159 }
1160
1161 static int atmel_sha_update(struct ahash_request *req)
1162 {
1163 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1164
1165 if (!req->nbytes)
1166 return 0;
1167
1168 ctx->total = req->nbytes;
1169 ctx->sg = req->src;
1170 ctx->offset = 0;
1171
1172 if (ctx->flags & SHA_FLAGS_FINUP) {
1173 if (ctx->bufcnt + ctx->total < ATMEL_SHA_DMA_THRESHOLD)
1174 /* faster to use CPU for short transfers */
1175 ctx->flags |= SHA_FLAGS_CPU;
1176 } else if (ctx->bufcnt + ctx->total < ctx->buflen) {
1177 atmel_sha_append_sg(ctx);
1178 return 0;
1179 }
1180 return atmel_sha_enqueue(req, SHA_OP_UPDATE);
1181 }
1182
1183 static int atmel_sha_final(struct ahash_request *req)
1184 {
1185 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1186
1187 ctx->flags |= SHA_FLAGS_FINUP;
1188
1189 if (ctx->flags & SHA_FLAGS_ERROR)
1190 return 0; /* uncompleted hash is not needed */
1191
1192 if (ctx->flags & SHA_FLAGS_PAD)
1193 /* copy ready hash (+ finalize hmac) */
1194 return atmel_sha_finish(req);
1195
1196 return atmel_sha_enqueue(req, SHA_OP_FINAL);
1197 }
1198
1199 static int atmel_sha_finup(struct ahash_request *req)
1200 {
1201 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1202 int err1, err2;
1203
1204 ctx->flags |= SHA_FLAGS_FINUP;
1205
1206 err1 = atmel_sha_update(req);
1207 if (err1 == -EINPROGRESS ||
1208 (err1 == -EBUSY && (ahash_request_flags(req) &
1209 CRYPTO_TFM_REQ_MAY_BACKLOG)))
1210 return err1;
1211
1212 /*
1213 * final() has to be always called to cleanup resources
1214 * even if udpate() failed, except EINPROGRESS
1215 */
1216 err2 = atmel_sha_final(req);
1217
1218 return err1 ?: err2;
1219 }
1220
1221 static int atmel_sha_digest(struct ahash_request *req)
1222 {
1223 return atmel_sha_init(req) ?: atmel_sha_finup(req);
1224 }
1225
1226
1227 static int atmel_sha_export(struct ahash_request *req, void *out)
1228 {
1229 const struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1230
1231 memcpy(out, ctx, sizeof(*ctx));
1232 return 0;
1233 }
1234
1235 static int atmel_sha_import(struct ahash_request *req, const void *in)
1236 {
1237 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1238
1239 memcpy(ctx, in, sizeof(*ctx));
1240 return 0;
1241 }
1242
1243 static int atmel_sha_cra_init(struct crypto_tfm *tfm)
1244 {
1245 struct atmel_sha_ctx *ctx = crypto_tfm_ctx(tfm);
1246
1247 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1248 sizeof(struct atmel_sha_reqctx));
1249 ctx->start = atmel_sha_start;
1250
1251 return 0;
1252 }
1253
1254 static struct ahash_alg sha_1_256_algs[] = {
1255 {
1256 .init = atmel_sha_init,
1257 .update = atmel_sha_update,
1258 .final = atmel_sha_final,
1259 .finup = atmel_sha_finup,
1260 .digest = atmel_sha_digest,
1261 .export = atmel_sha_export,
1262 .import = atmel_sha_import,
1263 .halg = {
1264 .digestsize = SHA1_DIGEST_SIZE,
1265 .statesize = sizeof(struct atmel_sha_reqctx),
1266 .base = {
1267 .cra_name = "sha1",
1268 .cra_driver_name = "atmel-sha1",
1269 .cra_priority = 100,
1270 .cra_flags = CRYPTO_ALG_ASYNC,
1271 .cra_blocksize = SHA1_BLOCK_SIZE,
1272 .cra_ctxsize = sizeof(struct atmel_sha_ctx),
1273 .cra_alignmask = 0,
1274 .cra_module = THIS_MODULE,
1275 .cra_init = atmel_sha_cra_init,
1276 }
1277 }
1278 },
1279 {
1280 .init = atmel_sha_init,
1281 .update = atmel_sha_update,
1282 .final = atmel_sha_final,
1283 .finup = atmel_sha_finup,
1284 .digest = atmel_sha_digest,
1285 .export = atmel_sha_export,
1286 .import = atmel_sha_import,
1287 .halg = {
1288 .digestsize = SHA256_DIGEST_SIZE,
1289 .statesize = sizeof(struct atmel_sha_reqctx),
1290 .base = {
1291 .cra_name = "sha256",
1292 .cra_driver_name = "atmel-sha256",
1293 .cra_priority = 100,
1294 .cra_flags = CRYPTO_ALG_ASYNC,
1295 .cra_blocksize = SHA256_BLOCK_SIZE,
1296 .cra_ctxsize = sizeof(struct atmel_sha_ctx),
1297 .cra_alignmask = 0,
1298 .cra_module = THIS_MODULE,
1299 .cra_init = atmel_sha_cra_init,
1300 }
1301 }
1302 },
1303 };
1304
1305 static struct ahash_alg sha_224_alg = {
1306 .init = atmel_sha_init,
1307 .update = atmel_sha_update,
1308 .final = atmel_sha_final,
1309 .finup = atmel_sha_finup,
1310 .digest = atmel_sha_digest,
1311 .export = atmel_sha_export,
1312 .import = atmel_sha_import,
1313 .halg = {
1314 .digestsize = SHA224_DIGEST_SIZE,
1315 .statesize = sizeof(struct atmel_sha_reqctx),
1316 .base = {
1317 .cra_name = "sha224",
1318 .cra_driver_name = "atmel-sha224",
1319 .cra_priority = 100,
1320 .cra_flags = CRYPTO_ALG_ASYNC,
1321 .cra_blocksize = SHA224_BLOCK_SIZE,
1322 .cra_ctxsize = sizeof(struct atmel_sha_ctx),
1323 .cra_alignmask = 0,
1324 .cra_module = THIS_MODULE,
1325 .cra_init = atmel_sha_cra_init,
1326 }
1327 }
1328 };
1329
1330 static struct ahash_alg sha_384_512_algs[] = {
1331 {
1332 .init = atmel_sha_init,
1333 .update = atmel_sha_update,
1334 .final = atmel_sha_final,
1335 .finup = atmel_sha_finup,
1336 .digest = atmel_sha_digest,
1337 .export = atmel_sha_export,
1338 .import = atmel_sha_import,
1339 .halg = {
1340 .digestsize = SHA384_DIGEST_SIZE,
1341 .statesize = sizeof(struct atmel_sha_reqctx),
1342 .base = {
1343 .cra_name = "sha384",
1344 .cra_driver_name = "atmel-sha384",
1345 .cra_priority = 100,
1346 .cra_flags = CRYPTO_ALG_ASYNC,
1347 .cra_blocksize = SHA384_BLOCK_SIZE,
1348 .cra_ctxsize = sizeof(struct atmel_sha_ctx),
1349 .cra_alignmask = 0x3,
1350 .cra_module = THIS_MODULE,
1351 .cra_init = atmel_sha_cra_init,
1352 }
1353 }
1354 },
1355 {
1356 .init = atmel_sha_init,
1357 .update = atmel_sha_update,
1358 .final = atmel_sha_final,
1359 .finup = atmel_sha_finup,
1360 .digest = atmel_sha_digest,
1361 .export = atmel_sha_export,
1362 .import = atmel_sha_import,
1363 .halg = {
1364 .digestsize = SHA512_DIGEST_SIZE,
1365 .statesize = sizeof(struct atmel_sha_reqctx),
1366 .base = {
1367 .cra_name = "sha512",
1368 .cra_driver_name = "atmel-sha512",
1369 .cra_priority = 100,
1370 .cra_flags = CRYPTO_ALG_ASYNC,
1371 .cra_blocksize = SHA512_BLOCK_SIZE,
1372 .cra_ctxsize = sizeof(struct atmel_sha_ctx),
1373 .cra_alignmask = 0x3,
1374 .cra_module = THIS_MODULE,
