]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/crypto/ccp/ccp-dev-v5.c
b10d2d2075cbd86dbcb7e1403dddb7814c6cfe2f
[mirror_ubuntu-artful-kernel.git] / drivers / crypto / ccp / ccp-dev-v5.c
1 /*
2 * AMD Cryptographic Coprocessor (CCP) driver
3 *
4 * Copyright (C) 2016 Advanced Micro Devices, Inc.
5 *
6 * Author: Gary R Hook <gary.hook@amd.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/pci.h>
16 #include <linux/kthread.h>
17 #include <linux/debugfs.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/interrupt.h>
20 #include <linux/compiler.h>
21 #include <linux/ccp.h>
22
23 #include "ccp-dev.h"
24
25 /* Allocate the requested number of contiguous LSB slots
26 * from the LSB bitmap. Look in the private range for this
27 * queue first; failing that, check the public area.
28 * If no space is available, wait around.
29 * Return: first slot number
30 */
31 static u32 ccp_lsb_alloc(struct ccp_cmd_queue *cmd_q, unsigned int count)
32 {
33 struct ccp_device *ccp;
34 int start;
35
36 /* First look at the map for the queue */
37 if (cmd_q->lsb >= 0) {
38 start = (u32)bitmap_find_next_zero_area(cmd_q->lsbmap,
39 LSB_SIZE,
40 0, count, 0);
41 if (start < LSB_SIZE) {
42 bitmap_set(cmd_q->lsbmap, start, count);
43 return start + cmd_q->lsb * LSB_SIZE;
44 }
45 }
46
47 /* No joy; try to get an entry from the shared blocks */
48 ccp = cmd_q->ccp;
49 for (;;) {
50 mutex_lock(&ccp->sb_mutex);
51
52 start = (u32)bitmap_find_next_zero_area(ccp->lsbmap,
53 MAX_LSB_CNT * LSB_SIZE,
54 0,
55 count, 0);
56 if (start <= MAX_LSB_CNT * LSB_SIZE) {
57 bitmap_set(ccp->lsbmap, start, count);
58
59 mutex_unlock(&ccp->sb_mutex);
60 return start;
61 }
62
63 ccp->sb_avail = 0;
64
65 mutex_unlock(&ccp->sb_mutex);
66
67 /* Wait for KSB entries to become available */
68 if (wait_event_interruptible(ccp->sb_queue, ccp->sb_avail))
69 return 0;
70 }
71 }
72
73 /* Free a number of LSB slots from the bitmap, starting at
74 * the indicated starting slot number.
75 */
76 static void ccp_lsb_free(struct ccp_cmd_queue *cmd_q, unsigned int start,
77 unsigned int count)
78 {
79 if (!start)
80 return;
81
82 if (cmd_q->lsb == start) {
83 /* An entry from the private LSB */
84 bitmap_clear(cmd_q->lsbmap, start, count);
85 } else {
86 /* From the shared LSBs */
87 struct ccp_device *ccp = cmd_q->ccp;
88
89 mutex_lock(&ccp->sb_mutex);
90 bitmap_clear(ccp->lsbmap, start, count);
91 ccp->sb_avail = 1;
92 mutex_unlock(&ccp->sb_mutex);
93 wake_up_interruptible_all(&ccp->sb_queue);
94 }
95 }
96
97 /* CCP version 5: Union to define the function field (cmd_reg1/dword0) */
98 union ccp_function {
99 struct {
100 u16 size:7;
101 u16 encrypt:1;
102 u16 mode:5;
103 u16 type:2;
104 } aes;
105 struct {
106 u16 size:7;
107 u16 encrypt:1;
108 u16 rsvd:5;
109 u16 type:2;
110 } aes_xts;
111 struct {
112 u16 size:7;
113 u16 encrypt:1;
114 u16 mode:5;
115 u16 type:2;
116 } des3;
117 struct {
118 u16 rsvd1:10;
119 u16 type:4;
120 u16 rsvd2:1;
121 } sha;
122 struct {
123 u16 mode:3;
124 u16 size:12;
125 } rsa;
126 struct {
127 u16 byteswap:2;
128 u16 bitwise:3;
129 u16 reflect:2;
130 u16 rsvd:8;
131 } pt;
132 struct {
133 u16 rsvd:13;
134 } zlib;
135 struct {
136 u16 size:10;
137 u16 type:2;
138 u16 mode:3;
139 } ecc;
140 u16 raw;
141 };
142
143 #define CCP_AES_SIZE(p) ((p)->aes.size)
144 #define CCP_AES_ENCRYPT(p) ((p)->aes.encrypt)
145 #define CCP_AES_MODE(p) ((p)->aes.mode)
146 #define CCP_AES_TYPE(p) ((p)->aes.type)
147 #define CCP_XTS_SIZE(p) ((p)->aes_xts.size)
148 #define CCP_XTS_ENCRYPT(p) ((p)->aes_xts.encrypt)
149 #define CCP_DES3_SIZE(p) ((p)->des3.size)
150 #define CCP_DES3_ENCRYPT(p) ((p)->des3.encrypt)
151 #define CCP_DES3_MODE(p) ((p)->des3.mode)
152 #define CCP_DES3_TYPE(p) ((p)->des3.type)
153 #define CCP_SHA_TYPE(p) ((p)->sha.type)
154 #define CCP_RSA_SIZE(p) ((p)->rsa.size)
155 #define CCP_PT_BYTESWAP(p) ((p)->pt.byteswap)
156 #define CCP_PT_BITWISE(p) ((p)->pt.bitwise)
157 #define CCP_ECC_MODE(p) ((p)->ecc.mode)
158 #define CCP_ECC_AFFINE(p) ((p)->ecc.one)
159
160 /* Word 0 */
161 #define CCP5_CMD_DW0(p) ((p)->dw0)
162 #define CCP5_CMD_SOC(p) (CCP5_CMD_DW0(p).soc)
163 #define CCP5_CMD_IOC(p) (CCP5_CMD_DW0(p).ioc)
164 #define CCP5_CMD_INIT(p) (CCP5_CMD_DW0(p).init)
165 #define CCP5_CMD_EOM(p) (CCP5_CMD_DW0(p).eom)
166 #define CCP5_CMD_FUNCTION(p) (CCP5_CMD_DW0(p).function)
167 #define CCP5_CMD_ENGINE(p) (CCP5_CMD_DW0(p).engine)
168 #define CCP5_CMD_PROT(p) (CCP5_CMD_DW0(p).prot)
