]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - drivers/crypto/hifn_795x.c
Merge branch 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-eoan-kernel.git] / drivers / crypto / hifn_795x.c
1 /*
2 * 2007+ Copyright (c) Evgeniy Polyakov <johnpol@2ka.mipt.ru>
3 * All rights reserved.
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/moduleparam.h>
19 #include <linux/mod_devicetable.h>
20 #include <linux/interrupt.h>
21 #include <linux/pci.h>
22 #include <linux/slab.h>
23 #include <linux/delay.h>
24 #include <linux/mm.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/scatterlist.h>
27 #include <linux/highmem.h>
28 #include <linux/crypto.h>
29 #include <linux/hw_random.h>
30 #include <linux/ktime.h>
31
32 #include <crypto/algapi.h>
33 #include <crypto/des.h>
34
35 static char hifn_pll_ref[sizeof("extNNN")] = "ext";
36 module_param_string(hifn_pll_ref, hifn_pll_ref, sizeof(hifn_pll_ref), 0444);
37 MODULE_PARM_DESC(hifn_pll_ref,
38 "PLL reference clock (pci[freq] or ext[freq], default ext)");
39
40 static atomic_t hifn_dev_number;
41
42 #define ACRYPTO_OP_DECRYPT 0
43 #define ACRYPTO_OP_ENCRYPT 1
44 #define ACRYPTO_OP_HMAC 2
45 #define ACRYPTO_OP_RNG 3
46
47 #define ACRYPTO_MODE_ECB 0
48 #define ACRYPTO_MODE_CBC 1
49 #define ACRYPTO_MODE_CFB 2
50 #define ACRYPTO_MODE_OFB 3
51
52 #define ACRYPTO_TYPE_AES_128 0
53 #define ACRYPTO_TYPE_AES_192 1
54 #define ACRYPTO_TYPE_AES_256 2
55 #define ACRYPTO_TYPE_3DES 3
56 #define ACRYPTO_TYPE_DES 4
57
58 #define PCI_VENDOR_ID_HIFN 0x13A3
59 #define PCI_DEVICE_ID_HIFN_7955 0x0020
60 #define PCI_DEVICE_ID_HIFN_7956 0x001d
61
62 /* I/O region sizes */
63
64 #define HIFN_BAR0_SIZE 0x1000
65 #define HIFN_BAR1_SIZE 0x2000
66 #define HIFN_BAR2_SIZE 0x8000
67
68 /* DMA registres */
69
70 #define HIFN_DMA_CRA 0x0C /* DMA Command Ring Address */
71 #define HIFN_DMA_SDRA 0x1C /* DMA Source Data Ring Address */
72 #define HIFN_DMA_RRA 0x2C /* DMA Result Ring Address */
73 #define HIFN_DMA_DDRA 0x3C /* DMA Destination Data Ring Address */
74 #define HIFN_DMA_STCTL 0x40 /* DMA Status and Control */
75 #define HIFN_DMA_INTREN 0x44 /* DMA Interrupt Enable */
76 #define HIFN_DMA_CFG1 0x48 /* DMA Configuration #1 */
77 #define HIFN_DMA_CFG2 0x6C /* DMA Configuration #2 */
78 #define HIFN_CHIP_ID 0x98 /* Chip ID */
79
80 /*
81 * Processing Unit Registers (offset from BASEREG0)
82 */
83 #define HIFN_0_PUDATA 0x00 /* Processing Unit Data */
84 #define HIFN_0_PUCTRL 0x04 /* Processing Unit Control */
85 #define HIFN_0_PUISR 0x08 /* Processing Unit Interrupt Status */
86 #define HIFN_0_PUCNFG 0x0c /* Processing Unit Configuration */
87 #define HIFN_0_PUIER 0x10 /* Processing Unit Interrupt Enable */
88 #define HIFN_0_PUSTAT 0x14 /* Processing Unit Status/Chip ID */
89 #define HIFN_0_FIFOSTAT 0x18 /* FIFO Status */
90 #define HIFN_0_FIFOCNFG 0x1c /* FIFO Configuration */
91 #define HIFN_0_SPACESIZE 0x20 /* Register space size */
92
93 /* Processing Unit Control Register (HIFN_0_PUCTRL) */
94 #define HIFN_PUCTRL_CLRSRCFIFO 0x0010 /* clear source fifo */
95 #define HIFN_PUCTRL_STOP 0x0008 /* stop pu */
96 #define HIFN_PUCTRL_LOCKRAM 0x0004 /* lock ram */
97 #define HIFN_PUCTRL_DMAENA 0x0002 /* enable dma */
98 #define HIFN_PUCTRL_RESET 0x0001 /* Reset processing unit */
99
100 /* Processing Unit Interrupt Status Register (HIFN_0_PUISR) */
101 #define HIFN_PUISR_CMDINVAL 0x8000 /* Invalid command interrupt */
102 #define HIFN_PUISR_DATAERR 0x4000 /* Data error interrupt */
103 #define HIFN_PUISR_SRCFIFO 0x2000 /* Source FIFO ready interrupt */
104 #define HIFN_PUISR_DSTFIFO 0x1000 /* Destination FIFO ready interrupt */
105 #define HIFN_PUISR_DSTOVER 0x0200 /* Destination overrun interrupt */
106 #define HIFN_PUISR_SRCCMD 0x0080 /* Source command interrupt */
107 #define HIFN_PUISR_SRCCTX 0x0040 /* Source context interrupt */
108 #define HIFN_PUISR_SRCDATA 0x0020 /* Source data interrupt */
109 #define HIFN_PUISR_DSTDATA 0x0010 /* Destination data interrupt */
110 #define HIFN_PUISR_DSTRESULT 0x0004 /* Destination result interrupt */
111
112 /* Processing Unit Configuration Register (HIFN_0_PUCNFG) */
113 #define HIFN_PUCNFG_DRAMMASK 0xe000 /* DRAM size mask */
114 #define HIFN_PUCNFG_DSZ_256K 0x0000 /* 256k dram */
115 #define HIFN_PUCNFG_DSZ_512K 0x2000 /* 512k dram */
116 #define HIFN_PUCNFG_DSZ_1M 0x4000 /* 1m dram */
117 #define HIFN_PUCNFG_DSZ_2M 0x6000 /* 2m dram */
118 #define HIFN_PUCNFG_DSZ_4M 0x8000 /* 4m dram */
119 #define HIFN_PUCNFG_DSZ_8M 0xa000 /* 8m dram */
120 #define HIFN_PUNCFG_DSZ_16M 0xc000 /* 16m dram */
121 #define HIFN_PUCNFG_DSZ_32M 0xe000 /* 32m dram */
122 #define HIFN_PUCNFG_DRAMREFRESH 0x1800 /* DRAM refresh rate mask */
123 #define HIFN_PUCNFG_DRFR_512 0x0000 /* 512 divisor of ECLK */
124 #define HIFN_PUCNFG_DRFR_256 0x0800 /* 256 divisor of ECLK */
125 #define HIFN_PUCNFG_DRFR_128 0x1000 /* 128 divisor of ECLK */
126 #define HIFN_PUCNFG_TCALLPHASES 0x0200 /* your guess is as good as mine... */
127 #define HIFN_PUCNFG_TCDRVTOTEM 0x0100 /* your guess is as good as mine... */
128 #define HIFN_PUCNFG_BIGENDIAN 0x0080 /* DMA big endian mode */
129 #define HIFN_PUCNFG_BUS32 0x0040 /* Bus width 32bits */
130 #define HIFN_PUCNFG_BUS16 0x0000 /* Bus width 16 bits */
131 #define HIFN_PUCNFG_CHIPID 0x0020 /* Allow chipid from PUSTAT */
132 #define HIFN_PUCNFG_DRAM 0x0010 /* Context RAM is DRAM */
133 #define HIFN_PUCNFG_SRAM 0x0000 /* Context RAM is SRAM */
134 #define HIFN_PUCNFG_COMPSING 0x0004 /* Enable single compression context */
135 #define HIFN_PUCNFG_ENCCNFG 0x0002 /* Encryption configuration */
136
137 /* Processing Unit Interrupt Enable Register (HIFN_0_PUIER) */
138 #define HIFN_PUIER_CMDINVAL 0x8000 /* Invalid command interrupt */
139 #define HIFN_PUIER_DATAERR 0x4000 /* Data error interrupt */
140 #define HIFN_PUIER_SRCFIFO 0x2000 /* Source FIFO ready interrupt */
141 #define HIFN_PUIER_DSTFIFO 0x1000 /* Destination FIFO ready interrupt */
142 #define HIFN_PUIER_DSTOVER 0x0200 /* Destination overrun interrupt */
143 #define HIFN_PUIER_SRCCMD 0x0080 /* Source command interrupt */
144 #define HIFN_PUIER_SRCCTX 0x0040 /* Source context interrupt */
145 #define HIFN_PUIER_SRCDATA 0x0020 /* Source data interrupt */
146 #define HIFN_PUIER_DSTDATA 0x0010 /* Destination data interrupt */
147 #define HIFN_PUIER_DSTRESULT 0x0004 /* Destination result interrupt */
148
149 /* Processing Unit Status Register/Chip ID (HIFN_0_PUSTAT) */
150 #define HIFN_PUSTAT_CMDINVAL 0x8000 /* Invalid command interrupt */
151 #define HIFN_PUSTAT_DATAERR 0x4000 /* Data error interrupt */
152 #define HIFN_PUSTAT_SRCFIFO 0x2000 /* Source FIFO ready interrupt */
153 #define HIFN_PUSTAT_DSTFIFO 0x1000 /* Destination FIFO ready interrupt */
154 #define HIFN_PUSTAT_DSTOVER 0x0200 /* Destination overrun interrupt */
155 #define HIFN_PUSTAT_SRCCMD 0x0080 /* Source command interrupt */
156 #define HIFN_PUSTAT_SRCCTX 0x0040 /* Source context interrupt */
157 #define HIFN_PUSTAT_SRCDATA 0x0020 /* Source data interrupt */
158 #define HIFN_PUSTAT_DSTDATA 0x0010 /* Destination data interrupt */
159 #define HIFN_PUSTAT_DSTRESULT 0x0004 /* Destination result interrupt */
160 #define HIFN_PUSTAT_CHIPREV 0x00ff /* Chip revision mask */
161 #define HIFN_PUSTAT_CHIPENA 0xff00 /* Chip enabled mask */
162 #define HIFN_PUSTAT_ENA_2 0x1100 /* Level 2 enabled */
163 #define HIFN_PUSTAT_ENA_1 0x1000 /* Level 1 enabled */
164 #define HIFN_PUSTAT_ENA_0 0x3000 /* Level 0 enabled */
165 #define HIFN_PUSTAT_REV_2 0x0020 /* 7751 PT6/2 */
166 #define HIFN_PUSTAT_REV_3 0x0030 /* 7751 PT6/3 */
167
168 /* FIFO Status Register (HIFN_0_FIFOSTAT) */
169 #define HIFN_FIFOSTAT_SRC 0x7f00 /* Source FIFO available */
170 #define HIFN_FIFOSTAT_DST 0x007f /* Destination FIFO available */
171
172 /* FIFO Configuration Register (HIFN_0_FIFOCNFG) */
173 #define HIFN_FIFOCNFG_THRESHOLD 0x0400 /* must be written as 1 */
174
175 /*
176 * DMA Interface Registers (offset from BASEREG1)
177 */
178 #define HIFN_1_DMA_CRAR 0x0c /* DMA Command Ring Address */
179 #define HIFN_1_DMA_SRAR 0x1c /* DMA Source Ring Address */
180 #define HIFN_1_DMA_RRAR 0x2c /* DMA Result Ring Address */
181 #define HIFN_1_DMA_DRAR 0x3c /* DMA Destination Ring Address */
182 #define HIFN_1_DMA_CSR 0x40 /* DMA Status and Control */
183 #define HIFN_1_DMA_IER 0x44 /* DMA Interrupt Enable */
184 #define HIFN_1_DMA_CNFG 0x48 /* DMA Configuration */
185 #define HIFN_1_PLL 0x4c /* 795x: PLL config */
186 #define HIFN_1_7811_RNGENA 0x60 /* 7811: rng enable */
187 #define HIFN_1_7811_RNGCFG 0x64 /* 7811: rng config */
188 #define HIFN_1_7811_RNGDAT 0x68 /* 7811: rng data */
189 #define HIFN_1_7811_RNGSTS 0x6c /* 7811: rng status */
190 #define HIFN_1_7811_MIPSRST 0x94 /* 7811: MIPS reset */
191 #define HIFN_1_REVID 0x98 /* Revision ID */
192 #define HIFN_1_UNLOCK_SECRET1 0xf4
193 #define HIFN_1_UNLOCK_SECRET2 0xfc
194 #define HIFN_1_PUB_RESET 0x204 /* Public/RNG Reset */
195 #define HIFN_1_PUB_BASE 0x300 /* Public Base Address */
196 #define HIFN_1_PUB_OPLEN 0x304 /* Public Operand Length */
197 #define HIFN_1_PUB_OP 0x308 /* Public Operand */
198 #define HIFN_1_PUB_STATUS 0x30c /* Public Status */
199 #define HIFN_1_PUB_IEN 0x310 /* Public Interrupt enable */
200 #define HIFN_1_RNG_CONFIG 0x314 /* RNG config */
201 #define HIFN_1_RNG_DATA 0x318 /* RNG data */
202 #define HIFN_1_PUB_MEM 0x400 /* start of Public key memory */
203 #define HIFN_1_PUB_MEMEND 0xbff /* end of Public key memory */
204
205 /* DMA Status and Control Register (HIFN_1_DMA_CSR) */
206 #define HIFN_DMACSR_D_CTRLMASK 0xc0000000 /* Destinition Ring Control */
207 #define HIFN_DMACSR_D_CTRL_NOP 0x00000000 /* Dest. Control: no-op */
208 #define HIFN_DMACSR_D_CTRL_DIS 0x40000000 /* Dest. Control: disable */