1375 .cra_init = atmel_sha_cra_init,
1376 }
1377 }
1378 },
1379 };
1380
1381 static void atmel_sha_queue_task(unsigned long data)
1382 {
1383 struct atmel_sha_dev *dd = (struct atmel_sha_dev *)data;
1384
1385 atmel_sha_handle_queue(dd, NULL);
1386 }
1387
1388 static int atmel_sha_done(struct atmel_sha_dev *dd)
1389 {
1390 int err = 0;
1391
1392 if (SHA_FLAGS_CPU & dd->flags) {
1393 if (SHA_FLAGS_OUTPUT_READY & dd->flags) {
1394 dd->flags &= ~SHA_FLAGS_OUTPUT_READY;
1395 goto finish;
1396 }
1397 } else if (SHA_FLAGS_DMA_READY & dd->flags) {
1398 if (SHA_FLAGS_DMA_ACTIVE & dd->flags) {
1399 dd->flags &= ~SHA_FLAGS_DMA_ACTIVE;
1400 atmel_sha_update_dma_stop(dd);
1401 if (dd->err) {
1402 err = dd->err;
1403 goto finish;
1404 }
1405 }
1406 if (SHA_FLAGS_OUTPUT_READY & dd->flags) {
1407 /* hash or semi-hash ready */
1408 dd->flags &= ~(SHA_FLAGS_DMA_READY |
1409 SHA_FLAGS_OUTPUT_READY);
1410 err = atmel_sha_update_dma_start(dd);
1411 if (err != -EINPROGRESS)
1412 goto finish;
1413 }
1414 }
1415 return err;
1416
1417 finish:
1418 /* finish curent request */
1419 atmel_sha_finish_req(dd->req, err);
1420
1421 return err;
1422 }
1423
1424 static void atmel_sha_done_task(unsigned long data)
1425 {
1426 struct atmel_sha_dev *dd = (struct atmel_sha_dev *)data;
1427
1428 dd->is_async = true;
1429 (void)dd->resume(dd);
1430 }
1431
1432 static irqreturn_t atmel_sha_irq(int irq, void *dev_id)
1433 {
1434 struct atmel_sha_dev *sha_dd = dev_id;
1435 u32 reg;
1436
1437 reg = atmel_sha_read(sha_dd, SHA_ISR);
1438 if (reg & atmel_sha_read(sha_dd, SHA_IMR)) {
1439 atmel_sha_write(sha_dd, SHA_IDR, reg);
1440 if (SHA_FLAGS_BUSY & sha_dd->flags) {
1441 sha_dd->flags |= SHA_FLAGS_OUTPUT_READY;
1442 if (!(SHA_FLAGS_CPU & sha_dd->flags))
1443 sha_dd->flags |= SHA_FLAGS_DMA_READY;
1444 tasklet_schedule(&sha_dd->done_task);
1445 } else {
1446 dev_warn(sha_dd->dev, "SHA interrupt when no active requests.\n");
1447 }
1448 return IRQ_HANDLED;
1449 }
1450
1451 return IRQ_NONE;
1452 }
1453
1454
1455 /* DMA transfer functions */
1456
1457 static bool atmel_sha_dma_check_aligned(struct atmel_sha_dev *dd,
1458 struct scatterlist *sg,
1459 size_t len)
1460 {
1461 struct atmel_sha_dma *dma = &dd->dma_lch_in;
1462 struct ahash_request *req = dd->req;
1463 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1464 size_t bs = ctx->block_size;
1465 int nents;
1466
1467 for (nents = 0; sg; sg = sg_next(sg), ++nents) {
1468 if (!IS_ALIGNED(sg->offset, sizeof(u32)))
1469 return false;
1470
1471 /*
1472 * This is the last sg, the only one that is allowed to
1473 * have an unaligned length.
1474 */
1475 if (len <= sg->length) {
1476 dma->nents = nents + 1;
1477 dma->last_sg_length = sg->length;
1478 sg->length = ALIGN(len, sizeof(u32));
1479 return true;
1480 }
1481
1482 /* All other sg lengths MUST be aligned to the block size. */
1483 if (!IS_ALIGNED(sg->length, bs))
1484 return false;
1485
1486 len -= sg->length;
1487 }
1488
1489 return false;
1490 }
1491
1492 static void atmel_sha_dma_callback2(void *data)
1493 {
1494 struct atmel_sha_dev *dd = data;
1495 struct atmel_sha_dma *dma = &dd->dma_lch_in;
1496 struct scatterlist *sg;
1497 int nents;
1498
1499 dmaengine_terminate_all(dma->chan);
1500 dma_unmap_sg(dd->dev, dma->sg, dma->nents, DMA_TO_DEVICE);
1501
1502 sg = dma->sg;
1503 for (nents = 0; nents < dma->nents - 1; ++nents)
1504 sg = sg_next(sg);
1505 sg->length = dma->last_sg_length;
1506
1507 dd->is_async = true;
1508 (void)atmel_sha_wait_for_data_ready(dd, dd->resume);
1509 }
1510
1511 static int atmel_sha_dma_start(struct atmel_sha_dev *dd,
1512 struct scatterlist *src,
1513 size_t len,
1514 atmel_sha_fn_t resume)
1515 {
1516 struct atmel_sha_dma *dma = &dd->dma_lch_in;
1517 struct dma_slave_config *config = &dma->dma_conf;
1518 struct dma_chan *chan = dma->chan;
1519 struct dma_async_tx_descriptor *desc;
1520 dma_cookie_t cookie;
1521 unsigned int sg_len;
1522 int err;
1523
1524 dd->resume = resume;
1525
1526 /*
1527 * dma->nents has already been initialized by
1528 * atmel_sha_dma_check_aligned().
1529 */
1530 dma->sg = src;
1531 sg_len = dma_map_sg(dd->dev, dma->sg, dma->nents, DMA_TO_DEVICE);
1532 if (!sg_len) {
1533 err = -ENOMEM;
1534 goto exit;
1535 }
1536
1537 config->src_maxburst = 16;
1538 config->dst_maxburst = 16;
1539 err = dmaengine_slave_config(chan, config);
1540 if (err)
1541 goto unmap_sg;
1542
1543 desc = dmaengine_prep_slave_sg(chan, dma->sg, sg_len, DMA_MEM_TO_DEV,
1544 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1545 if (!desc) {
1546 err = -ENOMEM;
1547 goto unmap_sg;
1548 }
1549
1550 desc->callback = atmel_sha_dma_callback2;
1551 desc->callback_param = dd;
1552 cookie = dmaengine_submit(desc);
1553 err = dma_submit_error(cookie);
1554 if (err)
1555 goto unmap_sg;
1556
1557 dma_async_issue_pending(chan);
1558
1559 return -EINPROGRESS;
1560
1561 unmap_sg:
1562 dma_unmap_sg(dd->dev, dma->sg, dma->nents, DMA_TO_DEVICE);
1563 exit:
1564 return atmel_sha_complete(dd, err);
1565 }
1566
1567
1568 /* CPU transfer functions */
1569
1570 static int atmel_sha_cpu_transfer(struct atmel_sha_dev *dd)
1571 {
1572 struct ahash_request *req = dd->req;
1573 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1574 const u32 *words = (const u32 *)ctx->buffer;
1575 size_t i, num_words;
1576 u32 isr, din, din_inc;
1577
1578 din_inc = (ctx->flags & SHA_FLAGS_IDATAR0) ? 0 : 1;
1579 for (;;) {
1580 /* Write data into the Input Data Registers. */
1581 num_words = DIV_ROUND_UP(ctx->bufcnt, sizeof(u32));
1582 for (i = 0, din = 0; i < num_words; ++i, din += din_inc)
1583 atmel_sha_write(dd, SHA_REG_DIN(din), words[i]);
1584
1585 ctx->offset += ctx->bufcnt;
1586 ctx->total -= ctx->bufcnt;
1587
1588 if (!ctx->total)
1589 break;
1590
1591 /*
1592 * Prepare next block:
1593 * Fill ctx->buffer now with the next data to be written into
1594 * IDATARx: it gives time for the SHA hardware to process
1595 * the current data so the SHA_INT_DATARDY flag might be set
1596 * in SHA_ISR when polling this register at the beginning of
1597 * the next loop.
