]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/crypto/atmel-sha.c
Merge tag 'scsi-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[mirror_ubuntu-zesty-kernel.git] / drivers / crypto / atmel-sha.c
1 /*
2 * Cryptographic API.
3 *
4 * Support for ATMEL SHA1/SHA256 HW acceleration.
5 *
6 * Copyright (c) 2012 Eukréa Electromatique - ATMEL
7 * Author: Nicolas Royer <nicolas@eukrea.com>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as published
11 * by the Free Software Foundation.
12 *
13 * Some ideas are from omap-sham.c drivers.
14 */
15
16
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/err.h>
21 #include <linux/clk.h>
22 #include <linux/io.h>
23 #include <linux/hw_random.h>
24 #include <linux/platform_device.h>
25
26 #include <linux/device.h>
27 #include <linux/init.h>
28 #include <linux/errno.h>
29 #include <linux/interrupt.h>
30 #include <linux/irq.h>
31 #include <linux/scatterlist.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/of_device.h>
34 #include <linux/delay.h>
35 #include <linux/crypto.h>
36 #include <linux/cryptohash.h>
37 #include <crypto/scatterwalk.h>
38 #include <crypto/algapi.h>
39 #include <crypto/sha.h>
40 #include <crypto/hash.h>
41 #include <crypto/internal/hash.h>
42 #include <linux/platform_data/crypto-atmel.h>
43 #include "atmel-sha-regs.h"
44
45 /* SHA flags */
46 #define SHA_FLAGS_BUSY BIT(0)
47 #define SHA_FLAGS_FINAL BIT(1)
48 #define SHA_FLAGS_DMA_ACTIVE BIT(2)
49 #define SHA_FLAGS_OUTPUT_READY BIT(3)
50 #define SHA_FLAGS_INIT BIT(4)
51 #define SHA_FLAGS_CPU BIT(5)
52 #define SHA_FLAGS_DMA_READY BIT(6)
53
54 #define SHA_FLAGS_FINUP BIT(16)
55 #define SHA_FLAGS_SG BIT(17)
56 #define SHA_FLAGS_ALGO_MASK GENMASK(22, 18)
57 #define SHA_FLAGS_SHA1 BIT(18)
58 #define SHA_FLAGS_SHA224 BIT(19)
59 #define SHA_FLAGS_SHA256 BIT(20)
60 #define SHA_FLAGS_SHA384 BIT(21)
61 #define SHA_FLAGS_SHA512 BIT(22)
62 #define SHA_FLAGS_ERROR BIT(23)
63 #define SHA_FLAGS_PAD BIT(24)
64 #define SHA_FLAGS_RESTORE BIT(25)
65
66 #define SHA_OP_UPDATE 1
67 #define SHA_OP_FINAL 2
68
69 #define SHA_BUFFER_LEN (PAGE_SIZE / 16)
70
71 #define ATMEL_SHA_DMA_THRESHOLD 56
72
73 struct atmel_sha_caps {
74 bool has_dma;
75 bool has_dualbuff;
76 bool has_sha224;
77 bool has_sha_384_512;
78 bool has_uihv;
79 };
80
81 struct atmel_sha_dev;
82
83 /*
84 * .statesize = sizeof(struct atmel_sha_reqctx) must be <= PAGE_SIZE / 8 as
85 * tested by the ahash_prepare_alg() function.
86 */
87 struct atmel_sha_reqctx {
88 struct atmel_sha_dev *dd;
89 unsigned long flags;
90 unsigned long op;
91
92 u8 digest[SHA512_DIGEST_SIZE] __aligned(sizeof(u32));
93 u64 digcnt[2];
94 size_t bufcnt;
95 size_t buflen;
96 dma_addr_t dma_addr;
97
98 /* walk state */
99 struct scatterlist *sg;
100 unsigned int offset; /* offset in current sg */
101 unsigned int total; /* total request */
102
103 size_t block_size;
104
105 u8 buffer[SHA_BUFFER_LEN + SHA512_BLOCK_SIZE] __aligned(sizeof(u32));
106 };
107
108 struct atmel_sha_ctx {
109 struct atmel_sha_dev *dd;
110
111 unsigned long flags;
112 };
113
114 #define ATMEL_SHA_QUEUE_LENGTH 50
115
116 struct atmel_sha_dma {
117 struct dma_chan *chan;
118 struct dma_slave_config dma_conf;
119 };
120
121 struct atmel_sha_dev {
122 struct list_head list;
123 unsigned long phys_base;
124 struct device *dev;
125 struct clk *iclk;
126 int irq;
127 void __iomem *io_base;
128
129 spinlock_t lock;
130 int err;
131 struct tasklet_struct done_task;
132 struct tasklet_struct queue_task;
133
134 unsigned long flags;
135 struct crypto_queue queue;
136 struct ahash_request *req;
137
138 struct atmel_sha_dma dma_lch_in;
139
140 struct atmel_sha_caps caps;
141
142 u32 hw_version;
143 };
144
145 struct atmel_sha_drv {
146 struct list_head dev_list;
147 spinlock_t lock;
148 };
149
150 static struct atmel_sha_drv atmel_sha = {
151 .dev_list = LIST_HEAD_INIT(atmel_sha.dev_list),
152 .lock = __SPIN_LOCK_UNLOCKED(atmel_sha.lock),
153 };
154
155 static inline u32 atmel_sha_read(struct atmel_sha_dev *dd, u32 offset)
156 {
157 return readl_relaxed(dd->io_base + offset);
158 }
159
160 static inline void atmel_sha_write(struct atmel_sha_dev *dd,
161 u32 offset, u32 value)
162 {
163 writel_relaxed(value, dd->io_base + offset);
164 }
165
166 static size_t atmel_sha_append_sg(struct atmel_sha_reqctx *ctx)
167 {
168 size_t count;
169
170 while ((ctx->bufcnt < ctx->buflen) && ctx->total) {
171 count = min(ctx->sg->length - ctx->offset, ctx->total);
172 count = min(count, ctx->buflen - ctx->bufcnt);
173
174 if (count <= 0) {
175 /*
176 * Check if count <= 0 because the buffer is full or
177 * because the sg length is 0. In the latest case,
178 * check if there is another sg in the list, a 0 length
179 * sg doesn't necessarily mean the end of the sg list.
180 */
181 if ((ctx->sg->length == 0) && !sg_is_last(ctx->sg)) {
182 ctx->sg = sg_next(ctx->sg);
183 continue;
184 } else {
185 break;
186 }
187 }
188
189 scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, ctx->sg,
190 ctx->offset, count, 0);
191
192 ctx->bufcnt += count;
193 ctx->offset += count;
194 ctx->total -= count;
195
196 if (ctx->offset == ctx->sg->length) {
197 ctx->sg = sg_next(ctx->sg);
198 if (ctx->sg)
199 ctx->offset = 0;
200 else
201 ctx->total = 0;
202 }
203 }
204
205 return 0;
206 }
207
208 /*
209 * The purpose of this padding is to ensure that the padded message is a
210 * multiple of 512 bits (SHA1/SHA224/SHA256) or 1024 bits (SHA384/SHA512).
211 * The bit "1" is appended at the end of the message followed by
212 * "padlen-1" zero bits. Then a 64 bits block (SHA1/SHA224/SHA256) or
213 * 128 bits block (SHA384/SHA512) equals to the message length in bits
214 * is appended.