209 #define HIFN_DMACSR_D_CTRL_ENA 0x80000000 /* Dest. Control: enable */
210 #define HIFN_DMACSR_D_ABORT 0x20000000 /* Destinition Ring PCIAbort */
211 #define HIFN_DMACSR_D_DONE 0x10000000 /* Destinition Ring Done */
212 #define HIFN_DMACSR_D_LAST 0x08000000 /* Destinition Ring Last */
213 #define HIFN_DMACSR_D_WAIT 0x04000000 /* Destinition Ring Waiting */
214 #define HIFN_DMACSR_D_OVER 0x02000000 /* Destinition Ring Overflow */
215 #define HIFN_DMACSR_R_CTRL 0x00c00000 /* Result Ring Control */
216 #define HIFN_DMACSR_R_CTRL_NOP 0x00000000 /* Result Control: no-op */
217 #define HIFN_DMACSR_R_CTRL_DIS 0x00400000 /* Result Control: disable */
218 #define HIFN_DMACSR_R_CTRL_ENA 0x00800000 /* Result Control: enable */
219 #define HIFN_DMACSR_R_ABORT 0x00200000 /* Result Ring PCI Abort */
220 #define HIFN_DMACSR_R_DONE 0x00100000 /* Result Ring Done */
221 #define HIFN_DMACSR_R_LAST 0x00080000 /* Result Ring Last */
222 #define HIFN_DMACSR_R_WAIT 0x00040000 /* Result Ring Waiting */
223 #define HIFN_DMACSR_R_OVER 0x00020000 /* Result Ring Overflow */
224 #define HIFN_DMACSR_S_CTRL 0x0000c000 /* Source Ring Control */
225 #define HIFN_DMACSR_S_CTRL_NOP 0x00000000 /* Source Control: no-op */
226 #define HIFN_DMACSR_S_CTRL_DIS 0x00004000 /* Source Control: disable */
227 #define HIFN_DMACSR_S_CTRL_ENA 0x00008000 /* Source Control: enable */
228 #define HIFN_DMACSR_S_ABORT 0x00002000 /* Source Ring PCI Abort */
229 #define HIFN_DMACSR_S_DONE 0x00001000 /* Source Ring Done */
230 #define HIFN_DMACSR_S_LAST 0x00000800 /* Source Ring Last */
231 #define HIFN_DMACSR_S_WAIT 0x00000400 /* Source Ring Waiting */
232 #define HIFN_DMACSR_ILLW 0x00000200 /* Illegal write (7811 only) */
233 #define HIFN_DMACSR_ILLR 0x00000100 /* Illegal read (7811 only) */
234 #define HIFN_DMACSR_C_CTRL 0x000000c0 /* Command Ring Control */
235 #define HIFN_DMACSR_C_CTRL_NOP 0x00000000 /* Command Control: no-op */
236 #define HIFN_DMACSR_C_CTRL_DIS 0x00000040 /* Command Control: disable */
237 #define HIFN_DMACSR_C_CTRL_ENA 0x00000080 /* Command Control: enable */
238 #define HIFN_DMACSR_C_ABORT 0x00000020 /* Command Ring PCI Abort */
239 #define HIFN_DMACSR_C_DONE 0x00000010 /* Command Ring Done */
240 #define HIFN_DMACSR_C_LAST 0x00000008 /* Command Ring Last */
241 #define HIFN_DMACSR_C_WAIT 0x00000004 /* Command Ring Waiting */
242 #define HIFN_DMACSR_PUBDONE 0x00000002 /* Public op done (7951 only) */
243 #define HIFN_DMACSR_ENGINE 0x00000001 /* Command Ring Engine IRQ */
244
245 /* DMA Interrupt Enable Register (HIFN_1_DMA_IER) */
246 #define HIFN_DMAIER_D_ABORT 0x20000000 /* Destination Ring PCIAbort */
247 #define HIFN_DMAIER_D_DONE 0x10000000 /* Destination Ring Done */
248 #define HIFN_DMAIER_D_LAST 0x08000000 /* Destination Ring Last */
249 #define HIFN_DMAIER_D_WAIT 0x04000000 /* Destination Ring Waiting */
250 #define HIFN_DMAIER_D_OVER 0x02000000 /* Destination Ring Overflow */
251 #define HIFN_DMAIER_R_ABORT 0x00200000 /* Result Ring PCI Abort */
252 #define HIFN_DMAIER_R_DONE 0x00100000 /* Result Ring Done */
253 #define HIFN_DMAIER_R_LAST 0x00080000 /* Result Ring Last */
254 #define HIFN_DMAIER_R_WAIT 0x00040000 /* Result Ring Waiting */
255 #define HIFN_DMAIER_R_OVER 0x00020000 /* Result Ring Overflow */
256 #define HIFN_DMAIER_S_ABORT 0x00002000 /* Source Ring PCI Abort */
257 #define HIFN_DMAIER_S_DONE 0x00001000 /* Source Ring Done */
258 #define HIFN_DMAIER_S_LAST 0x00000800 /* Source Ring Last */
259 #define HIFN_DMAIER_S_WAIT 0x00000400 /* Source Ring Waiting */
260 #define HIFN_DMAIER_ILLW 0x00000200 /* Illegal write (7811 only) */
261 #define HIFN_DMAIER_ILLR 0x00000100 /* Illegal read (7811 only) */
262 #define HIFN_DMAIER_C_ABORT 0x00000020 /* Command Ring PCI Abort */
263 #define HIFN_DMAIER_C_DONE 0x00000010 /* Command Ring Done */
264 #define HIFN_DMAIER_C_LAST 0x00000008 /* Command Ring Last */
265 #define HIFN_DMAIER_C_WAIT 0x00000004 /* Command Ring Waiting */
266 #define HIFN_DMAIER_PUBDONE 0x00000002 /* public op done (7951 only) */
267 #define HIFN_DMAIER_ENGINE 0x00000001 /* Engine IRQ */
268
269 /* DMA Configuration Register (HIFN_1_DMA_CNFG) */
270 #define HIFN_DMACNFG_BIGENDIAN 0x10000000 /* big endian mode */
271 #define HIFN_DMACNFG_POLLFREQ 0x00ff0000 /* Poll frequency mask */
272 #define HIFN_DMACNFG_UNLOCK 0x00000800
273 #define HIFN_DMACNFG_POLLINVAL 0x00000700 /* Invalid Poll Scalar */
274 #define HIFN_DMACNFG_LAST 0x00000010 /* Host control LAST bit */
275 #define HIFN_DMACNFG_MODE 0x00000004 /* DMA mode */
276 #define HIFN_DMACNFG_DMARESET 0x00000002 /* DMA Reset # */
277 #define HIFN_DMACNFG_MSTRESET 0x00000001 /* Master Reset # */
278
279 /* PLL configuration register */
280 #define HIFN_PLL_REF_CLK_HBI 0x00000000 /* HBI reference clock */
281 #define HIFN_PLL_REF_CLK_PLL 0x00000001 /* PLL reference clock */
282 #define HIFN_PLL_BP 0x00000002 /* Reference clock bypass */
283 #define HIFN_PLL_PK_CLK_HBI 0x00000000 /* PK engine HBI clock */
284 #define HIFN_PLL_PK_CLK_PLL 0x00000008 /* PK engine PLL clock */
285 #define HIFN_PLL_PE_CLK_HBI 0x00000000 /* PE engine HBI clock */
286 #define HIFN_PLL_PE_CLK_PLL 0x00000010 /* PE engine PLL clock */
287 #define HIFN_PLL_RESERVED_1 0x00000400 /* Reserved bit, must be 1 */
288 #define HIFN_PLL_ND_SHIFT 11 /* Clock multiplier shift */
289 #define HIFN_PLL_ND_MULT_2 0x00000000 /* PLL clock multiplier 2 */
290 #define HIFN_PLL_ND_MULT_4 0x00000800 /* PLL clock multiplier 4 */
291 #define HIFN_PLL_ND_MULT_6 0x00001000 /* PLL clock multiplier 6 */
292 #define HIFN_PLL_ND_MULT_8 0x00001800 /* PLL clock multiplier 8 */
293 #define HIFN_PLL_ND_MULT_10 0x00002000 /* PLL clock multiplier 10 */
294 #define HIFN_PLL_ND_MULT_12 0x00002800 /* PLL clock multiplier 12 */
295 #define HIFN_PLL_IS_1_8 0x00000000 /* charge pump (mult. 1-8) */
296 #define HIFN_PLL_IS_9_12 0x00010000 /* charge pump (mult. 9-12) */
297
298 #define HIFN_PLL_FCK_MAX 266 /* Maximum PLL frequency */
299
300 /* Public key reset register (HIFN_1_PUB_RESET) */
301 #define HIFN_PUBRST_RESET 0x00000001 /* reset public/rng unit */
302
303 /* Public base address register (HIFN_1_PUB_BASE) */
304 #define HIFN_PUBBASE_ADDR 0x00003fff /* base address */
305
306 /* Public operand length register (HIFN_1_PUB_OPLEN) */
307 #define HIFN_PUBOPLEN_MOD_M 0x0000007f /* modulus length mask */
308 #define HIFN_PUBOPLEN_MOD_S 0 /* modulus length shift */
309 #define HIFN_PUBOPLEN_EXP_M 0x0003ff80 /* exponent length mask */
310 #define HIFN_PUBOPLEN_EXP_S 7 /* exponent length shift */
311 #define HIFN_PUBOPLEN_RED_M 0x003c0000 /* reducend length mask */
312 #define HIFN_PUBOPLEN_RED_S 18 /* reducend length shift */
313
314 /* Public operation register (HIFN_1_PUB_OP) */
315 #define HIFN_PUBOP_AOFFSET_M 0x0000007f /* A offset mask */
316 #define HIFN_PUBOP_AOFFSET_S 0 /* A offset shift */
317 #define HIFN_PUBOP_BOFFSET_M 0x00000f80 /* B offset mask */
318 #define HIFN_PUBOP_BOFFSET_S 7 /* B offset shift */
319 #define HIFN_PUBOP_MOFFSET_M 0x0003f000 /* M offset mask */
320 #define HIFN_PUBOP_MOFFSET_S 12 /* M offset shift */
321 #define HIFN_PUBOP_OP_MASK 0x003c0000 /* Opcode: */
322 #define HIFN_PUBOP_OP_NOP 0x00000000 /* NOP */
323 #define HIFN_PUBOP_OP_ADD 0x00040000 /* ADD */
324 #define HIFN_PUBOP_OP_ADDC 0x00080000 /* ADD w/carry */
325 #define HIFN_PUBOP_OP_SUB 0x000c0000 /* SUB */
326 #define HIFN_PUBOP_OP_SUBC 0x00100000 /* SUB w/carry */
327 #define HIFN_PUBOP_OP_MODADD 0x00140000 /* Modular ADD */
328 #define HIFN_PUBOP_OP_MODSUB 0x00180000 /* Modular SUB */
329 #define HIFN_PUBOP_OP_INCA 0x001c0000 /* INC A */
330 #define HIFN_PUBOP_OP_DECA 0x00200000 /* DEC A */
331 #define HIFN_PUBOP_OP_MULT 0x00240000 /* MULT */
332 #define HIFN_PUBOP_OP_MODMULT 0x00280000 /* Modular MULT */
333 #define HIFN_PUBOP_OP_MODRED 0x002c0000 /* Modular RED */
334 #define HIFN_PUBOP_OP_MODEXP 0x00300000 /* Modular EXP */
335
336 /* Public status register (HIFN_1_PUB_STATUS) */
337 #define HIFN_PUBSTS_DONE 0x00000001 /* operation done */
338 #define HIFN_PUBSTS_CARRY 0x00000002 /* carry */
339
340 /* Public interrupt enable register (HIFN_1_PUB_IEN) */
341 #define HIFN_PUBIEN_DONE 0x00000001 /* operation done interrupt */
342
343 /* Random number generator config register (HIFN_1_RNG_CONFIG) */
344 #define HIFN_RNGCFG_ENA 0x00000001 /* enable rng */
345
346 #define HIFN_NAMESIZE 32
347 #define HIFN_MAX_RESULT_ORDER 5
348
349 #define HIFN_D_CMD_RSIZE (24 * 1)
350 #define HIFN_D_SRC_RSIZE (80 * 1)
351 #define HIFN_D_DST_RSIZE (80 * 1)
352 #define HIFN_D_RES_RSIZE (24 * 1)
353
354 #define HIFN_D_DST_DALIGN 4
355
356 #define HIFN_QUEUE_LENGTH (HIFN_D_CMD_RSIZE - 1)
357
358 #define AES_MIN_KEY_SIZE 16
359 #define AES_MAX_KEY_SIZE 32
360
361 #define HIFN_DES_KEY_LENGTH 8
362 #define HIFN_3DES_KEY_LENGTH 24
363 #define HIFN_MAX_CRYPT_KEY_LENGTH AES_MAX_KEY_SIZE
364 #define HIFN_IV_LENGTH 8
365 #define HIFN_AES_IV_LENGTH 16
366 #define HIFN_MAX_IV_LENGTH HIFN_AES_IV_LENGTH
367
368 #define HIFN_MAC_KEY_LENGTH 64
369 #define HIFN_MD5_LENGTH 16
370 #define HIFN_SHA1_LENGTH 20
371 #define HIFN_MAC_TRUNC_LENGTH 12
372
373 #define HIFN_MAX_COMMAND (8 + 8 + 8 + 64 + 260)
374 #define HIFN_MAX_RESULT (8 + 4 + 4 + 20 + 4)
375 #define HIFN_USED_RESULT 12
376
377 struct hifn_desc {
378 volatile __le32 l;
379 volatile __le32 p;
380 };
381
382 struct hifn_dma {
383 struct hifn_desc cmdr[HIFN_D_CMD_RSIZE + 1];
384 struct hifn_desc srcr[HIFN_D_SRC_RSIZE + 1];
385 struct hifn_desc dstr[HIFN_D_DST_RSIZE + 1];
386 struct hifn_desc resr[HIFN_D_RES_RSIZE + 1];
387
388 u8 command_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_COMMAND];
389 u8 result_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_RESULT];
390
391 /*
392 * Our current positions for insertion and removal from the descriptor
393 * rings.