1598 */
1599 ctx->bufcnt = min_t(size_t, ctx->block_size, ctx->total);
1600 scatterwalk_map_and_copy(ctx->buffer, ctx->sg,
1601 ctx->offset, ctx->bufcnt, 0);
1602
1603 /* Wait for hardware to be ready again. */
1604 isr = atmel_sha_read(dd, SHA_ISR);
1605 if (!(isr & SHA_INT_DATARDY)) {
1606 /* Not ready yet. */
1607 dd->resume = atmel_sha_cpu_transfer;
1608 atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
1609 return -EINPROGRESS;
1610 }
1611 }
1612
1613 if (unlikely(!(ctx->flags & SHA_FLAGS_WAIT_DATARDY)))
1614 return dd->cpu_transfer_complete(dd);
1615
1616 return atmel_sha_wait_for_data_ready(dd, dd->cpu_transfer_complete);
1617 }
1618
1619 static int atmel_sha_cpu_start(struct atmel_sha_dev *dd,
1620 struct scatterlist *sg,
1621 unsigned int len,
1622 bool idatar0_only,
1623 bool wait_data_ready,
1624 atmel_sha_fn_t resume)
1625 {
1626 struct ahash_request *req = dd->req;
1627 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1628
1629 if (!len)
1630 return resume(dd);
1631
1632 ctx->flags &= ~(SHA_FLAGS_IDATAR0 | SHA_FLAGS_WAIT_DATARDY);
1633
1634 if (idatar0_only)
1635 ctx->flags |= SHA_FLAGS_IDATAR0;
1636
1637 if (wait_data_ready)
1638 ctx->flags |= SHA_FLAGS_WAIT_DATARDY;
1639
1640 ctx->sg = sg;
1641 ctx->total = len;
1642 ctx->offset = 0;
1643
1644 /* Prepare the first block to be written. */
1645 ctx->bufcnt = min_t(size_t, ctx->block_size, ctx->total);
1646 scatterwalk_map_and_copy(ctx->buffer, ctx->sg,
1647 ctx->offset, ctx->bufcnt, 0);
1648
1649 dd->cpu_transfer_complete = resume;
1650 return atmel_sha_cpu_transfer(dd);
1651 }
1652
1653 static int atmel_sha_cpu_hash(struct atmel_sha_dev *dd,
1654 const void *data, unsigned int datalen,
1655 bool auto_padding,
1656 atmel_sha_fn_t resume)
1657 {
1658 struct ahash_request *req = dd->req;
1659 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1660 u32 msglen = (auto_padding) ? datalen : 0;
1661 u32 mr = SHA_MR_MODE_AUTO;
1662
1663 if (!(IS_ALIGNED(datalen, ctx->block_size) || auto_padding))
1664 return atmel_sha_complete(dd, -EINVAL);
1665
1666 mr |= (ctx->flags & SHA_FLAGS_ALGO_MASK);
1667 atmel_sha_write(dd, SHA_MR, mr);
1668 atmel_sha_write(dd, SHA_MSR, msglen);
1669 atmel_sha_write(dd, SHA_BCR, msglen);
1670 atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
1671
1672 sg_init_one(&dd->tmp, data, datalen);
1673 return atmel_sha_cpu_start(dd, &dd->tmp, datalen, false, true, resume);
1674 }
1675
1676
1677 /* hmac functions */
1678
1679 struct atmel_sha_hmac_key {
1680 bool valid;
1681 unsigned int keylen;
1682 u8 buffer[SHA512_BLOCK_SIZE];
1683 u8 *keydup;
1684 };
1685
1686 static inline void atmel_sha_hmac_key_init(struct atmel_sha_hmac_key *hkey)
1687 {
1688 memset(hkey, 0, sizeof(*hkey));
1689 }
1690
1691 static inline void atmel_sha_hmac_key_release(struct atmel_sha_hmac_key *hkey)
1692 {
1693 kfree(hkey->keydup);
1694 memset(hkey, 0, sizeof(*hkey));
1695 }
1696
1697 static inline int atmel_sha_hmac_key_set(struct atmel_sha_hmac_key *hkey,
1698 const u8 *key,
1699 unsigned int keylen)
1700 {
1701 atmel_sha_hmac_key_release(hkey);
1702
1703 if (keylen > sizeof(hkey->buffer)) {
1704 hkey->keydup = kmemdup(key, keylen, GFP_KERNEL);
1705 if (!hkey->keydup)
1706 return -ENOMEM;
1707
1708 } else {
1709 memcpy(hkey->buffer, key, keylen);
1710 }
1711
1712 hkey->valid = true;
1713 hkey->keylen = keylen;
1714 return 0;
1715 }
1716
1717 static inline bool atmel_sha_hmac_key_get(const struct atmel_sha_hmac_key *hkey,
1718 const u8 **key,
1719 unsigned int *keylen)
1720 {
1721 if (!hkey->valid)
1722 return false;
1723
1724 *keylen = hkey->keylen;
1725 *key = (hkey->keydup) ? hkey->keydup : hkey->buffer;
1726 return true;
1727 }
1728
1729
1730 struct atmel_sha_hmac_ctx {
1731 struct atmel_sha_ctx base;
1732
1733 struct atmel_sha_hmac_key hkey;
1734 u32 ipad[SHA512_BLOCK_SIZE / sizeof(u32)];
1735 u32 opad[SHA512_BLOCK_SIZE / sizeof(u32)];
1736 atmel_sha_fn_t resume;
1737 };
1738
1739 static int atmel_sha_hmac_setup(struct atmel_sha_dev *dd,
1740 atmel_sha_fn_t resume);
1741 static int atmel_sha_hmac_prehash_key(struct atmel_sha_dev *dd,
1742 const u8 *key, unsigned int keylen);
1743 static int atmel_sha_hmac_prehash_key_done(struct atmel_sha_dev *dd);
1744 static int atmel_sha_hmac_compute_ipad_hash(struct atmel_sha_dev *dd);
1745 static int atmel_sha_hmac_compute_opad_hash(struct atmel_sha_dev *dd);
1746 static int atmel_sha_hmac_setup_done(struct atmel_sha_dev *dd);
1747
1748 static int atmel_sha_hmac_init_done(struct atmel_sha_dev *dd);
1749 static int atmel_sha_hmac_final(struct atmel_sha_dev *dd);
1750 static int atmel_sha_hmac_final_done(struct atmel_sha_dev *dd);
1751 static int atmel_sha_hmac_digest2(struct atmel_sha_dev *dd);
1752
1753 static int atmel_sha_hmac_setup(struct atmel_sha_dev *dd,
1754 atmel_sha_fn_t resume)
1755 {
1756 struct ahash_request *req = dd->req;
1757 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1758 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1759 struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1760 unsigned int keylen;
1761 const u8 *key;
1762 size_t bs;
1763
1764 hmac->resume = resume;
1765 switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
1766 case SHA_FLAGS_SHA1:
1767 ctx->block_size = SHA1_BLOCK_SIZE;
1768 ctx->hash_size = SHA1_DIGEST_SIZE;
1769 break;
1770
1771 case SHA_FLAGS_SHA224:
1772 ctx->block_size = SHA224_BLOCK_SIZE;
1773 ctx->hash_size = SHA256_DIGEST_SIZE;
1774 break;
1775
1776 case SHA_FLAGS_SHA256:
1777 ctx->block_size = SHA256_BLOCK_SIZE;
1778 ctx->hash_size = SHA256_DIGEST_SIZE;
1779 break;
1780
1781 case SHA_FLAGS_SHA384:
1782 ctx->block_size = SHA384_BLOCK_SIZE;
1783 ctx->hash_size = SHA512_DIGEST_SIZE;
1784 break;
1785
1786 case SHA_FLAGS_SHA512:
1787 ctx->block_size = SHA512_BLOCK_SIZE;
1788 ctx->hash_size = SHA512_DIGEST_SIZE;
1789 break;
1790
1791 default:
1792 return atmel_sha_complete(dd, -EINVAL);
1793 }
1794 bs = ctx->block_size;
1795
1796 if (likely(!atmel_sha_hmac_key_get(&hmac->hkey, &key, &keylen)))
1797 return resume(dd);
1798
1799 /* Compute K' from K. */
1800 if (unlikely(keylen > bs))
1801 return atmel_sha_hmac_prehash_key(dd, key, keylen);
1802
1803 /* Prepare ipad. */
1804 memcpy((u8 *)hmac->ipad, key, keylen);
1805 memset((u8 *)hmac->ipad + keylen, 0, bs - keylen);
1806 return atmel_sha_hmac_compute_ipad_hash(dd);
1807 }
1808