215 *
216 * For SHA1/SHA224/SHA256, padlen is calculated as followed:
217 * - if message length < 56 bytes then padlen = 56 - message length
218 * - else padlen = 64 + 56 - message length
219 *
220 * For SHA384/SHA512, padlen is calculated as followed:
221 * - if message length < 112 bytes then padlen = 112 - message length
222 * - else padlen = 128 + 112 - message length
223 */
224 static void atmel_sha_fill_padding(struct atmel_sha_reqctx *ctx, int length)
225 {
226 unsigned int index, padlen;
227 u64 bits[2];
228 u64 size[2];
229
230 size[0] = ctx->digcnt[0];
231 size[1] = ctx->digcnt[1];
232
233 size[0] += ctx->bufcnt;
234 if (size[0] < ctx->bufcnt)
235 size[1]++;
236
237 size[0] += length;
238 if (size[0] < length)
239 size[1]++;
240
241 bits[1] = cpu_to_be64(size[0] << 3);
242 bits[0] = cpu_to_be64(size[1] << 3 | size[0] >> 61);
243
244 if (ctx->flags & (SHA_FLAGS_SHA384 | SHA_FLAGS_SHA512)) {
245 index = ctx->bufcnt & 0x7f;
246 padlen = (index < 112) ? (112 - index) : ((128+112) - index);
247 *(ctx->buffer + ctx->bufcnt) = 0x80;
248 memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen-1);
249 memcpy(ctx->buffer + ctx->bufcnt + padlen, bits, 16);
250 ctx->bufcnt += padlen + 16;
251 ctx->flags |= SHA_FLAGS_PAD;
252 } else {
253 index = ctx->bufcnt & 0x3f;
254 padlen = (index < 56) ? (56 - index) : ((64+56) - index);
255 *(ctx->buffer + ctx->bufcnt) = 0x80;
256 memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen-1);
257 memcpy(ctx->buffer + ctx->bufcnt + padlen, &bits[1], 8);
258 ctx->bufcnt += padlen + 8;
259 ctx->flags |= SHA_FLAGS_PAD;
260 }
261 }
262
263 static int atmel_sha_init(struct ahash_request *req)
264 {
265 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
266 struct atmel_sha_ctx *tctx = crypto_ahash_ctx(tfm);
267 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
268 struct atmel_sha_dev *dd = NULL;
269 struct atmel_sha_dev *tmp;
270
271 spin_lock_bh(&atmel_sha.lock);
272 if (!tctx->dd) {
273 list_for_each_entry(tmp, &atmel_sha.dev_list, list) {
274 dd = tmp;
275 break;
276 }
277 tctx->dd = dd;
278 } else {
279 dd = tctx->dd;
280 }
281
282 spin_unlock_bh(&atmel_sha.lock);
283
284 ctx->dd = dd;
285
286 ctx->flags = 0;
287
288 dev_dbg(dd->dev, "init: digest size: %d\n",
289 crypto_ahash_digestsize(tfm));
290
291 switch (crypto_ahash_digestsize(tfm)) {
292 case SHA1_DIGEST_SIZE:
293 ctx->flags |= SHA_FLAGS_SHA1;
294 ctx->block_size = SHA1_BLOCK_SIZE;
295 break;
296 case SHA224_DIGEST_SIZE:
297 ctx->flags |= SHA_FLAGS_SHA224;
298 ctx->block_size = SHA224_BLOCK_SIZE;
299 break;
300 case SHA256_DIGEST_SIZE:
301 ctx->flags |= SHA_FLAGS_SHA256;
302 ctx->block_size = SHA256_BLOCK_SIZE;
303 break;
304 case SHA384_DIGEST_SIZE:
305 ctx->flags |= SHA_FLAGS_SHA384;
306 ctx->block_size = SHA384_BLOCK_SIZE;
307 break;
308 case SHA512_DIGEST_SIZE:
309 ctx->flags |= SHA_FLAGS_SHA512;
310 ctx->block_size = SHA512_BLOCK_SIZE;
311 break;
312 default:
313 return -EINVAL;
314 break;
315 }
316
317 ctx->bufcnt = 0;
318 ctx->digcnt[0] = 0;
319 ctx->digcnt[1] = 0;
320 ctx->buflen = SHA_BUFFER_LEN;
321
322 return 0;
323 }
324
325 static void atmel_sha_write_ctrl(struct atmel_sha_dev *dd, int dma)
326 {
327 struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
328 u32 valmr = SHA_MR_MODE_AUTO;
329 unsigned int i, hashsize = 0;
330
331 if (likely(dma)) {
332 if (!dd->caps.has_dma)
333 atmel_sha_write(dd, SHA_IER, SHA_INT_TXBUFE);
334 valmr = SHA_MR_MODE_PDC;
335 if (dd->caps.has_dualbuff)
336 valmr |= SHA_MR_DUALBUFF;
337 } else {
338 atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
339 }
340
341 switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
342 case SHA_FLAGS_SHA1:
343 valmr |= SHA_MR_ALGO_SHA1;
344 hashsize = SHA1_DIGEST_SIZE;
345 break;
346
347 case SHA_FLAGS_SHA224:
348 valmr |= SHA_MR_ALGO_SHA224;
349 hashsize = SHA256_DIGEST_SIZE;
350 break;
351
352 case SHA_FLAGS_SHA256:
353 valmr |= SHA_MR_ALGO_SHA256;
354 hashsize = SHA256_DIGEST_SIZE;
355 break;
356
357 case SHA_FLAGS_SHA384:
358 valmr |= SHA_MR_ALGO_SHA384;
359 hashsize = SHA512_DIGEST_SIZE;
360 break;
361
362 case SHA_FLAGS_SHA512:
363 valmr |= SHA_MR_ALGO_SHA512;
364 hashsize = SHA512_DIGEST_SIZE;
365 break;
366
367 default:
368 break;
369 }
370
371 /* Setting CR_FIRST only for the first iteration */
372 if (!(ctx->digcnt[0] || ctx->digcnt[1])) {
373 atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
374 } else if (dd->caps.has_uihv && (ctx->flags & SHA_FLAGS_RESTORE)) {
375 const u32 *hash = (const u32 *)ctx->digest;
376
377 /*
378 * Restore the hardware context: update the User Initialize
379 * Hash Value (UIHV) with the value saved when the latest
380 * 'update' operation completed on this very same crypto
381 * request.
382 */
383 ctx->flags &= ~SHA_FLAGS_RESTORE;
384 atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
385 for (i = 0; i < hashsize / sizeof(u32); ++i)
386 atmel_sha_write(dd, SHA_REG_DIN(i), hash[i]);
387 atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
388 valmr |= SHA_MR_UIHV;
389 }
390 /*
391 * WARNING: If the UIHV feature is not available, the hardware CANNOT
392 * process concurrent requests: the internal registers used to store
393 * the hash/digest are still set to the partial digest output values
394 * computed during the latest round.
