]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/crypto/ccp/ccp-dev-v3.c
crypto: ccp - Change ISR handler method for a v3 CCP
[mirror_ubuntu-zesty-kernel.git] / drivers / crypto / ccp / ccp-dev-v3.c
1 /*
2 * AMD Cryptographic Coprocessor (CCP) driver
3 *
4 * Copyright (C) 2013,2016 Advanced Micro Devices, Inc.
5 *
6 * Author: Tom Lendacky <thomas.lendacky@amd.com>
7 * Author: Gary R Hook <gary.hook@amd.com>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
13
14 #include <linux/module.h>
15 #include <linux/kernel.h>
16 #include <linux/pci.h>
17 #include <linux/kthread.h>
18 #include <linux/interrupt.h>
19 #include <linux/ccp.h>
20
21 #include "ccp-dev.h"
22
23 static u32 ccp_alloc_ksb(struct ccp_cmd_queue *cmd_q, unsigned int count)
24 {
25 int start;
26 struct ccp_device *ccp = cmd_q->ccp;
27
28 for (;;) {
29 mutex_lock(&ccp->sb_mutex);
30
31 start = (u32)bitmap_find_next_zero_area(ccp->sb,
32 ccp->sb_count,
33 ccp->sb_start,
34 count, 0);
35 if (start <= ccp->sb_count) {
36 bitmap_set(ccp->sb, start, count);
37
38 mutex_unlock(&ccp->sb_mutex);
39 break;
40 }
41
42 ccp->sb_avail = 0;
43
44 mutex_unlock(&ccp->sb_mutex);
45
46 /* Wait for KSB entries to become available */
47 if (wait_event_interruptible(ccp->sb_queue, ccp->sb_avail))
48 return 0;
49 }
50
51 return KSB_START + start;
52 }
53
54 static void ccp_free_ksb(struct ccp_cmd_queue *cmd_q, unsigned int start,
55 unsigned int count)
56 {
57 struct ccp_device *ccp = cmd_q->ccp;
58
59 if (!start)
60 return;
61
62 mutex_lock(&ccp->sb_mutex);
63
64 bitmap_clear(ccp->sb, start - KSB_START, count);
65
66 ccp->sb_avail = 1;
67
68 mutex_unlock(&ccp->sb_mutex);
69
70 wake_up_interruptible_all(&ccp->sb_queue);
71 }
72
73 static unsigned int ccp_get_free_slots(struct ccp_cmd_queue *cmd_q)
74 {
75 return CMD_Q_DEPTH(ioread32(cmd_q->reg_status));
76 }
77
78 static int ccp_do_cmd(struct ccp_op *op, u32 *cr, unsigned int cr_count)
79 {
80 struct ccp_cmd_queue *cmd_q = op->cmd_q;
81 struct ccp_device *ccp = cmd_q->ccp;
82 void __iomem *cr_addr;
83 u32 cr0, cmd;
84 unsigned int i;
85 int ret = 0;
86
87 /* We could read a status register to see how many free slots
88 * are actually available, but reading that register resets it
89 * and you could lose some error information.