394 */
395 volatile int cmdi, srci, dsti, resi;
396 volatile int cmdu, srcu, dstu, resu;
397 int cmdk, srck, dstk, resk;
398 };
399
400 #define HIFN_FLAG_CMD_BUSY (1 << 0)
401 #define HIFN_FLAG_SRC_BUSY (1 << 1)
402 #define HIFN_FLAG_DST_BUSY (1 << 2)
403 #define HIFN_FLAG_RES_BUSY (1 << 3)
404 #define HIFN_FLAG_OLD_KEY (1 << 4)
405
406 #define HIFN_DEFAULT_ACTIVE_NUM 5
407
408 struct hifn_device {
409 char name[HIFN_NAMESIZE];
410
411 int irq;
412
413 struct pci_dev *pdev;
414 void __iomem *bar[3];
415
416 void *desc_virt;
417 dma_addr_t desc_dma;
418
419 u32 dmareg;
420
421 void *sa[HIFN_D_RES_RSIZE];
422
423 spinlock_t lock;
424
425 u32 flags;
426 int active, started;
427 struct delayed_work work;
428 unsigned long reset;
429 unsigned long success;
430 unsigned long prev_success;
431
432 u8 snum;
433
434 struct tasklet_struct tasklet;
435
436 struct crypto_queue queue;
437 struct list_head alg_list;
438
439 unsigned int pk_clk_freq;
440
441 #ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
442 unsigned int rng_wait_time;
443 ktime_t rngtime;
444 struct hwrng rng;
445 #endif
446 };
447
448 #define HIFN_D_LENGTH 0x0000ffff
449 #define HIFN_D_NOINVALID 0x01000000
450 #define HIFN_D_MASKDONEIRQ 0x02000000
451 #define HIFN_D_DESTOVER 0x04000000
452 #define HIFN_D_OVER 0x08000000
453 #define HIFN_D_LAST 0x20000000
454 #define HIFN_D_JUMP 0x40000000
455 #define HIFN_D_VALID 0x80000000
456
457 struct hifn_base_command {
458 volatile __le16 masks;
459 volatile __le16 session_num;
460 volatile __le16 total_source_count;
461 volatile __le16 total_dest_count;
462 };
463
464 #define HIFN_BASE_CMD_COMP 0x0100 /* enable compression engine */
465 #define HIFN_BASE_CMD_PAD 0x0200 /* enable padding engine */
466 #define HIFN_BASE_CMD_MAC 0x0400 /* enable MAC engine */
467 #define HIFN_BASE_CMD_CRYPT 0x0800 /* enable crypt engine */
468 #define HIFN_BASE_CMD_DECODE 0x2000
469 #define HIFN_BASE_CMD_SRCLEN_M 0xc000
470 #define HIFN_BASE_CMD_SRCLEN_S 14
471 #define HIFN_BASE_CMD_DSTLEN_M 0x3000
472 #define HIFN_BASE_CMD_DSTLEN_S 12
473 #define HIFN_BASE_CMD_LENMASK_HI 0x30000
474 #define HIFN_BASE_CMD_LENMASK_LO 0x0ffff
475
476 /*
477 * Structure to help build up the command data structure.
478 */
479 struct hifn_crypt_command {
480 volatile __le16 masks;
481 volatile __le16 header_skip;
482 volatile __le16 source_count;
483 volatile __le16 reserved;
484 };
485
486 #define HIFN_CRYPT_CMD_ALG_MASK 0x0003 /* algorithm: */
487 #define HIFN_CRYPT_CMD_ALG_DES 0x0000 /* DES */
488 #define HIFN_CRYPT_CMD_ALG_3DES 0x0001 /* 3DES */
489 #define HIFN_CRYPT_CMD_ALG_RC4 0x0002 /* RC4 */
490 #define HIFN_CRYPT_CMD_ALG_AES 0x0003 /* AES */
491 #define HIFN_CRYPT_CMD_MODE_MASK 0x0018 /* Encrypt mode: */
492 #define HIFN_CRYPT_CMD_MODE_ECB 0x0000 /* ECB */
493 #define HIFN_CRYPT_CMD_MODE_CBC 0x0008 /* CBC */
494 #define HIFN_CRYPT_CMD_MODE_CFB 0x0010 /* CFB */
495 #define HIFN_CRYPT_CMD_MODE_OFB 0x0018 /* OFB */
496 #define HIFN_CRYPT_CMD_CLR_CTX 0x0040 /* clear context */
497 #define HIFN_CRYPT_CMD_KSZ_MASK 0x0600 /* AES key size: */
498 #define HIFN_CRYPT_CMD_KSZ_128 0x0000 /* 128 bit */
499 #define HIFN_CRYPT_CMD_KSZ_192 0x0200 /* 192 bit */
500 #define HIFN_CRYPT_CMD_KSZ_256 0x0400 /* 256 bit */
501 #define HIFN_CRYPT_CMD_NEW_KEY 0x0800 /* expect new key */
502 #define HIFN_CRYPT_CMD_NEW_IV 0x1000 /* expect new iv */
503 #define HIFN_CRYPT_CMD_SRCLEN_M 0xc000
504 #define HIFN_CRYPT_CMD_SRCLEN_S 14
505
506 /*
507 * Structure to help build up the command data structure.
508 */
509 struct hifn_mac_command {
510 volatile __le16 masks;
511 volatile __le16 header_skip;
512 volatile __le16 source_count;
513 volatile __le16 reserved;
514 };
515
516 #define HIFN_MAC_CMD_ALG_MASK 0x0001
517 #define HIFN_MAC_CMD_ALG_SHA1 0x0000
518 #define HIFN_MAC_CMD_ALG_MD5 0x0001
519 #define HIFN_MAC_CMD_MODE_MASK 0x000c
520 #define HIFN_MAC_CMD_MODE_HMAC 0x0000
521 #define HIFN_MAC_CMD_MODE_SSL_MAC 0x0004
522 #define HIFN_MAC_CMD_MODE_HASH 0x0008
523 #define HIFN_MAC_CMD_MODE_FULL 0x0004
524 #define HIFN_MAC_CMD_TRUNC 0x0010
525 #define HIFN_MAC_CMD_RESULT 0x0020
526 #define HIFN_MAC_CMD_APPEND 0x0040
527 #define HIFN_MAC_CMD_SRCLEN_M 0xc000
528 #define HIFN_MAC_CMD_SRCLEN_S 14
529
530 /*
531 * MAC POS IPsec initiates authentication after encryption on encodes
532 * and before decryption on decodes.
533 */
534 #define HIFN_MAC_CMD_POS_IPSEC 0x0200
535 #define HIFN_MAC_CMD_NEW_KEY 0x0800
536
537 struct hifn_comp_command {
538 volatile __le16 masks;
539 volatile __le16 header_skip;
540 volatile __le16 source_count;
541 volatile __le16 reserved;
542 };
543
544 #define HIFN_COMP_CMD_SRCLEN_M 0xc000
545 #define HIFN_COMP_CMD_SRCLEN_S 14
546 #define HIFN_COMP_CMD_ONE 0x0100 /* must be one */
547 #define HIFN_COMP_CMD_CLEARHIST 0x0010 /* clear history */
548 #define HIFN_COMP_CMD_UPDATEHIST 0x0008 /* update history */
549 #define HIFN_COMP_CMD_LZS_STRIP0 0x0004 /* LZS: strip zero */
550 #define HIFN_COMP_CMD_MPPC_RESTART 0x0004 /* MPPC: restart */
551 #define HIFN_COMP_CMD_ALG_MASK 0x0001 /* compression mode: */
552 #define HIFN_COMP_CMD_ALG_MPPC 0x0001 /* MPPC */
553 #define HIFN_COMP_CMD_ALG_LZS 0x0000 /* LZS */
554
555 struct hifn_base_result {
556 volatile __le16 flags;
557 volatile __le16 session;
558 volatile __le16 src_cnt; /* 15:0 of source count */
559 volatile __le16 dst_cnt; /* 15:0 of dest count */
560 };
561
562 #define HIFN_BASE_RES_DSTOVERRUN 0x0200 /* destination overrun */
563 #define HIFN_BASE_RES_SRCLEN_M 0xc000 /* 17:16 of source count */
564 #define HIFN_BASE_RES_SRCLEN_S 14
565 #define HIFN_BASE_RES_DSTLEN_M 0x3000 /* 17:16 of dest count */
566 #define HIFN_BASE_RES_DSTLEN_S 12
567
568 struct hifn_comp_result {
569 volatile __le16 flags;
570 volatile __le16 crc;
571 };
572
573 #define HIFN_COMP_RES_LCB_M 0xff00 /* longitudinal check byte */
574 #define HIFN_COMP_RES_LCB_S 8
575 #define HIFN_COMP_RES_RESTART 0x0004 /* MPPC: restart */
576 #define HIFN_COMP_RES_ENDMARKER 0x0002 /* LZS: end marker seen */
577 #define HIFN_COMP_RES_SRC_NOTZERO 0x0001 /* source expired */
578
579 struct hifn_mac_result {
580 volatile __le16 flags;
581 volatile __le16 reserved;
582 /* followed by 0, 6, 8, or 10 u16's of the MAC, then crypt */
583 };
584
585 #define HIFN_MAC_RES_MISCOMPARE 0x0002 /* compare failed */
586 #define HIFN_MAC_RES_SRC_NOTZERO 0x0001 /* source expired */
587
588 struct hifn_crypt_result {
589 volatile __le16 flags;
590 volatile __le16 reserved;
591 };
592
593 #define HIFN_CRYPT_RES_SRC_NOTZERO 0x0001 /* source expired */
594
595 #ifndef HIFN_POLL_FREQUENCY
596 #define HIFN_POLL_FREQUENCY 0x1
597 #endif
598
599 #ifndef HIFN_POLL_SCALAR
600 #define HIFN_POLL_SCALAR 0x0
601 #endif
602
603 #define HIFN_MAX_SEGLEN 0xffff /* maximum dma segment len */
604 #define HIFN_MAX_DMALEN 0x3ffff /* maximum dma length */
605
606 struct hifn_crypto_alg {
607 struct list_head entry;
608 struct crypto_alg alg;
609 struct hifn_device *dev;
610 };
611
612 #define ASYNC_SCATTERLIST_CACHE 16
613
614 #define ASYNC_FLAGS_MISALIGNED (1 << 0)
615
616 struct hifn_cipher_walk {
617 struct scatterlist cache[ASYNC_SCATTERLIST_CACHE];
618 u32 flags;
619 int num;
620 };
621
622 struct hifn_context {
623 u8 key[HIFN_MAX_CRYPT_KEY_LENGTH];
624 struct hifn_device *dev;
625 unsigned int keysize;
626 };
627
628 struct hifn_request_context {
629 u8 *iv;
630 unsigned int ivsize;
631 u8 op, type, mode, unused;
632 struct hifn_cipher_walk walk;
633 };
634
635 #define crypto_alg_to_hifn(a) container_of(a, struct hifn_crypto_alg, alg)
636
637 static inline u32 hifn_read_0(struct hifn_device *dev, u32 reg)
638 {
639 return readl(dev->bar[0] + reg);
640 }
641
642 static inline u32 hifn_read_1(struct hifn_device *dev, u32 reg)
643 {
644 return readl(dev->bar[1] + reg);
645 }
646
647 static inline void hifn_write_0(struct hifn_device *dev, u32 reg, u32 val)
648 {
649 writel((__force u32)cpu_to_le32(val), dev->bar[0] + reg);
650 }
651
652 static inline void hifn_write_1(struct hifn_device *dev, u32 reg, u32 val)
653 {
654 writel((__force u32)cpu_to_le32(val), dev->bar[1] + reg);
655 }
656
657 static void hifn_wait_puc(struct hifn_device *dev)
658 {
659 int i;
660 u32 ret;
661
662 for (i = 10000; i > 0; --i) {
663 ret = hifn_read_0(dev, HIFN_0_PUCTRL);
664 if (!(ret & HIFN_PUCTRL_RESET))
665 break;
666
667 udelay(1);
668 }
669
670 if (!i)
671 dev_err(&dev->pdev->dev, "Failed to reset PUC unit.\n");
672 }
673
674 static void hifn_reset_puc(struct hifn_device *dev)
675 {
676 hifn_write_0(dev, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA);
677 hifn_wait_puc(dev);
678 }
679
680 static void hifn_stop_device(struct hifn_device *dev)
681 {
682 hifn_write_1(dev, HIFN_1_DMA_CSR,
683 HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS |
684 HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS);
685 hifn_write_0(dev, HIFN_0_PUIER, 0);
686 hifn_write_1(dev, HIFN_1_DMA_IER, 0);
687 }
688
689 static void hifn_reset_dma(struct hifn_device *dev, int full)
690 {
691 hifn_stop_device(dev);
692
693 /*
694 * Setting poll frequency and others to 0.
695 */
696 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
697 HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
698 mdelay(1);
699
700 /*
701 * Reset DMA.
702 */
703 if (full) {
704 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE);
705 mdelay(1);
706 } else {
707 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE |
708 HIFN_DMACNFG_MSTRESET);
709 hifn_reset_puc(dev);
710 }
711
712 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
713 HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
714
715 hifn_reset_puc(dev);
716 }
717
718 static u32 hifn_next_signature(u32 a, u_int cnt)
719 {
720 int i;
721 u32 v;
722
723 for (i = 0; i < cnt; i++) {
724 /* get the parity */
725 v = a & 0x80080125;
726 v ^= v >> 16;
727 v ^= v >> 8;
728 v ^= v >> 4;
729 v ^= v >> 2;
730 v ^= v >> 1;
731
732 a = (v & 1) ^ (a << 1);
733 }
734
735 return a;
736 }
737
738 static struct pci2id {
739 u_short pci_vendor;
740 u_short pci_prod;
741 char card_id[13];
742 } pci2id[] = {
743 {
744 PCI_VENDOR_ID_HIFN,
745 PCI_DEVICE_ID_HIFN_7955,
746 { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
747 0x00, 0x00, 0x00, 0x00, 0x00 }
748 },
749 {
750 PCI_VENDOR_ID_HIFN,
751 PCI_DEVICE_ID_HIFN_7956,
752 { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
753 0x00, 0x00, 0x00, 0x00, 0x00 }
754 }
755 };
756
757 #ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
758 static int hifn_rng_data_present(struct hwrng *rng, int wait)
759 {
760 struct hifn_device *dev = (struct hifn_device *)rng->priv;
761 s64 nsec;
762
763 nsec = ktime_to_ns(ktime_sub(ktime_get(), dev->rngtime));
764 nsec -= dev->rng_wait_time;
765 if (nsec <= 0)
766 return 1;
767 if (!wait)
768 return 0;
769 ndelay(nsec);
770 return 1;
771 }
772
773 static int hifn_rng_data_read(struct hwrng *rng, u32 *data)
774 {
775 struct hifn_device *dev = (struct hifn_device *)rng->priv;
776
777 *data = hifn_read_1(dev, HIFN_1_RNG_DATA);
778 dev->rngtime = ktime_get();
779 return 4;
780 }
781
782 static int hifn_register_rng(struct hifn_device *dev)
783 {
784 /*
785 * We must wait at least 256 Pk_clk cycles between two reads of the rng.