395 */
396
397 atmel_sha_write(dd, SHA_MR, valmr);
398 }
399
400 static int atmel_sha_xmit_cpu(struct atmel_sha_dev *dd, const u8 *buf,
401 size_t length, int final)
402 {
403 struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
404 int count, len32;
405 const u32 *buffer = (const u32 *)buf;
406
407 dev_dbg(dd->dev, "xmit_cpu: digcnt: 0x%llx 0x%llx, length: %d, final: %d\n",
408 ctx->digcnt[1], ctx->digcnt[0], length, final);
409
410 atmel_sha_write_ctrl(dd, 0);
411
412 /* should be non-zero before next lines to disable clocks later */
413 ctx->digcnt[0] += length;
414 if (ctx->digcnt[0] < length)
415 ctx->digcnt[1]++;
416
417 if (final)
418 dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
419
420 len32 = DIV_ROUND_UP(length, sizeof(u32));
421
422 dd->flags |= SHA_FLAGS_CPU;
423
424 for (count = 0; count < len32; count++)
425 atmel_sha_write(dd, SHA_REG_DIN(count), buffer[count]);
426
427 return -EINPROGRESS;
428 }
429
430 static int atmel_sha_xmit_pdc(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
431 size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
432 {
433 struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
434 int len32;
435
436 dev_dbg(dd->dev, "xmit_pdc: digcnt: 0x%llx 0x%llx, length: %d, final: %d\n",
437 ctx->digcnt[1], ctx->digcnt[0], length1, final);
438
439 len32 = DIV_ROUND_UP(length1, sizeof(u32));
440 atmel_sha_write(dd, SHA_PTCR, SHA_PTCR_TXTDIS);
441 atmel_sha_write(dd, SHA_TPR, dma_addr1);
442 atmel_sha_write(dd, SHA_TCR, len32);
443
444 len32 = DIV_ROUND_UP(length2, sizeof(u32));
445 atmel_sha_write(dd, SHA_TNPR, dma_addr2);
446 atmel_sha_write(dd, SHA_TNCR, len32);
447
448 atmel_sha_write_ctrl(dd, 1);
449
450 /* should be non-zero before next lines to disable clocks later */
451 ctx->digcnt[0] += length1;
452 if (ctx->digcnt[0] < length1)
453 ctx->digcnt[1]++;
454
455 if (final)
456 dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
457
458 dd->flags |= SHA_FLAGS_DMA_ACTIVE;
459
460 /* Start DMA transfer */
461 atmel_sha_write(dd, SHA_PTCR, SHA_PTCR_TXTEN);
462
463 return -EINPROGRESS;
464 }
465
466 static void atmel_sha_dma_callback(void *data)
467 {
468 struct atmel_sha_dev *dd = data;
469
470 /* dma_lch_in - completed - wait DATRDY */
471 atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
472 }
473
474 static int atmel_sha_xmit_dma(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
475 size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
476 {
477 struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
478 struct dma_async_tx_descriptor *in_desc;
479 struct scatterlist sg[2];
480
481 dev_dbg(dd->dev, "xmit_dma: digcnt: 0x%llx 0x%llx, length: %d, final: %d\n",
482 ctx->digcnt[1], ctx->digcnt[0], length1, final);
483
484 dd->dma_lch_in.dma_conf.src_maxburst = 16;
485 dd->dma_lch_in.dma_conf.dst_maxburst = 16;
486
487 dmaengine_slave_config(dd->dma_lch_in.chan, &dd->dma_lch_in.dma_conf);
488
489 if (length2) {
490 sg_init_table(sg, 2);
491 sg_dma_address(&sg[0]) = dma_addr1;
492 sg_dma_len(&sg[0]) = length1;
493 sg_dma_address(&sg[1]) = dma_addr2;
494 sg_dma_len(&sg[1]) = length2;
495 in_desc = dmaengine_prep_slave_sg(dd->dma_lch_in.chan, sg, 2,
496 DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
497 } else {
498 sg_init_table(sg, 1);
499 sg_dma_address(&sg[0]) = dma_addr1;
500 sg_dma_len(&sg[0]) = length1;
501 in_desc = dmaengine_prep_slave_sg(dd->dma_lch_in.chan, sg, 1,
502 DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
503 }
504 if (!in_desc)
505 return -EINVAL;
506
507 in_desc->callback = atmel_sha_dma_callback;
508 in_desc->callback_param = dd;
509
510 atmel_sha_write_ctrl(dd, 1);
511
512 /* should be non-zero before next lines to disable clocks later */
513 ctx->digcnt[0] += length1;
514 if (ctx->digcnt[0] < length1)
515 ctx->digcnt[1]++;
516
517 if (final)
518 dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
519
520 dd->flags |= SHA_FLAGS_DMA_ACTIVE;
521
522 /* Start DMA transfer */
523 dmaengine_submit(in_desc);
524 dma_async_issue_pending(dd->dma_lch_in.chan);
525
526 return -EINPROGRESS;
527 }
528
529 static int atmel_sha_xmit_start(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
530 size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
531 {
532 if (dd->caps.has_dma)
533 return atmel_sha_xmit_dma(dd, dma_addr1, length1,
534 dma_addr2, length2, final);
535 else
536 return atmel_sha_xmit_pdc(dd, dma_addr1, length1,
537 dma_addr2, length2, final);
538 }
539
540 static int atmel_sha_update_cpu(struct atmel_sha_dev *dd)
541 {
542 struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
543 int bufcnt;
544
545 atmel_sha_append_sg(ctx);
546 atmel_sha_fill_padding(ctx, 0);
547 bufcnt = ctx->bufcnt;
548 ctx->bufcnt = 0;
549
550 return atmel_sha_xmit_cpu(dd, ctx->buffer, bufcnt, 1);
551 }
552
553 static int atmel_sha_xmit_dma_map(struct atmel_sha_dev *dd,
554 struct atmel_sha_reqctx *ctx,
555 size_t length, int final)
556 {
557 ctx->dma_addr = dma_map_single(dd->dev, ctx->buffer,
558 ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
559 if (dma_mapping_error(dd->dev, ctx->dma_addr)) {
560 dev_err(dd->dev, "dma %u bytes error\n", ctx->buflen +
561 ctx->block_size);
562 return -EINVAL;
563 }
564
565 ctx->flags &= ~SHA_FLAGS_SG;
566
567 /* next call does not fail... so no unmap in the case of error */
568 return atmel_sha_xmit_start(dd, ctx->dma_addr, length, 0, 0, final);
569 }
570
571 static int atmel_sha_update_dma_slow(struct atmel_sha_dev *dd)
572 {
573 struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
