]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/crypto/ixp4xx_crypto.c
powerpc/mm/books3s: Add new pte bit to mark pte temporarily invalid.
[mirror_ubuntu-bionic-kernel.git] / drivers / crypto / ixp4xx_crypto.c
1 /*
2 * Intel IXP4xx NPE-C crypto driver
3 *
4 * Copyright (C) 2008 Christian Hohnstaedt <chohnstaedt@innominate.com>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of version 2 of the GNU General Public License
8 * as published by the Free Software Foundation.
9 *
10 */
11
12 #include <linux/platform_device.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/dmapool.h>
15 #include <linux/crypto.h>
16 #include <linux/kernel.h>
17 #include <linux/rtnetlink.h>
18 #include <linux/interrupt.h>
19 #include <linux/spinlock.h>
20 #include <linux/gfp.h>
21 #include <linux/module.h>
22
23 #include <crypto/ctr.h>
24 #include <crypto/des.h>
25 #include <crypto/aes.h>
26 #include <crypto/hmac.h>
27 #include <crypto/sha.h>
28 #include <crypto/algapi.h>
29 #include <crypto/internal/aead.h>
30 #include <crypto/authenc.h>
31 #include <crypto/scatterwalk.h>
32
33 #include <mach/npe.h>
34 #include <mach/qmgr.h>
35
36 #define MAX_KEYLEN 32
37
38 /* hash: cfgword + 2 * digestlen; crypt: keylen + cfgword */
39 #define NPE_CTX_LEN 80
40 #define AES_BLOCK128 16
41
42 #define NPE_OP_HASH_VERIFY 0x01
43 #define NPE_OP_CCM_ENABLE 0x04
44 #define NPE_OP_CRYPT_ENABLE 0x08
45 #define NPE_OP_HASH_ENABLE 0x10
46 #define NPE_OP_NOT_IN_PLACE 0x20
47 #define NPE_OP_HMAC_DISABLE 0x40
48 #define NPE_OP_CRYPT_ENCRYPT 0x80
49
50 #define NPE_OP_CCM_GEN_MIC 0xcc
51 #define NPE_OP_HASH_GEN_ICV 0x50
52 #define NPE_OP_ENC_GEN_KEY 0xc9
53
54 #define MOD_ECB 0x0000
55 #define MOD_CTR 0x1000
56 #define MOD_CBC_ENC 0x2000
57 #define MOD_CBC_DEC 0x3000
58 #define MOD_CCM_ENC 0x4000
59 #define MOD_CCM_DEC 0x5000
60
61 #define KEYLEN_128 4
62 #define KEYLEN_192 6
63 #define KEYLEN_256 8
64
65 #define CIPH_DECR 0x0000
66 #define CIPH_ENCR 0x0400
67
68 #define MOD_DES 0x0000
69 #define MOD_TDEA2 0x0100
70 #define MOD_3DES 0x0200
71 #define MOD_AES 0x0800
72 #define MOD_AES128 (0x0800 | KEYLEN_128)
73 #define MOD_AES192 (0x0900 | KEYLEN_192)
74 #define MOD_AES256 (0x0a00 | KEYLEN_256)
75
76 #define MAX_IVLEN 16
77 #define NPE_ID 2 /* NPE C */
78 #define NPE_QLEN 16
79 /* Space for registering when the first
80 * NPE_QLEN crypt_ctl are busy */
81 #define NPE_QLEN_TOTAL 64
82
83 #define SEND_QID 29
84 #define RECV_QID 30
85
86 #define CTL_FLAG_UNUSED 0x0000
87 #define CTL_FLAG_USED 0x1000
88 #define CTL_FLAG_PERFORM_ABLK 0x0001
89 #define CTL_FLAG_GEN_ICV 0x0002
90 #define CTL_FLAG_GEN_REVAES 0x0004
91 #define CTL_FLAG_PERFORM_AEAD 0x0008
92 #define CTL_FLAG_MASK 0x000f
93
94 #define HMAC_PAD_BLOCKLEN SHA1_BLOCK_SIZE
95
96 #define MD5_DIGEST_SIZE 16
97
98 struct buffer_desc {
99 u32 phys_next;
100 #ifdef __ARMEB__
101 u16 buf_len;
102 u16 pkt_len;
103 #else
104 u16 pkt_len;
105 u16 buf_len;
106 #endif
107 u32 phys_addr;
108 u32 __reserved[4];
109 struct buffer_desc *next;
110 enum dma_data_direction dir;
111 };
112
113 struct crypt_ctl {
114 #ifdef __ARMEB__
115 u8 mode; /* NPE_OP_* operation mode */
116 u8 init_len;
117 u16 reserved;
118 #else
119 u16 reserved;
120 u8 init_len;
121 u8 mode; /* NPE_OP_* operation mode */
122 #endif
123 u8 iv[MAX_IVLEN]; /* IV for CBC mode or CTR IV for CTR mode */
124 u32 icv_rev_aes; /* icv or rev aes */
125 u32 src_buf;
126 u32 dst_buf;
127 #ifdef __ARMEB__
128 u16 auth_offs; /* Authentication start offset */
129 u16 auth_len; /* Authentication data length */
130 u16 crypt_offs; /* Cryption start offset */
131 u16 crypt_len; /* Cryption data length */
132 #else
133 u16 auth_len; /* Authentication data length */
134 u16 auth_offs; /* Authentication start offset */
135 u16 crypt_len; /* Cryption data length */
136 u16 crypt_offs; /* Cryption start offset */
137 #endif
138 u32 aadAddr; /* Additional Auth Data Addr for CCM mode */
139 u32 crypto_ctx; /* NPE Crypto Param structure address */
140
141 /* Used by Host: 4*4 bytes*/
142 unsigned ctl_flags;
143 union {
144 struct ablkcipher_request *ablk_req;
145 struct aead_request *aead_req;
146 struct crypto_tfm *tfm;
147 } data;
148 struct buffer_desc *regist_buf;
149 u8 *regist_ptr;
150 };
151
152 struct ablk_ctx {
153 struct buffer_desc *src;
154 struct buffer_desc *dst;
155 };
156
157 struct aead_ctx {
158 struct buffer_desc *src;
159 struct buffer_desc *dst;
160 struct scatterlist ivlist;
161 /* used when the hmac is not on one sg entry */
162 u8 *hmac_virt;
163 int encrypt;
164 };
165
166 struct ix_hash_algo {
167 u32 cfgword;
168 unsigned char *icv;
169 };
170
171 struct ix_sa_dir {
172 unsigned char *npe_ctx;
173 dma_addr_t npe_ctx_phys;
174 int npe_ctx_idx;
175 u8 npe_mode;
176 };
177
178 struct ixp_ctx {
179 struct ix_sa_dir encrypt;
180 struct ix_sa_dir decrypt;
181 int authkey_len;
182 u8 authkey[MAX_KEYLEN];
183 int enckey_len;
184 u8 enckey[MAX_KEYLEN];
185 u8 salt[MAX_IVLEN];
186 u8 nonce[CTR_RFC3686_NONCE_SIZE];
187 unsigned salted;
188 atomic_t configuring;
189 struct completion completion;
190 };
191
192 struct ixp_alg {
193 struct crypto_alg crypto;
194 const struct ix_hash_algo *hash;
195 u32 cfg_enc;
196 u32 cfg_dec;
197
198 int registered;
199 };
200
201 struct ixp_aead_alg {
202 struct aead_alg crypto;