1809 static int atmel_sha_hmac_prehash_key(struct atmel_sha_dev *dd,
1810 const u8 *key, unsigned int keylen)
1811 {
1812 return atmel_sha_cpu_hash(dd, key, keylen, true,
1813 atmel_sha_hmac_prehash_key_done);
1814 }
1815
1816 static int atmel_sha_hmac_prehash_key_done(struct atmel_sha_dev *dd)
1817 {
1818 struct ahash_request *req = dd->req;
1819 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1820 struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1821 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1822 size_t ds = crypto_ahash_digestsize(tfm);
1823 size_t bs = ctx->block_size;
1824 size_t i, num_words = ds / sizeof(u32);
1825
1826 /* Prepare ipad. */
1827 for (i = 0; i < num_words; ++i)
1828 hmac->ipad[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
1829 memset((u8 *)hmac->ipad + ds, 0, bs - ds);
1830 return atmel_sha_hmac_compute_ipad_hash(dd);
1831 }
1832
1833 static int atmel_sha_hmac_compute_ipad_hash(struct atmel_sha_dev *dd)
1834 {
1835 struct ahash_request *req = dd->req;
1836 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1837 struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1838 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1839 size_t bs = ctx->block_size;
1840 size_t i, num_words = bs / sizeof(u32);
1841
1842 memcpy(hmac->opad, hmac->ipad, bs);
1843 for (i = 0; i < num_words; ++i) {
1844 hmac->ipad[i] ^= 0x36363636;
1845 hmac->opad[i] ^= 0x5c5c5c5c;
1846 }
1847
1848 return atmel_sha_cpu_hash(dd, hmac->ipad, bs, false,
1849 atmel_sha_hmac_compute_opad_hash);
1850 }
1851
1852 static int atmel_sha_hmac_compute_opad_hash(struct atmel_sha_dev *dd)
1853 {
1854 struct ahash_request *req = dd->req;
1855 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1856 struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1857 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1858 size_t bs = ctx->block_size;
1859 size_t hs = ctx->hash_size;
1860 size_t i, num_words = hs / sizeof(u32);
1861
1862 for (i = 0; i < num_words; ++i)
1863 hmac->ipad[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
1864 return atmel_sha_cpu_hash(dd, hmac->opad, bs, false,
1865 atmel_sha_hmac_setup_done);
1866 }
1867
1868 static int atmel_sha_hmac_setup_done(struct atmel_sha_dev *dd)
1869 {
1870 struct ahash_request *req = dd->req;
1871 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1872 struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1873 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1874 size_t hs = ctx->hash_size;
1875 size_t i, num_words = hs / sizeof(u32);
1876
1877 for (i = 0; i < num_words; ++i)
1878 hmac->opad[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
1879 atmel_sha_hmac_key_release(&hmac->hkey);
1880 return hmac->resume(dd);
1881 }
1882
1883 static int atmel_sha_hmac_start(struct atmel_sha_dev *dd)
1884 {
1885 struct ahash_request *req = dd->req;
1886 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1887 int err;
1888
1889 err = atmel_sha_hw_init(dd);
1890 if (err)
1891 return atmel_sha_complete(dd, err);
1892
1893 switch (ctx->op) {
1894 case SHA_OP_INIT:
1895 err = atmel_sha_hmac_setup(dd, atmel_sha_hmac_init_done);
1896 break;
1897
1898 case SHA_OP_UPDATE:
1899 dd->resume = atmel_sha_done;
1900 err = atmel_sha_update_req(dd);
1901 break;
1902
1903 case SHA_OP_FINAL:
1904 dd->resume = atmel_sha_hmac_final;
1905 err = atmel_sha_final_req(dd);
1906 break;
1907
1908 case SHA_OP_DIGEST:
1909 err = atmel_sha_hmac_setup(dd, atmel_sha_hmac_digest2);
1910 break;
1911
1912 default:
1913 return atmel_sha_complete(dd, -EINVAL);
1914 }
1915
1916 return err;
1917 }
1918
1919 static int atmel_sha_hmac_setkey(struct crypto_ahash *tfm, const u8 *key,
1920 unsigned int keylen)
1921 {
1922 struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1923
1924 if (atmel_sha_hmac_key_set(&hmac->hkey, key, keylen)) {
1925 crypto_ahash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
1926 return -EINVAL;
1927 }
1928
1929 return 0;
1930 }
1931
1932 static int atmel_sha_hmac_init(struct ahash_request *req)
1933 {
1934 int err;
1935
1936 err = atmel_sha_init(req);
1937 if (err)
1938 return err;
1939
1940 return atmel_sha_enqueue(req, SHA_OP_INIT);
1941 }
1942
1943 static int atmel_sha_hmac_init_done(struct atmel_sha_dev *dd)
1944 {
1945 struct ahash_request *req = dd->req;
1946 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1947 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1948 struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1949 size_t bs = ctx->block_size;
1950 size_t hs = ctx->hash_size;
1951
1952 ctx->bufcnt = 0;
1953 ctx->digcnt[0] = bs;
1954 ctx->digcnt[1] = 0;
1955 ctx->flags |= SHA_FLAGS_RESTORE;
1956 memcpy(ctx->digest, hmac->ipad, hs);
1957 return atmel_sha_complete(dd, 0);
1958 }
1959
1960 static int atmel_sha_hmac_final(struct atmel_sha_dev *dd)
1961 {
1962 struct ahash_request *req = dd->req;
1963 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1964 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1965 struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1966 u32 *digest = (u32 *)ctx->digest;
1967 size_t ds = crypto_ahash_digestsize(tfm);
1968 size_t bs = ctx->block_size;
1969 size_t hs = ctx->hash_size;
1970 size_t i, num_words;
1971 u32 mr;
1972
1973 /* Save d = SHA((K' + ipad) | msg). */
1974 num_words = ds / sizeof(u32);
1975 for (i = 0; i < num_words; ++i)
1976 digest[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
1977
1978 /* Restore context to finish computing SHA((K' + opad) | d). */
1979 atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
1980 num_words = hs / sizeof(u32);
1981 for (i = 0; i < num_words; ++i)
1982 atmel_sha_write(dd, SHA_REG_DIN(i), hmac->opad[i]);
1983
1984 mr = SHA_MR_MODE_AUTO | SHA_MR_UIHV;
1985 mr |= (ctx->flags & SHA_FLAGS_ALGO_MASK);
1986 atmel_sha_write(dd, SHA_MR, mr);
1987 atmel_sha_write(dd, SHA_MSR, bs + ds);
1988 atmel_sha_write(dd, SHA_BCR, ds);
1989 atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
1990
1991 sg_init_one(&dd->tmp, digest, ds);
1992 return atmel_sha_cpu_start(dd, &dd->tmp, ds, false, true,
1993 atmel_sha_hmac_final_done);
1994 }
1995
1996 static int atmel_sha_hmac_final_done(struct atmel_sha_dev *dd)
1997 {
1998 /*
1999 * req->result might not be sizeof(u32) aligned, so copy the
2000 * digest into ctx->digest[] before memcpy() the data into
2001 * req->result.