574 unsigned int final;
575 size_t count;
576
577 atmel_sha_append_sg(ctx);
578
579 final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;
580
581 dev_dbg(dd->dev, "slow: bufcnt: %u, digcnt: 0x%llx 0x%llx, final: %d\n",
582 ctx->bufcnt, ctx->digcnt[1], ctx->digcnt[0], final);
583
584 if (final)
585 atmel_sha_fill_padding(ctx, 0);
586
587 if (final || (ctx->bufcnt == ctx->buflen)) {
588 count = ctx->bufcnt;
589 ctx->bufcnt = 0;
590 return atmel_sha_xmit_dma_map(dd, ctx, count, final);
591 }
592
593 return 0;
594 }
595
596 static int atmel_sha_update_dma_start(struct atmel_sha_dev *dd)
597 {
598 struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
599 unsigned int length, final, tail;
600 struct scatterlist *sg;
601 unsigned int count;
602
603 if (!ctx->total)
604 return 0;
605
606 if (ctx->bufcnt || ctx->offset)
607 return atmel_sha_update_dma_slow(dd);
608
609 dev_dbg(dd->dev, "fast: digcnt: 0x%llx 0x%llx, bufcnt: %u, total: %u\n",
610 ctx->digcnt[1], ctx->digcnt[0], ctx->bufcnt, ctx->total);
611
612 sg = ctx->sg;
613
614 if (!IS_ALIGNED(sg->offset, sizeof(u32)))
615 return atmel_sha_update_dma_slow(dd);
616
617 if (!sg_is_last(sg) && !IS_ALIGNED(sg->length, ctx->block_size))
618 /* size is not ctx->block_size aligned */
619 return atmel_sha_update_dma_slow(dd);
620
621 length = min(ctx->total, sg->length);
622
623 if (sg_is_last(sg)) {
624 if (!(ctx->flags & SHA_FLAGS_FINUP)) {
625 /* not last sg must be ctx->block_size aligned */
626 tail = length & (ctx->block_size - 1);
627 length -= tail;
628 }
629 }
630
631 ctx->total -= length;
632 ctx->offset = length; /* offset where to start slow */
633
634 final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;
635
636 /* Add padding */
637 if (final) {
638 tail = length & (ctx->block_size - 1);
639 length -= tail;
640 ctx->total += tail;
641 ctx->offset = length; /* offset where to start slow */
642
643 sg = ctx->sg;
644 atmel_sha_append_sg(ctx);
645
646 atmel_sha_fill_padding(ctx, length);
647
648 ctx->dma_addr = dma_map_single(dd->dev, ctx->buffer,
649 ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
650 if (dma_mapping_error(dd->dev, ctx->dma_addr)) {
651 dev_err(dd->dev, "dma %u bytes error\n",
652 ctx->buflen + ctx->block_size);
653 return -EINVAL;
654 }
655
656 if (length == 0) {
657 ctx->flags &= ~SHA_FLAGS_SG;
658 count = ctx->bufcnt;
659 ctx->bufcnt = 0;
660 return atmel_sha_xmit_start(dd, ctx->dma_addr, count, 0,
661 0, final);
662 } else {
663 ctx->sg = sg;
664 if (!dma_map_sg(dd->dev, ctx->sg, 1,
665 DMA_TO_DEVICE)) {
666 dev_err(dd->dev, "dma_map_sg error\n");
667 return -EINVAL;
668 }
669
670 ctx->flags |= SHA_FLAGS_SG;
671
672 count = ctx->bufcnt;
673 ctx->bufcnt = 0;
674 return atmel_sha_xmit_start(dd, sg_dma_address(ctx->sg),
675 length, ctx->dma_addr, count, final);
676 }
677 }
678
679 if (!dma_map_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE)) {
680 dev_err(dd->dev, "dma_map_sg error\n");
681 return -EINVAL;
682 }
683
684 ctx->flags |= SHA_FLAGS_SG;
685
686 /* next call does not fail... so no unmap in the case of error */
687 return atmel_sha_xmit_start(dd, sg_dma_address(ctx->sg), length, 0,
688 0, final);
689 }
690
691 static int atmel_sha_update_dma_stop(struct atmel_sha_dev *dd)
692 {
693 struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
694
695 if (ctx->flags & SHA_FLAGS_SG) {
696 dma_unmap_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE);
697 if (ctx->sg->length == ctx->offset) {
698 ctx->sg = sg_next(ctx->sg);
699 if (ctx->sg)
700 ctx->offset = 0;
701 }
702 if (ctx->flags & SHA_FLAGS_PAD) {
703 dma_unmap_single(dd->dev, ctx->dma_addr,
704 ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
705 }
706 } else {
707 dma_unmap_single(dd->dev, ctx->dma_addr, ctx->buflen +
708 ctx->block_size, DMA_TO_DEVICE);
709 }
710
711 return 0;
712 }
713
714 static int atmel_sha_update_req(struct atmel_sha_dev *dd)
715 {
716 struct ahash_request *req = dd->req;
717 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
718 int err;
719
720 dev_dbg(dd->dev, "update_req: total: %u, digcnt: 0x%llx 0x%llx\n",
721 ctx->total, ctx->digcnt[1], ctx->digcnt[0]);
722
723 if (ctx->flags & SHA_FLAGS_CPU)
724 err = atmel_sha_update_cpu(dd);
725 else
726 err = atmel_sha_update_dma_start(dd);
727
728 /* wait for dma completion before can take more data */
729 dev_dbg(dd->dev, "update: err: %d, digcnt: 0x%llx 0%llx\n",
730 err, ctx->digcnt[1], ctx->digcnt[0]);
731
732 return err;
733 }
734
735 static int atmel_sha_final_req(struct atmel_sha_dev *dd)
736 {
737 struct ahash_request *req = dd->req;
738 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
739 int err = 0;
740 int count;
741
742 if (ctx->bufcnt >= ATMEL_SHA_DMA_THRESHOLD) {
743 atmel_sha_fill_padding(ctx, 0);
744 count = ctx->bufcnt;
745 ctx->bufcnt = 0;
746 err = atmel_sha_xmit_dma_map(dd, ctx, count, 1);
747 }
748 /* faster to handle last block with cpu */
749 else {
750 atmel_sha_fill_padding(ctx, 0);
751 count = ctx->bufcnt;
752 ctx->bufcnt = 0;
753 err = atmel_sha_xmit_cpu(dd, ctx->buffer, count, 1);
754 }
755
756 dev_dbg(dd->dev, "final_req: err: %d\n", err);
757
758 return err;
759 }
760
761 static void atmel_sha_copy_hash(struct ahash_request *req)
762 {
763 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
764 u32 *hash = (u32 *)ctx->digest;
765 unsigned int i, hashsize;
766
767 switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
768 case SHA_FLAGS_SHA1:
769 hashsize = SHA1_DIGEST_SIZE;
770 break;
771
772 case SHA_FLAGS_SHA224:
773 case SHA_FLAGS_SHA256:
774 hashsize = SHA256_DIGEST_SIZE;
775 break;
776
777 case SHA_FLAGS_SHA384:
778 case SHA_FLAGS_SHA512:
779 hashsize = SHA512_DIGEST_SIZE;
780 break;
781
782 default:
783 /* Should not happen... */
784 return;
785 }
786
787 for (i = 0; i < hashsize / sizeof(u32); ++i)
788 hash[i] = atmel_sha_read(ctx->dd, SHA_REG_DIGEST(i));
789 ctx->flags |= SHA_FLAGS_RESTORE;
790 }
791
792 static void atmel_sha_copy_ready_hash(struct ahash_request *req)
793 {
794 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
795
796 if (!req->result)
797 return;
798
799 if (ctx->flags & SHA_FLAGS_SHA1)
800 memcpy(req->result, ctx->digest, SHA1_DIGEST_SIZE);
801 else if (ctx->flags & SHA_FLAGS_SHA224)
802 memcpy(req->result, ctx->digest, SHA224_DIGEST_SIZE);
803 else if (ctx->flags & SHA_FLAGS_SHA256)
804 memcpy(req->result, ctx->digest, SHA256_DIGEST_SIZE);
805 else if (ctx->flags & SHA_FLAGS_SHA384)
806 memcpy(req->result, ctx->digest, SHA384_DIGEST_SIZE);
807 else
808 memcpy(req->result, ctx->digest, SHA512_DIGEST_SIZE);
809 }
810
811 static int atmel_sha_finish(struct ahash_request *req)
812 {
813 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
814 struct atmel_sha_dev *dd = ctx->dd;
815
816 if (ctx->digcnt[0] || ctx->digcnt[1])
817 atmel_sha_copy_ready_hash(req);
818
819 dev_dbg(dd->dev, "digcnt: 0x%llx 0x%llx, bufcnt: %d\n", ctx->digcnt[1],
820 ctx->digcnt[0], ctx->bufcnt);
821
822 return 0;
823 }
824
825 static void atmel_sha_finish_req(struct ahash_request *req, int err)
826 {
827 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
828 struct atmel_sha_dev *dd = ctx->dd;
829
830 if (!err) {
831 atmel_sha_copy_hash(req);
832 if (SHA_FLAGS_FINAL & dd->flags)
833 err = atmel_sha_finish(req);
834 } else {
835 ctx->flags |= SHA_FLAGS_ERROR;
836 }
837
838 /* atomic operation is not needed here */
839 dd->flags &= ~(SHA_FLAGS_BUSY | SHA_FLAGS_FINAL | SHA_FLAGS_CPU |
840 SHA_FLAGS_DMA_READY | SHA_FLAGS_OUTPUT_READY);
841
842 clk_disable(dd->iclk);
843
844 if (req->base.complete)
845 req->base.complete(&req->base, err);
846
847 /* handle new request */
848 tasklet_schedule(&dd->queue_task);
849 }
850
851 static int atmel_sha_hw_init(struct atmel_sha_dev *dd)
852 {
853 int err;
854
855 err = clk_enable(dd->iclk);
856 if (err)
857 return err;
858
859 if (!(SHA_FLAGS_INIT & dd->flags)) {
860 atmel_sha_write(dd, SHA_CR, SHA_CR_SWRST);
861 dd->flags |= SHA_FLAGS_INIT;
862 dd->err = 0;
863 }
864
865 return 0;
866 }
867
868 static inline unsigned int atmel_sha_get_version(struct atmel_sha_dev *dd)
869 {
870 return atmel_sha_read(dd, SHA_HW_VERSION) & 0x00000fff;
871 }
872
873 static void atmel_sha_hw_version_init(struct atmel_sha_dev *dd)
874 {
875 atmel_sha_hw_init(dd);
876
877 dd->hw_version = atmel_sha_get_version(dd);
878
879 dev_info(dd->dev,
880 "version: 0x%x\n", dd->hw_version);
881
882 clk_disable(dd->iclk);
883 }
884
885 static int atmel_sha_handle_queue(struct atmel_sha_dev *dd,
886 struct ahash_request *req)
887 {
888 struct crypto_async_request *async_req, *backlog;
889 struct atmel_sha_reqctx *ctx;
890 unsigned long flags;
891 int err = 0, ret = 0;
892
893 spin_lock_irqsave(&dd->lock, flags);
894 if (req)
895 ret = ahash_enqueue_request(&dd->queue, req);
896
897 if (SHA_FLAGS_BUSY & dd->flags) {
898 spin_unlock_irqrestore(&dd->lock, flags);
899 return ret;
900 }
901
902 backlog = crypto_get_backlog(&dd->queue);
903 async_req = crypto_dequeue_request(&dd->queue);
904 if (async_req)
905 dd->flags |= SHA_FLAGS_BUSY;
906
907 spin_unlock_irqrestore(&dd->lock, flags);
908
909 if (!async_req)
910 return ret;
911
912 if (backlog)
913 backlog->complete(backlog, -EINPROGRESS);
914
915 req = ahash_request_cast(async_req);
916 dd->req = req;
917 ctx = ahash_request_ctx(req);
918
919 dev_dbg(dd->dev, "handling new req, op: %lu, nbytes: %d\n",
920 ctx->op, req->nbytes);
921
922 err = atmel_sha_hw_init(dd);
923
924 if (err)
925 goto err1;
926
927 if (ctx->op == SHA_OP_UPDATE) {
928 err = atmel_sha_update_req(dd);
929 if (err != -EINPROGRESS && (ctx->flags & SHA_FLAGS_FINUP))
930 /* no final() after finup() */
931 err = atmel_sha_final_req(dd);
932 } else if (ctx->op == SHA_OP_FINAL) {
933 err = atmel_sha_final_req(dd);
934 }
935
936 err1:
937 if (err != -EINPROGRESS)
938 /* done_task will not finish it, so do it here */
939 atmel_sha_finish_req(req, err);
940
941 dev_dbg(dd->dev, "exit, err: %d\n", err);
942
943 return ret;
944 }
945
946 static int atmel_sha_enqueue(struct ahash_request *req, unsigned int op)
947 {
948 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
949 struct atmel_sha_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
950 struct atmel_sha_dev *dd = tctx->dd;
951
952 ctx->op = op;
953
954 return atmel_sha_handle_queue(dd, req);
955 }
956
957 static int atmel_sha_update(struct ahash_request *req)
958 {
959 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
960
961 if (!req->nbytes)
962 return 0;
963
964 ctx->total = req->nbytes;
965 ctx->sg = req->src;
966 ctx->offset = 0;
967
968 if (ctx->flags & SHA_FLAGS_FINUP) {
969 if (ctx->bufcnt + ctx->total < ATMEL_SHA_DMA_THRESHOLD)
970 /* faster to use CPU for short transfers */
971 ctx->flags |= SHA_FLAGS_CPU;
972 } else if (ctx->bufcnt + ctx->total < ctx->buflen) {
973 atmel_sha_append_sg(ctx);
974 return 0;
975 }
976 return atmel_sha_enqueue(req, SHA_OP_UPDATE);
977 }
978
979 static int atmel_sha_final(struct ahash_request *req)
980 {
981 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
982
983 ctx->flags |= SHA_FLAGS_FINUP;
984