169
170 /* Word 1 */
171 #define CCP5_CMD_DW1(p) ((p)->length)
172 #define CCP5_CMD_LEN(p) (CCP5_CMD_DW1(p))
173
174 /* Word 2 */
175 #define CCP5_CMD_DW2(p) ((p)->src_lo)
176 #define CCP5_CMD_SRC_LO(p) (CCP5_CMD_DW2(p))
177
178 /* Word 3 */
179 #define CCP5_CMD_DW3(p) ((p)->dw3)
180 #define CCP5_CMD_SRC_MEM(p) ((p)->dw3.src_mem)
181 #define CCP5_CMD_SRC_HI(p) ((p)->dw3.src_hi)
182 #define CCP5_CMD_LSB_ID(p) ((p)->dw3.lsb_cxt_id)
183 #define CCP5_CMD_FIX_SRC(p) ((p)->dw3.fixed)
184
185 /* Words 4/5 */
186 #define CCP5_CMD_DW4(p) ((p)->dw4)
187 #define CCP5_CMD_DST_LO(p) (CCP5_CMD_DW4(p).dst_lo)
188 #define CCP5_CMD_DW5(p) ((p)->dw5.fields.dst_hi)
189 #define CCP5_CMD_DST_HI(p) (CCP5_CMD_DW5(p))
190 #define CCP5_CMD_DST_MEM(p) ((p)->dw5.fields.dst_mem)
191 #define CCP5_CMD_FIX_DST(p) ((p)->dw5.fields.fixed)
192 #define CCP5_CMD_SHA_LO(p) ((p)->dw4.sha_len_lo)
193 #define CCP5_CMD_SHA_HI(p) ((p)->dw5.sha_len_hi)
194
195 /* Word 6/7 */
196 #define CCP5_CMD_DW6(p) ((p)->key_lo)
197 #define CCP5_CMD_KEY_LO(p) (CCP5_CMD_DW6(p))
198 #define CCP5_CMD_DW7(p) ((p)->dw7)
199 #define CCP5_CMD_KEY_HI(p) ((p)->dw7.key_hi)
200 #define CCP5_CMD_KEY_MEM(p) ((p)->dw7.key_mem)
201
202 static inline u32 low_address(unsigned long addr)
203 {
204 return (u64)addr & 0x0ffffffff;
205 }
206
207 static inline u32 high_address(unsigned long addr)
208 {
209 return ((u64)addr >> 32) & 0x00000ffff;
210 }
211
212 static unsigned int ccp5_get_free_slots(struct ccp_cmd_queue *cmd_q)
213 {
214 unsigned int head_idx, n;
215 u32 head_lo, queue_start;
216
217 queue_start = low_address(cmd_q->qdma_tail);
218 head_lo = ioread32(cmd_q->reg_head_lo);
219 head_idx = (head_lo - queue_start) / sizeof(struct ccp5_desc);
220
221 n = head_idx + COMMANDS_PER_QUEUE - cmd_q->qidx - 1;
222
223 return n % COMMANDS_PER_QUEUE; /* Always one unused spot */
224 }
225
226 static int ccp5_do_cmd(struct ccp5_desc *desc,
227 struct ccp_cmd_queue *cmd_q)
228 {
229 u32 *mP;
230 __le32 *dP;
231 u32 tail;
232 int i;
233 int ret = 0;
234
235 cmd_q->total_ops++;
236
237 if (CCP5_CMD_SOC(desc)) {
238 CCP5_CMD_IOC(desc) = 1;
239 CCP5_CMD_SOC(desc) = 0;
240 }
241 mutex_lock(&cmd_q->q_mutex);
242
243 mP = (u32 *) &cmd_q->qbase[cmd_q->qidx];
244 dP = (__le32 *) desc;
245 for (i = 0; i < 8; i++)
246 mP[i] = cpu_to_le32(dP[i]); /* handle endianness */
247
248 cmd_q->qidx = (cmd_q->qidx + 1) % COMMANDS_PER_QUEUE;
249
250 /* The data used by this command must be flushed to memory */
251 wmb();
252
253 /* Write the new tail address back to the queue register */
254 tail = low_address(cmd_q->qdma_tail + cmd_q->qidx * Q_DESC_SIZE);
255 iowrite32(tail, cmd_q->reg_tail_lo);
256
257 /* Turn the queue back on using our cached control register */
258 iowrite32(cmd_q->qcontrol | CMD5_Q_RUN, cmd_q->reg_control);
259 mutex_unlock(&cmd_q->q_mutex);
260
261 if (CCP5_CMD_IOC(desc)) {
262 /* Wait for the job to complete */
263 ret = wait_event_interruptible(cmd_q->int_queue,
264 cmd_q->int_rcvd);
265 if (ret || cmd_q->cmd_error) {
266 /* Log the error and flush the queue by
267 * moving the head pointer
268 */
269 if (cmd_q->cmd_error)
270 ccp_log_error(cmd_q->ccp,
271 cmd_q->cmd_error);
272 iowrite32(tail, cmd_q->reg_head_lo);
273 if (!ret)
274 ret = -EIO;
275 }
276 cmd_q->int_rcvd = 0;
277 }
278
279 return ret;
280 }
281
282 static int ccp5_perform_aes(struct ccp_op *op)
283 {
284 struct ccp5_desc desc;
285 union ccp_function function;
286 u32 key_addr = op->sb_key * LSB_ITEM_SIZE;
287
288 op->cmd_q->total_aes_ops++;
289
290 /* Zero out all the fields of the command desc */
291 memset(&desc, 0, Q_DESC_SIZE);
292
293 CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_AES;
294
295 CCP5_CMD_SOC(&desc) = op->soc;
296 CCP5_CMD_IOC(&desc) = 1;
297 CCP5_CMD_INIT(&desc) = op->init;
298 CCP5_CMD_EOM(&desc) = op->eom;
299 CCP5_CMD_PROT(&desc) = 0;
300
301 function.raw = 0;
302 CCP_AES_ENCRYPT(&function) = op->u.aes.action;
303 CCP_AES_MODE(&function) = op->u.aes.mode;
304 CCP_AES_TYPE(&function) = op->u.aes.type;
305 CCP_AES_SIZE(&function) = op->u.aes.size;
306
307 CCP5_CMD_FUNCTION(&desc) = function.raw;
308
309 CCP5_CMD_LEN(&desc) = op->src.u.dma.length;
310
311 CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
312 CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
313 CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
314
315 CCP5_CMD_DST_LO(&desc) = ccp_addr_lo(&op->dst.u.dma);