90 */
91 cmd_q->free_slots--;
92
93 cr0 = (cmd_q->id << REQ0_CMD_Q_SHIFT)
94 | (op->jobid << REQ0_JOBID_SHIFT)
95 | REQ0_WAIT_FOR_WRITE;
96
97 if (op->soc)
98 cr0 |= REQ0_STOP_ON_COMPLETE
99 | REQ0_INT_ON_COMPLETE;
100
101 if (op->ioc || !cmd_q->free_slots)
102 cr0 |= REQ0_INT_ON_COMPLETE;
103
104 /* Start at CMD_REQ1 */
105 cr_addr = ccp->io_regs + CMD_REQ0 + CMD_REQ_INCR;
106
107 mutex_lock(&ccp->req_mutex);
108
109 /* Write CMD_REQ1 through CMD_REQx first */
110 for (i = 0; i < cr_count; i++, cr_addr += CMD_REQ_INCR)
111 iowrite32(*(cr + i), cr_addr);
112
113 /* Tell the CCP to start */
114 wmb();
115 iowrite32(cr0, ccp->io_regs + CMD_REQ0);
116
117 mutex_unlock(&ccp->req_mutex);
118
119 if (cr0 & REQ0_INT_ON_COMPLETE) {
120 /* Wait for the job to complete */
121 ret = wait_event_interruptible(cmd_q->int_queue,
122 cmd_q->int_rcvd);
123 if (ret || cmd_q->cmd_error) {
124 /* On error delete all related jobs from the queue */
125 cmd = (cmd_q->id << DEL_Q_ID_SHIFT)
126 | op->jobid;
127 if (cmd_q->cmd_error)
128 ccp_log_error(cmd_q->ccp,
129 cmd_q->cmd_error);
130
131 iowrite32(cmd, ccp->io_regs + DEL_CMD_Q_JOB);
132
133 if (!ret)
134 ret = -EIO;
135 } else if (op->soc) {
136 /* Delete just head job from the queue on SoC */
137 cmd = DEL_Q_ACTIVE
138 | (cmd_q->id << DEL_Q_ID_SHIFT)
139 | op->jobid;
140
141 iowrite32(cmd, ccp->io_regs + DEL_CMD_Q_JOB);
142 }
143
144 cmd_q->free_slots = CMD_Q_DEPTH(cmd_q->q_status);
145
146 cmd_q->int_rcvd = 0;
147 }
148
149 return ret;
150 }
151
152 static int ccp_perform_aes(struct ccp_op *op)
153 {
154 u32 cr[6];
155
156 /* Fill out the register contents for REQ1 through REQ6 */
157 cr[0] = (CCP_ENGINE_AES << REQ1_ENGINE_SHIFT)
158 | (op->u.aes.type << REQ1_AES_TYPE_SHIFT)
159 | (op->u.aes.mode << REQ1_AES_MODE_SHIFT)
160 | (op->u.aes.action << REQ1_AES_ACTION_SHIFT)
161 | (op->sb_key << REQ1_KEY_KSB_SHIFT);
162 cr[1] = op->src.u.dma.length - 1;
163 cr[2] = ccp_addr_lo(&op->src.u.dma);
164 cr[3] = (op->sb_ctx << REQ4_KSB_SHIFT)
165 | (CCP_MEMTYPE_SYSTEM << REQ4_MEMTYPE_SHIFT)
166 | ccp_addr_hi(&op->src.u.dma);
167 cr[4] = ccp_addr_lo(&op->dst.u.dma);
168 cr[5] = (CCP_MEMTYPE_SYSTEM << REQ6_MEMTYPE_SHIFT)
169 | ccp_addr_hi(&op->dst.u.dma);
170
171 if (op->u.aes.mode == CCP_AES_MODE_CFB)
172 cr[0] |= ((0x7f) << REQ1_AES_CFB_SIZE_SHIFT);
173
174 if (op->eom)
175 cr[0] |= REQ1_EOM;
176
177 if (op->init)
178 cr[0] |= REQ1_INIT;
179
180 return ccp_do_cmd(op, cr, ARRAY_SIZE(cr));
181 }
182
183 static int ccp_perform_xts_aes(struct ccp_op *op)
184 {
185 u32 cr[6];
186
187 /* Fill out the register contents for REQ1 through REQ6 */
188 cr[0] = (CCP_ENGINE_XTS_AES_128 << REQ1_ENGINE_SHIFT)
189 | (op->u.xts.action << REQ1_AES_ACTION_SHIFT)
190 | (op->u.xts.unit_size << REQ1_XTS_AES_SIZE_SHIFT)
191 | (op->sb_key << REQ1_KEY_KSB_SHIFT);
192 cr[1] = op->src.u.dma.length - 1;