985 if (ctx->flags & SHA_FLAGS_ERROR)
986 return 0; /* uncompleted hash is not needed */
987
988 if (ctx->flags & SHA_FLAGS_PAD)
989 /* copy ready hash (+ finalize hmac) */
990 return atmel_sha_finish(req);
991
992 return atmel_sha_enqueue(req, SHA_OP_FINAL);
993 }
994
995 static int atmel_sha_finup(struct ahash_request *req)
996 {
997 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
998 int err1, err2;
999
1000 ctx->flags |= SHA_FLAGS_FINUP;
1001
1002 err1 = atmel_sha_update(req);
1003 if (err1 == -EINPROGRESS || err1 == -EBUSY)
1004 return err1;
1005
1006 /*
1007 * final() has to be always called to cleanup resources
1008 * even if udpate() failed, except EINPROGRESS
1009 */
1010 err2 = atmel_sha_final(req);
1011
1012 return err1 ?: err2;
1013 }
1014
1015 static int atmel_sha_digest(struct ahash_request *req)
1016 {
1017 return atmel_sha_init(req) ?: atmel_sha_finup(req);
1018 }
1019
1020
1021 static int atmel_sha_export(struct ahash_request *req, void *out)
1022 {
1023 const struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1024
1025 memcpy(out, ctx, sizeof(*ctx));
1026 return 0;
1027 }
1028
1029 static int atmel_sha_import(struct ahash_request *req, const void *in)
1030 {
1031 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1032
1033 memcpy(ctx, in, sizeof(*ctx));
1034 return 0;
1035 }
1036
1037 static int atmel_sha_cra_init(struct crypto_tfm *tfm)
1038 {
1039 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1040 sizeof(struct atmel_sha_reqctx));
1041
1042 return 0;
1043 }
1044
1045 static struct ahash_alg sha_1_256_algs[] = {
1046 {
1047 .init = atmel_sha_init,
1048 .update = atmel_sha_update,
1049 .final = atmel_sha_final,
1050 .finup = atmel_sha_finup,
1051 .digest = atmel_sha_digest,
1052 .export = atmel_sha_export,
1053 .import = atmel_sha_import,
1054 .halg = {
1055 .digestsize = SHA1_DIGEST_SIZE,
1056 .statesize = sizeof(struct atmel_sha_reqctx),
1057 .base = {
1058 .cra_name = "sha1",
1059 .cra_driver_name = "atmel-sha1",
1060 .cra_priority = 100,
1061 .cra_flags = CRYPTO_ALG_ASYNC,
1062 .cra_blocksize = SHA1_BLOCK_SIZE,
1063 .cra_ctxsize = sizeof(struct atmel_sha_ctx),
1064 .cra_alignmask = 0,
1065 .cra_module = THIS_MODULE,
1066 .cra_init = atmel_sha_cra_init,
1067 }
1068 }
1069 },
1070 {
1071 .init = atmel_sha_init,
1072 .update = atmel_sha_update,
1073 .final = atmel_sha_final,
1074 .finup = atmel_sha_finup,
1075 .digest = atmel_sha_digest,
1076 .export = atmel_sha_export,
1077 .import = atmel_sha_import,
1078 .halg = {
1079 .digestsize = SHA256_DIGEST_SIZE,
1080 .statesize = sizeof(struct atmel_sha_reqctx),
1081 .base = {
1082 .cra_name = "sha256",
1083 .cra_driver_name = "atmel-sha256",
1084 .cra_priority = 100,
1085 .cra_flags = CRYPTO_ALG_ASYNC,
1086 .cra_blocksize = SHA256_BLOCK_SIZE,
1087 .cra_ctxsize = sizeof(struct atmel_sha_ctx),
1088 .cra_alignmask = 0,
1089 .cra_module = THIS_MODULE,
1090 .cra_init = atmel_sha_cra_init,
1091 }
1092 }
1093 },
1094 };
1095
1096 static struct ahash_alg sha_224_alg = {
1097 .init = atmel_sha_init,
1098 .update = atmel_sha_update,
1099 .final = atmel_sha_final,
1100 .finup = atmel_sha_finup,
1101 .digest = atmel_sha_digest,
1102 .export = atmel_sha_export,
1103 .import = atmel_sha_import,
1104 .halg = {
1105 .digestsize = SHA224_DIGEST_SIZE,
1106 .statesize = sizeof(struct atmel_sha_reqctx),
1107 .base = {
1108 .cra_name = "sha224",
1109 .cra_driver_name = "atmel-sha224",
1110 .cra_priority = 100,
1111 .cra_flags = CRYPTO_ALG_ASYNC,
1112 .cra_blocksize = SHA224_BLOCK_SIZE,
1113 .cra_ctxsize = sizeof(struct atmel_sha_ctx),
1114 .cra_alignmask = 0,
1115 .cra_module = THIS_MODULE,
1116 .cra_init = atmel_sha_cra_init,
1117 }
1118 }
1119 };
1120
1121 static struct ahash_alg sha_384_512_algs[] = {
1122 {
1123 .init = atmel_sha_init,
1124 .update = atmel_sha_update,
1125 .final = atmel_sha_final,
1126 .finup = atmel_sha_finup,
1127 .digest = atmel_sha_digest,
1128 .export = atmel_sha_export,
1129 .import = atmel_sha_import,
1130 .halg = {
1131 .digestsize = SHA384_DIGEST_SIZE,
1132 .statesize = sizeof(struct atmel_sha_reqctx),
1133 .base = {
1134 .cra_name = "sha384",
1135 .cra_driver_name = "atmel-sha384",
1136 .cra_priority = 100,
1137 .cra_flags = CRYPTO_ALG_ASYNC,
1138 .cra_blocksize = SHA384_BLOCK_SIZE,
1139 .cra_ctxsize = sizeof(struct atmel_sha_ctx),
1140 .cra_alignmask = 0x3,
1141 .cra_module = THIS_MODULE,
1142 .cra_init = atmel_sha_cra_init,
1143 }
1144 }
1145 },
1146 {
1147 .init = atmel_sha_init,
1148 .update = atmel_sha_update,
1149 .final = atmel_sha_final,
1150 .finup = atmel_sha_finup,
1151 .digest = atmel_sha_digest,
1152 .export = atmel_sha_export,
1153 .import = atmel_sha_import,
1154 .halg = {
1155 .digestsize = SHA512_DIGEST_SIZE,
1156 .statesize = sizeof(struct atmel_sha_reqctx),
1157 .base = {
1158 .cra_name = "sha512",
1159 .cra_driver_name = "atmel-sha512",
1160 .cra_priority = 100,
1161 .cra_flags = CRYPTO_ALG_ASYNC,
1162 .cra_blocksize = SHA512_BLOCK_SIZE,
1163 .cra_ctxsize = sizeof(struct atmel_sha_ctx),
1164 .cra_alignmask = 0x3,
1165 .cra_module = THIS_MODULE,
1166 .cra_init = atmel_sha_cra_init,
1167 }
1168 }
1169 },
1170 };
1171
1172 static void atmel_sha_queue_task(unsigned long data)
1173 {
1174 struct atmel_sha_dev *dd = (struct atmel_sha_dev *)data;
1175
1176 atmel_sha_handle_queue(dd, NULL);
1177 }
1178
1179 static void atmel_sha_done_task(unsigned long data)
1180 {
1181 struct atmel_sha_dev *dd = (struct atmel_sha_dev *)data;
1182 int err = 0;
1183
1184 if (SHA_FLAGS_CPU & dd->flags) {