203 const struct ix_hash_algo *hash;
204 u32 cfg_enc;
205 u32 cfg_dec;
206
207 int registered;
208 };
209
210 static const struct ix_hash_algo hash_alg_md5 = {
211 .cfgword = 0xAA010004,
212 .icv = "\x01\x23\x45\x67\x89\xAB\xCD\xEF"
213 "\xFE\xDC\xBA\x98\x76\x54\x32\x10",
214 };
215 static const struct ix_hash_algo hash_alg_sha1 = {
216 .cfgword = 0x00000005,
217 .icv = "\x67\x45\x23\x01\xEF\xCD\xAB\x89\x98\xBA"
218 "\xDC\xFE\x10\x32\x54\x76\xC3\xD2\xE1\xF0",
219 };
220
221 static struct npe *npe_c;
222 static struct dma_pool *buffer_pool = NULL;
223 static struct dma_pool *ctx_pool = NULL;
224
225 static struct crypt_ctl *crypt_virt = NULL;
226 static dma_addr_t crypt_phys;
227
228 static int support_aes = 1;
229
230 #define DRIVER_NAME "ixp4xx_crypto"
231
232 static struct platform_device *pdev;
233
234 static inline dma_addr_t crypt_virt2phys(struct crypt_ctl *virt)
235 {
236 return crypt_phys + (virt - crypt_virt) * sizeof(struct crypt_ctl);
237 }
238
239 static inline struct crypt_ctl *crypt_phys2virt(dma_addr_t phys)
240 {
241 return crypt_virt + (phys - crypt_phys) / sizeof(struct crypt_ctl);
242 }
243
244 static inline u32 cipher_cfg_enc(struct crypto_tfm *tfm)
245 {
246 return container_of(tfm->__crt_alg, struct ixp_alg,crypto)->cfg_enc;
247 }
248
249 static inline u32 cipher_cfg_dec(struct crypto_tfm *tfm)
250 {
251 return container_of(tfm->__crt_alg, struct ixp_alg,crypto)->cfg_dec;
252 }
253
254 static inline const struct ix_hash_algo *ix_hash(struct crypto_tfm *tfm)
255 {
256 return container_of(tfm->__crt_alg, struct ixp_alg, crypto)->hash;
257 }
258
259 static int setup_crypt_desc(void)
260 {
261 struct device *dev = &pdev->dev;
262 BUILD_BUG_ON(sizeof(struct crypt_ctl) != 64);
263 crypt_virt = dma_alloc_coherent(dev,
264 NPE_QLEN * sizeof(struct crypt_ctl),
265 &crypt_phys, GFP_ATOMIC);
266 if (!crypt_virt)
267 return -ENOMEM;
268 memset(crypt_virt, 0, NPE_QLEN * sizeof(struct crypt_ctl));
269 return 0;
270 }
271
272 static spinlock_t desc_lock;
273 static struct crypt_ctl *get_crypt_desc(void)
274 {
275 int i;
276 static int idx = 0;
277 unsigned long flags;
278
279 spin_lock_irqsave(&desc_lock, flags);
280
281 if (unlikely(!crypt_virt))
282 setup_crypt_desc();
283 if (unlikely(!crypt_virt)) {
284 spin_unlock_irqrestore(&desc_lock, flags);
285 return NULL;
286 }
287 i = idx;
288 if (crypt_virt[i].ctl_flags == CTL_FLAG_UNUSED) {
289 if (++idx >= NPE_QLEN)
290 idx = 0;
291 crypt_virt[i].ctl_flags = CTL_FLAG_USED;
292 spin_unlock_irqrestore(&desc_lock, flags);
293 return crypt_virt +i;
294 } else {
295 spin_unlock_irqrestore(&desc_lock, flags);
296 return NULL;
297 }
298 }
299
300 static spinlock_t emerg_lock;
301 static struct crypt_ctl *get_crypt_desc_emerg(void)
302 {
303 int i;
304 static int idx = NPE_QLEN;
305 struct crypt_ctl *desc;
306 unsigned long flags;
307
308 desc = get_crypt_desc();
309 if (desc)
310 return desc;
311 if (unlikely(!crypt_virt))
312 return NULL;
313
314 spin_lock_irqsave(&emerg_lock, flags);
315 i = idx;
316 if (crypt_virt[i].ctl_flags == CTL_FLAG_UNUSED) {
317 if (++idx >= NPE_QLEN_TOTAL)
318 idx = NPE_QLEN;
319 crypt_virt[i].ctl_flags = CTL_FLAG_USED;
320 spin_unlock_irqrestore(&emerg_lock, flags);
321 return crypt_virt +i;
322 } else {
323 spin_unlock_irqrestore(&emerg_lock, flags);
324 return NULL;
325 }
326 }
327
328 static void free_buf_chain(struct device *dev, struct buffer_desc *buf,u32 phys)
329 {
330 while (buf) {
331 struct buffer_desc *buf1;
332 u32 phys1;
333
334 buf1 = buf->next;
335 phys1 = buf->phys_next;
336 dma_unmap_single(dev, buf->phys_next, buf->buf_len, buf->dir);
337 dma_pool_free(buffer_pool, buf, phys);
338 buf = buf1;
339 phys = phys1;
340 }
341 }
342
343 static struct tasklet_struct crypto_done_tasklet;
344
345 static void finish_scattered_hmac(struct crypt_ctl *crypt)
346 {
347 struct aead_request *req = crypt->data.aead_req;
348 struct aead_ctx *req_ctx = aead_request_ctx(req);
349 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
350 int authsize = crypto_aead_authsize(tfm);
351 int decryptlen = req->assoclen + req->cryptlen - authsize;
352
353 if (req_ctx->encrypt) {
354 scatterwalk_map_and_copy(req_ctx->hmac_virt,
355 req->dst, decryptlen, authsize, 1);
356 }
357 dma_pool_free(buffer_pool, req_ctx->hmac_virt, crypt->icv_rev_aes);
358 }
359
360 static void one_packet(dma_addr_t phys)
361 {
362 struct device *dev = &pdev->dev;
363 struct crypt_ctl *crypt;
364 struct ixp_ctx *ctx;
365 int failed;
366
367 failed = phys & 0x1 ? -EBADMSG : 0;
368 phys &= ~0x3;
369 crypt = crypt_phys2virt(phys);
370
371 switch (crypt->ctl_flags & CTL_FLAG_MASK) {
372 case CTL_FLAG_PERFORM_AEAD: {
373 struct aead_request *req = crypt->data.aead_req;
374 struct aead_ctx *req_ctx = aead_request_ctx(req);
375
376 free_buf_chain(dev, req_ctx->src, crypt->src_buf);
377 free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
378 if (req_ctx->hmac_virt) {
379 finish_scattered_hmac(crypt);
380 }
381 req->base.complete(&req->base, failed);
382 break;
383 }
384 case CTL_FLAG_PERFORM_ABLK: {
385 struct ablkcipher_request *req = crypt->data.ablk_req;
386 struct ablk_ctx *req_ctx = ablkcipher_request_ctx(req);
387
388 if (req_ctx->dst) {
389 free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
390 }
391 free_buf_chain(dev, req_ctx->src, crypt->src_buf);