2002 */
2003 atmel_sha_copy_hash(dd->req);
2004 atmel_sha_copy_ready_hash(dd->req);
2005 return atmel_sha_complete(dd, 0);
2006 }
2007
2008 static int atmel_sha_hmac_digest(struct ahash_request *req)
2009 {
2010 int err;
2011
2012 err = atmel_sha_init(req);
2013 if (err)
2014 return err;
2015
2016 return atmel_sha_enqueue(req, SHA_OP_DIGEST);
2017 }
2018
2019 static int atmel_sha_hmac_digest2(struct atmel_sha_dev *dd)
2020 {
2021 struct ahash_request *req = dd->req;
2022 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
2023 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2024 struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
2025 size_t hs = ctx->hash_size;
2026 size_t i, num_words = hs / sizeof(u32);
2027 bool use_dma = false;
2028 u32 mr;
2029
2030 /* Special case for empty message. */
2031 if (!req->nbytes)
2032 return atmel_sha_complete(dd, -EINVAL); // TODO:
2033
2034 /* Check DMA threshold and alignment. */
2035 if (req->nbytes > ATMEL_SHA_DMA_THRESHOLD &&
2036 atmel_sha_dma_check_aligned(dd, req->src, req->nbytes))
2037 use_dma = true;
2038
2039 /* Write both initial hash values to compute a HMAC. */
2040 atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
2041 for (i = 0; i < num_words; ++i)
2042 atmel_sha_write(dd, SHA_REG_DIN(i), hmac->ipad[i]);
2043
2044 atmel_sha_write(dd, SHA_CR, SHA_CR_WUIEHV);
2045 for (i = 0; i < num_words; ++i)
2046 atmel_sha_write(dd, SHA_REG_DIN(i), hmac->opad[i]);
2047
2048 /* Write the Mode, Message Size, Bytes Count then Control Registers. */
2049 mr = (SHA_MR_HMAC | SHA_MR_DUALBUFF);
2050 mr |= ctx->flags & SHA_FLAGS_ALGO_MASK;
2051 if (use_dma)
2052 mr |= SHA_MR_MODE_IDATAR0;
2053 else
2054 mr |= SHA_MR_MODE_AUTO;
2055 atmel_sha_write(dd, SHA_MR, mr);
2056
2057 atmel_sha_write(dd, SHA_MSR, req->nbytes);
2058 atmel_sha_write(dd, SHA_BCR, req->nbytes);
2059
2060 atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
2061
2062 /* Process data. */
2063 if (use_dma)
2064 return atmel_sha_dma_start(dd, req->src, req->nbytes,
2065 atmel_sha_hmac_final_done);
2066
2067 return atmel_sha_cpu_start(dd, req->src, req->nbytes, false, true,
2068 atmel_sha_hmac_final_done);
2069 }
2070
2071 static int atmel_sha_hmac_cra_init(struct crypto_tfm *tfm)
2072 {
2073 struct atmel_sha_hmac_ctx *hmac = crypto_tfm_ctx(tfm);
2074
2075 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
2076 sizeof(struct atmel_sha_reqctx));
2077 hmac->base.start = atmel_sha_hmac_start;
2078 atmel_sha_hmac_key_init(&hmac->hkey);
2079
2080 return 0;
2081 }
2082
2083 static void atmel_sha_hmac_cra_exit(struct crypto_tfm *tfm)
2084 {
2085 struct atmel_sha_hmac_ctx *hmac = crypto_tfm_ctx(tfm);
2086
2087 atmel_sha_hmac_key_release(&hmac->hkey);
2088 }
2089
2090 static struct ahash_alg sha_hmac_algs[] = {
2091 {
2092 .init = atmel_sha_hmac_init,
2093 .update = atmel_sha_update,
2094 .final = atmel_sha_final,
2095 .digest = atmel_sha_hmac_digest,
2096 .setkey = atmel_sha_hmac_setkey,
2097 .export = atmel_sha_export,
2098 .import = atmel_sha_import,
2099 .halg = {
2100 .digestsize = SHA1_DIGEST_SIZE,
2101 .statesize = sizeof(struct atmel_sha_reqctx),
2102 .base = {
2103 .cra_name = "hmac(sha1)",
2104 .cra_driver_name = "atmel-hmac-sha1",
2105 .cra_priority = 100,
2106 .cra_flags = CRYPTO_ALG_ASYNC,
2107 .cra_blocksize = SHA1_BLOCK_SIZE,
2108 .cra_ctxsize = sizeof(struct atmel_sha_hmac_ctx),
2109 .cra_alignmask = 0,
2110 .cra_module = THIS_MODULE,
2111 .cra_init = atmel_sha_hmac_cra_init,
2112 .cra_exit = atmel_sha_hmac_cra_exit,
2113 }
2114 }
2115 },
2116 {
2117 .init = atmel_sha_hmac_init,
2118 .update = atmel_sha_update,
2119 .final = atmel_sha_final,
2120 .digest = atmel_sha_hmac_digest,
2121 .setkey = atmel_sha_hmac_setkey,
2122 .export = atmel_sha_export,
2123 .import = atmel_sha_import,
2124 .halg = {
2125 .digestsize = SHA224_DIGEST_SIZE,
2126 .statesize = sizeof(struct atmel_sha_reqctx),
2127 .base = {
2128 .cra_name = "hmac(sha224)",
2129 .cra_driver_name = "atmel-hmac-sha224",
2130 .cra_priority = 100,
2131 .cra_flags = CRYPTO_ALG_ASYNC,
2132 .cra_blocksize = SHA224_BLOCK_SIZE,
2133 .cra_ctxsize = sizeof(struct atmel_sha_hmac_ctx),
2134 .cra_alignmask = 0,
2135 .cra_module = THIS_MODULE,
2136 .cra_init = atmel_sha_hmac_cra_init,
2137 .cra_exit = atmel_sha_hmac_cra_exit,
2138 }
2139 }
2140 },
2141 {
2142 .init = atmel_sha_hmac_init,
2143 .update = atmel_sha_update,
2144 .final = atmel_sha_final,
2145 .digest = atmel_sha_hmac_digest,
2146 .setkey = atmel_sha_hmac_setkey,
2147 .export = atmel_sha_export,
2148 .import = atmel_sha_import,
2149 .halg = {
2150 .digestsize = SHA256_DIGEST_SIZE,
2151 .statesize = sizeof(struct atmel_sha_reqctx),
2152 .base = {
2153 .cra_name = "hmac(sha256)",
2154 .cra_driver_name = "atmel-hmac-sha256",
2155 .cra_priority = 100,
2156 .cra_flags = CRYPTO_ALG_ASYNC,
2157 .cra_blocksize = SHA256_BLOCK_SIZE,
2158 .cra_ctxsize = sizeof(struct atmel_sha_hmac_ctx),
2159 .cra_alignmask = 0,
2160 .cra_module = THIS_MODULE,
2161 .cra_init = atmel_sha_hmac_cra_init,
2162 .cra_exit = atmel_sha_hmac_cra_exit,
2163 }
2164 }
2165 },
2166 {
2167 .init = atmel_sha_hmac_init,
2168 .update = atmel_sha_update,
2169 .final = atmel_sha_final,
2170 .digest = atmel_sha_hmac_digest,
2171 .setkey = atmel_sha_hmac_setkey,
2172 .export = atmel_sha_export,
2173 .import = atmel_sha_import,
2174 .halg = {
2175 .digestsize = SHA384_DIGEST_SIZE,
2176 .statesize = sizeof(struct atmel_sha_reqctx),
2177 .base = {
2178 .cra_name = "hmac(sha384)",
2179 .cra_driver_name = "atmel-hmac-sha384",
2180 .cra_priority = 100,
2181 .cra_flags = CRYPTO_ALG_ASYNC,
2182 .cra_blocksize = SHA384_BLOCK_SIZE,
2183 .cra_ctxsize = sizeof(struct atmel_sha_hmac_ctx),
2184 .cra_alignmask = 0,
2185 .cra_module = THIS_MODULE,
2186 .cra_init = atmel_sha_hmac_cra_init,
2187 .cra_exit = atmel_sha_hmac_cra_exit,
2188 }
2189 }
2190 },
2191 {
2192 .init = atmel_sha_hmac_init,
2193 .update = atmel_sha_update,
2194 .final = atmel_sha_final,
2195 .digest = atmel_sha_hmac_digest,
2196 .setkey = atmel_sha_hmac_setkey,
2197 .export = atmel_sha_export,
2198 .import = atmel_sha_import,
2199 .halg = {
2200 .digestsize = SHA512_DIGEST_SIZE,
2201 .statesize = sizeof(struct atmel_sha_reqctx),
2202 .base = {
2203 .cra_name = "hmac(sha512)",
2204 .cra_driver_name = "atmel-hmac-sha512",
2205 .cra_priority = 100,
2206 .cra_flags = CRYPTO_ALG_ASYNC,
2207 .cra_blocksize = SHA512_BLOCK_SIZE,
2208 .cra_ctxsize = sizeof(struct atmel_sha_hmac_ctx),
2209 .cra_alignmask = 0,
2210 .cra_module = THIS_MODULE,
2211 .cra_init = atmel_sha_hmac_cra_init,
2212 .cra_exit = atmel_sha_hmac_cra_exit,
2213 }
2214 }
2215 },
2216 };
2217
2218 #ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
2219 /* authenc functions */
2220
2221 static int atmel_sha_authenc_init2(struct atmel_sha_dev *dd);
2222 static int atmel_sha_authenc_init_done(struct atmel_sha_dev *dd);
2223 static int atmel_sha_authenc_final_done(struct atmel_sha_dev *dd);
2224
2225
2226 struct atmel_sha_authenc_ctx {
2227 struct crypto_ahash *tfm;
2228 };
2229
2230 struct atmel_sha_authenc_reqctx {
2231 struct atmel_sha_reqctx base;
2232
2233 atmel_aes_authenc_fn_t cb;
2234 struct atmel_aes_dev *aes_dev;
2235
2236 /* _init() parameters. */
2237 struct scatterlist *assoc;
2238 u32 assoclen;
2239 u32 textlen;
2240
2241 /* _final() parameters. */
2242 u32 *digest;
2243 unsigned int digestlen;
2244 };
2245
2246 static void atmel_sha_authenc_complete(struct crypto_async_request *areq,
2247 int err)
2248 {
2249 struct ahash_request *req = areq->data;
2250 struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2251
2252 authctx->cb(authctx->aes_dev, err, authctx->base.dd->is_async);
2253 }
2254
2255 static int atmel_sha_authenc_start(struct atmel_sha_dev *dd)
2256 {
2257 struct ahash_request *req = dd->req;
2258 struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2259 int err;
2260
2261 /*
2262 * Force atmel_sha_complete() to call req->base.complete(), ie
2263 * atmel_sha_authenc_complete(), which in turn calls authctx->cb().