316 CCP5_CMD_DST_HI(&desc) = ccp_addr_hi(&op->dst.u.dma);
317 CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
318
319 CCP5_CMD_KEY_LO(&desc) = lower_32_bits(key_addr);
320 CCP5_CMD_KEY_HI(&desc) = 0;
321 CCP5_CMD_KEY_MEM(&desc) = CCP_MEMTYPE_SB;
322 CCP5_CMD_LSB_ID(&desc) = op->sb_ctx;
323
324 return ccp5_do_cmd(&desc, op->cmd_q);
325 }
326
327 static int ccp5_perform_xts_aes(struct ccp_op *op)
328 {
329 struct ccp5_desc desc;
330 union ccp_function function;
331 u32 key_addr = op->sb_key * LSB_ITEM_SIZE;
332
333 op->cmd_q->total_xts_aes_ops++;
334
335 /* Zero out all the fields of the command desc */
336 memset(&desc, 0, Q_DESC_SIZE);
337
338 CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_XTS_AES_128;
339
340 CCP5_CMD_SOC(&desc) = op->soc;
341 CCP5_CMD_IOC(&desc) = 1;
342 CCP5_CMD_INIT(&desc) = op->init;
343 CCP5_CMD_EOM(&desc) = op->eom;
344 CCP5_CMD_PROT(&desc) = 0;
345
346 function.raw = 0;
347 CCP_XTS_ENCRYPT(&function) = op->u.xts.action;
348 CCP_XTS_SIZE(&function) = op->u.xts.unit_size;
349 CCP5_CMD_FUNCTION(&desc) = function.raw;
350
351 CCP5_CMD_LEN(&desc) = op->src.u.dma.length;
352
353 CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
354 CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
355 CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
356
357 CCP5_CMD_DST_LO(&desc) = ccp_addr_lo(&op->dst.u.dma);
358 CCP5_CMD_DST_HI(&desc) = ccp_addr_hi(&op->dst.u.dma);
359 CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
360
361 CCP5_CMD_KEY_LO(&desc) = lower_32_bits(key_addr);
362 CCP5_CMD_KEY_HI(&desc) = 0;
363 CCP5_CMD_KEY_MEM(&desc) = CCP_MEMTYPE_SB;
364 CCP5_CMD_LSB_ID(&desc) = op->sb_ctx;
365
366 return ccp5_do_cmd(&desc, op->cmd_q);
367 }
368
369 static int ccp5_perform_sha(struct ccp_op *op)
370 {
371 struct ccp5_desc desc;
372 union ccp_function function;
373
374 op->cmd_q->total_sha_ops++;
375
376 /* Zero out all the fields of the command desc */
377 memset(&desc, 0, Q_DESC_SIZE);
378
379 CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_SHA;
380
381 CCP5_CMD_SOC(&desc) = op->soc;
382 CCP5_CMD_IOC(&desc) = 1;
383 CCP5_CMD_INIT(&desc) = 1;
384 CCP5_CMD_EOM(&desc) = op->eom;
385 CCP5_CMD_PROT(&desc) = 0;
386
387 function.raw = 0;
388 CCP_SHA_TYPE(&function) = op->u.sha.type;
389 CCP5_CMD_FUNCTION(&desc) = function.raw;
390
391 CCP5_CMD_LEN(&desc) = op->src.u.dma.length;
392
393 CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
394 CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
395 CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
396
397 CCP5_CMD_LSB_ID(&desc) = op->sb_ctx;
398
399 if (op->eom) {
400 CCP5_CMD_SHA_LO(&desc) = lower_32_bits(op->u.sha.msg_bits);
401 CCP5_CMD_SHA_HI(&desc) = upper_32_bits(op->u.sha.msg_bits);
402 } else {
403 CCP5_CMD_SHA_LO(&desc) = 0;
404 CCP5_CMD_SHA_HI(&desc) = 0;
405 }
406
407 return ccp5_do_cmd(&desc, op->cmd_q);
408 }
409
410 static int ccp5_perform_des3(struct ccp_op *op)
411 {
412 struct ccp5_desc desc;
413 union ccp_function function;
414 u32 key_addr = op->sb_key * LSB_ITEM_SIZE;
415
416 op->cmd_q->total_3des_ops++;
417
418 /* Zero out all the fields of the command desc */
419 memset(&desc, 0, sizeof(struct ccp5_desc));
420
421 CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_DES3;
422
423 CCP5_CMD_SOC(&desc) = op->soc;
424 CCP5_CMD_IOC(&desc) = 1;
425 CCP5_CMD_INIT(&desc) = op->init;
426 CCP5_CMD_EOM(&desc) = op->eom;
427 CCP5_CMD_PROT(&desc) = 0;
428
429 function.raw = 0;
430 CCP_DES3_ENCRYPT(&function) = op->u.des3.action;
431 CCP_DES3_MODE(&function) = op->u.des3.mode;
432 CCP_DES3_TYPE(&function) = op->u.des3.type;
433 CCP5_CMD_FUNCTION(&desc) = function.raw;
434
435 CCP5_CMD_LEN(&desc) = op->src.u.dma.length;
436
437 CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
438 CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
439 CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
440
441 CCP5_CMD_DST_LO(&desc) = ccp_addr_lo(&op->dst.u.dma);
442 CCP5_CMD_DST_HI(&desc) = ccp_addr_hi(&op->dst.u.dma);
443 CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
444
445 CCP5_CMD_KEY_LO(&desc) = lower_32_bits(key_addr);
446 CCP5_CMD_KEY_HI(&desc) = 0;
447 CCP5_CMD_KEY_MEM(&desc) = CCP_MEMTYPE_SB;
448 CCP5_CMD_LSB_ID(&desc) = op->sb_ctx;
449
450 return ccp5_do_cmd(&desc, op->cmd_q);
451 }
452
453 static int ccp5_perform_rsa(struct ccp_op *op)
454 {
455 struct ccp5_desc desc;
456 union ccp_function function;
457
458 op->cmd_q->total_rsa_ops++;