1185 if (SHA_FLAGS_OUTPUT_READY & dd->flags) {
1186 dd->flags &= ~SHA_FLAGS_OUTPUT_READY;
1187 goto finish;
1188 }
1189 } else if (SHA_FLAGS_DMA_READY & dd->flags) {
1190 if (SHA_FLAGS_DMA_ACTIVE & dd->flags) {
1191 dd->flags &= ~SHA_FLAGS_DMA_ACTIVE;
1192 atmel_sha_update_dma_stop(dd);
1193 if (dd->err) {
1194 err = dd->err;
1195 goto finish;
1196 }
1197 }
1198 if (SHA_FLAGS_OUTPUT_READY & dd->flags) {
1199 /* hash or semi-hash ready */
1200 dd->flags &= ~(SHA_FLAGS_DMA_READY |
1201 SHA_FLAGS_OUTPUT_READY);
1202 err = atmel_sha_update_dma_start(dd);
1203 if (err != -EINPROGRESS)
1204 goto finish;
1205 }
1206 }
1207 return;
1208
1209 finish:
1210 /* finish curent request */
1211 atmel_sha_finish_req(dd->req, err);
1212 }
1213
1214 static irqreturn_t atmel_sha_irq(int irq, void *dev_id)
1215 {
1216 struct atmel_sha_dev *sha_dd = dev_id;
1217 u32 reg;
1218
1219 reg = atmel_sha_read(sha_dd, SHA_ISR);
1220 if (reg & atmel_sha_read(sha_dd, SHA_IMR)) {
1221 atmel_sha_write(sha_dd, SHA_IDR, reg);
1222 if (SHA_FLAGS_BUSY & sha_dd->flags) {
1223 sha_dd->flags |= SHA_FLAGS_OUTPUT_READY;
1224 if (!(SHA_FLAGS_CPU & sha_dd->flags))
1225 sha_dd->flags |= SHA_FLAGS_DMA_READY;
1226 tasklet_schedule(&sha_dd->done_task);
1227 } else {
1228 dev_warn(sha_dd->dev, "SHA interrupt when no active requests.\n");
1229 }
1230 return IRQ_HANDLED;
1231 }
1232
1233 return IRQ_NONE;
1234 }
1235
1236 static void atmel_sha_unregister_algs(struct atmel_sha_dev *dd)
1237 {
1238 int i;
1239
1240 for (i = 0; i < ARRAY_SIZE(sha_1_256_algs); i++)
1241 crypto_unregister_ahash(&sha_1_256_algs[i]);
1242
1243 if (dd->caps.has_sha224)
1244 crypto_unregister_ahash(&sha_224_alg);
1245
1246 if (dd->caps.has_sha_384_512) {
1247 for (i = 0; i < ARRAY_SIZE(sha_384_512_algs); i++)
1248 crypto_unregister_ahash(&sha_384_512_algs[i]);
1249 }
1250 }
1251
1252 static int atmel_sha_register_algs(struct atmel_sha_dev *dd)
1253 {
1254 int err, i, j;
1255
1256 for (i = 0; i < ARRAY_SIZE(sha_1_256_algs); i++) {
1257 err = crypto_register_ahash(&sha_1_256_algs[i]);
1258 if (err)
1259 goto err_sha_1_256_algs;
1260 }
1261
1262 if (dd->caps.has_sha224) {
1263 err = crypto_register_ahash(&sha_224_alg);
1264 if (err)
1265 goto err_sha_224_algs;
1266 }
1267
1268 if (dd->caps.has_sha_384_512) {
1269 for (i = 0; i < ARRAY_SIZE(sha_384_512_algs); i++) {
1270 err = crypto_register_ahash(&sha_384_512_algs[i]);
1271 if (err)
1272 goto err_sha_384_512_algs;
1273 }
1274 }
1275
1276 return 0;
1277
1278 err_sha_384_512_algs:
1279 for (j = 0; j < i; j++)
1280 crypto_unregister_ahash(&sha_384_512_algs[j]);
1281 crypto_unregister_ahash(&sha_224_alg);
1282 err_sha_224_algs:
1283 i = ARRAY_SIZE(sha_1_256_algs);
1284 err_sha_1_256_algs:
1285 for (j = 0; j < i; j++)
1286 crypto_unregister_ahash(&sha_1_256_algs[j]);
1287
1288 return err;
1289 }
1290
1291 static bool atmel_sha_filter(struct dma_chan *chan, void *slave)
1292 {
1293 struct at_dma_slave *sl = slave;
1294
1295 if (sl && sl->dma_dev == chan->device->dev) {
1296 chan->private = sl;
1297 return true;
1298 } else {
1299 return false;
1300 }
1301 }
1302
1303 static int atmel_sha_dma_init(struct atmel_sha_dev *dd,
1304 struct crypto_platform_data *pdata)
1305 {
1306 int err = -ENOMEM;
1307 dma_cap_mask_t mask_in;
1308
1309 /* Try to grab DMA channel */
1310 dma_cap_zero(mask_in);
1311 dma_cap_set(DMA_SLAVE, mask_in);
1312
1313 dd->dma_lch_in.chan = dma_request_slave_channel_compat(mask_in,
1314 atmel_sha_filter, &pdata->dma_slave->rxdata, dd->dev, "tx");
1315 if (!dd->dma_lch_in.chan) {
1316 dev_warn(dd->dev, "no DMA channel available\n");
1317 return err;
1318 }
1319
1320 dd->dma_lch_in.dma_conf.direction = DMA_MEM_TO_DEV;
1321 dd->dma_lch_in.dma_conf.dst_addr = dd->phys_base +
1322 SHA_REG_DIN(0);
1323 dd->dma_lch_in.dma_conf.src_maxburst = 1;
1324 dd->dma_lch_in.dma_conf.src_addr_width =
1325 DMA_SLAVE_BUSWIDTH_4_BYTES;
1326 dd->dma_lch_in.dma_conf.dst_maxburst = 1;
1327 dd->dma_lch_in.dma_conf.dst_addr_width =
1328 DMA_SLAVE_BUSWIDTH_4_BYTES;
1329 dd->dma_lch_in.dma_conf.device_fc = false;
1330
1331 return 0;
1332 }
1333
1334 static void atmel_sha_dma_cleanup(struct atmel_sha_dev *dd)
1335 {
1336 dma_release_channel(dd->dma_lch_in.chan);
1337 }
1338
1339 static void atmel_sha_get_cap(struct atmel_sha_dev *dd)
1340 {
1341
1342 dd->caps.has_dma = 0;
1343 dd->caps.has_dualbuff = 0;
1344 dd->caps.has_sha224 = 0;
1345 dd->caps.has_sha_384_512 = 0;
1346 dd->caps.has_uihv = 0;
1347
1348 /* keep only major version number */
1349 switch (dd->hw_version & 0xff0) {
1350 case 0x510:
1351 dd->caps.has_dma = 1;
1352 dd->caps.has_dualbuff = 1;
1353 dd->caps.has_sha224 = 1;
1354 dd->caps.has_sha_384_512 = 1;
1355 dd->caps.has_uihv = 1;
1356 break;
1357 case 0x420:
1358 dd->caps.has_dma = 1;
1359 dd->caps.has_dualbuff = 1;
1360 dd->caps.has_sha224 = 1;
1361 dd->caps.has_sha_384_512 = 1;
1362 dd->caps.has_uihv = 1;
1363 break;
1364 case 0x410:
1365 dd->caps.has_dma = 1;
1366 dd->caps.has_dualbuff = 1;
1367 dd->caps.has_sha224 = 1;
1368 dd->caps.has_sha_384_512 = 1;
1369 break;
1370 case 0x400:
1371 dd->caps.has_dma = 1;
1372 dd->caps.has_dualbuff = 1;
1373 dd->caps.has_sha224 = 1;
1374 break;
1375 case 0x320:
1376 break;
1377 default:
1378 dev_warn(dd->dev,
1379 "Unmanaged sha version, set minimum capabilities\n");
1380 break;
1381 }
1382 }
1383
1384 #if defined(CONFIG_OF)
1385 static const struct of_device_id atmel_sha_dt_ids[] = {
1386 { .compatible = "atmel,at91sam9g46-sha" },
1387 { /* sentinel */ }
1388 };
1389
1390 MODULE_DEVICE_TABLE(of, atmel_sha_dt_ids);