2264 */
2265 dd->force_complete = true;
2266
2267 err = atmel_sha_hw_init(dd);
2268 return authctx->cb(authctx->aes_dev, err, dd->is_async);
2269 }
2270
2271 bool atmel_sha_authenc_is_ready(void)
2272 {
2273 struct atmel_sha_ctx dummy;
2274
2275 dummy.dd = NULL;
2276 return (atmel_sha_find_dev(&dummy) != NULL);
2277 }
2278 EXPORT_SYMBOL_GPL(atmel_sha_authenc_is_ready);
2279
2280 unsigned int atmel_sha_authenc_get_reqsize(void)
2281 {
2282 return sizeof(struct atmel_sha_authenc_reqctx);
2283 }
2284 EXPORT_SYMBOL_GPL(atmel_sha_authenc_get_reqsize);
2285
2286 struct atmel_sha_authenc_ctx *atmel_sha_authenc_spawn(unsigned long mode)
2287 {
2288 struct atmel_sha_authenc_ctx *auth;
2289 struct crypto_ahash *tfm;
2290 struct atmel_sha_ctx *tctx;
2291 const char *name;
2292 int err = -EINVAL;
2293
2294 switch (mode & SHA_FLAGS_MODE_MASK) {
2295 case SHA_FLAGS_HMAC_SHA1:
2296 name = "atmel-hmac-sha1";
2297 break;
2298
2299 case SHA_FLAGS_HMAC_SHA224:
2300 name = "atmel-hmac-sha224";
2301 break;
2302
2303 case SHA_FLAGS_HMAC_SHA256:
2304 name = "atmel-hmac-sha256";
2305 break;
2306
2307 case SHA_FLAGS_HMAC_SHA384:
2308 name = "atmel-hmac-sha384";
2309 break;
2310
2311 case SHA_FLAGS_HMAC_SHA512:
2312 name = "atmel-hmac-sha512";
2313 break;
2314
2315 default:
2316 goto error;
2317 }
2318
2319 tfm = crypto_alloc_ahash(name,
2320 CRYPTO_ALG_TYPE_AHASH,
2321 CRYPTO_ALG_TYPE_AHASH_MASK);
2322 if (IS_ERR(tfm)) {
2323 err = PTR_ERR(tfm);
2324 goto error;
2325 }
2326 tctx = crypto_ahash_ctx(tfm);
2327 tctx->start = atmel_sha_authenc_start;
2328 tctx->flags = mode;
2329
2330 auth = kzalloc(sizeof(*auth), GFP_KERNEL);
2331 if (!auth) {
2332 err = -ENOMEM;
2333 goto err_free_ahash;
2334 }
2335 auth->tfm = tfm;
2336
2337 return auth;
2338
2339 err_free_ahash:
2340 crypto_free_ahash(tfm);
2341 error:
2342 return ERR_PTR(err);
2343 }
2344 EXPORT_SYMBOL_GPL(atmel_sha_authenc_spawn);
2345
2346 void atmel_sha_authenc_free(struct atmel_sha_authenc_ctx *auth)
2347 {
2348 if (auth)
2349 crypto_free_ahash(auth->tfm);
2350 kfree(auth);
2351 }
2352 EXPORT_SYMBOL_GPL(atmel_sha_authenc_free);
2353
2354 int atmel_sha_authenc_setkey(struct atmel_sha_authenc_ctx *auth,
2355 const u8 *key, unsigned int keylen,
2356 u32 *flags)
2357 {
2358 struct crypto_ahash *tfm = auth->tfm;
2359 int err;
2360
2361 crypto_ahash_clear_flags(tfm, CRYPTO_TFM_REQ_MASK);
2362 crypto_ahash_set_flags(tfm, *flags & CRYPTO_TFM_REQ_MASK);
2363 err = crypto_ahash_setkey(tfm, key, keylen);
2364 *flags = crypto_ahash_get_flags(tfm);
2365
2366 return err;
2367 }
2368 EXPORT_SYMBOL_GPL(atmel_sha_authenc_setkey);
2369
2370 int atmel_sha_authenc_schedule(struct ahash_request *req,
2371 struct atmel_sha_authenc_ctx *auth,
2372 atmel_aes_authenc_fn_t cb,
2373 struct atmel_aes_dev *aes_dev)
2374 {
2375 struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2376 struct atmel_sha_reqctx *ctx = &authctx->base;
2377 struct crypto_ahash *tfm = auth->tfm;
2378 struct atmel_sha_ctx *tctx = crypto_ahash_ctx(tfm);
2379 struct atmel_sha_dev *dd;
2380
2381 /* Reset request context (MUST be done first). */
2382 memset(authctx, 0, sizeof(*authctx));
2383
2384 /* Get SHA device. */
2385 dd = atmel_sha_find_dev(tctx);
2386 if (!dd)
2387 return cb(aes_dev, -ENODEV, false);
2388
2389 /* Init request context. */
2390 ctx->dd = dd;
2391 ctx->buflen = SHA_BUFFER_LEN;
2392 authctx->cb = cb;
2393 authctx->aes_dev = aes_dev;
2394 ahash_request_set_tfm(req, tfm);
2395 ahash_request_set_callback(req, 0, atmel_sha_authenc_complete, req);
2396
2397 return atmel_sha_handle_queue(dd, req);
2398 }
2399 EXPORT_SYMBOL_GPL(atmel_sha_authenc_schedule);
2400
2401 int atmel_sha_authenc_init(struct ahash_request *req,
2402 struct scatterlist *assoc, unsigned int assoclen,
2403 unsigned int textlen,
2404 atmel_aes_authenc_fn_t cb,
2405 struct atmel_aes_dev *aes_dev)
2406 {
2407 struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2408 struct atmel_sha_reqctx *ctx = &authctx->base;
2409 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2410 struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
2411 struct atmel_sha_dev *dd = ctx->dd;
2412
2413 if (unlikely(!IS_ALIGNED(assoclen, sizeof(u32))))
2414 return atmel_sha_complete(dd, -EINVAL);
2415
2416 authctx->cb = cb;
2417 authctx->aes_dev = aes_dev;
2418 authctx->assoc = assoc;
2419 authctx->assoclen = assoclen;
2420 authctx->textlen = textlen;
2421
2422 ctx->flags = hmac->base.flags;
2423 return atmel_sha_hmac_setup(dd, atmel_sha_authenc_init2);
2424 }
2425 EXPORT_SYMBOL_GPL(atmel_sha_authenc_init);
2426
2427 static int atmel_sha_authenc_init2(struct atmel_sha_dev *dd)
2428 {
2429 struct ahash_request *req = dd->req;
2430 struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2431 struct atmel_sha_reqctx *ctx = &authctx->base;
2432 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2433 struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
2434 size_t hs = ctx->hash_size;
2435 size_t i, num_words = hs / sizeof(u32);
2436 u32 mr, msg_size;
2437
2438 atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
2439 for (i = 0; i < num_words; ++i)
2440 atmel_sha_write(dd, SHA_REG_DIN(i), hmac->ipad[i]);
2441
2442 atmel_sha_write(dd, SHA_CR, SHA_CR_WUIEHV);
2443 for (i = 0; i < num_words; ++i)
2444 atmel_sha_write(dd, SHA_REG_DIN(i), hmac->opad[i]);
2445
2446 mr = (SHA_MR_MODE_IDATAR0 |
2447 SHA_MR_HMAC |
2448 SHA_MR_DUALBUFF);
2449 mr |= ctx->flags & SHA_FLAGS_ALGO_MASK;
2450 atmel_sha_write(dd, SHA_MR, mr);
2451
2452 msg_size = authctx->assoclen + authctx->textlen;
2453 atmel_sha_write(dd, SHA_MSR, msg_size);
2454 atmel_sha_write(dd, SHA_BCR, msg_size);
2455
2456 atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
2457
2458 /* Process assoc data. */
2459 return atmel_sha_cpu_start(dd, authctx->assoc, authctx->assoclen,
2460 true, false,
2461 atmel_sha_authenc_init_done);
2462 }
2463
2464 static int atmel_sha_authenc_init_done(struct atmel_sha_dev *dd)
2465 {
2466 struct ahash_request *req = dd->req;
2467 struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2468
2469 return authctx->cb(authctx->aes_dev, 0, dd->is_async);
2470 }
2471
2472 int atmel_sha_authenc_final(struct ahash_request *req,