459
460 /* Zero out all the fields of the command desc */
461 memset(&desc, 0, Q_DESC_SIZE);
462
463 CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_RSA;
464
465 CCP5_CMD_SOC(&desc) = op->soc;
466 CCP5_CMD_IOC(&desc) = 1;
467 CCP5_CMD_INIT(&desc) = 0;
468 CCP5_CMD_EOM(&desc) = 1;
469 CCP5_CMD_PROT(&desc) = 0;
470
471 function.raw = 0;
472 CCP_RSA_SIZE(&function) = op->u.rsa.mod_size >> 3;
473 CCP5_CMD_FUNCTION(&desc) = function.raw;
474
475 CCP5_CMD_LEN(&desc) = op->u.rsa.input_len;
476
477 /* Source is from external memory */
478 CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
479 CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
480 CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
481
482 /* Destination is in external memory */
483 CCP5_CMD_DST_LO(&desc) = ccp_addr_lo(&op->dst.u.dma);
484 CCP5_CMD_DST_HI(&desc) = ccp_addr_hi(&op->dst.u.dma);
485 CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
486
487 /* Exponent is in LSB memory */
488 CCP5_CMD_KEY_LO(&desc) = op->sb_key * LSB_ITEM_SIZE;
489 CCP5_CMD_KEY_HI(&desc) = 0;
490 CCP5_CMD_KEY_MEM(&desc) = CCP_MEMTYPE_SB;
491
492 return ccp5_do_cmd(&desc, op->cmd_q);
493 }
494
495 static int ccp5_perform_passthru(struct ccp_op *op)
496 {
497 struct ccp5_desc desc;
498 union ccp_function function;
499 struct ccp_dma_info *saddr = &op->src.u.dma;
500 struct ccp_dma_info *daddr = &op->dst.u.dma;
501
502
503 op->cmd_q->total_pt_ops++;
504
505 memset(&desc, 0, Q_DESC_SIZE);
506
507 CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_PASSTHRU;
508
509 CCP5_CMD_SOC(&desc) = 0;
510 CCP5_CMD_IOC(&desc) = 1;
511 CCP5_CMD_INIT(&desc) = 0;
512 CCP5_CMD_EOM(&desc) = op->eom;
513 CCP5_CMD_PROT(&desc) = 0;
514
515 function.raw = 0;
516 CCP_PT_BYTESWAP(&function) = op->u.passthru.byte_swap;
517 CCP_PT_BITWISE(&function) = op->u.passthru.bit_mod;
518 CCP5_CMD_FUNCTION(&desc) = function.raw;
519
520 /* Length of source data is always 256 bytes */
521 if (op->src.type == CCP_MEMTYPE_SYSTEM)
522 CCP5_CMD_LEN(&desc) = saddr->length;
523 else
524 CCP5_CMD_LEN(&desc) = daddr->length;
525
526 if (op->src.type == CCP_MEMTYPE_SYSTEM) {
527 CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
528 CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
529 CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
530
531 if (op->u.passthru.bit_mod != CCP_PASSTHRU_BITWISE_NOOP)
532 CCP5_CMD_LSB_ID(&desc) = op->sb_key;
533 } else {
534 u32 key_addr = op->src.u.sb * CCP_SB_BYTES;
535
536 CCP5_CMD_SRC_LO(&desc) = lower_32_bits(key_addr);
537 CCP5_CMD_SRC_HI(&desc) = 0;
538 CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SB;
539 }
540
541 if (op->dst.type == CCP_MEMTYPE_SYSTEM) {
542 CCP5_CMD_DST_LO(&desc) = ccp_addr_lo(&op->dst.u.dma);
543 CCP5_CMD_DST_HI(&desc) = ccp_addr_hi(&op->dst.u.dma);
544 CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
545 } else {
546 u32 key_addr = op->dst.u.sb * CCP_SB_BYTES;
547
548 CCP5_CMD_DST_LO(&desc) = lower_32_bits(key_addr);
549 CCP5_CMD_DST_HI(&desc) = 0;
550 CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SB;
551 }
552
553 return ccp5_do_cmd(&desc, op->cmd_q);
554 }
555
556 static int ccp5_perform_ecc(struct ccp_op *op)
557 {
558 struct ccp5_desc desc;
559 union ccp_function function;
560
561 op->cmd_q->total_ecc_ops++;
562
563 /* Zero out all the fields of the command desc */
564 memset(&desc, 0, Q_DESC_SIZE);
565
566 CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_ECC;
567
568 CCP5_CMD_SOC(&desc) = 0;
569 CCP5_CMD_IOC(&desc) = 1;
570 CCP5_CMD_INIT(&desc) = 0;
571 CCP5_CMD_EOM(&desc) = 1;
572 CCP5_CMD_PROT(&desc) = 0;
573
574 function.raw = 0;
575 function.ecc.mode = op->u.ecc.function;
576 CCP5_CMD_FUNCTION(&desc) = function.raw;
577
578 CCP5_CMD_LEN(&desc) = op->src.u.dma.length;
579
580 CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
581 CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
582 CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
583
584 CCP5_CMD_DST_LO(&desc) = ccp_addr_lo(&op->dst.u.dma);
585 CCP5_CMD_DST_HI(&desc) = ccp_addr_hi(&op->dst.u.dma);
586 CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
587
588 return ccp5_do_cmd(&desc, op->cmd_q);
589 }
590
591 static int ccp_find_lsb_regions(struct ccp_cmd_queue *cmd_q, u64 status)
592 {
593 int q_mask = 1 << cmd_q->id;
594 int queues = 0;
595 int j;
596
597 /* Build a bit mask to know which LSBs this queue has access to.