193 cr[2] = ccp_addr_lo(&op->src.u.dma);
194 cr[3] = (op->sb_ctx << REQ4_KSB_SHIFT)
195 | (CCP_MEMTYPE_SYSTEM << REQ4_MEMTYPE_SHIFT)
196 | ccp_addr_hi(&op->src.u.dma);
197 cr[4] = ccp_addr_lo(&op->dst.u.dma);
198 cr[5] = (CCP_MEMTYPE_SYSTEM << REQ6_MEMTYPE_SHIFT)
199 | ccp_addr_hi(&op->dst.u.dma);
200
201 if (op->eom)
202 cr[0] |= REQ1_EOM;
203
204 if (op->init)
205 cr[0] |= REQ1_INIT;
206
207 return ccp_do_cmd(op, cr, ARRAY_SIZE(cr));
208 }
209
210 static int ccp_perform_sha(struct ccp_op *op)
211 {
212 u32 cr[6];
213
214 /* Fill out the register contents for REQ1 through REQ6 */
215 cr[0] = (CCP_ENGINE_SHA << REQ1_ENGINE_SHIFT)
216 | (op->u.sha.type << REQ1_SHA_TYPE_SHIFT)
217 | REQ1_INIT;
218 cr[1] = op->src.u.dma.length - 1;
219 cr[2] = ccp_addr_lo(&op->src.u.dma);
220 cr[3] = (op->sb_ctx << REQ4_KSB_SHIFT)
221 | (CCP_MEMTYPE_SYSTEM << REQ4_MEMTYPE_SHIFT)
222 | ccp_addr_hi(&op->src.u.dma);
223
224 if (op->eom) {
225 cr[0] |= REQ1_EOM;
226 cr[4] = lower_32_bits(op->u.sha.msg_bits);
227 cr[5] = upper_32_bits(op->u.sha.msg_bits);
228 } else {
229 cr[4] = 0;
230 cr[5] = 0;
231 }
232
233 return ccp_do_cmd(op, cr, ARRAY_SIZE(cr));
234 }
235
236 static int ccp_perform_rsa(struct ccp_op *op)
237 {
238 u32 cr[6];
239
240 /* Fill out the register contents for REQ1 through REQ6 */
241 cr[0] = (CCP_ENGINE_RSA << REQ1_ENGINE_SHIFT)
242 | (op->u.rsa.mod_size << REQ1_RSA_MOD_SIZE_SHIFT)
243 | (op->sb_key << REQ1_KEY_KSB_SHIFT)
244 | REQ1_EOM;
245 cr[1] = op->u.rsa.input_len - 1;
246 cr[2] = ccp_addr_lo(&op->src.u.dma);
247 cr[3] = (op->sb_ctx << REQ4_KSB_SHIFT)
248 | (CCP_MEMTYPE_SYSTEM << REQ4_MEMTYPE_SHIFT)
249 | ccp_addr_hi(&op->src.u.dma);
250 cr[4] = ccp_addr_lo(&op->dst.u.dma);
251 cr[5] = (CCP_MEMTYPE_SYSTEM << REQ6_MEMTYPE_SHIFT)
252 | ccp_addr_hi(&op->dst.u.dma);
253
254 return ccp_do_cmd(op, cr, ARRAY_SIZE(cr));
255 }
256
257 static int ccp_perform_passthru(struct ccp_op *op)
258 {
259 u32 cr[6];
260
261 /* Fill out the register contents for REQ1 through REQ6 */
262 cr[0] = (CCP_ENGINE_PASSTHRU << REQ1_ENGINE_SHIFT)
263 | (op->u.passthru.bit_mod << REQ1_PT_BW_SHIFT)
264 | (op->u.passthru.byte_swap << REQ1_PT_BS_SHIFT);
265
266 if (op->src.type == CCP_MEMTYPE_SYSTEM)
267 cr[1] = op->src.u.dma.length - 1;
268 else
269 cr[1] = op->dst.u.dma.length - 1;
270
271 if (op->src.type == CCP_MEMTYPE_SYSTEM) {
272 cr[2] = ccp_addr_lo(&op->src.u.dma);
273 cr[3] = (CCP_MEMTYPE_SYSTEM << REQ4_MEMTYPE_SHIFT)
274 | ccp_addr_hi(&op->src.u.dma);
275
276 if (op->u.passthru.bit_mod != CCP_PASSTHRU_BITWISE_NOOP)
277 cr[3] |= (op->sb_key << REQ4_KSB_SHIFT);
278 } else {
279 cr[2] = op->src.u.sb * CCP_SB_BYTES;
280 cr[3] = (CCP_MEMTYPE_SB << REQ4_MEMTYPE_SHIFT);
281 }
282
283 if (op->dst.type == CCP_MEMTYPE_SYSTEM) {
284 cr[4] = ccp_addr_lo(&op->dst.u.dma);
285 cr[5] = (CCP_MEMTYPE_SYSTEM << REQ6_MEMTYPE_SHIFT)