392 req->base.complete(&req->base, failed);
393 break;
394 }
395 case CTL_FLAG_GEN_ICV:
396 ctx = crypto_tfm_ctx(crypt->data.tfm);
397 dma_pool_free(ctx_pool, crypt->regist_ptr,
398 crypt->regist_buf->phys_addr);
399 dma_pool_free(buffer_pool, crypt->regist_buf, crypt->src_buf);
400 if (atomic_dec_and_test(&ctx->configuring))
401 complete(&ctx->completion);
402 break;
403 case CTL_FLAG_GEN_REVAES:
404 ctx = crypto_tfm_ctx(crypt->data.tfm);
405 *(u32*)ctx->decrypt.npe_ctx &= cpu_to_be32(~CIPH_ENCR);
406 if (atomic_dec_and_test(&ctx->configuring))
407 complete(&ctx->completion);
408 break;
409 default:
410 BUG();
411 }
412 crypt->ctl_flags = CTL_FLAG_UNUSED;
413 }
414
415 static void irqhandler(void *_unused)
416 {
417 tasklet_schedule(&crypto_done_tasklet);
418 }
419
420 static void crypto_done_action(unsigned long arg)
421 {
422 int i;
423
424 for(i=0; i<4; i++) {
425 dma_addr_t phys = qmgr_get_entry(RECV_QID);
426 if (!phys)
427 return;
428 one_packet(phys);
429 }
430 tasklet_schedule(&crypto_done_tasklet);
431 }
432
433 static int init_ixp_crypto(struct device *dev)
434 {
435 int ret = -ENODEV;
436 u32 msg[2] = { 0, 0 };
437
438 if (! ( ~(*IXP4XX_EXP_CFG2) & (IXP4XX_FEATURE_HASH |
439 IXP4XX_FEATURE_AES | IXP4XX_FEATURE_DES))) {
440 printk(KERN_ERR "ixp_crypto: No HW crypto available\n");
441 return ret;
442 }
443 npe_c = npe_request(NPE_ID);
444 if (!npe_c)
445 return ret;
446
447 if (!npe_running(npe_c)) {
448 ret = npe_load_firmware(npe_c, npe_name(npe_c), dev);
449 if (ret)
450 goto npe_release;
451 if (npe_recv_message(npe_c, msg, "STATUS_MSG"))
452 goto npe_error;
453 } else {
454 if (npe_send_message(npe_c, msg, "STATUS_MSG"))
455 goto npe_error;
456
457 if (npe_recv_message(npe_c, msg, "STATUS_MSG"))
458 goto npe_error;
459 }
460
461 switch ((msg[1]>>16) & 0xff) {
462 case 3:
463 printk(KERN_WARNING "Firmware of %s lacks AES support\n",
464 npe_name(npe_c));
465 support_aes = 0;
466 break;
467 case 4:
468 case 5:
469 support_aes = 1;
470 break;
471 default:
472 printk(KERN_ERR "Firmware of %s lacks crypto support\n",
473 npe_name(npe_c));
474 ret = -ENODEV;
475 goto npe_release;
476 }
477 /* buffer_pool will also be used to sometimes store the hmac,
478 * so assure it is large enough
479 */
480 BUILD_BUG_ON(SHA1_DIGEST_SIZE > sizeof(struct buffer_desc));
481 buffer_pool = dma_pool_create("buffer", dev,
482 sizeof(struct buffer_desc), 32, 0);
483 ret = -ENOMEM;
484 if (!buffer_pool) {
485 goto err;
486 }
487 ctx_pool = dma_pool_create("context", dev,
488 NPE_CTX_LEN, 16, 0);
489 if (!ctx_pool) {
490 goto err;
491 }
492 ret = qmgr_request_queue(SEND_QID, NPE_QLEN_TOTAL, 0, 0,
493 "ixp_crypto:out", NULL);
494 if (ret)
495 goto err;
496 ret = qmgr_request_queue(RECV_QID, NPE_QLEN, 0, 0,
497 "ixp_crypto:in", NULL);
498 if (ret) {
499 qmgr_release_queue(SEND_QID);
500 goto err;
501 }
502 qmgr_set_irq(RECV_QID, QUEUE_IRQ_SRC_NOT_EMPTY, irqhandler, NULL);
503 tasklet_init(&crypto_done_tasklet, crypto_done_action, 0);
504
505 qmgr_enable_irq(RECV_QID);
506 return 0;
507
508 npe_error:
509 printk(KERN_ERR "%s not responding\n", npe_name(npe_c));
510 ret = -EIO;
511 err:
512 dma_pool_destroy(ctx_pool);
513 dma_pool_destroy(buffer_pool);
514 npe_release:
515 npe_release(npe_c);
516 return ret;
517 }
518
519 static void release_ixp_crypto(struct device *dev)
520 {
521 qmgr_disable_irq(RECV_QID);
522 tasklet_kill(&crypto_done_tasklet);
523
524 qmgr_release_queue(SEND_QID);
525 qmgr_release_queue(RECV_QID);
526
527 dma_pool_destroy(ctx_pool);
528 dma_pool_destroy(buffer_pool);
529
530 npe_release(npe_c);
531
532 if (crypt_virt) {
533 dma_free_coherent(dev,
534 NPE_QLEN_TOTAL * sizeof( struct crypt_ctl),
535 crypt_virt, crypt_phys);
536 }
537 }
538
539 static void reset_sa_dir(struct ix_sa_dir *dir)
540 {
541 memset(dir->npe_ctx, 0, NPE_CTX_LEN);
542 dir->npe_ctx_idx = 0;
543 dir->npe_mode = 0;
544 }
545
546 static int init_sa_dir(struct ix_sa_dir *dir)
547 {
548 dir->npe_ctx = dma_pool_alloc(ctx_pool, GFP_KERNEL, &dir->npe_ctx_phys);
549 if (!dir->npe_ctx) {
550 return -ENOMEM;
551 }
552 reset_sa_dir(dir);
553 return 0;
554 }
555
556 static void free_sa_dir(struct ix_sa_dir *dir)
557 {
558 memset(dir->npe_ctx, 0, NPE_CTX_LEN);
559 dma_pool_free(ctx_pool, dir->npe_ctx, dir->npe_ctx_phys);
560 }
561
562 static int init_tfm(struct crypto_tfm *tfm)
563 {
564 struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
565 int ret;
566
567 atomic_set(&ctx->configuring, 0);
568 ret = init_sa_dir(&ctx->encrypt);
569 if (ret)
570 return ret;
571 ret = init_sa_dir(&ctx->decrypt);
572 if (ret) {
573 free_sa_dir(&ctx->encrypt);
574 }
575 return ret;
576 }
577
578 static int init_tfm_ablk(struct crypto_tfm *tfm)
579 {
580 tfm->crt_ablkcipher.reqsize = sizeof(struct ablk_ctx);
581 return init_tfm(tfm);
582 }
583
584 static int init_tfm_aead(struct crypto_aead *tfm)
585 {
586 crypto_aead_set_reqsize(tfm, sizeof(struct aead_ctx));
587 return init_tfm(crypto_aead_tfm(tfm));
588 }
589
590 static void exit_tfm(struct crypto_tfm *tfm)
591 {
592 struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
593 free_sa_dir(&ctx->encrypt);
594 free_sa_dir(&ctx->decrypt);
595 }
596
597 static void exit_tfm_aead(struct crypto_aead *tfm)
598 {
599 exit_tfm(crypto_aead_tfm(tfm));
600 }