598 * Don't bother with segment 0 as it has special privileges.
599 */
600 for (j = 1; j < MAX_LSB_CNT; j++) {
601 if (status & q_mask)
602 bitmap_set(cmd_q->lsbmask, j, 1);
603 status >>= LSB_REGION_WIDTH;
604 }
605 queues = bitmap_weight(cmd_q->lsbmask, MAX_LSB_CNT);
606 dev_dbg(cmd_q->ccp->dev, "Queue %d can access %d LSB regions\n",
607 cmd_q->id, queues);
608
609 return queues ? 0 : -EINVAL;
610 }
611
612 static int ccp_find_and_assign_lsb_to_q(struct ccp_device *ccp,
613 int lsb_cnt, int n_lsbs,
614 unsigned long *lsb_pub)
615 {
616 DECLARE_BITMAP(qlsb, MAX_LSB_CNT);
617 int bitno;
618 int qlsb_wgt;
619 int i;
620
621 /* For each queue:
622 * If the count of potential LSBs available to a queue matches the
623 * ordinal given to us in lsb_cnt:
624 * Copy the mask of possible LSBs for this queue into "qlsb";
625 * For each bit in qlsb, see if the corresponding bit in the
626 * aggregation mask is set; if so, we have a match.
627 * If we have a match, clear the bit in the aggregation to
628 * mark it as no longer available.
629 * If there is no match, clear the bit in qlsb and keep looking.
630 */
631 for (i = 0; i < ccp->cmd_q_count; i++) {
632 struct ccp_cmd_queue *cmd_q = &ccp->cmd_q[i];
633
634 qlsb_wgt = bitmap_weight(cmd_q->lsbmask, MAX_LSB_CNT);
635
636 if (qlsb_wgt == lsb_cnt) {
637 bitmap_copy(qlsb, cmd_q->lsbmask, MAX_LSB_CNT);
638
639 bitno = find_first_bit(qlsb, MAX_LSB_CNT);
640 while (bitno < MAX_LSB_CNT) {
641 if (test_bit(bitno, lsb_pub)) {
642 /* We found an available LSB
643 * that this queue can access
644 */
645 cmd_q->lsb = bitno;
646 bitmap_clear(lsb_pub, bitno, 1);
647 dev_dbg(ccp->dev,
648 "Queue %d gets LSB %d\n",
649 i, bitno);
650 break;
651 }
652 bitmap_clear(qlsb, bitno, 1);
653 bitno = find_first_bit(qlsb, MAX_LSB_CNT);
654 }
655 if (bitno >= MAX_LSB_CNT)
656 return -EINVAL;
657 n_lsbs--;
658 }
659 }
660 return n_lsbs;
661 }
662
663 /* For each queue, from the most- to least-constrained:
664 * find an LSB that can be assigned to the queue. If there are N queues that
665 * can only use M LSBs, where N > M, fail; otherwise, every queue will get a
666 * dedicated LSB. Remaining LSB regions become a shared resource.
667 * If we have fewer LSBs than queues, all LSB regions become shared resources.
668 */
669 static int ccp_assign_lsbs(struct ccp_device *ccp)
670 {
671 DECLARE_BITMAP(lsb_pub, MAX_LSB_CNT);
672 DECLARE_BITMAP(qlsb, MAX_LSB_CNT);
673 int n_lsbs = 0;
674 int bitno;
675 int i, lsb_cnt;
676 int rc = 0;
677
678 bitmap_zero(lsb_pub, MAX_LSB_CNT);
679
680 /* Create an aggregate bitmap to get a total count of available LSBs */
681 for (i = 0; i < ccp->cmd_q_count; i++)
682 bitmap_or(lsb_pub,
683 lsb_pub, ccp->cmd_q[i].lsbmask,
684 MAX_LSB_CNT);
685
686 n_lsbs = bitmap_weight(lsb_pub, MAX_LSB_CNT);
687
688 if (n_lsbs >= ccp->cmd_q_count) {
689 /* We have enough LSBS to give every queue a private LSB.
690 * Brute force search to start with the queues that are more
691 * constrained in LSB choice. When an LSB is privately
692 * assigned, it is removed from the public mask.
693 * This is an ugly N squared algorithm with some optimization.
694 */
695 for (lsb_cnt = 1;
696 n_lsbs && (lsb_cnt <= MAX_LSB_CNT);
697 lsb_cnt++) {
698 rc = ccp_find_and_assign_lsb_to_q(ccp, lsb_cnt, n_lsbs,
699 lsb_pub);
700 if (rc < 0)
701 return -EINVAL;
702 n_lsbs = rc;
703 }
704 }
705
706 rc = 0;
707 /* What's left of the LSBs, according to the public mask, now become
708 * shared. Any zero bits in the lsb_pub mask represent an LSB region
709 * that can't be used as a shared resource, so mark the LSB slots for
710 * them as "in use".