286 | ccp_addr_hi(&op->dst.u.dma);
287 } else {
288 cr[4] = op->dst.u.sb * CCP_SB_BYTES;
289 cr[5] = (CCP_MEMTYPE_SB << REQ6_MEMTYPE_SHIFT);
290 }
291
292 if (op->eom)
293 cr[0] |= REQ1_EOM;
294
295 return ccp_do_cmd(op, cr, ARRAY_SIZE(cr));
296 }
297
298 static int ccp_perform_ecc(struct ccp_op *op)
299 {
300 u32 cr[6];
301
302 /* Fill out the register contents for REQ1 through REQ6 */
303 cr[0] = REQ1_ECC_AFFINE_CONVERT
304 | (CCP_ENGINE_ECC << REQ1_ENGINE_SHIFT)
305 | (op->u.ecc.function << REQ1_ECC_FUNCTION_SHIFT)
306 | REQ1_EOM;
307 cr[1] = op->src.u.dma.length - 1;
308 cr[2] = ccp_addr_lo(&op->src.u.dma);
309 cr[3] = (CCP_MEMTYPE_SYSTEM << REQ4_MEMTYPE_SHIFT)
310 | ccp_addr_hi(&op->src.u.dma);
311 cr[4] = ccp_addr_lo(&op->dst.u.dma);
312 cr[5] = (CCP_MEMTYPE_SYSTEM << REQ6_MEMTYPE_SHIFT)
313 | ccp_addr_hi(&op->dst.u.dma);
314
315 return ccp_do_cmd(op, cr, ARRAY_SIZE(cr));
316 }
317
318 static void ccp_disable_queue_interrupts(struct ccp_device *ccp)
319 {
320 iowrite32(0x00, ccp->io_regs + IRQ_MASK_REG);
321 }
322
323 static void ccp_enable_queue_interrupts(struct ccp_device *ccp)
324 {
325 iowrite32(ccp->qim, ccp->io_regs + IRQ_MASK_REG);
326 }
327
328 static void ccp_irq_bh(unsigned long data)
329 {
330 struct ccp_device *ccp = (struct ccp_device *)data;
331 struct ccp_cmd_queue *cmd_q;
332 u32 q_int, status;
333 unsigned int i;
334
335 status = ioread32(ccp->io_regs + IRQ_STATUS_REG);
336
337 for (i = 0; i < ccp->cmd_q_count; i++) {
338 cmd_q = &ccp->cmd_q[i];
339
340 q_int = status & (cmd_q->int_ok | cmd_q->int_err);
341 if (q_int) {
342 cmd_q->int_status = status;
343 cmd_q->q_status = ioread32(cmd_q->reg_status);
344 cmd_q->q_int_status = ioread32(cmd_q->reg_int_status);
345
346 /* On error, only save the first error value */
347 if ((q_int & cmd_q->int_err) && !cmd_q->cmd_error)
348 cmd_q->cmd_error = CMD_Q_ERROR(cmd_q->q_status);
349
350 cmd_q->int_rcvd = 1;
351
352 /* Acknowledge the interrupt and wake the kthread */
353 iowrite32(q_int, ccp->io_regs + IRQ_STATUS_REG);
354 wake_up_interruptible(&cmd_q->int_queue);
355 }
356 }
357 ccp_enable_queue_interrupts(ccp);
358 }
359
360 static irqreturn_t ccp_irq_handler(int irq, void *data)
361 {
362 struct device *dev = data;
363 struct ccp_device *ccp = dev_get_drvdata(dev);
364
365 ccp_disable_queue_interrupts(ccp);
366 if (ccp->use_tasklet)
367 tasklet_schedule(&ccp->irq_tasklet);
368 else
369 ccp_irq_bh((unsigned long)ccp);
370
371 return IRQ_HANDLED;
372 }
373
374 static int ccp_init(struct ccp_device *ccp)
375 {
376 struct device *dev = ccp->dev;
377 struct ccp_cmd_queue *cmd_q;
378 struct dma_pool *dma_pool;
379 char dma_pool_name[MAX_DMAPOOL_NAME_LEN];
380 unsigned int qmr, i;
381 int ret;
382
383 /* Find available queues */
384 ccp->qim = 0;
385 qmr = ioread32(ccp->io_regs + Q_MASK_REG);