786 */
787 dev->rng_wait_time = DIV_ROUND_UP_ULL(NSEC_PER_SEC,
788 dev->pk_clk_freq) * 256;
789
790 dev->rng.name = dev->name;
791 dev->rng.data_present = hifn_rng_data_present,
792 dev->rng.data_read = hifn_rng_data_read,
793 dev->rng.priv = (unsigned long)dev;
794
795 return hwrng_register(&dev->rng);
796 }
797
798 static void hifn_unregister_rng(struct hifn_device *dev)
799 {
800 hwrng_unregister(&dev->rng);
801 }
802 #else
803 #define hifn_register_rng(dev) 0
804 #define hifn_unregister_rng(dev)
805 #endif
806
807 static int hifn_init_pubrng(struct hifn_device *dev)
808 {
809 int i;
810
811 hifn_write_1(dev, HIFN_1_PUB_RESET, hifn_read_1(dev, HIFN_1_PUB_RESET) |
812 HIFN_PUBRST_RESET);
813
814 for (i = 100; i > 0; --i) {
815 mdelay(1);
816
817 if ((hifn_read_1(dev, HIFN_1_PUB_RESET) & HIFN_PUBRST_RESET) == 0)
818 break;
819 }
820
821 if (!i) {
822 dev_err(&dev->pdev->dev, "Failed to initialise public key engine.\n");
823 } else {
824 hifn_write_1(dev, HIFN_1_PUB_IEN, HIFN_PUBIEN_DONE);
825 dev->dmareg |= HIFN_DMAIER_PUBDONE;
826 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
827
828 dev_dbg(&dev->pdev->dev, "Public key engine has been successfully initialised.\n");
829 }
830
831 /* Enable RNG engine. */
832
833 hifn_write_1(dev, HIFN_1_RNG_CONFIG,
834 hifn_read_1(dev, HIFN_1_RNG_CONFIG) | HIFN_RNGCFG_ENA);
835 dev_dbg(&dev->pdev->dev, "RNG engine has been successfully initialised.\n");
836
837 #ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
838 /* First value must be discarded */
839 hifn_read_1(dev, HIFN_1_RNG_DATA);
840 dev->rngtime = ktime_get();
841 #endif
842 return 0;
843 }
844
845 static int hifn_enable_crypto(struct hifn_device *dev)
846 {
847 u32 dmacfg, addr;
848 char *offtbl = NULL;
849 int i;
850
851 for (i = 0; i < ARRAY_SIZE(pci2id); i++) {
852 if (pci2id[i].pci_vendor == dev->pdev->vendor &&
853 pci2id[i].pci_prod == dev->pdev->device) {
854 offtbl = pci2id[i].card_id;
855 break;
856 }
857 }
858
859 if (!offtbl) {
860 dev_err(&dev->pdev->dev, "Unknown card!\n");
861 return -ENODEV;
862 }
863
864 dmacfg = hifn_read_1(dev, HIFN_1_DMA_CNFG);
865
866 hifn_write_1(dev, HIFN_1_DMA_CNFG,
867 HIFN_DMACNFG_UNLOCK | HIFN_DMACNFG_MSTRESET |
868 HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
869 mdelay(1);
870 addr = hifn_read_1(dev, HIFN_1_UNLOCK_SECRET1);
871 mdelay(1);
872 hifn_write_1(dev, HIFN_1_UNLOCK_SECRET2, 0);
873 mdelay(1);
874
875 for (i = 0; i < 12; ++i) {
876 addr = hifn_next_signature(addr, offtbl[i] + 0x101);
877 hifn_write_1(dev, HIFN_1_UNLOCK_SECRET2, addr);
878
879 mdelay(1);
880 }
881 hifn_write_1(dev, HIFN_1_DMA_CNFG, dmacfg);
882
883 dev_dbg(&dev->pdev->dev, "%s %s.\n", dev->name, pci_name(dev->pdev));
884
885 return 0;
886 }
887
888 static void hifn_init_dma(struct hifn_device *dev)
889 {
890 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
891 u32 dptr = dev->desc_dma;
892 int i;
893
894 for (i = 0; i < HIFN_D_CMD_RSIZE; ++i)
895 dma->cmdr[i].p = __cpu_to_le32(dptr +
896 offsetof(struct hifn_dma, command_bufs[i][0]));
897 for (i = 0; i < HIFN_D_RES_RSIZE; ++i)
898 dma->resr[i].p = __cpu_to_le32(dptr +
899 offsetof(struct hifn_dma, result_bufs[i][0]));
900
901 /* Setup LAST descriptors. */
902 dma->cmdr[HIFN_D_CMD_RSIZE].p = __cpu_to_le32(dptr +
903 offsetof(struct hifn_dma, cmdr[0]));
904 dma->srcr[HIFN_D_SRC_RSIZE].p = __cpu_to_le32(dptr +
905 offsetof(struct hifn_dma, srcr[0]));
906 dma->dstr[HIFN_D_DST_RSIZE].p = __cpu_to_le32(dptr +
907 offsetof(struct hifn_dma, dstr[0]));
908 dma->resr[HIFN_D_RES_RSIZE].p = __cpu_to_le32(dptr +
909 offsetof(struct hifn_dma, resr[0]));
910
911 dma->cmdu = dma->srcu = dma->dstu = dma->resu = 0;
912 dma->cmdi = dma->srci = dma->dsti = dma->resi = 0;
913 dma->cmdk = dma->srck = dma->dstk = dma->resk = 0;
914 }
915
916 /*
917 * Initialize the PLL. We need to know the frequency of the reference clock
918 * to calculate the optimal multiplier. For PCI we assume 66MHz, since that
919 * allows us to operate without the risk of overclocking the chip. If it
920 * actually uses 33MHz, the chip will operate at half the speed, this can be
921 * overridden by specifying the frequency as module parameter (pci33).
922 *
923 * Unfortunately the PCI clock is not very suitable since the HIFN needs a
924 * stable clock and the PCI clock frequency may vary, so the default is the
925 * external clock. There is no way to find out its frequency, we default to
926 * 66MHz since according to Mike Ham of HiFn, almost every board in existence
927 * has an external crystal populated at 66MHz.
928 */
929 static void hifn_init_pll(struct hifn_device *dev)
930 {
931 unsigned int freq, m;
932 u32 pllcfg;
933
934 pllcfg = HIFN_1_PLL | HIFN_PLL_RESERVED_1;
935
936 if (strncmp(hifn_pll_ref, "ext", 3) == 0)
937 pllcfg |= HIFN_PLL_REF_CLK_PLL;
938 else
939 pllcfg |= HIFN_PLL_REF_CLK_HBI;
940
941 if (hifn_pll_ref[3] != '\0')
942 freq = simple_strtoul(hifn_pll_ref + 3, NULL, 10);
943 else {
944 freq = 66;
945 dev_info(&dev->pdev->dev, "assuming %uMHz clock speed, override with hifn_pll_ref=%.3s<frequency>\n",
946 freq, hifn_pll_ref);
947 }
948
949 m = HIFN_PLL_FCK_MAX / freq;
950
951 pllcfg |= (m / 2 - 1) << HIFN_PLL_ND_SHIFT;
952 if (m <= 8)
953 pllcfg |= HIFN_PLL_IS_1_8;
954 else
955 pllcfg |= HIFN_PLL_IS_9_12;
956
957 /* Select clock source and enable clock bypass */
958 hifn_write_1(dev, HIFN_1_PLL, pllcfg |
959 HIFN_PLL_PK_CLK_HBI | HIFN_PLL_PE_CLK_HBI | HIFN_PLL_BP);
960
961 /* Let the chip lock to the input clock */
962 mdelay(10);
963
964 /* Disable clock bypass */
965 hifn_write_1(dev, HIFN_1_PLL, pllcfg |
966 HIFN_PLL_PK_CLK_HBI | HIFN_PLL_PE_CLK_HBI);
967
968 /* Switch the engines to the PLL */
969 hifn_write_1(dev, HIFN_1_PLL, pllcfg |
970 HIFN_PLL_PK_CLK_PLL | HIFN_PLL_PE_CLK_PLL);
971
972 /*
973 * The Fpk_clk runs at half the total speed. Its frequency is needed to
974 * calculate the minimum time between two reads of the rng. Since 33MHz
975 * is actually 33.333... we overestimate the frequency here, resulting
976 * in slightly larger intervals.
977 */
978 dev->pk_clk_freq = 1000000 * (freq + 1) * m / 2;
979 }
980
981 static void hifn_init_registers(struct hifn_device *dev)
982 {
983 u32 dptr = dev->desc_dma;
984
985 /* Initialization magic... */
986 hifn_write_0(dev, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA);
987 hifn_write_0(dev, HIFN_0_FIFOCNFG, HIFN_FIFOCNFG_THRESHOLD);
988 hifn_write_0(dev, HIFN_0_PUIER, HIFN_PUIER_DSTOVER);
989
990 /* write all 4 ring address registers */
991 hifn_write_1(dev, HIFN_1_DMA_CRAR, dptr +
992 offsetof(struct hifn_dma, cmdr[0]));
993 hifn_write_1(dev, HIFN_1_DMA_SRAR, dptr +
994 offsetof(struct hifn_dma, srcr[0]));
995 hifn_write_1(dev, HIFN_1_DMA_DRAR, dptr +
996 offsetof(struct hifn_dma, dstr[0]));
997 hifn_write_1(dev, HIFN_1_DMA_RRAR, dptr +
998 offsetof(struct hifn_dma, resr[0]));
999
1000 mdelay(2);
1001 #if 0
1002 hifn_write_1(dev, HIFN_1_DMA_CSR,
1003 HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS |
1004 HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS |
1005 HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST |
1006 HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER |
1007 HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST |
1008 HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER |
1009 HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST |
1010 HIFN_DMACSR_S_WAIT |
1011 HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST |
1012 HIFN_DMACSR_C_WAIT |
1013 HIFN_DMACSR_ENGINE |
1014 HIFN_DMACSR_PUBDONE);
1015 #else
1016 hifn_write_1(dev, HIFN_1_DMA_CSR,
1017 HIFN_DMACSR_C_CTRL_ENA | HIFN_DMACSR_S_CTRL_ENA |
1018 HIFN_DMACSR_D_CTRL_ENA | HIFN_DMACSR_R_CTRL_ENA |
1019 HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST |
1020 HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER |
1021 HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST |
1022 HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER |
1023 HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST |
1024 HIFN_DMACSR_S_WAIT |
1025 HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST |
1026 HIFN_DMACSR_C_WAIT |
1027 HIFN_DMACSR_ENGINE |
1028 HIFN_DMACSR_PUBDONE);
1029 #endif
1030 hifn_read_1(dev, HIFN_1_DMA_CSR);
1031
1032 dev->dmareg |= HIFN_DMAIER_R_DONE | HIFN_DMAIER_C_ABORT |
1033 HIFN_DMAIER_D_OVER | HIFN_DMAIER_R_OVER |
1034 HIFN_DMAIER_S_ABORT | HIFN_DMAIER_D_ABORT | HIFN_DMAIER_R_ABORT |
1035 HIFN_DMAIER_ENGINE;
1036 dev->dmareg &= ~HIFN_DMAIER_C_WAIT;
1037
1038 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1039 hifn_read_1(dev, HIFN_1_DMA_IER);
1040 #if 0
1041 hifn_write_0(dev, HIFN_0_PUCNFG, HIFN_PUCNFG_ENCCNFG |
1042 HIFN_PUCNFG_DRFR_128 | HIFN_PUCNFG_TCALLPHASES |
1043 HIFN_PUCNFG_TCDRVTOTEM | HIFN_PUCNFG_BUS32 |
1044 HIFN_PUCNFG_DRAM);
1045 #else
1046 hifn_write_0(dev, HIFN_0_PUCNFG, 0x10342);
1047 #endif
1048 hifn_init_pll(dev);
1049
1050 hifn_write_0(dev, HIFN_0_PUISR, HIFN_PUISR_DSTOVER);
1051 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
1052 HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE | HIFN_DMACNFG_LAST |
1053 ((HIFN_POLL_FREQUENCY << 16 ) & HIFN_DMACNFG_POLLFREQ) |
1054 ((HIFN_POLL_SCALAR << 8) & HIFN_DMACNFG_POLLINVAL));
1055 }
1056
1057 static int hifn_setup_base_command(struct hifn_device *dev, u8 *buf,
1058 unsigned dlen, unsigned slen, u16 mask, u8 snum)
1059 {
1060 struct hifn_base_command *base_cmd;
1061 u8 *buf_pos = buf;
1062
1063 base_cmd = (struct hifn_base_command *)buf_pos;
1064 base_cmd->masks = __cpu_to_le16(mask);
1065 base_cmd->total_source_count =
1066 __cpu_to_le16(slen & HIFN_BASE_CMD_LENMASK_LO);
1067 base_cmd->total_dest_count =
1068 __cpu_to_le16(dlen & HIFN_BASE_CMD_LENMASK_LO);
1069
1070 dlen >>= 16;
1071 slen >>= 16;
1072 base_cmd->session_num = __cpu_to_le16(snum |
1073 ((slen << HIFN_BASE_CMD_SRCLEN_S) & HIFN_BASE_CMD_SRCLEN_M) |
1074 ((dlen << HIFN_BASE_CMD_DSTLEN_S) & HIFN_BASE_CMD_DSTLEN_M));
1075
1076 return sizeof(struct hifn_base_command);
1077 }
1078
1079 static int hifn_setup_crypto_command(struct hifn_device *dev,
1080 u8 *buf, unsigned dlen, unsigned slen,
1081 u8 *key, int keylen, u8 *iv, int ivsize, u16 mode)
1082 {
1083 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1084 struct hifn_crypt_command *cry_cmd;
1085 u8 *buf_pos = buf;
1086 u16 cmd_len;
1087
1088 cry_cmd = (struct hifn_crypt_command *)buf_pos;
1089
1090 cry_cmd->source_count = __cpu_to_le16(dlen & 0xffff);