601
602 static int register_chain_var(struct crypto_tfm *tfm, u8 xpad, u32 target,
603 int init_len, u32 ctx_addr, const u8 *key, int key_len)
604 {
605 struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
606 struct crypt_ctl *crypt;
607 struct buffer_desc *buf;
608 int i;
609 u8 *pad;
610 u32 pad_phys, buf_phys;
611
612 BUILD_BUG_ON(NPE_CTX_LEN < HMAC_PAD_BLOCKLEN);
613 pad = dma_pool_alloc(ctx_pool, GFP_KERNEL, &pad_phys);
614 if (!pad)
615 return -ENOMEM;
616 buf = dma_pool_alloc(buffer_pool, GFP_KERNEL, &buf_phys);
617 if (!buf) {
618 dma_pool_free(ctx_pool, pad, pad_phys);
619 return -ENOMEM;
620 }
621 crypt = get_crypt_desc_emerg();
622 if (!crypt) {
623 dma_pool_free(ctx_pool, pad, pad_phys);
624 dma_pool_free(buffer_pool, buf, buf_phys);
625 return -EAGAIN;
626 }
627
628 memcpy(pad, key, key_len);
629 memset(pad + key_len, 0, HMAC_PAD_BLOCKLEN - key_len);
630 for (i = 0; i < HMAC_PAD_BLOCKLEN; i++) {
631 pad[i] ^= xpad;
632 }
633
634 crypt->data.tfm = tfm;
635 crypt->regist_ptr = pad;
636 crypt->regist_buf = buf;
637
638 crypt->auth_offs = 0;
639 crypt->auth_len = HMAC_PAD_BLOCKLEN;
640 crypt->crypto_ctx = ctx_addr;
641 crypt->src_buf = buf_phys;
642 crypt->icv_rev_aes = target;
643 crypt->mode = NPE_OP_HASH_GEN_ICV;
644 crypt->init_len = init_len;
645 crypt->ctl_flags |= CTL_FLAG_GEN_ICV;
646
647 buf->next = 0;
648 buf->buf_len = HMAC_PAD_BLOCKLEN;
649 buf->pkt_len = 0;
650 buf->phys_addr = pad_phys;
651
652 atomic_inc(&ctx->configuring);
653 qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
654 BUG_ON(qmgr_stat_overflow(SEND_QID));
655 return 0;
656 }
657
658 static int setup_auth(struct crypto_tfm *tfm, int encrypt, unsigned authsize,
659 const u8 *key, int key_len, unsigned digest_len)
660 {
661 u32 itarget, otarget, npe_ctx_addr;
662 unsigned char *cinfo;
663 int init_len, ret = 0;
664 u32 cfgword;
665 struct ix_sa_dir *dir;
666 struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
667 const struct ix_hash_algo *algo;
668
669 dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
670 cinfo = dir->npe_ctx + dir->npe_ctx_idx;
671 algo = ix_hash(tfm);
672
673 /* write cfg word to cryptinfo */
674 cfgword = algo->cfgword | ( authsize << 6); /* (authsize/4) << 8 */
675 #ifndef __ARMEB__
676 cfgword ^= 0xAA000000; /* change the "byte swap" flags */
677 #endif
678 *(u32*)cinfo = cpu_to_be32(cfgword);
679 cinfo += sizeof(cfgword);
680
681 /* write ICV to cryptinfo */
682 memcpy(cinfo, algo->icv, digest_len);
683 cinfo += digest_len;
684
685 itarget = dir->npe_ctx_phys + dir->npe_ctx_idx
686 + sizeof(algo->cfgword);
687 otarget = itarget + digest_len;
688 init_len = cinfo - (dir->npe_ctx + dir->npe_ctx_idx);
689 npe_ctx_addr = dir->npe_ctx_phys + dir->npe_ctx_idx;
690
691 dir->npe_ctx_idx += init_len;
692 dir->npe_mode |= NPE_OP_HASH_ENABLE;
693
694 if (!encrypt)
695 dir->npe_mode |= NPE_OP_HASH_VERIFY;
696
697 ret = register_chain_var(tfm, HMAC_OPAD_VALUE, otarget,
698 init_len, npe_ctx_addr, key, key_len);
699 if (ret)
700 return ret;
701 return register_chain_var(tfm, HMAC_IPAD_VALUE, itarget,
702 init_len, npe_ctx_addr, key, key_len);
703 }
704
705 static int gen_rev_aes_key(struct crypto_tfm *tfm)
706 {
707 struct crypt_ctl *crypt;
708 struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
709 struct ix_sa_dir *dir = &ctx->decrypt;
710
711 crypt = get_crypt_desc_emerg();
712 if (!crypt) {
713 return -EAGAIN;
714 }
715 *(u32*)dir->npe_ctx |= cpu_to_be32(CIPH_ENCR);
716
717 crypt->data.tfm = tfm;
718 crypt->crypt_offs = 0;
719 crypt->crypt_len = AES_BLOCK128;
720 crypt->src_buf = 0;
721 crypt->crypto_ctx = dir->npe_ctx_phys;
722 crypt->icv_rev_aes = dir->npe_ctx_phys + sizeof(u32);
723 crypt->mode = NPE_OP_ENC_GEN_KEY;
724 crypt->init_len = dir->npe_ctx_idx;
725 crypt->ctl_flags |= CTL_FLAG_GEN_REVAES;
726
727 atomic_inc(&ctx->configuring);
728 qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
729 BUG_ON(qmgr_stat_overflow(SEND_QID));
730 return 0;
731 }
732
733 static int setup_cipher(struct crypto_tfm *tfm, int encrypt,
734 const u8 *key, int key_len)
735 {
736 u8 *cinfo;
737 u32 cipher_cfg;
738 u32 keylen_cfg = 0;
739 struct ix_sa_dir *dir;
740 struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
741 u32 *flags = &tfm->crt_flags;
742
743 dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
744 cinfo = dir->npe_ctx;
745
746 if (encrypt) {
747 cipher_cfg = cipher_cfg_enc(tfm);
748 dir->npe_mode |= NPE_OP_CRYPT_ENCRYPT;
749 } else {
750 cipher_cfg = cipher_cfg_dec(tfm);
751 }
752 if (cipher_cfg & MOD_AES) {
753 switch (key_len) {
754 case 16: keylen_cfg = MOD_AES128; break;
755 case 24: keylen_cfg = MOD_AES192; break;
756 case 32: keylen_cfg = MOD_AES256; break;
757 default:
758 *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
759 return -EINVAL;
760 }
761 cipher_cfg |= keylen_cfg;
762 } else if (cipher_cfg & MOD_3DES) {
763 const u32 *K = (const u32 *)key;
764 if (unlikely(!((K[0] ^ K[2]) | (K[1] ^ K[3])) ||
765 !((K[2] ^ K[4]) | (K[3] ^ K[5]))))
766 {
767 *flags |= CRYPTO_TFM_RES_BAD_KEY_SCHED;
768 return -EINVAL;
769 }
770 } else {
771 u32 tmp[DES_EXPKEY_WORDS];
772 if (des_ekey(tmp, key) == 0) {
773 *flags |= CRYPTO_TFM_RES_WEAK_KEY;
774 }
775 }
776 /* write cfg word to cryptinfo */
777 *(u32*)cinfo = cpu_to_be32(cipher_cfg);