2473 u32 *digest, unsigned int digestlen,
2474 atmel_aes_authenc_fn_t cb,
2475 struct atmel_aes_dev *aes_dev)
2476 {
2477 struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2478 struct atmel_sha_reqctx *ctx = &authctx->base;
2479 struct atmel_sha_dev *dd = ctx->dd;
2480
2481 switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
2482 case SHA_FLAGS_SHA1:
2483 authctx->digestlen = SHA1_DIGEST_SIZE;
2484 break;
2485
2486 case SHA_FLAGS_SHA224:
2487 authctx->digestlen = SHA224_DIGEST_SIZE;
2488 break;
2489
2490 case SHA_FLAGS_SHA256:
2491 authctx->digestlen = SHA256_DIGEST_SIZE;
2492 break;
2493
2494 case SHA_FLAGS_SHA384:
2495 authctx->digestlen = SHA384_DIGEST_SIZE;
2496 break;
2497
2498 case SHA_FLAGS_SHA512:
2499 authctx->digestlen = SHA512_DIGEST_SIZE;
2500 break;
2501
2502 default:
2503 return atmel_sha_complete(dd, -EINVAL);
2504 }
2505 if (authctx->digestlen > digestlen)
2506 authctx->digestlen = digestlen;
2507
2508 authctx->cb = cb;
2509 authctx->aes_dev = aes_dev;
2510 authctx->digest = digest;
2511 return atmel_sha_wait_for_data_ready(dd,
2512 atmel_sha_authenc_final_done);
2513 }
2514 EXPORT_SYMBOL_GPL(atmel_sha_authenc_final);
2515
2516 static int atmel_sha_authenc_final_done(struct atmel_sha_dev *dd)
2517 {
2518 struct ahash_request *req = dd->req;
2519 struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2520 size_t i, num_words = authctx->digestlen / sizeof(u32);
2521
2522 for (i = 0; i < num_words; ++i)
2523 authctx->digest[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
2524
2525 return atmel_sha_complete(dd, 0);
2526 }
2527
2528 void atmel_sha_authenc_abort(struct ahash_request *req)
2529 {
2530 struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2531 struct atmel_sha_reqctx *ctx = &authctx->base;
2532 struct atmel_sha_dev *dd = ctx->dd;
2533
2534 /* Prevent atmel_sha_complete() from calling req->base.complete(). */
2535 dd->is_async = false;
2536 dd->force_complete = false;
2537 (void)atmel_sha_complete(dd, 0);
2538 }
2539 EXPORT_SYMBOL_GPL(atmel_sha_authenc_abort);
2540
2541 #endif /* CONFIG_CRYPTO_DEV_ATMEL_AUTHENC */
2542
2543
2544 static void atmel_sha_unregister_algs(struct atmel_sha_dev *dd)
2545 {
2546 int i;
2547
2548 if (dd->caps.has_hmac)
2549 for (i = 0; i < ARRAY_SIZE(sha_hmac_algs); i++)
2550 crypto_unregister_ahash(&sha_hmac_algs[i]);
2551
2552 for (i = 0; i < ARRAY_SIZE(sha_1_256_algs); i++)
2553 crypto_unregister_ahash(&sha_1_256_algs[i]);
2554
2555 if (dd->caps.has_sha224)
2556 crypto_unregister_ahash(&sha_224_alg);
2557
2558 if (dd->caps.has_sha_384_512) {
2559 for (i = 0; i < ARRAY_SIZE(sha_384_512_algs); i++)
2560 crypto_unregister_ahash(&sha_384_512_algs[i]);
2561 }
2562 }
2563
2564 static int atmel_sha_register_algs(struct atmel_sha_dev *dd)
2565 {
2566 int err, i, j;
2567
2568 for (i = 0; i < ARRAY_SIZE(sha_1_256_algs); i++) {
2569 err = crypto_register_ahash(&sha_1_256_algs[i]);
2570 if (err)
2571 goto err_sha_1_256_algs;
2572 }
2573
2574 if (dd->caps.has_sha224) {
2575 err = crypto_register_ahash(&sha_224_alg);
2576 if (err)
2577 goto err_sha_224_algs;
2578 }
2579
2580 if (dd->caps.has_sha_384_512) {
2581 for (i = 0; i < ARRAY_SIZE(sha_384_512_algs); i++) {
2582 err = crypto_register_ahash(&sha_384_512_algs[i]);
2583 if (err)
2584 goto err_sha_384_512_algs;
2585 }
2586 }
2587
2588 if (dd->caps.has_hmac) {
2589 for (i = 0; i < ARRAY_SIZE(sha_hmac_algs); i++) {
2590 err = crypto_register_ahash(&sha_hmac_algs[i]);
2591 if (err)
2592 goto err_sha_hmac_algs;
2593 }
2594 }
2595
2596 return 0;
2597
2598 /*i = ARRAY_SIZE(sha_hmac_algs);*/
2599 err_sha_hmac_algs:
2600 for (j = 0; j < i; j++)
2601 crypto_unregister_ahash(&sha_hmac_algs[j]);
2602 i = ARRAY_SIZE(sha_384_512_algs);
2603 err_sha_384_512_algs:
2604 for (j = 0; j < i; j++)
2605 crypto_unregister_ahash(&sha_384_512_algs[j]);
2606 crypto_unregister_ahash(&sha_224_alg);
2607 err_sha_224_algs:
2608 i = ARRAY_SIZE(sha_1_256_algs);
2609 err_sha_1_256_algs:
2610 for (j = 0; j < i; j++)
2611 crypto_unregister_ahash(&sha_1_256_algs[j]);
2612
2613 return err;
2614 }
2615
2616 static bool atmel_sha_filter(struct dma_chan *chan, void *slave)
2617 {
2618 struct at_dma_slave *sl = slave;
2619
2620 if (sl && sl->dma_dev == chan->device->dev) {
2621 chan->private = sl;
2622 return true;
2623 } else {
2624 return false;
2625 }
2626 }
2627
2628 static int atmel_sha_dma_init(struct atmel_sha_dev *dd,
2629 struct crypto_platform_data *pdata)
2630 {
2631 dma_cap_mask_t mask_in;
2632
2633 /* Try to grab DMA channel */
2634 dma_cap_zero(mask_in);
2635 dma_cap_set(DMA_SLAVE, mask_in);
2636
2637 dd->dma_lch_in.chan = dma_request_slave_channel_compat(mask_in,
2638 atmel_sha_filter, &pdata->dma_slave->rxdata, dd->dev, "tx");
2639 if (!dd->dma_lch_in.chan) {
2640 dev_warn(dd->dev, "no DMA channel available\n");
2641 return -ENODEV;
2642 }
2643
2644 dd->dma_lch_in.dma_conf.direction = DMA_MEM_TO_DEV;
2645 dd->dma_lch_in.dma_conf.dst_addr = dd->phys_base +
2646 SHA_REG_DIN(0);
2647 dd->dma_lch_in.dma_conf.src_maxburst = 1;
2648 dd->dma_lch_in.dma_conf.src_addr_width =
2649 DMA_SLAVE_BUSWIDTH_4_BYTES;
2650 dd->dma_lch_in.dma_conf.dst_maxburst = 1;
2651 dd->dma_lch_in.dma_conf.dst_addr_width =
2652 DMA_SLAVE_BUSWIDTH_4_BYTES;
2653 dd->dma_lch_in.dma_conf.device_fc = false;
2654
2655 return 0;
2656 }
2657
2658 static void atmel_sha_dma_cleanup(struct atmel_sha_dev *dd)
2659 {
2660 dma_release_channel(dd->dma_lch_in.chan);
2661 }
2662
2663 static void atmel_sha_get_cap(struct atmel_sha_dev *dd)
2664 {
2665
2666 dd->caps.has_dma = 0;
2667 dd->caps.has_dualbuff = 0;
2668 dd->caps.has_sha224 = 0;
2669 dd->caps.has_sha_384_512 = 0;
2670 dd->caps.has_uihv = 0;
2671 dd->caps.has_hmac = 0;
2672
2673 /* keep only major version number */
2674 switch (dd->hw_version & 0xff0) {
2675 case 0x510:
2676 dd->caps.has_dma = 1;
2677 dd->caps.has_dualbuff = 1;
2678 dd->caps.has_sha224 = 1;
2679 dd->caps.has_sha_384_512 = 1;
2680 dd->caps.has_uihv = 1;
2681 dd->caps.has_hmac = 1;
2682 break;
2683 case 0x420:
2684 dd->caps.has_dma = 1;
2685 dd->caps.has_dualbuff = 1;
2686 dd->caps.has_sha224 = 1;
2687 dd->caps.has_sha_384_512 = 1;
2688 dd->caps.has_uihv = 1;