1091 dlen >>= 16;
1092 cry_cmd->masks = __cpu_to_le16(mode |
1093 ((dlen << HIFN_CRYPT_CMD_SRCLEN_S) &
1094 HIFN_CRYPT_CMD_SRCLEN_M));
1095 cry_cmd->header_skip = 0;
1096 cry_cmd->reserved = 0;
1097
1098 buf_pos += sizeof(struct hifn_crypt_command);
1099
1100 dma->cmdu++;
1101 if (dma->cmdu > 1) {
1102 dev->dmareg |= HIFN_DMAIER_C_WAIT;
1103 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1104 }
1105
1106 if (keylen) {
1107 memcpy(buf_pos, key, keylen);
1108 buf_pos += keylen;
1109 }
1110 if (ivsize) {
1111 memcpy(buf_pos, iv, ivsize);
1112 buf_pos += ivsize;
1113 }
1114
1115 cmd_len = buf_pos - buf;
1116
1117 return cmd_len;
1118 }
1119
1120 static int hifn_setup_cmd_desc(struct hifn_device *dev,
1121 struct hifn_context *ctx, struct hifn_request_context *rctx,
1122 void *priv, unsigned int nbytes)
1123 {
1124 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1125 int cmd_len, sa_idx;
1126 u8 *buf, *buf_pos;
1127 u16 mask;
1128
1129 sa_idx = dma->cmdi;
1130 buf_pos = buf = dma->command_bufs[dma->cmdi];
1131
1132 mask = 0;
1133 switch (rctx->op) {
1134 case ACRYPTO_OP_DECRYPT:
1135 mask = HIFN_BASE_CMD_CRYPT | HIFN_BASE_CMD_DECODE;
1136 break;
1137 case ACRYPTO_OP_ENCRYPT:
1138 mask = HIFN_BASE_CMD_CRYPT;
1139 break;
1140 case ACRYPTO_OP_HMAC:
1141 mask = HIFN_BASE_CMD_MAC;
1142 break;
1143 default:
1144 goto err_out;
1145 }
1146
1147 buf_pos += hifn_setup_base_command(dev, buf_pos, nbytes,
1148 nbytes, mask, dev->snum);
1149
1150 if (rctx->op == ACRYPTO_OP_ENCRYPT || rctx->op == ACRYPTO_OP_DECRYPT) {
1151 u16 md = 0;
1152
1153 if (ctx->keysize)
1154 md |= HIFN_CRYPT_CMD_NEW_KEY;
1155 if (rctx->iv && rctx->mode != ACRYPTO_MODE_ECB)
1156 md |= HIFN_CRYPT_CMD_NEW_IV;
1157
1158 switch (rctx->mode) {
1159 case ACRYPTO_MODE_ECB:
1160 md |= HIFN_CRYPT_CMD_MODE_ECB;
1161 break;
1162 case ACRYPTO_MODE_CBC:
1163 md |= HIFN_CRYPT_CMD_MODE_CBC;
1164 break;
1165 case ACRYPTO_MODE_CFB:
1166 md |= HIFN_CRYPT_CMD_MODE_CFB;
1167 break;
1168 case ACRYPTO_MODE_OFB:
1169 md |= HIFN_CRYPT_CMD_MODE_OFB;
1170 break;
1171 default:
1172 goto err_out;
1173 }
1174
1175 switch (rctx->type) {
1176 case ACRYPTO_TYPE_AES_128:
1177 if (ctx->keysize != 16)
1178 goto err_out;
1179 md |= HIFN_CRYPT_CMD_KSZ_128 |
1180 HIFN_CRYPT_CMD_ALG_AES;
1181 break;
1182 case ACRYPTO_TYPE_AES_192:
1183 if (ctx->keysize != 24)
1184 goto err_out;
1185 md |= HIFN_CRYPT_CMD_KSZ_192 |
1186 HIFN_CRYPT_CMD_ALG_AES;
1187 break;
1188 case ACRYPTO_TYPE_AES_256:
1189 if (ctx->keysize != 32)
1190 goto err_out;
1191 md |= HIFN_CRYPT_CMD_KSZ_256 |
1192 HIFN_CRYPT_CMD_ALG_AES;
1193 break;
1194 case ACRYPTO_TYPE_3DES:
1195 if (ctx->keysize != 24)
1196 goto err_out;
1197 md |= HIFN_CRYPT_CMD_ALG_3DES;
1198 break;
1199 case ACRYPTO_TYPE_DES:
1200 if (ctx->keysize != 8)
1201 goto err_out;
1202 md |= HIFN_CRYPT_CMD_ALG_DES;
1203 break;
1204 default:
1205 goto err_out;
1206 }
1207
1208 buf_pos += hifn_setup_crypto_command(dev, buf_pos,
1209 nbytes, nbytes, ctx->key, ctx->keysize,
1210 rctx->iv, rctx->ivsize, md);
1211 }
1212
1213 dev->sa[sa_idx] = priv;
1214 dev->started++;
1215
1216 cmd_len = buf_pos - buf;
1217 dma->cmdr[dma->cmdi].l = __cpu_to_le32(cmd_len | HIFN_D_VALID |
1218 HIFN_D_LAST | HIFN_D_MASKDONEIRQ);
1219
1220 if (++dma->cmdi == HIFN_D_CMD_RSIZE) {
1221 dma->cmdr[dma->cmdi].l = __cpu_to_le32(
1222 HIFN_D_VALID | HIFN_D_LAST |
1223 HIFN_D_MASKDONEIRQ | HIFN_D_JUMP);
1224 dma->cmdi = 0;
1225 } else {
1226 dma->cmdr[dma->cmdi - 1].l |= __cpu_to_le32(HIFN_D_VALID);
1227 }
1228
1229 if (!(dev->flags & HIFN_FLAG_CMD_BUSY)) {
1230 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_C_CTRL_ENA);
1231 dev->flags |= HIFN_FLAG_CMD_BUSY;
1232 }
1233 return 0;
1234
1235 err_out:
1236 return -EINVAL;
1237 }
1238
1239 static int hifn_setup_src_desc(struct hifn_device *dev, struct page *page,
1240 unsigned int offset, unsigned int size, int last)
1241 {
1242 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1243 int idx;
1244 dma_addr_t addr;
1245
1246 addr = pci_map_page(dev->pdev, page, offset, size, PCI_DMA_TODEVICE);
1247
1248 idx = dma->srci;
1249
1250 dma->srcr[idx].p = __cpu_to_le32(addr);
1251 dma->srcr[idx].l = __cpu_to_le32(size | HIFN_D_VALID |
1252 HIFN_D_MASKDONEIRQ | (last ? HIFN_D_LAST : 0));
1253
1254 if (++idx == HIFN_D_SRC_RSIZE) {
1255 dma->srcr[idx].l = __cpu_to_le32(HIFN_D_VALID |
1256 HIFN_D_JUMP | HIFN_D_MASKDONEIRQ |
1257 (last ? HIFN_D_LAST : 0));
1258 idx = 0;
1259 }
1260
1261 dma->srci = idx;
1262 dma->srcu++;
1263
1264 if (!(dev->flags & HIFN_FLAG_SRC_BUSY)) {
1265 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_S_CTRL_ENA);
1266 dev->flags |= HIFN_FLAG_SRC_BUSY;
1267 }
1268
1269 return size;
1270 }
1271
1272 static void hifn_setup_res_desc(struct hifn_device *dev)
1273 {
1274 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1275
1276 dma->resr[dma->resi].l = __cpu_to_le32(HIFN_USED_RESULT |
1277 HIFN_D_VALID | HIFN_D_LAST);
1278 /*
1279 * dma->resr[dma->resi].l = __cpu_to_le32(HIFN_MAX_RESULT | HIFN_D_VALID |
1280 * HIFN_D_LAST);
1281 */
1282
1283 if (++dma->resi == HIFN_D_RES_RSIZE) {
1284 dma->resr[HIFN_D_RES_RSIZE].l = __cpu_to_le32(HIFN_D_VALID |
1285 HIFN_D_JUMP | HIFN_D_MASKDONEIRQ | HIFN_D_LAST);
1286 dma->resi = 0;
1287 }
1288
1289 dma->resu++;
1290
1291 if (!(dev->flags & HIFN_FLAG_RES_BUSY)) {
1292 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_R_CTRL_ENA);
1293 dev->flags |= HIFN_FLAG_RES_BUSY;
1294 }
1295 }
1296
1297 static void hifn_setup_dst_desc(struct hifn_device *dev, struct page *page,
1298 unsigned offset, unsigned size, int last)
1299 {
1300 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1301 int idx;
1302 dma_addr_t addr;
1303
1304 addr = pci_map_page(dev->pdev, page, offset, size, PCI_DMA_FROMDEVICE);
1305
1306 idx = dma->dsti;
1307 dma->dstr[idx].p = __cpu_to_le32(addr);
1308 dma->dstr[idx].l = __cpu_to_le32(size | HIFN_D_VALID |
1309 HIFN_D_MASKDONEIRQ | (last ? HIFN_D_LAST : 0));
1310
1311 if (++idx == HIFN_D_DST_RSIZE) {
1312 dma->dstr[idx].l = __cpu_to_le32(HIFN_D_VALID |
1313 HIFN_D_JUMP | HIFN_D_MASKDONEIRQ |
1314 (last ? HIFN_D_LAST : 0));
1315 idx = 0;
1316 }
1317 dma->dsti = idx;
1318 dma->dstu++;
1319
1320 if (!(dev->flags & HIFN_FLAG_DST_BUSY)) {
1321 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_D_CTRL_ENA);
1322 dev->flags |= HIFN_FLAG_DST_BUSY;
1323 }
1324 }
1325
1326 static int hifn_setup_dma(struct hifn_device *dev,
1327 struct hifn_context *ctx, struct hifn_request_context *rctx,
1328 struct scatterlist *src, struct scatterlist *dst,
1329 unsigned int nbytes, void *priv)
1330 {
1331 struct scatterlist *t;
1332 struct page *spage, *dpage;
1333 unsigned int soff, doff;
1334 unsigned int n, len;
1335
1336 n = nbytes;
1337 while (n) {
1338 spage = sg_page(src);
1339 soff = src->offset;
1340 len = min(src->length, n);
1341
1342 hifn_setup_src_desc(dev, spage, soff, len, n - len == 0);
1343
1344 src++;
1345 n -= len;
1346 }
1347
1348 t = &rctx->walk.cache[0];
1349 n = nbytes;
1350 while (n) {
1351 if (t->length && rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1352 BUG_ON(!sg_page(t));
1353 dpage = sg_page(t);
1354 doff = 0;
1355 len = t->length;
1356 } else {
1357 BUG_ON(!sg_page(dst));
1358 dpage = sg_page(dst);
1359 doff = dst->offset;
1360 len = dst->length;
1361 }
1362 len = min(len, n);
1363
1364 hifn_setup_dst_desc(dev, dpage, doff, len, n - len == 0);
1365
1366 dst++;
1367 t++;
1368 n -= len;
1369 }
1370
1371 hifn_setup_cmd_desc(dev, ctx, rctx, priv, nbytes);
1372 hifn_setup_res_desc(dev);
1373 return 0;
1374 }
1375
1376 static int hifn_cipher_walk_init(struct hifn_cipher_walk *w,
1377 int num, gfp_t gfp_flags)
1378 {
1379 int i;
1380
1381 num = min(ASYNC_SCATTERLIST_CACHE, num);
1382 sg_init_table(w->cache, num);
1383
1384 w->num = 0;
1385 for (i = 0; i < num; ++i) {
1386 struct page *page = alloc_page(gfp_flags);
1387 struct scatterlist *s;
1388
1389 if (!page)
1390 break;
1391
1392 s = &w->cache[i];
1393
1394 sg_set_page(s, page, PAGE_SIZE, 0);
1395 w->num++;
1396 }
1397
1398 return i;
1399 }
1400
1401 static void hifn_cipher_walk_exit(struct hifn_cipher_walk *w)
1402 {
1403 int i;
1404
1405 for (i = 0; i < w->num; ++i) {
1406 struct scatterlist *s = &w->cache[i];
1407
1408 __free_page(sg_page(s));
1409
1410 s->length = 0;
1411 }
1412
1413 w->num = 0;
1414 }
1415
1416 static int ablkcipher_add(unsigned int *drestp, struct scatterlist *dst,
1417 unsigned int size, unsigned int *nbytesp)
1418 {
1419 unsigned int copy, drest = *drestp, nbytes = *nbytesp;
1420 int idx = 0;
1421
1422 if (drest < size || size > nbytes)
1423 return -EINVAL;
1424
1425 while (size) {
1426 copy = min3(drest, size, dst->length);
1427
1428 size -= copy;
1429 drest -= copy;
1430 nbytes -= copy;
1431
1432 pr_debug("%s: copy: %u, size: %u, drest: %u, nbytes: %u.\n",
1433 __func__, copy, size, drest, nbytes);
1434
1435 dst++;
1436 idx++;
1437 }
1438
1439 *nbytesp = nbytes;
1440 *drestp = drest;
1441
1442 return idx;
1443 }
1444
1445 static int hifn_cipher_walk(struct ablkcipher_request *req,
1446 struct hifn_cipher_walk *w)
1447 {
1448 struct scatterlist *dst, *t;
1449 unsigned int nbytes = req->nbytes, offset, copy, diff;
1450 int idx, tidx, err;
1451
1452 tidx = idx = 0;
1453 offset = 0;
1454 while (nbytes) {
1455 if (idx >= w->num && (w->flags & ASYNC_FLAGS_MISALIGNED))
1456 return -EINVAL;
1457
1458 dst = &req->dst[idx];
1459
1460 pr_debug("\n%s: dlen: %u, doff: %u, offset: %u, nbytes: %u.\n",
1461 __func__, dst->length, dst->offset, offset, nbytes);
1462
1463 if (!IS_ALIGNED(dst->offset, HIFN_D_DST_DALIGN) ||
1464 !IS_ALIGNED(dst->length, HIFN_D_DST_DALIGN) ||
1465 offset) {
1466 unsigned slen = min(dst->length - offset, nbytes);
1467 unsigned dlen = PAGE_SIZE;
1468
1469 t = &w->cache[idx];
1470
1471 err = ablkcipher_add(&dlen, dst, slen, &nbytes);
1472 if (err < 0)
1473 return err;
1474
1475 idx += err;
1476
1477 copy = slen & ~(HIFN_D_DST_DALIGN - 1);
1478 diff = slen & (HIFN_D_DST_DALIGN - 1);
1479
1480 if (dlen < nbytes) {
1481 /*
1482 * Destination page does not have enough space
1483 * to put there additional blocksized chunk,
1484 * so we mark that page as containing only
1485 * blocksize aligned chunks:
1486 * t->length = (slen & ~(HIFN_D_DST_DALIGN - 1));
1487 * and increase number of bytes to be processed
1488 * in next chunk:
1489 * nbytes += diff;
1490 */
1491 nbytes += diff;
1492
1493 /*
1494 * Temporary of course...
1495 * Kick author if you will catch this one.