778 cinfo += sizeof(cipher_cfg);
779
780 /* write cipher key to cryptinfo */
781 memcpy(cinfo, key, key_len);
782 /* NPE wants keylen set to DES3_EDE_KEY_SIZE even for single DES */
783 if (key_len < DES3_EDE_KEY_SIZE && !(cipher_cfg & MOD_AES)) {
784 memset(cinfo + key_len, 0, DES3_EDE_KEY_SIZE -key_len);
785 key_len = DES3_EDE_KEY_SIZE;
786 }
787 dir->npe_ctx_idx = sizeof(cipher_cfg) + key_len;
788 dir->npe_mode |= NPE_OP_CRYPT_ENABLE;
789 if ((cipher_cfg & MOD_AES) && !encrypt) {
790 return gen_rev_aes_key(tfm);
791 }
792 return 0;
793 }
794
795 static struct buffer_desc *chainup_buffers(struct device *dev,
796 struct scatterlist *sg, unsigned nbytes,
797 struct buffer_desc *buf, gfp_t flags,
798 enum dma_data_direction dir)
799 {
800 for (; nbytes > 0; sg = sg_next(sg)) {
801 unsigned len = min(nbytes, sg->length);
802 struct buffer_desc *next_buf;
803 u32 next_buf_phys;
804 void *ptr;
805
806 nbytes -= len;
807 ptr = sg_virt(sg);
808 next_buf = dma_pool_alloc(buffer_pool, flags, &next_buf_phys);
809 if (!next_buf) {
810 buf = NULL;
811 break;
812 }
813 sg_dma_address(sg) = dma_map_single(dev, ptr, len, dir);
814 buf->next = next_buf;
815 buf->phys_next = next_buf_phys;
816 buf = next_buf;
817
818 buf->phys_addr = sg_dma_address(sg);
819 buf->buf_len = len;
820 buf->dir = dir;
821 }
822 buf->next = NULL;
823 buf->phys_next = 0;
824 return buf;
825 }
826
827 static int ablk_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
828 unsigned int key_len)
829 {
830 struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
831 u32 *flags = &tfm->base.crt_flags;
832 int ret;
833
834 init_completion(&ctx->completion);
835 atomic_inc(&ctx->configuring);
836
837 reset_sa_dir(&ctx->encrypt);
838 reset_sa_dir(&ctx->decrypt);
839
840 ctx->encrypt.npe_mode = NPE_OP_HMAC_DISABLE;
841 ctx->decrypt.npe_mode = NPE_OP_HMAC_DISABLE;
842
843 ret = setup_cipher(&tfm->base, 0, key, key_len);
844 if (ret)
845 goto out;
846 ret = setup_cipher(&tfm->base, 1, key, key_len);
847 if (ret)
848 goto out;
849
850 if (*flags & CRYPTO_TFM_RES_WEAK_KEY) {
851 if (*flags & CRYPTO_TFM_REQ_WEAK_KEY) {
852 ret = -EINVAL;
853 } else {
854 *flags &= ~CRYPTO_TFM_RES_WEAK_KEY;
855 }
856 }
857 out:
858 if (!atomic_dec_and_test(&ctx->configuring))
859 wait_for_completion(&ctx->completion);
860 return ret;
861 }
862
863 static int ablk_rfc3686_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
864 unsigned int key_len)
865 {
866 struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
867
868 /* the nonce is stored in bytes at end of key */
869 if (key_len < CTR_RFC3686_NONCE_SIZE)
870 return -EINVAL;
871
872 memcpy(ctx->nonce, key + (key_len - CTR_RFC3686_NONCE_SIZE),
873 CTR_RFC3686_NONCE_SIZE);
874
875 key_len -= CTR_RFC3686_NONCE_SIZE;
876 return ablk_setkey(tfm, key, key_len);
877 }
878
879 static int ablk_perform(struct ablkcipher_request *req, int encrypt)
880 {
881 struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
882 struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
883 unsigned ivsize = crypto_ablkcipher_ivsize(tfm);
884 struct ix_sa_dir *dir;
885 struct crypt_ctl *crypt;
886 unsigned int nbytes = req->nbytes;
887 enum dma_data_direction src_direction = DMA_BIDIRECTIONAL;
888 struct ablk_ctx *req_ctx = ablkcipher_request_ctx(req);
889 struct buffer_desc src_hook;
890 struct device *dev = &pdev->dev;
891 gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
892 GFP_KERNEL : GFP_ATOMIC;
893
894 if (qmgr_stat_full(SEND_QID))
895 return -EAGAIN;
896 if (atomic_read(&ctx->configuring))
897 return -EAGAIN;
898
899 dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
900
901 crypt = get_crypt_desc();
902 if (!crypt)
903 return -ENOMEM;
904
905 crypt->data.ablk_req = req;
906 crypt->crypto_ctx = dir->npe_ctx_phys;
907 crypt->mode = dir->npe_mode;
908 crypt->init_len = dir->npe_ctx_idx;
909
910 crypt->crypt_offs = 0;
911 crypt->crypt_len = nbytes;
912
913 BUG_ON(ivsize && !req->info);
914 memcpy(crypt->iv, req->info, ivsize);
915 if (req->src != req->dst) {
916 struct buffer_desc dst_hook;
917 crypt->mode |= NPE_OP_NOT_IN_PLACE;
918 /* This was never tested by Intel
919 * for more than one dst buffer, I think. */
920 req_ctx->dst = NULL;
921 if (!chainup_buffers(dev, req->dst, nbytes, &dst_hook,
922 flags, DMA_FROM_DEVICE))
923 goto free_buf_dest;
924 src_direction = DMA_TO_DEVICE;
925 req_ctx->dst = dst_hook.next;
926 crypt->dst_buf = dst_hook.phys_next;
927 } else {
928 req_ctx->dst = NULL;
929 }
930 req_ctx->src = NULL;
931 if (!chainup_buffers(dev, req->src, nbytes, &src_hook,
932 flags, src_direction))
933 goto free_buf_src;
934
935 req_ctx->src = src_hook.next;
936 crypt->src_buf = src_hook.phys_next;
937 crypt->ctl_flags |= CTL_FLAG_PERFORM_ABLK;
938 qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
939 BUG_ON(qmgr_stat_overflow(SEND_QID));
940 return -EINPROGRESS;
941
942 free_buf_src:
943 free_buf_chain(dev, req_ctx->src, crypt->src_buf);
944 free_buf_dest:
945 if (req->src != req->dst) {
946 free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
947 }
948 crypt->ctl_flags = CTL_FLAG_UNUSED;
949 return -ENOMEM;
950 }
951
952 static int ablk_encrypt(struct ablkcipher_request *req)
953 {
954 return ablk_perform(req, 1);
955 }
956
957 static int ablk_decrypt(struct ablkcipher_request *req)