711 */
712 bitmap_copy(qlsb, lsb_pub, MAX_LSB_CNT);
713
714 bitno = find_first_zero_bit(qlsb, MAX_LSB_CNT);
715 while (bitno < MAX_LSB_CNT) {
716 bitmap_set(ccp->lsbmap, bitno * LSB_SIZE, LSB_SIZE);
717 bitmap_set(qlsb, bitno, 1);
718 bitno = find_first_zero_bit(qlsb, MAX_LSB_CNT);
719 }
720
721 return rc;
722 }
723
724 static void ccp5_disable_queue_interrupts(struct ccp_device *ccp)
725 {
726 unsigned int i;
727
728 for (i = 0; i < ccp->cmd_q_count; i++)
729 iowrite32(0x0, ccp->cmd_q[i].reg_int_enable);
730 }
731
732 static void ccp5_enable_queue_interrupts(struct ccp_device *ccp)
733 {
734 unsigned int i;
735
736 for (i = 0; i < ccp->cmd_q_count; i++)
737 iowrite32(SUPPORTED_INTERRUPTS, ccp->cmd_q[i].reg_int_enable);
738 }
739
740 static void ccp5_irq_bh(unsigned long data)
741 {
742 struct ccp_device *ccp = (struct ccp_device *)data;
743 u32 status;
744 unsigned int i;
745
746 for (i = 0; i < ccp->cmd_q_count; i++) {
747 struct ccp_cmd_queue *cmd_q = &ccp->cmd_q[i];
748
749 status = ioread32(cmd_q->reg_interrupt_status);
750
751 if (status) {
752 cmd_q->int_status = status;
753 cmd_q->q_status = ioread32(cmd_q->reg_status);
754 cmd_q->q_int_status = ioread32(cmd_q->reg_int_status);
755
756 /* On error, only save the first error value */
757 if ((status & INT_ERROR) && !cmd_q->cmd_error)
758 cmd_q->cmd_error = CMD_Q_ERROR(cmd_q->q_status);
759
760 cmd_q->int_rcvd = 1;
761
762 /* Acknowledge the interrupt and wake the kthread */
763 iowrite32(status, cmd_q->reg_interrupt_status);
764 wake_up_interruptible(&cmd_q->int_queue);
765 }
766 }
767 ccp5_enable_queue_interrupts(ccp);
768 }
769
770 static irqreturn_t ccp5_irq_handler(int irq, void *data)
771 {
772 struct device *dev = data;
773 struct ccp_device *ccp = dev_get_drvdata(dev);
774
775 ccp5_disable_queue_interrupts(ccp);
776 ccp->total_interrupts++;
777 if (ccp->use_tasklet)
778 tasklet_schedule(&ccp->irq_tasklet);
779 else
780 ccp5_irq_bh((unsigned long)ccp);
781 return IRQ_HANDLED;
782 }
783
784 static int ccp5_init(struct ccp_device *ccp)
785 {
786 struct device *dev = ccp->dev;
787 struct ccp_cmd_queue *cmd_q;
788 struct dma_pool *dma_pool;
789 char dma_pool_name[MAX_DMAPOOL_NAME_LEN];
790 unsigned int qmr, qim, i;
791 u64 status;
792 u32 status_lo, status_hi;
793 int ret;
794
795 /* Find available queues */
796 qim = 0;
797 qmr = ioread32(ccp->io_regs + Q_MASK_REG);
798 for (i = 0; i < MAX_HW_QUEUES; i++) {
799
800 if (!(qmr & (1 << i)))
801 continue;
802
803 /* Allocate a dma pool for this queue */
804 snprintf(dma_pool_name, sizeof(dma_pool_name), "%s_q%d",
805 ccp->name, i);
806 dma_pool = dma_pool_create(dma_pool_name, dev,
807 CCP_DMAPOOL_MAX_SIZE,
808 CCP_DMAPOOL_ALIGN, 0);
809 if (!dma_pool) {
810 dev_err(dev, "unable to allocate dma pool\n");
811 ret = -ENOMEM;
812 }
813
814 cmd_q = &ccp->cmd_q[ccp->cmd_q_count];
815 ccp->cmd_q_count++;
816
817 cmd_q->ccp = ccp;
818 cmd_q->id = i;
819 cmd_q->dma_pool = dma_pool;
820 mutex_init(&cmd_q->q_mutex);
821
822 /* Page alignment satisfies our needs for N <= 128 */
823 BUILD_BUG_ON(COMMANDS_PER_QUEUE > 128);
824 cmd_q->qsize = Q_SIZE(Q_DESC_SIZE);
825 cmd_q->qbase = dma_zalloc_coherent(dev, cmd_q->qsize,
826 &cmd_q->qbase_dma,
827 GFP_KERNEL);
828 if (!cmd_q->qbase) {
829 dev_err(dev, "unable to allocate command queue\n");
830 ret = -ENOMEM;
831 goto e_pool;
832 }
833
834 cmd_q->qidx = 0;
835 /* Preset some register values and masks that are queue
836 * number dependent
837 */
838 cmd_q->reg_control = ccp->io_regs +
839 CMD5_Q_STATUS_INCR * (i + 1);
840 cmd_q->reg_tail_lo = cmd_q->reg_control + CMD5_Q_TAIL_LO_BASE;
841 cmd_q->reg_head_lo = cmd_q->reg_control + CMD5_Q_HEAD_LO_BASE;
842 cmd_q->reg_int_enable = cmd_q->reg_control +
843 CMD5_Q_INT_ENABLE_BASE;
844 cmd_q->reg_interrupt_status = cmd_q->reg_control +
845 CMD5_Q_INTERRUPT_STATUS_BASE;
846 cmd_q->reg_status = cmd_q->reg_control + CMD5_Q_STATUS_BASE;
847 cmd_q->reg_int_status = cmd_q->reg_control +
848 CMD5_Q_INT_STATUS_BASE;
849 cmd_q->reg_dma_status = cmd_q->reg_control +
850 CMD5_Q_DMA_STATUS_BASE;
851 cmd_q->reg_dma_read_status = cmd_q->reg_control +