1496 */
1497 pr_err("%s: dlen: %u, nbytes: %u, slen: %u, offset: %u.\n",
1498 __func__, dlen, nbytes, slen, offset);
1499 pr_err("%s: please contact author to fix this "
1500 "issue, generally you should not catch "
1501 "this path under any condition but who "
1502 "knows how did you use crypto code.\n"
1503 "Thank you.\n", __func__);
1504 BUG();
1505 } else {
1506 copy += diff + nbytes;
1507
1508 dst = &req->dst[idx];
1509
1510 err = ablkcipher_add(&dlen, dst, nbytes, &nbytes);
1511 if (err < 0)
1512 return err;
1513
1514 idx += err;
1515 }
1516
1517 t->length = copy;
1518 t->offset = offset;
1519 } else {
1520 nbytes -= min(dst->length, nbytes);
1521 idx++;
1522 }
1523
1524 tidx++;
1525 }
1526
1527 return tidx;
1528 }
1529
1530 static int hifn_setup_session(struct ablkcipher_request *req)
1531 {
1532 struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
1533 struct hifn_request_context *rctx = ablkcipher_request_ctx(req);
1534 struct hifn_device *dev = ctx->dev;
1535 unsigned long dlen, flags;
1536 unsigned int nbytes = req->nbytes, idx = 0;
1537 int err = -EINVAL, sg_num;
1538 struct scatterlist *dst;
1539
1540 if (rctx->iv && !rctx->ivsize && rctx->mode != ACRYPTO_MODE_ECB)
1541 goto err_out_exit;
1542
1543 rctx->walk.flags = 0;
1544
1545 while (nbytes) {
1546 dst = &req->dst[idx];
1547 dlen = min(dst->length, nbytes);
1548
1549 if (!IS_ALIGNED(dst->offset, HIFN_D_DST_DALIGN) ||
1550 !IS_ALIGNED(dlen, HIFN_D_DST_DALIGN))
1551 rctx->walk.flags |= ASYNC_FLAGS_MISALIGNED;
1552
1553 nbytes -= dlen;
1554 idx++;
1555 }
1556
1557 if (rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1558 err = hifn_cipher_walk_init(&rctx->walk, idx, GFP_ATOMIC);
1559 if (err < 0)
1560 return err;
1561 }
1562
1563 sg_num = hifn_cipher_walk(req, &rctx->walk);
1564 if (sg_num < 0) {
1565 err = sg_num;
1566 goto err_out_exit;
1567 }
1568
1569 spin_lock_irqsave(&dev->lock, flags);
1570 if (dev->started + sg_num > HIFN_QUEUE_LENGTH) {
1571 err = -EAGAIN;
1572 goto err_out;
1573 }
1574
1575 err = hifn_setup_dma(dev, ctx, rctx, req->src, req->dst, req->nbytes, req);
1576 if (err)
1577 goto err_out;
1578
1579 dev->snum++;
1580
1581 dev->active = HIFN_DEFAULT_ACTIVE_NUM;
1582 spin_unlock_irqrestore(&dev->lock, flags);
1583
1584 return 0;
1585
1586 err_out:
1587 spin_unlock_irqrestore(&dev->lock, flags);
1588 err_out_exit:
1589 if (err) {
1590 dev_info(&dev->pdev->dev, "iv: %p [%d], key: %p [%d], mode: %u, op: %u, "
1591 "type: %u, err: %d.\n",
1592 rctx->iv, rctx->ivsize,
1593 ctx->key, ctx->keysize,
1594 rctx->mode, rctx->op, rctx->type, err);
1595 }
1596
1597 return err;
1598 }
1599
1600 static int hifn_start_device(struct hifn_device *dev)
1601 {
1602 int err;
1603
1604 dev->started = dev->active = 0;
1605 hifn_reset_dma(dev, 1);
1606
1607 err = hifn_enable_crypto(dev);
1608 if (err)
1609 return err;
1610
1611 hifn_reset_puc(dev);
1612
1613 hifn_init_dma(dev);
1614
1615 hifn_init_registers(dev);
1616
1617 hifn_init_pubrng(dev);
1618
1619 return 0;
1620 }
1621
1622 static int ablkcipher_get(void *saddr, unsigned int *srestp, unsigned int offset,
1623 struct scatterlist *dst, unsigned int size, unsigned int *nbytesp)
1624 {
1625 unsigned int srest = *srestp, nbytes = *nbytesp, copy;
1626 void *daddr;
1627 int idx = 0;
1628
1629 if (srest < size || size > nbytes)
1630 return -EINVAL;
1631
1632 while (size) {
1633 copy = min3(srest, dst->length, size);
1634
1635 daddr = kmap_atomic(sg_page(dst));
1636 memcpy(daddr + dst->offset + offset, saddr, copy);
1637 kunmap_atomic(daddr);
1638
1639 nbytes -= copy;
1640 size -= copy;
1641 srest -= copy;
1642 saddr += copy;
1643 offset = 0;
1644
1645 pr_debug("%s: copy: %u, size: %u, srest: %u, nbytes: %u.\n",
1646 __func__, copy, size, srest, nbytes);
1647
1648 dst++;
1649 idx++;
1650 }
1651
1652 *nbytesp = nbytes;
1653 *srestp = srest;
1654
1655 return idx;
1656 }
1657
1658 static inline void hifn_complete_sa(struct hifn_device *dev, int i)
1659 {
1660 unsigned long flags;
1661
1662 spin_lock_irqsave(&dev->lock, flags);
1663 dev->sa[i] = NULL;
1664 dev->started--;
1665 if (dev->started < 0)
1666 dev_info(&dev->pdev->dev, "%s: started: %d.\n", __func__,
1667 dev->started);
1668 spin_unlock_irqrestore(&dev->lock, flags);
1669 BUG_ON(dev->started < 0);
1670 }
1671
1672 static void hifn_process_ready(struct ablkcipher_request *req, int error)
1673 {
1674 struct hifn_request_context *rctx = ablkcipher_request_ctx(req);
1675
1676 if (rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1677 unsigned int nbytes = req->nbytes;
1678 int idx = 0, err;
1679 struct scatterlist *dst, *t;
1680 void *saddr;
1681
1682 while (nbytes) {
1683 t = &rctx->walk.cache[idx];
1684 dst = &req->dst[idx];
1685
1686 pr_debug("\n%s: sg_page(t): %p, t->length: %u, "
1687 "sg_page(dst): %p, dst->length: %u, "
1688 "nbytes: %u.\n",
1689 __func__, sg_page(t), t->length,
1690 sg_page(dst), dst->length, nbytes);
1691
1692 if (!t->length) {
1693 nbytes -= min(dst->length, nbytes);
1694 idx++;
1695 continue;
1696 }
1697
1698 saddr = kmap_atomic(sg_page(t));
1699
1700 err = ablkcipher_get(saddr, &t->length, t->offset,
1701 dst, nbytes, &nbytes);
1702 if (err < 0) {
1703 kunmap_atomic(saddr);
1704 break;
1705 }
1706
1707 idx += err;
1708 kunmap_atomic(saddr);
1709 }
1710
1711 hifn_cipher_walk_exit(&rctx->walk);
1712 }
1713
1714 req->base.complete(&req->base, error);
1715 }
1716
1717 static void hifn_clear_rings(struct hifn_device *dev, int error)
1718 {
1719 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1720 int i, u;
1721
1722 dev_dbg(&dev->pdev->dev, "ring cleanup 1: i: %d.%d.%d.%d, u: %d.%d.%d.%d, "
1723 "k: %d.%d.%d.%d.\n",
1724 dma->cmdi, dma->srci, dma->dsti, dma->resi,
1725 dma->cmdu, dma->srcu, dma->dstu, dma->resu,
1726 dma->cmdk, dma->srck, dma->dstk, dma->resk);
1727
1728 i = dma->resk; u = dma->resu;
1729 while (u != 0) {
1730 if (dma->resr[i].l & __cpu_to_le32(HIFN_D_VALID))
1731 break;
1732
1733 if (dev->sa[i]) {
1734 dev->success++;
1735 dev->reset = 0;
1736 hifn_process_ready(dev->sa[i], error);
1737 hifn_complete_sa(dev, i);
1738 }
1739
1740 if (++i == HIFN_D_RES_RSIZE)
1741 i = 0;
1742 u--;
1743 }
1744 dma->resk = i; dma->resu = u;
1745
1746 i = dma->srck; u = dma->srcu;
1747 while (u != 0) {
1748 if (dma->srcr[i].l & __cpu_to_le32(HIFN_D_VALID))
1749 break;
1750 if (++i == HIFN_D_SRC_RSIZE)
1751 i = 0;
1752 u--;
1753 }
1754 dma->srck = i; dma->srcu = u;
1755
1756 i = dma->cmdk; u = dma->cmdu;
1757 while (u != 0) {
1758 if (dma->cmdr[i].l & __cpu_to_le32(HIFN_D_VALID))
1759 break;
1760 if (++i == HIFN_D_CMD_RSIZE)
1761 i = 0;
1762 u--;
1763 }
1764 dma->cmdk = i; dma->cmdu = u;
1765
1766 i = dma->dstk; u = dma->dstu;
1767 while (u != 0) {
1768 if (dma->dstr[i].l & __cpu_to_le32(HIFN_D_VALID))
1769 break;
1770 if (++i == HIFN_D_DST_RSIZE)
1771 i = 0;
1772 u--;
1773 }
1774 dma->dstk = i; dma->dstu = u;
1775
1776 dev_dbg(&dev->pdev->dev, "ring cleanup 2: i: %d.%d.%d.%d, u: %d.%d.%d.%d, "
1777 "k: %d.%d.%d.%d.\n",
1778 dma->cmdi, dma->srci, dma->dsti, dma->resi,
1779 dma->cmdu, dma->srcu, dma->dstu, dma->resu,
1780 dma->cmdk, dma->srck, dma->dstk, dma->resk);
1781 }
1782
1783 static void hifn_work(struct work_struct *work)
1784 {
1785 struct delayed_work *dw = to_delayed_work(work);
1786 struct hifn_device *dev = container_of(dw, struct hifn_device, work);
1787 unsigned long flags;
1788 int reset = 0;
1789 u32 r = 0;
1790
1791 spin_lock_irqsave(&dev->lock, flags);
1792 if (dev->active == 0) {
1793 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1794
1795 if (dma->cmdu == 0 && (dev->flags & HIFN_FLAG_CMD_BUSY)) {
1796 dev->flags &= ~HIFN_FLAG_CMD_BUSY;
1797 r |= HIFN_DMACSR_C_CTRL_DIS;
1798 }
1799 if (dma->srcu == 0 && (dev->flags & HIFN_FLAG_SRC_BUSY)) {
1800 dev->flags &= ~HIFN_FLAG_SRC_BUSY;
1801 r |= HIFN_DMACSR_S_CTRL_DIS;
1802 }
1803 if (dma->dstu == 0 && (dev->flags & HIFN_FLAG_DST_BUSY)) {
1804 dev->flags &= ~HIFN_FLAG_DST_BUSY;
1805 r |= HIFN_DMACSR_D_CTRL_DIS;
1806 }
1807 if (dma->resu == 0 && (dev->flags & HIFN_FLAG_RES_BUSY)) {
1808 dev->flags &= ~HIFN_FLAG_RES_BUSY;
1809 r |= HIFN_DMACSR_R_CTRL_DIS;
1810 }
1811 if (r)
1812 hifn_write_1(dev, HIFN_1_DMA_CSR, r);
1813 } else
1814 dev->active--;
1815
1816 if ((dev->prev_success == dev->success) && dev->started)
1817 reset = 1;
1818 dev->prev_success = dev->success;
1819 spin_unlock_irqrestore(&dev->lock, flags);
1820
1821 if (reset) {
1822 if (++dev->reset >= 5) {
1823 int i;
1824 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1825
1826 dev_info(&dev->pdev->dev,
1827 "r: %08x, active: %d, started: %d, "
1828 "success: %lu: qlen: %u/%u, reset: %d.\n",
1829 r, dev->active, dev->started,
1830 dev->success, dev->queue.qlen, dev->queue.max_qlen,
1831 reset);
1832
1833 dev_info(&dev->pdev->dev, "%s: res: ", __func__);
1834 for (i = 0; i < HIFN_D_RES_RSIZE; ++i) {
1835 pr_info("%x.%p ", dma->resr[i].l, dev->sa[i]);
1836 if (dev->sa[i]) {
1837 hifn_process_ready(dev->sa[i], -ENODEV);
1838 hifn_complete_sa(dev, i);
1839 }
1840 }
1841 pr_info("\n");
1842
1843 hifn_reset_dma(dev, 1);
1844 hifn_stop_device(dev);
1845 hifn_start_device(dev);
1846 dev->reset = 0;
1847 }
1848
1849 tasklet_schedule(&dev->tasklet);
1850 }
1851
1852 schedule_delayed_work(&dev->work, HZ);
1853 }
1854
1855 static irqreturn_t hifn_interrupt(int irq, void *data)
1856 {
1857 struct hifn_device *dev = (struct hifn_device *)data;
1858 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1859 u32 dmacsr, restart;
1860
1861 dmacsr = hifn_read_1(dev, HIFN_1_DMA_CSR);
1862
1863 dev_dbg(&dev->pdev->dev, "1 dmacsr: %08x, dmareg: %08x, res: %08x [%d], "
1864 "i: %d.%d.%d.%d, u: %d.%d.%d.%d.\n",
1865 dmacsr, dev->dmareg, dmacsr & dev->dmareg, dma->cmdi,
1866 dma->cmdi, dma->srci, dma->dsti, dma->resi,
1867 dma->cmdu, dma->srcu, dma->dstu, dma->resu);
1868
1869 if ((dmacsr & dev->dmareg) == 0)
1870 return IRQ_NONE;
1871
1872 hifn_write_1(dev, HIFN_1_DMA_CSR, dmacsr & dev->dmareg);
1873
1874 if (dmacsr & HIFN_DMACSR_ENGINE)
1875 hifn_write_0(dev, HIFN_0_PUISR, hifn_read_0(dev, HIFN_0_PUISR));
1876 if (dmacsr & HIFN_DMACSR_PUBDONE)
1877 hifn_write_1(dev, HIFN_1_PUB_STATUS,
1878 hifn_read_1(dev, HIFN_1_PUB_STATUS) | HIFN_PUBSTS_DONE);
1879
1880 restart = dmacsr & (HIFN_DMACSR_R_OVER | HIFN_DMACSR_D_OVER);
1881 if (restart) {
1882 u32 puisr = hifn_read_0(dev, HIFN_0_PUISR);
1883
1884 dev_warn(&dev->pdev->dev, "overflow: r: %d, d: %d, puisr: %08x, d: %u.\n",
1885 !!(dmacsr & HIFN_DMACSR_R_OVER),
1886 !!(dmacsr & HIFN_DMACSR_D_OVER),
1887 puisr, !!(puisr & HIFN_PUISR_DSTOVER));
1888 if (!!(puisr & HIFN_PUISR_DSTOVER))
1889 hifn_write_0(dev, HIFN_0_PUISR, HIFN_PUISR_DSTOVER);
1890 hifn_write_1(dev, HIFN_1_DMA_CSR, dmacsr & (HIFN_DMACSR_R_OVER |
1891 HIFN_DMACSR_D_OVER));
1892 }
1893
1894 restart = dmacsr & (HIFN_DMACSR_C_ABORT | HIFN_DMACSR_S_ABORT |
1895 HIFN_DMACSR_D_ABORT | HIFN_DMACSR_R_ABORT);
1896 if (restart) {
1897 dev_warn(&dev->pdev->dev, "abort: c: %d, s: %d, d: %d, r: %d.\n",
1898 !!(dmacsr & HIFN_DMACSR_C_ABORT),
1899 !!(dmacsr & HIFN_DMACSR_S_ABORT),
1900 !!(dmacsr & HIFN_DMACSR_D_ABORT),
1901 !!(dmacsr & HIFN_DMACSR_R_ABORT));
1902 hifn_reset_dma(dev, 1);
1903 hifn_init_dma(dev);
1904 hifn_init_registers(dev);
1905 }
1906
1907 if ((dmacsr & HIFN_DMACSR_C_WAIT) && (dma->cmdu == 0)) {
1908 dev_dbg(&dev->pdev->dev, "wait on command.\n");
1909 dev->dmareg &= ~(HIFN_DMAIER_C_WAIT);
1910 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1911 }
1912
1913 tasklet_schedule(&dev->tasklet);
1914
1915 return IRQ_HANDLED;
1916 }
1917
1918 static void hifn_flush(struct hifn_device *dev)
1919 {
1920 unsigned long flags;
1921 struct crypto_async_request *async_req;
1922 struct ablkcipher_request *req;
1923 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1924 int i;
1925
1926 for (i = 0; i < HIFN_D_RES_RSIZE; ++i) {
1927 struct hifn_desc *d = &dma->resr[i];
1928
1929 if (dev->sa[i]) {
1930 hifn_process_ready(dev->sa[i],
1931 (d->l & __cpu_to_le32(HIFN_D_VALID)) ? -ENODEV : 0);
1932 hifn_complete_sa(dev, i);
1933 }
1934 }
1935
1936 spin_lock_irqsave(&dev->lock, flags);
1937 while ((async_req = crypto_dequeue_request(&dev->queue))) {
1938 req = ablkcipher_request_cast(async_req);