958 {
959 return ablk_perform(req, 0);
960 }
961
962 static int ablk_rfc3686_crypt(struct ablkcipher_request *req)
963 {
964 struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
965 struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
966 u8 iv[CTR_RFC3686_BLOCK_SIZE];
967 u8 *info = req->info;
968 int ret;
969
970 /* set up counter block */
971 memcpy(iv, ctx->nonce, CTR_RFC3686_NONCE_SIZE);
972 memcpy(iv + CTR_RFC3686_NONCE_SIZE, info, CTR_RFC3686_IV_SIZE);
973
974 /* initialize counter portion of counter block */
975 *(__be32 *)(iv + CTR_RFC3686_NONCE_SIZE + CTR_RFC3686_IV_SIZE) =
976 cpu_to_be32(1);
977
978 req->info = iv;
979 ret = ablk_perform(req, 1);
980 req->info = info;
981 return ret;
982 }
983
984 static int aead_perform(struct aead_request *req, int encrypt,
985 int cryptoffset, int eff_cryptlen, u8 *iv)
986 {
987 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
988 struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
989 unsigned ivsize = crypto_aead_ivsize(tfm);
990 unsigned authsize = crypto_aead_authsize(tfm);
991 struct ix_sa_dir *dir;
992 struct crypt_ctl *crypt;
993 unsigned int cryptlen;
994 struct buffer_desc *buf, src_hook;
995 struct aead_ctx *req_ctx = aead_request_ctx(req);
996 struct device *dev = &pdev->dev;
997 gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
998 GFP_KERNEL : GFP_ATOMIC;
999 enum dma_data_direction src_direction = DMA_BIDIRECTIONAL;
1000 unsigned int lastlen;
1001
1002 if (qmgr_stat_full(SEND_QID))
1003 return -EAGAIN;
1004 if (atomic_read(&ctx->configuring))
1005 return -EAGAIN;
1006
1007 if (encrypt) {
1008 dir = &ctx->encrypt;
1009 cryptlen = req->cryptlen;
1010 } else {
1011 dir = &ctx->decrypt;
1012 /* req->cryptlen includes the authsize when decrypting */
1013 cryptlen = req->cryptlen -authsize;
1014 eff_cryptlen -= authsize;
1015 }
1016 crypt = get_crypt_desc();
1017 if (!crypt)
1018 return -ENOMEM;
1019
1020 crypt->data.aead_req = req;
1021 crypt->crypto_ctx = dir->npe_ctx_phys;
1022 crypt->mode = dir->npe_mode;
1023 crypt->init_len = dir->npe_ctx_idx;
1024
1025 crypt->crypt_offs = cryptoffset;
1026 crypt->crypt_len = eff_cryptlen;
1027
1028 crypt->auth_offs = 0;
1029 crypt->auth_len = req->assoclen + cryptlen;
1030 BUG_ON(ivsize && !req->iv);
1031 memcpy(crypt->iv, req->iv, ivsize);
1032
1033 buf = chainup_buffers(dev, req->src, crypt->auth_len,
1034 &src_hook, flags, src_direction);
1035 req_ctx->src = src_hook.next;
1036 crypt->src_buf = src_hook.phys_next;
1037 if (!buf)
1038 goto free_buf_src;
1039
1040 lastlen = buf->buf_len;
1041 if (lastlen >= authsize)
1042 crypt->icv_rev_aes = buf->phys_addr +
1043 buf->buf_len - authsize;
1044
1045 req_ctx->dst = NULL;
1046
1047 if (req->src != req->dst) {
1048 struct buffer_desc dst_hook;
1049
1050 crypt->mode |= NPE_OP_NOT_IN_PLACE;
1051 src_direction = DMA_TO_DEVICE;
1052
1053 buf = chainup_buffers(dev, req->dst, crypt->auth_len,
1054 &dst_hook, flags, DMA_FROM_DEVICE);
1055 req_ctx->dst = dst_hook.next;
1056 crypt->dst_buf = dst_hook.phys_next;
1057
1058 if (!buf)
1059 goto free_buf_dst;
1060
1061 if (encrypt) {
1062 lastlen = buf->buf_len;
1063 if (lastlen >= authsize)
1064 crypt->icv_rev_aes = buf->phys_addr +
1065 buf->buf_len - authsize;
1066 }
1067 }
1068
1069 if (unlikely(lastlen < authsize)) {
1070 /* The 12 hmac bytes are scattered,
1071 * we need to copy them into a safe buffer */
1072 req_ctx->hmac_virt = dma_pool_alloc(buffer_pool, flags,
1073 &crypt->icv_rev_aes);
1074 if (unlikely(!req_ctx->hmac_virt))
1075 goto free_buf_dst;
1076 if (!encrypt) {
1077 scatterwalk_map_and_copy(req_ctx->hmac_virt,
1078 req->src, cryptlen, authsize, 0);
1079 }
1080 req_ctx->encrypt = encrypt;
1081 } else {
1082 req_ctx->hmac_virt = NULL;
1083 }
1084
1085 crypt->ctl_flags |= CTL_FLAG_PERFORM_AEAD;
1086 qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
1087 BUG_ON(qmgr_stat_overflow(SEND_QID));
1088 return -EINPROGRESS;
1089
1090 free_buf_dst:
1091 free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
1092 free_buf_src:
1093 free_buf_chain(dev, req_ctx->src, crypt->src_buf);
1094 crypt->ctl_flags = CTL_FLAG_UNUSED;
1095 return -ENOMEM;
1096 }
1097
1098 static int aead_setup(struct crypto_aead *tfm, unsigned int authsize)
1099 {
1100 struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1101 u32 *flags = &tfm->base.crt_flags;
1102 unsigned digest_len = crypto_aead_maxauthsize(tfm);
1103 int ret;
1104
1105 if (!ctx->enckey_len && !ctx->authkey_len)
1106 return 0;
1107 init_completion(&ctx->completion);
1108 atomic_inc(&ctx->configuring);
1109
1110 reset_sa_dir(&ctx->encrypt);
1111 reset_sa_dir(&ctx->decrypt);
1112
1113 ret = setup_cipher(&tfm->base, 0, ctx->enckey, ctx->enckey_len);
1114 if (ret)
1115 goto out;
1116 ret = setup_cipher(&tfm->base, 1, ctx->enckey, ctx->enckey_len);
1117 if (ret)
1118 goto out;
1119 ret = setup_auth(&tfm->base, 0, authsize, ctx->authkey,
1120 ctx->authkey_len, digest_len);
1121 if (ret)
1122 goto out;
1123 ret = setup_auth(&tfm->base, 1, authsize, ctx->authkey,
1124 ctx->authkey_len, digest_len);
1125 if (ret)
1126 goto out;
1127
1128 if (*flags & CRYPTO_TFM_RES_WEAK_KEY) {
1129 if (*flags & CRYPTO_TFM_REQ_WEAK_KEY) {
1130 ret = -EINVAL;
1131 goto out;
1132 } else {
1133 *flags &= ~CRYPTO_TFM_RES_WEAK_KEY;