2689 break;
2690 case 0x410:
2691 dd->caps.has_dma = 1;
2692 dd->caps.has_dualbuff = 1;
2693 dd->caps.has_sha224 = 1;
2694 dd->caps.has_sha_384_512 = 1;
2695 break;
2696 case 0x400:
2697 dd->caps.has_dma = 1;
2698 dd->caps.has_dualbuff = 1;
2699 dd->caps.has_sha224 = 1;
2700 break;
2701 case 0x320:
2702 break;
2703 default:
2704 dev_warn(dd->dev,
2705 "Unmanaged sha version, set minimum capabilities\n");
2706 break;
2707 }
2708 }
2709
2710 #if defined(CONFIG_OF)
2711 static const struct of_device_id atmel_sha_dt_ids[] = {
2712 { .compatible = "atmel,at91sam9g46-sha" },
2713 { /* sentinel */ }
2714 };
2715
2716 MODULE_DEVICE_TABLE(of, atmel_sha_dt_ids);
2717
2718 static struct crypto_platform_data *atmel_sha_of_init(struct platform_device *pdev)
2719 {
2720 struct device_node *np = pdev->dev.of_node;
2721 struct crypto_platform_data *pdata;
2722
2723 if (!np) {
2724 dev_err(&pdev->dev, "device node not found\n");
2725 return ERR_PTR(-EINVAL);
2726 }
2727
2728 pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
2729 if (!pdata) {
2730 dev_err(&pdev->dev, "could not allocate memory for pdata\n");
2731 return ERR_PTR(-ENOMEM);
2732 }
2733
2734 pdata->dma_slave = devm_kzalloc(&pdev->dev,
2735 sizeof(*(pdata->dma_slave)),
2736 GFP_KERNEL);
2737 if (!pdata->dma_slave) {
2738 dev_err(&pdev->dev, "could not allocate memory for dma_slave\n");
2739 return ERR_PTR(-ENOMEM);
2740 }
2741
2742 return pdata;
2743 }
2744 #else /* CONFIG_OF */
2745 static inline struct crypto_platform_data *atmel_sha_of_init(struct platform_device *dev)
2746 {
2747 return ERR_PTR(-EINVAL);
2748 }
2749 #endif
2750
2751 static int atmel_sha_probe(struct platform_device *pdev)
2752 {
2753 struct atmel_sha_dev *sha_dd;
2754 struct crypto_platform_data *pdata;
2755 struct device *dev = &pdev->dev;
2756 struct resource *sha_res;
2757 int err;
2758
2759 sha_dd = devm_kzalloc(&pdev->dev, sizeof(*sha_dd), GFP_KERNEL);
2760 if (sha_dd == NULL) {
2761 dev_err(dev, "unable to alloc data struct.\n");
2762 err = -ENOMEM;
2763 goto sha_dd_err;
2764 }
2765
2766 sha_dd->dev = dev;
2767
2768 platform_set_drvdata(pdev, sha_dd);
2769
2770 INIT_LIST_HEAD(&sha_dd->list);
2771 spin_lock_init(&sha_dd->lock);
2772
2773 tasklet_init(&sha_dd->done_task, atmel_sha_done_task,
2774 (unsigned long)sha_dd);
2775 tasklet_init(&sha_dd->queue_task, atmel_sha_queue_task,
2776 (unsigned long)sha_dd);
2777
2778 crypto_init_queue(&sha_dd->queue, ATMEL_SHA_QUEUE_LENGTH);
2779
2780 /* Get the base address */
2781 sha_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2782 if (!sha_res) {
2783 dev_err(dev, "no MEM resource info\n");
2784 err = -ENODEV;
2785 goto res_err;
2786 }
2787 sha_dd->phys_base = sha_res->start;
2788
2789 /* Get the IRQ */
2790 sha_dd->irq = platform_get_irq(pdev, 0);
2791 if (sha_dd->irq < 0) {
2792 dev_err(dev, "no IRQ resource info\n");
2793 err = sha_dd->irq;
2794 goto res_err;
2795 }
2796
2797 err = devm_request_irq(&pdev->dev, sha_dd->irq, atmel_sha_irq,
2798 IRQF_SHARED, "atmel-sha", sha_dd);
2799 if (err) {
2800 dev_err(dev, "unable to request sha irq.\n");
2801 goto res_err;
2802 }
2803
2804 /* Initializing the clock */
2805 sha_dd->iclk = devm_clk_get(&pdev->dev, "sha_clk");
2806 if (IS_ERR(sha_dd->iclk)) {
2807 dev_err(dev, "clock initialization failed.\n");
2808 err = PTR_ERR(sha_dd->iclk);
2809 goto res_err;
2810 }
2811
2812 sha_dd->io_base = devm_ioremap_resource(&pdev->dev, sha_res);
2813 if (IS_ERR(sha_dd->io_base)) {
2814 dev_err(dev, "can't ioremap\n");
2815 err = PTR_ERR(sha_dd->io_base);
2816 goto res_err;
2817 }
2818
2819 err = clk_prepare(sha_dd->iclk);
2820 if (err)
2821 goto res_err;
2822
2823 atmel_sha_hw_version_init(sha_dd);
2824
2825 atmel_sha_get_cap(sha_dd);
2826
2827 if (sha_dd->caps.has_dma) {
2828 pdata = pdev->dev.platform_data;
2829 if (!pdata) {
2830 pdata = atmel_sha_of_init(pdev);
2831 if (IS_ERR(pdata)) {
2832 dev_err(&pdev->dev, "platform data not available\n");
2833 err = PTR_ERR(pdata);
2834 goto iclk_unprepare;
2835 }
2836 }
2837 if (!pdata->dma_slave) {
2838 err = -ENXIO;
2839 goto iclk_unprepare;
2840 }
2841 err = atmel_sha_dma_init(sha_dd, pdata);
2842 if (err)
2843 goto err_sha_dma;
2844
2845 dev_info(dev, "using %s for DMA transfers\n",
2846 dma_chan_name(sha_dd->dma_lch_in.chan));
2847 }
2848
2849 spin_lock(&atmel_sha.lock);
2850 list_add_tail(&sha_dd->list, &atmel_sha.dev_list);
2851 spin_unlock(&atmel_sha.lock);
2852
2853 err = atmel_sha_register_algs(sha_dd);
2854 if (err)
2855 goto err_algs;
2856
2857 dev_info(dev, "Atmel SHA1/SHA256%s%s\n",
2858 sha_dd->caps.has_sha224 ? "/SHA224" : "",
2859 sha_dd->caps.has_sha_384_512 ? "/SHA384/SHA512" : "");
2860
2861 return 0;
2862
2863 err_algs:
2864 spin_lock(&atmel_sha.lock);
2865 list_del(&sha_dd->list);
2866 spin_unlock(&atmel_sha.lock);
2867 if (sha_dd->caps.has_dma)
2868 atmel_sha_dma_cleanup(sha_dd);
2869 err_sha_dma:
2870 iclk_unprepare:
2871 clk_unprepare(sha_dd->iclk);
2872 res_err:
2873 tasklet_kill(&sha_dd->queue_task);
2874 tasklet_kill(&sha_dd->done_task);
2875 sha_dd_err:
2876 dev_err(dev, "initialization failed.\n");
2877
2878 return err;
2879 }
2880
2881 static int atmel_sha_remove(struct platform_device *pdev)
2882 {
2883 struct atmel_sha_dev *sha_dd;
2884
2885 sha_dd = platform_get_drvdata(pdev);
2886 if (!sha_dd)
2887 return -ENODEV;
2888 spin_lock(&atmel_sha.lock);
2889 list_del(&sha_dd->list);
2890 spin_unlock(&atmel_sha.lock);
2891
2892 atmel_sha_unregister_algs(sha_dd);
2893
2894 tasklet_kill(&sha_dd->queue_task);
2895 tasklet_kill(&sha_dd->done_task);
2896
2897 if (sha_dd->caps.has_dma)
2898 atmel_sha_dma_cleanup(sha_dd);
2899
2900 clk_unprepare(sha_dd->iclk);
2901
2902 return 0;
2903 }
2904
2905 static struct platform_driver atmel_sha_driver = {
2906 .probe = atmel_sha_probe,
2907 .remove = atmel_sha_remove,
2908 .driver = {
2909 .name = "atmel_sha",
2910 .of_match_table = of_match_ptr(atmel_sha_dt_ids),
2911 },
2912 };
2913
2914 module_platform_driver(atmel_sha_driver);
2915
2916 MODULE_DESCRIPTION("Atmel SHA (1/256/224/384/512) hw acceleration support.");
2917 MODULE_LICENSE("GPL v2");
2918 MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");