1939 spin_unlock_irqrestore(&dev->lock, flags);
1940
1941 hifn_process_ready(req, -ENODEV);
1942
1943 spin_lock_irqsave(&dev->lock, flags);
1944 }
1945 spin_unlock_irqrestore(&dev->lock, flags);
1946 }
1947
1948 static int hifn_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
1949 unsigned int len)
1950 {
1951 struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
1952 struct hifn_context *ctx = crypto_tfm_ctx(tfm);
1953 struct hifn_device *dev = ctx->dev;
1954
1955 if (len > HIFN_MAX_CRYPT_KEY_LENGTH) {
1956 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
1957 return -1;
1958 }
1959
1960 if (len == HIFN_DES_KEY_LENGTH) {
1961 u32 tmp[DES_EXPKEY_WORDS];
1962 int ret = des_ekey(tmp, key);
1963
1964 if (unlikely(ret == 0) &&
1965 (tfm->crt_flags & CRYPTO_TFM_REQ_FORBID_WEAK_KEYS)) {
1966 tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY;
1967 return -EINVAL;
1968 }
1969 }
1970
1971 dev->flags &= ~HIFN_FLAG_OLD_KEY;
1972
1973 memcpy(ctx->key, key, len);
1974 ctx->keysize = len;
1975
1976 return 0;
1977 }
1978
1979 static int hifn_handle_req(struct ablkcipher_request *req)
1980 {
1981 struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
1982 struct hifn_device *dev = ctx->dev;
1983 int err = -EAGAIN;
1984
1985 if (dev->started + DIV_ROUND_UP(req->nbytes, PAGE_SIZE) <= HIFN_QUEUE_LENGTH)
1986 err = hifn_setup_session(req);
1987
1988 if (err == -EAGAIN) {
1989 unsigned long flags;
1990
1991 spin_lock_irqsave(&dev->lock, flags);
1992 err = ablkcipher_enqueue_request(&dev->queue, req);
1993 spin_unlock_irqrestore(&dev->lock, flags);
1994 }
1995
1996 return err;
1997 }
1998
1999 static int hifn_setup_crypto_req(struct ablkcipher_request *req, u8 op,
2000 u8 type, u8 mode)
2001 {
2002 struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
2003 struct hifn_request_context *rctx = ablkcipher_request_ctx(req);
2004 unsigned ivsize;
2005
2006 ivsize = crypto_ablkcipher_ivsize(crypto_ablkcipher_reqtfm(req));
2007
2008 if (req->info && mode != ACRYPTO_MODE_ECB) {
2009 if (type == ACRYPTO_TYPE_AES_128)
2010 ivsize = HIFN_AES_IV_LENGTH;
2011 else if (type == ACRYPTO_TYPE_DES)
2012 ivsize = HIFN_DES_KEY_LENGTH;
2013 else if (type == ACRYPTO_TYPE_3DES)
2014 ivsize = HIFN_3DES_KEY_LENGTH;
2015 }
2016
2017 if (ctx->keysize != 16 && type == ACRYPTO_TYPE_AES_128) {
2018 if (ctx->keysize == 24)
2019 type = ACRYPTO_TYPE_AES_192;
2020 else if (ctx->keysize == 32)
2021 type = ACRYPTO_TYPE_AES_256;
2022 }
2023
2024 rctx->op = op;
2025 rctx->mode = mode;
2026 rctx->type = type;
2027 rctx->iv = req->info;
2028 rctx->ivsize = ivsize;
2029
2030 /*
2031 * HEAVY TODO: needs to kick Herbert XU to write documentation.
2032 * HEAVY TODO: needs to kick Herbert XU to write documentation.
2033 * HEAVY TODO: needs to kick Herbert XU to write documentation.
2034 */
2035
2036 return hifn_handle_req(req);
2037 }
2038
2039 static int hifn_process_queue(struct hifn_device *dev)
2040 {
2041 struct crypto_async_request *async_req, *backlog;
2042 struct ablkcipher_request *req;
2043 unsigned long flags;
2044 int err = 0;
2045
2046 while (dev->started < HIFN_QUEUE_LENGTH) {
2047 spin_lock_irqsave(&dev->lock, flags);
2048 backlog = crypto_get_backlog(&dev->queue);
2049 async_req = crypto_dequeue_request(&dev->queue);
2050 spin_unlock_irqrestore(&dev->lock, flags);
2051
2052 if (!async_req)
2053 break;
2054
2055 if (backlog)
2056 backlog->complete(backlog, -EINPROGRESS);
2057
2058 req = ablkcipher_request_cast(async_req);
2059
2060 err = hifn_handle_req(req);
2061 if (err)
2062 break;
2063 }
2064
2065 return err;
2066 }
2067
2068 static int hifn_setup_crypto(struct ablkcipher_request *req, u8 op,
2069 u8 type, u8 mode)
2070 {
2071 int err;
2072 struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
2073 struct hifn_device *dev = ctx->dev;
2074
2075 err = hifn_setup_crypto_req(req, op, type, mode);
2076 if (err)
2077 return err;
2078
2079 if (dev->started < HIFN_QUEUE_LENGTH && dev->queue.qlen)
2080 hifn_process_queue(dev);
2081
2082 return -EINPROGRESS;
2083 }
2084
2085 /*
2086 * AES ecryption functions.
2087 */
2088 static inline int hifn_encrypt_aes_ecb(struct ablkcipher_request *req)
2089 {
2090 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2091 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_ECB);
2092 }
2093 static inline int hifn_encrypt_aes_cbc(struct ablkcipher_request *req)
2094 {
2095 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2096 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CBC);
2097 }
2098 static inline int hifn_encrypt_aes_cfb(struct ablkcipher_request *req)
2099 {
2100 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2101 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CFB);
2102 }
2103 static inline int hifn_encrypt_aes_ofb(struct ablkcipher_request *req)
2104 {
2105 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2106 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_OFB);
2107 }
2108
2109 /*
2110 * AES decryption functions.
2111 */
2112 static inline int hifn_decrypt_aes_ecb(struct ablkcipher_request *req)
2113 {
2114 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2115 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_ECB);
2116 }
2117 static inline int hifn_decrypt_aes_cbc(struct ablkcipher_request *req)
2118 {
2119 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2120 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CBC);
2121 }
2122 static inline int hifn_decrypt_aes_cfb(struct ablkcipher_request *req)
2123 {
2124 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2125 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CFB);
2126 }
2127 static inline int hifn_decrypt_aes_ofb(struct ablkcipher_request *req)
2128 {
2129 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2130 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_OFB);
2131 }
2132
2133 /*
2134 * DES ecryption functions.
2135 */
2136 static inline int hifn_encrypt_des_ecb(struct ablkcipher_request *req)
2137 {
2138 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2139 ACRYPTO_TYPE_DES, ACRYPTO_MODE_ECB);
2140 }
2141 static inline int hifn_encrypt_des_cbc(struct ablkcipher_request *req)
2142 {
2143 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2144 ACRYPTO_TYPE_DES, ACRYPTO_MODE_CBC);
2145 }
2146 static inline int hifn_encrypt_des_cfb(struct ablkcipher_request *req)
2147 {
2148 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2149 ACRYPTO_TYPE_DES, ACRYPTO_MODE_CFB);
2150 }
2151 static inline int hifn_encrypt_des_ofb(struct ablkcipher_request *req)
2152 {
2153 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2154 ACRYPTO_TYPE_DES, ACRYPTO_MODE_OFB);
2155 }
2156
2157 /*
2158 * DES decryption functions.
2159 */
2160 static inline int hifn_decrypt_des_ecb(struct ablkcipher_request *req)
2161 {
2162 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2163 ACRYPTO_TYPE_DES, ACRYPTO_MODE_ECB);
2164 }
2165 static inline int hifn_decrypt_des_cbc(struct ablkcipher_request *req)
2166 {
2167 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2168 ACRYPTO_TYPE_DES, ACRYPTO_MODE_CBC);
2169 }
2170 static inline int hifn_decrypt_des_cfb(struct ablkcipher_request *req)
2171 {
2172 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2173 ACRYPTO_TYPE_DES, ACRYPTO_MODE_CFB);
2174 }
2175 static inline int hifn_decrypt_des_ofb(struct ablkcipher_request *req)
2176 {
2177 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2178 ACRYPTO_TYPE_DES, ACRYPTO_MODE_OFB);
2179 }
2180
2181 /*
2182 * 3DES ecryption functions.
2183 */
2184 static inline int hifn_encrypt_3des_ecb(struct ablkcipher_request *req)
2185 {
2186 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2187 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_ECB);
2188 }
2189 static inline int hifn_encrypt_3des_cbc(struct ablkcipher_request *req)
2190 {
2191 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2192 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CBC);
2193 }
2194 static inline int hifn_encrypt_3des_cfb(struct ablkcipher_request *req)
2195 {
2196 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2197 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CFB);
2198 }
2199 static inline int hifn_encrypt_3des_ofb(struct ablkcipher_request *req)
2200 {
2201 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2202 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_OFB);
2203 }
2204
2205 /* 3DES decryption functions. */
2206 static inline int hifn_decrypt_3des_ecb(struct ablkcipher_request *req)
2207 {
2208 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2209 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_ECB);
2210 }
2211 static inline int hifn_decrypt_3des_cbc(struct ablkcipher_request *req)
2212 {
2213 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2214 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CBC);
2215 }
2216 static inline int hifn_decrypt_3des_cfb(struct ablkcipher_request *req)
2217 {
2218 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2219 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CFB);
2220 }
2221 static inline int hifn_decrypt_3des_ofb(struct ablkcipher_request *req)
2222 {
2223 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2224 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_OFB);
2225 }
2226
2227 struct hifn_alg_template {
2228 char name[CRYPTO_MAX_ALG_NAME];
2229 char drv_name[CRYPTO_MAX_ALG_NAME];
2230 unsigned int bsize;
2231 struct ablkcipher_alg ablkcipher;
2232 };
2233
2234 static struct hifn_alg_template hifn_alg_templates[] = {
2235 /*
2236 * 3DES ECB, CBC, CFB and OFB modes.
2237 */
2238 {
2239 .name = "cfb(des3_ede)", .drv_name = "cfb-3des", .bsize = 8,
2240 .ablkcipher = {
2241 .min_keysize = HIFN_3DES_KEY_LENGTH,
2242 .max_keysize = HIFN_3DES_KEY_LENGTH,
2243 .setkey = hifn_setkey,
2244 .encrypt = hifn_encrypt_3des_cfb,
2245 .decrypt = hifn_decrypt_3des_cfb,
2246 },
2247 },
2248 {
2249 .name = "ofb(des3_ede)", .drv_name = "ofb-3des", .bsize = 8,
2250 .ablkcipher = {
2251 .min_keysize = HIFN_3DES_KEY_LENGTH,
2252 .max_keysize = HIFN_3DES_KEY_LENGTH,
2253 .setkey = hifn_setkey,
2254 .encrypt = hifn_encrypt_3des_ofb,
2255 .decrypt = hifn_decrypt_3des_ofb,
2256 },
2257 },
2258 {
2259 .name = "cbc(des3_ede)", .drv_name = "cbc-3des", .bsize = 8,
2260 .ablkcipher = {
2261 .ivsize = HIFN_IV_LENGTH,
2262 .min_keysize = HIFN_3DES_KEY_LENGTH,
2263 .max_keysize = HIFN_3DES_KEY_LENGTH,
2264 .setkey = hifn_setkey,
2265 .encrypt = hifn_encrypt_3des_cbc,
2266 .decrypt = hifn_decrypt_3des_cbc,
2267 },
2268 },
2269 {
2270 .name = "ecb(des3_ede)", .drv_name = "ecb-3des", .bsize = 8,
2271 .ablkcipher = {
2272 .min_keysize = HIFN_3DES_KEY_LENGTH,
2273 .max_keysize = HIFN_3DES_KEY_LENGTH,
2274 .setkey = hifn_setkey,
2275 .encrypt = hifn_encrypt_3des_ecb,
2276 .decrypt = hifn_decrypt_3des_ecb,
2277 },
2278 },
2279
2280 /*
2281 * DES ECB, CBC, CFB and OFB modes.
2282 */
2283 {
2284 .name = "cfb(des)", .drv_name = "cfb-des", .bsize = 8,
2285 .ablkcipher = {
2286 .min_keysize = HIFN_DES_KEY_LENGTH,
2287 .max_keysize = HIFN_DES_KEY_LENGTH,
2288 .setkey = hifn_setkey,
2289 .encrypt = hifn_encrypt_des_cfb,
2290 .decrypt = hifn_decrypt_des_cfb,
2291 },
2292 },
2293 {
2294 .name = "ofb(des)", .drv_name = "ofb-des", .bsize = 8,
2295 .ablkcipher = {
2296 .min_keysize = HIFN_DES_KEY_LENGTH,
2297 .max_keysize = HIFN_DES_KEY_LENGTH,
2298 .setkey = hifn_setkey,
2299 .encrypt = hifn_encrypt_des_ofb,
2300 .decrypt = hifn_decrypt_des_ofb,
2301 },
2302 },
2303 {
2304 .name = "cbc(des)", .drv_name = "cbc-des", .bsize = 8,
2305 .ablkcipher = {
2306 .ivsize = HIFN_IV_LENGTH,
2307 .min_keysize = HIFN_DES_KEY_LENGTH,
2308 .max_keysize = HIFN_DES_KEY_LENGTH,
2309 .setkey = hifn_setkey,
2310 .encrypt = hifn_encrypt_des_cbc,
2311 .decrypt = hifn_decrypt_des_cbc,
2312 },
2313 },
2314 {
2315 .name = "ecb(des)", .drv_name = "ecb-des", .bsize = 8,
2316 .ablkcipher = {
2317 .min_keysize = HIFN_DES_KEY_LENGTH,
2318 .max_keysize = HIFN_DES_KEY_LENGTH,
2319 .setkey = hifn_setkey,
2320 .encrypt = hifn_encrypt_des_ecb,
2321 .decrypt = hifn_decrypt_des_ecb,
2322 },
2323 },
2324
2325 /*
2326 * AES ECB, CBC, CFB and OFB modes.