1134 }
1135 }
1136 out:
1137 if (!atomic_dec_and_test(&ctx->configuring))
1138 wait_for_completion(&ctx->completion);
1139 return ret;
1140 }
1141
1142 static int aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
1143 {
1144 int max = crypto_aead_maxauthsize(tfm) >> 2;
1145
1146 if ((authsize>>2) < 1 || (authsize>>2) > max || (authsize & 3))
1147 return -EINVAL;
1148 return aead_setup(tfm, authsize);
1149 }
1150
1151 static int aead_setkey(struct crypto_aead *tfm, const u8 *key,
1152 unsigned int keylen)
1153 {
1154 struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1155 struct crypto_authenc_keys keys;
1156
1157 if (crypto_authenc_extractkeys(&keys, key, keylen) != 0)
1158 goto badkey;
1159
1160 if (keys.authkeylen > sizeof(ctx->authkey))
1161 goto badkey;
1162
1163 if (keys.enckeylen > sizeof(ctx->enckey))
1164 goto badkey;
1165
1166 memcpy(ctx->authkey, keys.authkey, keys.authkeylen);
1167 memcpy(ctx->enckey, keys.enckey, keys.enckeylen);
1168 ctx->authkey_len = keys.authkeylen;
1169 ctx->enckey_len = keys.enckeylen;
1170
1171 return aead_setup(tfm, crypto_aead_authsize(tfm));
1172 badkey:
1173 crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
1174 return -EINVAL;
1175 }
1176
1177 static int aead_encrypt(struct aead_request *req)
1178 {
1179 return aead_perform(req, 1, req->assoclen, req->cryptlen, req->iv);
1180 }
1181
1182 static int aead_decrypt(struct aead_request *req)
1183 {
1184 return aead_perform(req, 0, req->assoclen, req->cryptlen, req->iv);
1185 }
1186
1187 static struct ixp_alg ixp4xx_algos[] = {
1188 {
1189 .crypto = {
1190 .cra_name = "cbc(des)",
1191 .cra_blocksize = DES_BLOCK_SIZE,
1192 .cra_u = { .ablkcipher = {
1193 .min_keysize = DES_KEY_SIZE,
1194 .max_keysize = DES_KEY_SIZE,
1195 .ivsize = DES_BLOCK_SIZE,
1196 .geniv = "eseqiv",
1197 }
1198 }
1199 },
1200 .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1201 .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1202
1203 }, {
1204 .crypto = {
1205 .cra_name = "ecb(des)",
1206 .cra_blocksize = DES_BLOCK_SIZE,
1207 .cra_u = { .ablkcipher = {
1208 .min_keysize = DES_KEY_SIZE,
1209 .max_keysize = DES_KEY_SIZE,
1210 }
1211 }
1212 },
1213 .cfg_enc = CIPH_ENCR | MOD_DES | MOD_ECB | KEYLEN_192,
1214 .cfg_dec = CIPH_DECR | MOD_DES | MOD_ECB | KEYLEN_192,
1215 }, {
1216 .crypto = {
1217 .cra_name = "cbc(des3_ede)",
1218 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1219 .cra_u = { .ablkcipher = {
1220 .min_keysize = DES3_EDE_KEY_SIZE,
1221 .max_keysize = DES3_EDE_KEY_SIZE,
1222 .ivsize = DES3_EDE_BLOCK_SIZE,
1223 .geniv = "eseqiv",
1224 }
1225 }
1226 },
1227 .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1228 .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1229 }, {
1230 .crypto = {
1231 .cra_name = "ecb(des3_ede)",
1232 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1233 .cra_u = { .ablkcipher = {
1234 .min_keysize = DES3_EDE_KEY_SIZE,
1235 .max_keysize = DES3_EDE_KEY_SIZE,
1236 }
1237 }
1238 },
1239 .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_ECB | KEYLEN_192,
1240 .cfg_dec = CIPH_DECR | MOD_3DES | MOD_ECB | KEYLEN_192,
1241 }, {
1242 .crypto = {
1243 .cra_name = "cbc(aes)",
1244 .cra_blocksize = AES_BLOCK_SIZE,
1245 .cra_u = { .ablkcipher = {
1246 .min_keysize = AES_MIN_KEY_SIZE,
1247 .max_keysize = AES_MAX_KEY_SIZE,
1248 .ivsize = AES_BLOCK_SIZE,
1249 .geniv = "eseqiv",
1250 }
1251 }
1252 },
1253 .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1254 .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1255 }, {
1256 .crypto = {
1257 .cra_name = "ecb(aes)",
1258 .cra_blocksize = AES_BLOCK_SIZE,
1259 .cra_u = { .ablkcipher = {
1260 .min_keysize = AES_MIN_KEY_SIZE,
1261 .max_keysize = AES_MAX_KEY_SIZE,
1262 }
1263 }
1264 },
1265 .cfg_enc = CIPH_ENCR | MOD_AES | MOD_ECB,
1266 .cfg_dec = CIPH_DECR | MOD_AES | MOD_ECB,
1267 }, {
1268 .crypto = {
1269 .cra_name = "ctr(aes)",
1270 .cra_blocksize = AES_BLOCK_SIZE,
1271 .cra_u = { .ablkcipher = {
1272 .min_keysize = AES_MIN_KEY_SIZE,
1273 .max_keysize = AES_MAX_KEY_SIZE,
1274 .ivsize = AES_BLOCK_SIZE,
1275 .geniv = "eseqiv",
1276 }
1277 }
1278 },
1279 .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CTR,
1280 .cfg_dec = CIPH_ENCR | MOD_AES | MOD_CTR,
1281 }, {
1282 .crypto = {
1283 .cra_name = "rfc3686(ctr(aes))",
1284 .cra_blocksize = AES_BLOCK_SIZE,
1285 .cra_u = { .ablkcipher = {
1286 .min_keysize = AES_MIN_KEY_SIZE,
1287 .max_keysize = AES_MAX_KEY_SIZE,
1288 .ivsize = AES_BLOCK_SIZE,
1289 .geniv = "eseqiv",
1290 .setkey = ablk_rfc3686_setkey,
1291 .encrypt = ablk_rfc3686_crypt,
1292 .decrypt = ablk_rfc3686_crypt }
1293 }
1294 },
1295 .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CTR,
1296 .cfg_dec = CIPH_ENCR | MOD_AES | MOD_CTR,
1297 } };
1298
1299 static struct ixp_aead_alg ixp4xx_aeads[] = {
1300 {
1301 .crypto = {
1302 .base = {
1303 .cra_name = "authenc(hmac(md5),cbc(des))",
1304 .cra_blocksize = DES_BLOCK_SIZE,
1305 },
1306 .ivsize = DES_BLOCK_SIZE,
1307 .maxauthsize = MD5_DIGEST_SIZE,
1308 },
1309 .hash = &hash_alg_md5,
1310 .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1311 .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1312 }, {
1313 .crypto = {
1314 .base = {
1315 .cra_name = "authenc(hmac(md5),cbc(des3_ede))",
1316 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1317 },