386 for (i = 0; i < MAX_HW_QUEUES; i++) {
387 if (!(qmr & (1 << i)))
388 continue;
389
390 /* Allocate a dma pool for this queue */
391 snprintf(dma_pool_name, sizeof(dma_pool_name), "%s_q%d",
392 ccp->name, i);
393 dma_pool = dma_pool_create(dma_pool_name, dev,
394 CCP_DMAPOOL_MAX_SIZE,
395 CCP_DMAPOOL_ALIGN, 0);
396 if (!dma_pool) {
397 dev_err(dev, "unable to allocate dma pool\n");
398 ret = -ENOMEM;
399 goto e_pool;
400 }
401
402 cmd_q = &ccp->cmd_q[ccp->cmd_q_count];
403 ccp->cmd_q_count++;
404
405 cmd_q->ccp = ccp;
406 cmd_q->id = i;
407 cmd_q->dma_pool = dma_pool;
408
409 /* Reserve 2 KSB regions for the queue */
410 cmd_q->sb_key = KSB_START + ccp->sb_start++;
411 cmd_q->sb_ctx = KSB_START + ccp->sb_start++;
412 ccp->sb_count -= 2;
413
414 /* Preset some register values and masks that are queue
415 * number dependent
416 */
417 cmd_q->reg_status = ccp->io_regs + CMD_Q_STATUS_BASE +
418 (CMD_Q_STATUS_INCR * i);
419 cmd_q->reg_int_status = ccp->io_regs + CMD_Q_INT_STATUS_BASE +
420 (CMD_Q_STATUS_INCR * i);
421 cmd_q->int_ok = 1 << (i * 2);
422 cmd_q->int_err = 1 << ((i * 2) + 1);
423
424 cmd_q->free_slots = ccp_get_free_slots(cmd_q);
425
426 init_waitqueue_head(&cmd_q->int_queue);
427
428 /* Build queue interrupt mask (two interrupts per queue) */
429 ccp->qim |= cmd_q->int_ok | cmd_q->int_err;
430
431 #ifdef CONFIG_ARM64
432 /* For arm64 set the recommended queue cache settings */
433 iowrite32(ccp->axcache, ccp->io_regs + CMD_Q_CACHE_BASE +
434 (CMD_Q_CACHE_INC * i));
435 #endif
436
437 dev_dbg(dev, "queue #%u available\n", i);
438 }
439 if (ccp->cmd_q_count == 0) {
440 dev_notice(dev, "no command queues available\n");
441 ret = -EIO;
442 goto e_pool;
443 }
444 dev_notice(dev, "%u command queues available\n", ccp->cmd_q_count);
445
446 /* Disable and clear interrupts until ready */
447 ccp_disable_queue_interrupts(ccp);
448 for (i = 0; i < ccp->cmd_q_count; i++) {
449 cmd_q = &ccp->cmd_q[i];
450
451 ioread32(cmd_q->reg_int_status);
452 ioread32(cmd_q->reg_status);
453 }
454 iowrite32(ccp->qim, ccp->io_regs + IRQ_STATUS_REG);
455
456 /* Request an irq */
457 ret = ccp->get_irq(ccp);
458 if (ret) {
459 dev_err(dev, "unable to allocate an IRQ\n");
460 goto e_pool;
461 }
462
463 /* Initialize the ISR tasklet? */
464 if (ccp->use_tasklet)
465 tasklet_init(&ccp->irq_tasklet, ccp_irq_bh,
466 (unsigned long)ccp);
467
468 dev_dbg(dev, "Starting threads...\n");
469 /* Create a kthread for each queue */
470 for (i = 0; i < ccp->cmd_q_count; i++) {
471 struct task_struct *kthread;
472
473 cmd_q = &ccp->cmd_q[i];
474
475 kthread = kthread_create(ccp_cmd_queue_thread, cmd_q,
476 "%s-q%u", ccp->name, cmd_q->id);
477 if (IS_ERR(kthread)) {
478 dev_err(dev, "error creating queue thread (%ld)\n",
479 PTR_ERR(kthread));
480 ret = PTR_ERR(kthread);
481 goto e_kthread;
482 }
483
484 cmd_q->kthread = kthread;