2327 */
2328 {
2329 .name = "ecb(aes)", .drv_name = "ecb-aes", .bsize = 16,
2330 .ablkcipher = {
2331 .min_keysize = AES_MIN_KEY_SIZE,
2332 .max_keysize = AES_MAX_KEY_SIZE,
2333 .setkey = hifn_setkey,
2334 .encrypt = hifn_encrypt_aes_ecb,
2335 .decrypt = hifn_decrypt_aes_ecb,
2336 },
2337 },
2338 {
2339 .name = "cbc(aes)", .drv_name = "cbc-aes", .bsize = 16,
2340 .ablkcipher = {
2341 .ivsize = HIFN_AES_IV_LENGTH,
2342 .min_keysize = AES_MIN_KEY_SIZE,
2343 .max_keysize = AES_MAX_KEY_SIZE,
2344 .setkey = hifn_setkey,
2345 .encrypt = hifn_encrypt_aes_cbc,
2346 .decrypt = hifn_decrypt_aes_cbc,
2347 },
2348 },
2349 {
2350 .name = "cfb(aes)", .drv_name = "cfb-aes", .bsize = 16,
2351 .ablkcipher = {
2352 .min_keysize = AES_MIN_KEY_SIZE,
2353 .max_keysize = AES_MAX_KEY_SIZE,
2354 .setkey = hifn_setkey,
2355 .encrypt = hifn_encrypt_aes_cfb,
2356 .decrypt = hifn_decrypt_aes_cfb,
2357 },
2358 },
2359 {
2360 .name = "ofb(aes)", .drv_name = "ofb-aes", .bsize = 16,
2361 .ablkcipher = {
2362 .min_keysize = AES_MIN_KEY_SIZE,
2363 .max_keysize = AES_MAX_KEY_SIZE,
2364 .setkey = hifn_setkey,
2365 .encrypt = hifn_encrypt_aes_ofb,
2366 .decrypt = hifn_decrypt_aes_ofb,
2367 },
2368 },
2369 };
2370
2371 static int hifn_cra_init(struct crypto_tfm *tfm)
2372 {
2373 struct crypto_alg *alg = tfm->__crt_alg;
2374 struct hifn_crypto_alg *ha = crypto_alg_to_hifn(alg);
2375 struct hifn_context *ctx = crypto_tfm_ctx(tfm);
2376
2377 ctx->dev = ha->dev;
2378 tfm->crt_ablkcipher.reqsize = sizeof(struct hifn_request_context);
2379 return 0;
2380 }
2381
2382 static int hifn_alg_alloc(struct hifn_device *dev, struct hifn_alg_template *t)
2383 {
2384 struct hifn_crypto_alg *alg;
2385 int err;
2386
2387 alg = kzalloc(sizeof(*alg), GFP_KERNEL);
2388 if (!alg)
2389 return -ENOMEM;
2390
2391 snprintf(alg->alg.cra_name, CRYPTO_MAX_ALG_NAME, "%s", t->name);
2392 snprintf(alg->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-%s",
2393 t->drv_name, dev->name);
2394
2395 alg->alg.cra_priority = 300;
2396 alg->alg.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
2397 CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC;
2398 alg->alg.cra_blocksize = t->bsize;
2399 alg->alg.cra_ctxsize = sizeof(struct hifn_context);
2400 alg->alg.cra_alignmask = 0;
2401 alg->alg.cra_type = &crypto_ablkcipher_type;
2402 alg->alg.cra_module = THIS_MODULE;
2403 alg->alg.cra_u.ablkcipher = t->ablkcipher;
2404 alg->alg.cra_init = hifn_cra_init;
2405
2406 alg->dev = dev;
2407
2408 list_add_tail(&alg->entry, &dev->alg_list);
2409
2410 err = crypto_register_alg(&alg->alg);
2411 if (err) {
2412 list_del(&alg->entry);
2413 kfree(alg);
2414 }
2415
2416 return err;
2417 }
2418
2419 static void hifn_unregister_alg(struct hifn_device *dev)
2420 {
2421 struct hifn_crypto_alg *a, *n;
2422
2423 list_for_each_entry_safe(a, n, &dev->alg_list, entry) {
2424 list_del(&a->entry);
2425 crypto_unregister_alg(&a->alg);
2426 kfree(a);
2427 }
2428 }
2429
2430 static int hifn_register_alg(struct hifn_device *dev)
2431 {
2432 int i, err;
2433
2434 for (i = 0; i < ARRAY_SIZE(hifn_alg_templates); ++i) {
2435 err = hifn_alg_alloc(dev, &hifn_alg_templates[i]);
2436 if (err)
2437 goto err_out_exit;
2438 }
2439
2440 return 0;
2441
2442 err_out_exit:
2443 hifn_unregister_alg(dev);
2444 return err;
2445 }
2446
2447 static void hifn_tasklet_callback(unsigned long data)
2448 {
2449 struct hifn_device *dev = (struct hifn_device *)data;
2450
2451 /*
2452 * This is ok to call this without lock being held,
2453 * althogh it modifies some parameters used in parallel,
2454 * (like dev->success), but they are used in process
2455 * context or update is atomic (like setting dev->sa[i] to NULL).
2456 */
2457 hifn_clear_rings(dev, 0);
2458
2459 if (dev->started < HIFN_QUEUE_LENGTH && dev->queue.qlen)
2460 hifn_process_queue(dev);
2461 }
2462
2463 static int hifn_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2464 {
2465 int err, i;
2466 struct hifn_device *dev;
2467 char name[8];
2468
2469 err = pci_enable_device(pdev);
2470 if (err)
2471 return err;
2472 pci_set_master(pdev);
2473
2474 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2475 if (err)
2476 goto err_out_disable_pci_device;
2477
2478 snprintf(name, sizeof(name), "hifn%d",
2479 atomic_inc_return(&hifn_dev_number) - 1);
2480
2481 err = pci_request_regions(pdev, name);
2482 if (err)
2483 goto err_out_disable_pci_device;
2484
2485 if (pci_resource_len(pdev, 0) < HIFN_BAR0_SIZE ||
2486 pci_resource_len(pdev, 1) < HIFN_BAR1_SIZE ||
2487 pci_resource_len(pdev, 2) < HIFN_BAR2_SIZE) {
2488 dev_err(&pdev->dev, "Broken hardware - I/O regions are too small.\n");
2489 err = -ENODEV;
2490 goto err_out_free_regions;
2491 }
2492
2493 dev = kzalloc(sizeof(struct hifn_device) + sizeof(struct crypto_alg),
2494 GFP_KERNEL);
2495 if (!dev) {
2496 err = -ENOMEM;
2497 goto err_out_free_regions;
2498 }
2499
2500 INIT_LIST_HEAD(&dev->alg_list);
2501
2502 snprintf(dev->name, sizeof(dev->name), "%s", name);
2503 spin_lock_init(&dev->lock);
2504
2505 for (i = 0; i < 3; ++i) {
2506 unsigned long addr, size;
2507
2508 addr = pci_resource_start(pdev, i);
2509 size = pci_resource_len(pdev, i);
2510
2511 dev->bar[i] = ioremap_nocache(addr, size);
2512 if (!dev->bar[i]) {
2513 err = -ENOMEM;
2514 goto err_out_unmap_bars;
2515 }
2516 }
2517
2518 dev->desc_virt = pci_zalloc_consistent(pdev, sizeof(struct hifn_dma),
2519 &dev->desc_dma);
2520 if (!dev->desc_virt) {
2521 dev_err(&pdev->dev, "Failed to allocate descriptor rings.\n");
2522 err = -ENOMEM;
2523 goto err_out_unmap_bars;
2524 }
2525
2526 dev->pdev = pdev;
2527 dev->irq = pdev->irq;
2528
2529 for (i = 0; i < HIFN_D_RES_RSIZE; ++i)
2530 dev->sa[i] = NULL;
2531
2532 pci_set_drvdata(pdev, dev);
2533
2534 tasklet_init(&dev->tasklet, hifn_tasklet_callback, (unsigned long)dev);
2535
2536 crypto_init_queue(&dev->queue, 1);
2537
2538 err = request_irq(dev->irq, hifn_interrupt, IRQF_SHARED, dev->name, dev);
2539 if (err) {
2540 dev_err(&pdev->dev, "Failed to request IRQ%d: err: %d.\n",
2541 dev->irq, err);
2542 dev->irq = 0;
2543 goto err_out_free_desc;
2544 }
2545
2546 err = hifn_start_device(dev);
2547 if (err)
2548 goto err_out_free_irq;
2549
2550 err = hifn_register_rng(dev);
2551 if (err)
2552 goto err_out_stop_device;
2553
2554 err = hifn_register_alg(dev);
2555 if (err)
2556 goto err_out_unregister_rng;
2557
2558 INIT_DELAYED_WORK(&dev->work, hifn_work);
2559 schedule_delayed_work(&dev->work, HZ);
2560
2561 dev_dbg(&pdev->dev, "HIFN crypto accelerator card at %s has been "
2562 "successfully registered as %s.\n",
2563 pci_name(pdev), dev->name);
2564
2565 return 0;
2566
2567 err_out_unregister_rng:
2568 hifn_unregister_rng(dev);
2569 err_out_stop_device:
2570 hifn_reset_dma(dev, 1);
2571 hifn_stop_device(dev);
2572 err_out_free_irq:
2573 free_irq(dev->irq, dev);
2574 tasklet_kill(&dev->tasklet);
2575 err_out_free_desc:
2576 pci_free_consistent(pdev, sizeof(struct hifn_dma),
2577 dev->desc_virt, dev->desc_dma);
2578
2579 err_out_unmap_bars:
2580 for (i = 0; i < 3; ++i)
2581 if (dev->bar[i])
2582 iounmap(dev->bar[i]);
2583 kfree(dev);
2584
2585 err_out_free_regions:
2586 pci_release_regions(pdev);
2587
2588 err_out_disable_pci_device:
2589 pci_disable_device(pdev);
2590
2591 return err;
2592 }
2593
2594 static void hifn_remove(struct pci_dev *pdev)
2595 {
2596 int i;
2597 struct hifn_device *dev;
2598
2599 dev = pci_get_drvdata(pdev);
2600
2601 if (dev) {
2602 cancel_delayed_work_sync(&dev->work);
2603
2604 hifn_unregister_rng(dev);
2605 hifn_unregister_alg(dev);
2606 hifn_reset_dma(dev, 1);
2607 hifn_stop_device(dev);
2608
2609 free_irq(dev->irq, dev);
2610 tasklet_kill(&dev->tasklet);
2611
2612 hifn_flush(dev);
2613
2614 pci_free_consistent(pdev, sizeof(struct hifn_dma),
2615 dev->desc_virt, dev->desc_dma);
2616 for (i = 0; i < 3; ++i)
2617 if (dev->bar[i])
2618 iounmap(dev->bar[i]);
2619
2620 kfree(dev);
2621 }
2622
2623 pci_release_regions(pdev);
2624 pci_disable_device(pdev);
2625 }
2626
2627 static struct pci_device_id hifn_pci_tbl[] = {
2628 { PCI_DEVICE(PCI_VENDOR_ID_HIFN, PCI_DEVICE_ID_HIFN_7955) },
2629 { PCI_DEVICE(PCI_VENDOR_ID_HIFN, PCI_DEVICE_ID_HIFN_7956) },
2630 { 0 }
2631 };
2632 MODULE_DEVICE_TABLE(pci, hifn_pci_tbl);
2633
2634 static struct pci_driver hifn_pci_driver = {
2635 .name = "hifn795x",
2636 .id_table = hifn_pci_tbl,
2637 .probe = hifn_probe,
2638 .remove = hifn_remove,
2639 };
2640
2641 static int __init hifn_init(void)
2642 {
2643 unsigned int freq;
2644 int err;
2645
2646 /* HIFN supports only 32-bit addresses */
2647 BUILD_BUG_ON(sizeof(dma_addr_t) != 4);
2648
2649 if (strncmp(hifn_pll_ref, "ext", 3) &&
2650 strncmp(hifn_pll_ref, "pci", 3)) {
2651 pr_err("hifn795x: invalid hifn_pll_ref clock, must be pci or ext");
2652 return -EINVAL;
2653 }
2654
2655 /*
2656 * For the 7955/7956 the reference clock frequency must be in the
2657 * range of 20MHz-100MHz. For the 7954 the upper bound is 66.67MHz,
2658 * but this chip is currently not supported.
2659 */
2660 if (hifn_pll_ref[3] != '\0') {
2661 freq = simple_strtoul(hifn_pll_ref + 3, NULL, 10);
2662 if (freq < 20 || freq > 100) {
2663 pr_err("hifn795x: invalid hifn_pll_ref frequency, must"
2664 "be in the range of 20-100");
2665 return -EINVAL;
2666 }
2667 }
2668
2669 err = pci_register_driver(&hifn_pci_driver);
2670 if (err < 0) {
2671 pr_err("Failed to register PCI driver for %s device.\n",
2672 hifn_pci_driver.name);
2673 return -ENODEV;
2674 }
2675
2676 pr_info("Driver for HIFN 795x crypto accelerator chip "
2677 "has been successfully registered.\n");
2678
2679 return 0;
2680 }
2681
2682 static void __exit hifn_fini(void)
2683 {
2684 pci_unregister_driver(&hifn_pci_driver);
2685
2686 pr_info("Driver for HIFN 795x crypto accelerator chip "
2687 "has been successfully unregistered.\n");
2688 }
2689
2690 module_init(hifn_init);
2691 module_exit(hifn_fini);
2692
2693 MODULE_LICENSE("GPL");
2694 MODULE_AUTHOR("Evgeniy Polyakov <johnpol@2ka.mipt.ru>");
2695 MODULE_DESCRIPTION("Driver for HIFN 795x crypto accelerator chip.");