1318 .ivsize = DES3_EDE_BLOCK_SIZE,
1319 .maxauthsize = MD5_DIGEST_SIZE,
1320 },
1321 .hash = &hash_alg_md5,
1322 .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1323 .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1324 }, {
1325 .crypto = {
1326 .base = {
1327 .cra_name = "authenc(hmac(sha1),cbc(des))",
1328 .cra_blocksize = DES_BLOCK_SIZE,
1329 },
1330 .ivsize = DES_BLOCK_SIZE,
1331 .maxauthsize = SHA1_DIGEST_SIZE,
1332 },
1333 .hash = &hash_alg_sha1,
1334 .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1335 .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1336 }, {
1337 .crypto = {
1338 .base = {
1339 .cra_name = "authenc(hmac(sha1),cbc(des3_ede))",
1340 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1341 },
1342 .ivsize = DES3_EDE_BLOCK_SIZE,
1343 .maxauthsize = SHA1_DIGEST_SIZE,
1344 },
1345 .hash = &hash_alg_sha1,
1346 .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1347 .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1348 }, {
1349 .crypto = {
1350 .base = {
1351 .cra_name = "authenc(hmac(md5),cbc(aes))",
1352 .cra_blocksize = AES_BLOCK_SIZE,
1353 },
1354 .ivsize = AES_BLOCK_SIZE,
1355 .maxauthsize = MD5_DIGEST_SIZE,
1356 },
1357 .hash = &hash_alg_md5,
1358 .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1359 .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1360 }, {
1361 .crypto = {
1362 .base = {
1363 .cra_name = "authenc(hmac(sha1),cbc(aes))",
1364 .cra_blocksize = AES_BLOCK_SIZE,
1365 },
1366 .ivsize = AES_BLOCK_SIZE,
1367 .maxauthsize = SHA1_DIGEST_SIZE,
1368 },
1369 .hash = &hash_alg_sha1,
1370 .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1371 .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1372 } };
1373
1374 #define IXP_POSTFIX "-ixp4xx"
1375
1376 static const struct platform_device_info ixp_dev_info __initdata = {
1377 .name = DRIVER_NAME,
1378 .id = 0,
1379 .dma_mask = DMA_BIT_MASK(32),
1380 };
1381
1382 static int __init ixp_module_init(void)
1383 {
1384 int num = ARRAY_SIZE(ixp4xx_algos);
1385 int i, err;
1386
1387 pdev = platform_device_register_full(&ixp_dev_info);
1388 if (IS_ERR(pdev))
1389 return PTR_ERR(pdev);
1390
1391 spin_lock_init(&desc_lock);
1392 spin_lock_init(&emerg_lock);
1393
1394 err = init_ixp_crypto(&pdev->dev);
1395 if (err) {
1396 platform_device_unregister(pdev);
1397 return err;
1398 }
1399 for (i=0; i< num; i++) {
1400 struct crypto_alg *cra = &ixp4xx_algos[i].crypto;
1401
1402 if (snprintf(cra->cra_driver_name, CRYPTO_MAX_ALG_NAME,
1403 "%s"IXP_POSTFIX, cra->cra_name) >=
1404 CRYPTO_MAX_ALG_NAME)
1405 {
1406 continue;
1407 }
1408 if (!support_aes && (ixp4xx_algos[i].cfg_enc & MOD_AES)) {
1409 continue;
1410 }
1411
1412 /* block ciphers */
1413 cra->cra_type = &crypto_ablkcipher_type;
1414 cra->cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1415 CRYPTO_ALG_KERN_DRIVER_ONLY |
1416 CRYPTO_ALG_ASYNC;
1417 if (!cra->cra_ablkcipher.setkey)
1418 cra->cra_ablkcipher.setkey = ablk_setkey;
1419 if (!cra->cra_ablkcipher.encrypt)
1420 cra->cra_ablkcipher.encrypt = ablk_encrypt;
1421 if (!cra->cra_ablkcipher.decrypt)
1422 cra->cra_ablkcipher.decrypt = ablk_decrypt;
1423 cra->cra_init = init_tfm_ablk;
1424
1425 cra->cra_ctxsize = sizeof(struct ixp_ctx);
1426 cra->cra_module = THIS_MODULE;
1427 cra->cra_alignmask = 3;
1428 cra->cra_priority = 300;
1429 cra->cra_exit = exit_tfm;
1430 if (crypto_register_alg(cra))
1431 printk(KERN_ERR "Failed to register '%s'\n",
1432 cra->cra_name);
1433 else
1434 ixp4xx_algos[i].registered = 1;
1435 }
1436
1437 for (i = 0; i < ARRAY_SIZE(ixp4xx_aeads); i++) {
1438 struct aead_alg *cra = &ixp4xx_aeads[i].crypto;
1439
1440 if (snprintf(cra->base.cra_driver_name, CRYPTO_MAX_ALG_NAME,
1441 "%s"IXP_POSTFIX, cra->base.cra_name) >=
1442 CRYPTO_MAX_ALG_NAME)
1443 continue;
1444 if (!support_aes && (ixp4xx_algos[i].cfg_enc & MOD_AES))
1445 continue;
1446
1447 /* authenc */
1448 cra->base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1449 CRYPTO_ALG_ASYNC;
1450 cra->setkey = aead_setkey;
1451 cra->setauthsize = aead_setauthsize;
1452 cra->encrypt = aead_encrypt;
1453 cra->decrypt = aead_decrypt;
1454 cra->init = init_tfm_aead;
1455 cra->exit = exit_tfm_aead;
1456
1457 cra->base.cra_ctxsize = sizeof(struct ixp_ctx);
1458 cra->base.cra_module = THIS_MODULE;
1459 cra->base.cra_alignmask = 3;
1460 cra->base.cra_priority = 300;
1461
1462 if (crypto_register_aead(cra))
1463 printk(KERN_ERR "Failed to register '%s'\n",
1464 cra->base.cra_driver_name);
1465 else
1466 ixp4xx_aeads[i].registered = 1;
1467 }
1468 return 0;
1469 }
1470
1471 static void __exit ixp_module_exit(void)
1472 {
1473 int num = ARRAY_SIZE(ixp4xx_algos);
1474 int i;
1475
1476 for (i = 0; i < ARRAY_SIZE(ixp4xx_aeads); i++) {
1477 if (ixp4xx_aeads[i].registered)
1478 crypto_unregister_aead(&ixp4xx_aeads[i].crypto);
1479 }
1480
1481 for (i=0; i< num; i++) {
1482 if (ixp4xx_algos[i].registered)
1483 crypto_unregister_alg(&ixp4xx_algos[i].crypto);
1484 }
1485 release_ixp_crypto(&pdev->dev);
1486 platform_device_unregister(pdev);
1487 }
1488
1489 module_init(ixp_module_init);
1490 module_exit(ixp_module_exit);
1491
1492 MODULE_LICENSE("GPL");
1493 MODULE_AUTHOR("Christian Hohnstaedt <chohnstaedt@innominate.com>");
1494 MODULE_DESCRIPTION("IXP4xx hardware crypto");
1495