1391
1392 static struct crypto_platform_data *atmel_sha_of_init(struct platform_device *pdev)
1393 {
1394 struct device_node *np = pdev->dev.of_node;
1395 struct crypto_platform_data *pdata;
1396
1397 if (!np) {
1398 dev_err(&pdev->dev, "device node not found\n");
1399 return ERR_PTR(-EINVAL);
1400 }
1401
1402 pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
1403 if (!pdata) {
1404 dev_err(&pdev->dev, "could not allocate memory for pdata\n");
1405 return ERR_PTR(-ENOMEM);
1406 }
1407
1408 pdata->dma_slave = devm_kzalloc(&pdev->dev,
1409 sizeof(*(pdata->dma_slave)),
1410 GFP_KERNEL);
1411 if (!pdata->dma_slave) {
1412 dev_err(&pdev->dev, "could not allocate memory for dma_slave\n");
1413 return ERR_PTR(-ENOMEM);
1414 }
1415
1416 return pdata;
1417 }
1418 #else /* CONFIG_OF */
1419 static inline struct crypto_platform_data *atmel_sha_of_init(struct platform_device *dev)
1420 {
1421 return ERR_PTR(-EINVAL);
1422 }
1423 #endif
1424
1425 static int atmel_sha_probe(struct platform_device *pdev)
1426 {
1427 struct atmel_sha_dev *sha_dd;
1428 struct crypto_platform_data *pdata;
1429 struct device *dev = &pdev->dev;
1430 struct resource *sha_res;
1431 int err;
1432
1433 sha_dd = devm_kzalloc(&pdev->dev, sizeof(*sha_dd), GFP_KERNEL);
1434 if (sha_dd == NULL) {
1435 dev_err(dev, "unable to alloc data struct.\n");
1436 err = -ENOMEM;
1437 goto sha_dd_err;
1438 }
1439
1440 sha_dd->dev = dev;
1441
1442 platform_set_drvdata(pdev, sha_dd);
1443
1444 INIT_LIST_HEAD(&sha_dd->list);
1445 spin_lock_init(&sha_dd->lock);
1446
1447 tasklet_init(&sha_dd->done_task, atmel_sha_done_task,
1448 (unsigned long)sha_dd);
1449 tasklet_init(&sha_dd->queue_task, atmel_sha_queue_task,
1450 (unsigned long)sha_dd);
1451
1452 crypto_init_queue(&sha_dd->queue, ATMEL_SHA_QUEUE_LENGTH);
1453
1454 sha_dd->irq = -1;
1455
1456 /* Get the base address */
1457 sha_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1458 if (!sha_res) {
1459 dev_err(dev, "no MEM resource info\n");
1460 err = -ENODEV;
1461 goto res_err;
1462 }
1463 sha_dd->phys_base = sha_res->start;
1464
1465 /* Get the IRQ */
1466 sha_dd->irq = platform_get_irq(pdev, 0);
1467 if (sha_dd->irq < 0) {
1468 dev_err(dev, "no IRQ resource info\n");
1469 err = sha_dd->irq;
1470 goto res_err;
1471 }
1472
1473 err = devm_request_irq(&pdev->dev, sha_dd->irq, atmel_sha_irq,
1474 IRQF_SHARED, "atmel-sha", sha_dd);
1475 if (err) {
1476 dev_err(dev, "unable to request sha irq.\n");
1477 goto res_err;
1478 }
1479
1480 /* Initializing the clock */
1481 sha_dd->iclk = devm_clk_get(&pdev->dev, "sha_clk");
1482 if (IS_ERR(sha_dd->iclk)) {
1483 dev_err(dev, "clock initialization failed.\n");
1484 err = PTR_ERR(sha_dd->iclk);
1485 goto res_err;
1486 }
1487
1488 sha_dd->io_base = devm_ioremap_resource(&pdev->dev, sha_res);
1489 if (IS_ERR(sha_dd->io_base)) {
1490 dev_err(dev, "can't ioremap\n");
1491 err = PTR_ERR(sha_dd->io_base);
1492 goto res_err;
1493 }
1494
1495 err = clk_prepare(sha_dd->iclk);
1496 if (err)
1497 goto res_err;
1498
1499 atmel_sha_hw_version_init(sha_dd);
1500
1501 atmel_sha_get_cap(sha_dd);
1502
1503 if (sha_dd->caps.has_dma) {
1504 pdata = pdev->dev.platform_data;
1505 if (!pdata) {
1506 pdata = atmel_sha_of_init(pdev);
1507 if (IS_ERR(pdata)) {
1508 dev_err(&pdev->dev, "platform data not available\n");
1509 err = PTR_ERR(pdata);
1510 goto iclk_unprepare;
1511 }
1512 }
1513 if (!pdata->dma_slave) {
1514 err = -ENXIO;
1515 goto iclk_unprepare;
1516 }
1517 err = atmel_sha_dma_init(sha_dd, pdata);
1518 if (err)
1519 goto err_sha_dma;
1520
1521 dev_info(dev, "using %s for DMA transfers\n",
1522 dma_chan_name(sha_dd->dma_lch_in.chan));
1523 }
1524
1525 spin_lock(&atmel_sha.lock);
1526 list_add_tail(&sha_dd->list, &atmel_sha.dev_list);
1527 spin_unlock(&atmel_sha.lock);
1528
1529 err = atmel_sha_register_algs(sha_dd);
1530 if (err)
1531 goto err_algs;
1532
1533 dev_info(dev, "Atmel SHA1/SHA256%s%s\n",
1534 sha_dd->caps.has_sha224 ? "/SHA224" : "",
1535 sha_dd->caps.has_sha_384_512 ? "/SHA384/SHA512" : "");
1536
1537 return 0;
1538
1539 err_algs:
1540 spin_lock(&atmel_sha.lock);
1541 list_del(&sha_dd->list);
1542 spin_unlock(&atmel_sha.lock);
1543 if (sha_dd->caps.has_dma)
1544 atmel_sha_dma_cleanup(sha_dd);
1545 err_sha_dma:
1546 iclk_unprepare:
1547 clk_unprepare(sha_dd->iclk);
1548 res_err:
1549 tasklet_kill(&sha_dd->queue_task);
1550 tasklet_kill(&sha_dd->done_task);
1551 sha_dd_err:
1552 dev_err(dev, "initialization failed.\n");
1553
1554 return err;
1555 }
1556
1557 static int atmel_sha_remove(struct platform_device *pdev)
1558 {
1559 static struct atmel_sha_dev *sha_dd;
1560
1561 sha_dd = platform_get_drvdata(pdev);
1562 if (!sha_dd)
1563 return -ENODEV;
1564 spin_lock(&atmel_sha.lock);
1565 list_del(&sha_dd->list);
1566 spin_unlock(&atmel_sha.lock);
1567
1568 atmel_sha_unregister_algs(sha_dd);
1569
1570 tasklet_kill(&sha_dd->queue_task);
1571 tasklet_kill(&sha_dd->done_task);
1572
1573 if (sha_dd->caps.has_dma)
1574 atmel_sha_dma_cleanup(sha_dd);
1575
1576 clk_unprepare(sha_dd->iclk);
1577
1578 return 0;
1579 }
1580
1581 static struct platform_driver atmel_sha_driver = {
1582 .probe = atmel_sha_probe,
1583 .remove = atmel_sha_remove,
1584 .driver = {
1585 .name = "atmel_sha",
1586 .of_match_table = of_match_ptr(atmel_sha_dt_ids),
1587 },
1588 };
1589
1590 module_platform_driver(atmel_sha_driver);
1591
1592 MODULE_DESCRIPTION("Atmel SHA (1/256/224/384/512) hw acceleration support.");
1593 MODULE_LICENSE("GPL v2");
1594 MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");