852 CMD5_Q_DMA_READ_STATUS_BASE;
853 cmd_q->reg_dma_write_status = cmd_q->reg_control +
854 CMD5_Q_DMA_WRITE_STATUS_BASE;
855
856 init_waitqueue_head(&cmd_q->int_queue);
857
858 dev_dbg(dev, "queue #%u available\n", i);
859 }
860
861 if (ccp->cmd_q_count == 0) {
862 dev_notice(dev, "no command queues available\n");
863 ret = -EIO;
864 goto e_pool;
865 }
866
867 /* Turn off the queues and disable interrupts until ready */
868 ccp5_disable_queue_interrupts(ccp);
869 for (i = 0; i < ccp->cmd_q_count; i++) {
870 cmd_q = &ccp->cmd_q[i];
871
872 cmd_q->qcontrol = 0; /* Start with nothing */
873 iowrite32(cmd_q->qcontrol, cmd_q->reg_control);
874
875 ioread32(cmd_q->reg_int_status);
876 ioread32(cmd_q->reg_status);
877
878 /* Clear the interrupt status */
879 iowrite32(SUPPORTED_INTERRUPTS, cmd_q->reg_interrupt_status);
880 }
881
882 dev_dbg(dev, "Requesting an IRQ...\n");
883 /* Request an irq */
884 ret = ccp->get_irq(ccp);
885 if (ret) {
886 dev_err(dev, "unable to allocate an IRQ\n");
887 goto e_pool;
888 }
889 /* Initialize the ISR tasklet */
890 if (ccp->use_tasklet)
891 tasklet_init(&ccp->irq_tasklet, ccp5_irq_bh,
892 (unsigned long)ccp);
893
894 dev_dbg(dev, "Loading LSB map...\n");
895 /* Copy the private LSB mask to the public registers */
896 status_lo = ioread32(ccp->io_regs + LSB_PRIVATE_MASK_LO_OFFSET);
897 status_hi = ioread32(ccp->io_regs + LSB_PRIVATE_MASK_HI_OFFSET);
898 iowrite32(status_lo, ccp->io_regs + LSB_PUBLIC_MASK_LO_OFFSET);
899 iowrite32(status_hi, ccp->io_regs + LSB_PUBLIC_MASK_HI_OFFSET);
900 status = ((u64)status_hi<<30) | (u64)status_lo;
901
902 dev_dbg(dev, "Configuring virtual queues...\n");
903 /* Configure size of each virtual queue accessible to host */
904 for (i = 0; i < ccp->cmd_q_count; i++) {
905 u32 dma_addr_lo;
906 u32 dma_addr_hi;
907
908 cmd_q = &ccp->cmd_q[i];
909
910 cmd_q->qcontrol &= ~(CMD5_Q_SIZE << CMD5_Q_SHIFT);
911 cmd_q->qcontrol |= QUEUE_SIZE_VAL << CMD5_Q_SHIFT;
912
913 cmd_q->qdma_tail = cmd_q->qbase_dma;
914 dma_addr_lo = low_address(cmd_q->qdma_tail);
915 iowrite32((u32)dma_addr_lo, cmd_q->reg_tail_lo);
916 iowrite32((u32)dma_addr_lo, cmd_q->reg_head_lo);
917
918 dma_addr_hi = high_address(cmd_q->qdma_tail);
919 cmd_q->qcontrol |= (dma_addr_hi << 16);
920 iowrite32(cmd_q->qcontrol, cmd_q->reg_control);
921
922 /* Find the LSB regions accessible to the queue */
923 ccp_find_lsb_regions(cmd_q, status);
924 cmd_q->lsb = -1; /* Unassigned value */
925 }
926
927 dev_dbg(dev, "Assigning LSBs...\n");
928 ret = ccp_assign_lsbs(ccp);
929 if (ret) {
930 dev_err(dev, "Unable to assign LSBs (%d)\n", ret);
931 goto e_irq;
932 }
933
934 /* Optimization: pre-allocate LSB slots for each queue */
935 for (i = 0; i < ccp->cmd_q_count; i++) {
936 ccp->cmd_q[i].sb_key = ccp_lsb_alloc(&ccp->cmd_q[i], 2);
937 ccp->cmd_q[i].sb_ctx = ccp_lsb_alloc(&ccp->cmd_q[i], 2);
938 }
939
940 dev_dbg(dev, "Starting threads...\n");
941 /* Create a kthread for each queue */
942 for (i = 0; i < ccp->cmd_q_count; i++) {
943 struct task_struct *kthread;
944
945 cmd_q = &ccp->cmd_q[i];
946
947 kthread = kthread_create(ccp_cmd_queue_thread, cmd_q,
948 "%s-q%u", ccp->name, cmd_q->id);
949 if (IS_ERR(kthread)) {
950 dev_err(dev, "error creating queue thread (%ld)\n",
951 PTR_ERR(kthread));
952 ret = PTR_ERR(kthread);
953 goto e_kthread;
954 }
955
956 cmd_q->kthread = kthread;
957 wake_up_process(kthread);
958 }
959
960 dev_dbg(dev, "Enabling interrupts...\n");
961 ccp5_enable_queue_interrupts(ccp);
962
963 dev_dbg(dev, "Registering device...\n");
964 /* Put this on the unit list to make it available */
965 ccp_add_device(ccp);
966
967 ret = ccp_register_rng(ccp);
968 if (ret)
969 goto e_kthread;
970
971 /* Register the DMA engine support */
972 ret = ccp_dmaengine_register(ccp);
973 if (ret)
974 goto e_hwrng;
975
976 /* Set up debugfs entries */
977 ccp5_debugfs_setup(ccp);
978
979 return 0;
980
981 e_hwrng:
982 ccp_unregister_rng(ccp);
983
984 e_kthread:
985 for (i = 0; i < ccp->cmd_q_count; i++)
986 if (ccp->cmd_q[i].kthread)
987 kthread_stop(ccp->cmd_q[i].kthread);
988
989 e_irq:
990 ccp->free_irq(ccp);
991