485 wake_up_process(kthread);
486 }
487
488 dev_dbg(dev, "Enabling interrupts...\n");
489 /* Enable interrupts */
490 ccp_enable_queue_interrupts(ccp);
491
492 dev_dbg(dev, "Registering device...\n");
493 ccp_add_device(ccp);
494
495 ret = ccp_register_rng(ccp);
496 if (ret)
497 goto e_kthread;
498
499 /* Register the DMA engine support */
500 ret = ccp_dmaengine_register(ccp);
501 if (ret)
502 goto e_hwrng;
503
504 return 0;
505
506 e_hwrng:
507 ccp_unregister_rng(ccp);
508
509 e_kthread:
510 for (i = 0; i < ccp->cmd_q_count; i++)
511 if (ccp->cmd_q[i].kthread)
512 kthread_stop(ccp->cmd_q[i].kthread);
513
514 ccp->free_irq(ccp);
515
516 e_pool:
517 for (i = 0; i < ccp->cmd_q_count; i++)
518 dma_pool_destroy(ccp->cmd_q[i].dma_pool);
519
520 return ret;
521 }
522
523 static void ccp_destroy(struct ccp_device *ccp)
524 {
525 struct ccp_cmd_queue *cmd_q;
526 struct ccp_cmd *cmd;
527 unsigned int i;
528
529 /* Unregister the DMA engine */
530 ccp_dmaengine_unregister(ccp);
531
532 /* Unregister the RNG */
533 ccp_unregister_rng(ccp);
534
535 /* Remove this device from the list of available units */
536 ccp_del_device(ccp);
537
538 /* Disable and clear interrupts */
539 ccp_disable_queue_interrupts(ccp);
540 for (i = 0; i < ccp->cmd_q_count; i++) {
541 cmd_q = &ccp->cmd_q[i];
542
543 ioread32(cmd_q->reg_int_status);
544 ioread32(cmd_q->reg_status);
545 }
546 iowrite32(ccp->qim, ccp->io_regs + IRQ_STATUS_REG);
547
548 /* Stop the queue kthreads */
549 for (i = 0; i < ccp->cmd_q_count; i++)
550 if (ccp->cmd_q[i].kthread)
551 kthread_stop(ccp->cmd_q[i].kthread);
552
553 ccp->free_irq(ccp);
554
555 for (i = 0; i < ccp->cmd_q_count; i++)
556 dma_pool_destroy(ccp->cmd_q[i].dma_pool);
557
558 /* Flush the cmd and backlog queue */
559 while (!list_empty(&ccp->cmd)) {
560 /* Invoke the callback directly with an error code */
561 cmd = list_first_entry(&ccp->cmd, struct ccp_cmd, entry);
562 list_del(&cmd->entry);
563 cmd->callback(cmd->data, -ENODEV);
564 }
565 while (!list_empty(&ccp->backlog)) {
566 /* Invoke the callback directly with an error code */
567 cmd = list_first_entry(&ccp->backlog, struct ccp_cmd, entry);
568 list_del(&cmd->entry);
569 cmd->callback(cmd->data, -ENODEV);
570 }
571 }
572
573 static const struct ccp_actions ccp3_actions = {
574 .aes = ccp_perform_aes,
575 .xts_aes = ccp_perform_xts_aes,
576 .sha = ccp_perform_sha,
577 .rsa = ccp_perform_rsa,
578 .passthru = ccp_perform_passthru,
579 .ecc = ccp_perform_ecc,
580 .sballoc = ccp_alloc_ksb,
581 .sbfree = ccp_free_ksb,
582 .init = ccp_init,
583 .destroy = ccp_destroy,
584 .get_free_slots = ccp_get_free_slots,
585 .irqhandler = ccp_irq_handler,
586 };
587
588 const struct ccp_vdata ccpv3 = {
589 .version = CCP_VERSION(3, 0),
590 .setup = NULL,
591 .perform = &ccp3_actions,
592 .bar = 2,
593 .offset = 0x20000,
594 };