992 e_pool:
993 for (i = 0; i < ccp->cmd_q_count; i++)
994 dma_pool_destroy(ccp->cmd_q[i].dma_pool);
995
996 return ret;
997 }
998
999 static void ccp5_destroy(struct ccp_device *ccp)
1000 {
1001 struct device *dev = ccp->dev;
1002 struct ccp_cmd_queue *cmd_q;
1003 struct ccp_cmd *cmd;
1004 unsigned int i;
1005
1006 /* Unregister the DMA engine */
1007 ccp_dmaengine_unregister(ccp);
1008
1009 /* Unregister the RNG */
1010 ccp_unregister_rng(ccp);
1011
1012 /* Remove this device from the list of available units first */
1013 ccp_del_device(ccp);
1014
1015 /* We're in the process of tearing down the entire driver;
1016 * when all the devices are gone clean up debugfs
1017 */
1018 if (ccp_present())
1019 ccp5_debugfs_destroy();
1020
1021 /* Disable and clear interrupts */
1022 ccp5_disable_queue_interrupts(ccp);
1023 for (i = 0; i < ccp->cmd_q_count; i++) {
1024 cmd_q = &ccp->cmd_q[i];
1025
1026 /* Turn off the run bit */
1027 iowrite32(cmd_q->qcontrol & ~CMD5_Q_RUN, cmd_q->reg_control);
1028
1029 /* Clear the interrupt status */
1030 iowrite32(SUPPORTED_INTERRUPTS, cmd_q->reg_interrupt_status);
1031 ioread32(cmd_q->reg_int_status);
1032 ioread32(cmd_q->reg_status);
1033 }
1034
1035 /* Stop the queue kthreads */
1036 for (i = 0; i < ccp->cmd_q_count; i++)
1037 if (ccp->cmd_q[i].kthread)
1038 kthread_stop(ccp->cmd_q[i].kthread);
1039
1040 ccp->free_irq(ccp);
1041
1042 for (i = 0; i < ccp->cmd_q_count; i++) {
1043 cmd_q = &ccp->cmd_q[i];
1044 dma_free_coherent(dev, cmd_q->qsize, cmd_q->qbase,
1045 cmd_q->qbase_dma);
1046 }
1047
1048 /* Flush the cmd and backlog queue */
1049 while (!list_empty(&ccp->cmd)) {
1050 /* Invoke the callback directly with an error code */
1051 cmd = list_first_entry(&ccp->cmd, struct ccp_cmd, entry);
1052 list_del(&cmd->entry);
1053 cmd->callback(cmd->data, -ENODEV);
1054 }
1055 while (!list_empty(&ccp->backlog)) {
1056 /* Invoke the callback directly with an error code */
1057 cmd = list_first_entry(&ccp->backlog, struct ccp_cmd, entry);
1058 list_del(&cmd->entry);
1059 cmd->callback(cmd->data, -ENODEV);
1060 }
1061 }
1062
1063 static void ccp5_config(struct ccp_device *ccp)
1064 {
1065 /* Public side */
1066 iowrite32(0x0, ccp->io_regs + CMD5_REQID_CONFIG_OFFSET);
1067 }
1068
1069 static void ccp5other_config(struct ccp_device *ccp)
1070 {
1071 int i;
1072 u32 rnd;
1073
1074 /* We own all of the queues on the NTB CCP */
1075
1076 iowrite32(0x00012D57, ccp->io_regs + CMD5_TRNG_CTL_OFFSET);
1077 iowrite32(0x00000003, ccp->io_regs + CMD5_CONFIG_0_OFFSET);
1078 for (i = 0; i < 12; i++) {
1079 rnd = ioread32(ccp->io_regs + TRNG_OUT_REG);
1080 iowrite32(rnd, ccp->io_regs + CMD5_AES_MASK_OFFSET);
1081 }
1082
1083 iowrite32(0x0000001F, ccp->io_regs + CMD5_QUEUE_MASK_OFFSET);
1084 iowrite32(0x00005B6D, ccp->io_regs + CMD5_QUEUE_PRIO_OFFSET);
1085 iowrite32(0x00000000, ccp->io_regs + CMD5_CMD_TIMEOUT_OFFSET);
1086
1087 iowrite32(0x3FFFFFFF, ccp->io_regs + LSB_PRIVATE_MASK_LO_OFFSET);
1088 iowrite32(0x000003FF, ccp->io_regs + LSB_PRIVATE_MASK_HI_OFFSET);
1089
1090 iowrite32(0x00108823, ccp->io_regs + CMD5_CLK_GATE_CTL_OFFSET);
1091
1092 ccp5_config(ccp);
1093 }
1094
1095 /* Version 5 adds some function, but is essentially the same as v5 */
1096 static const struct ccp_actions ccp5_actions = {
1097 .aes = ccp5_perform_aes,
1098 .xts_aes = ccp5_perform_xts_aes,
1099 .sha = ccp5_perform_sha,
1100 .des3 = ccp5_perform_des3,
1101 .rsa = ccp5_perform_rsa,
1102 .passthru = ccp5_perform_passthru,
1103 .ecc = ccp5_perform_ecc,
1104 .sballoc = ccp_lsb_alloc,
1105 .sbfree = ccp_lsb_free,
1106 .init = ccp5_init,
1107 .destroy = ccp5_destroy,
1108 .get_free_slots = ccp5_get_free_slots,
1109 .irqhandler = ccp5_irq_handler,
1110 };
1111
1112 const struct ccp_vdata ccpv5a = {
1113 .version = CCP_VERSION(5, 0),
1114 .setup = ccp5_config,
1115 .perform = &ccp5_actions,
1116 .bar = 2,
1117 .offset = 0x0,
1118 };
1119
1120 const struct ccp_vdata ccpv5b = {
1121 .version = CCP_VERSION(5, 0),
1122 .dma_chan_attr = DMA_PRIVATE,
1123 .setup = ccp5other_config,
1124 .perform = &ccp5_actions,
1125 .bar = 2,
1126 .offset = 0x0,
1127 };