]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - drivers/crypto/ixp4xx_crypto.c
Merge tag 'for-4.17-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave...
[mirror_ubuntu-eoan-kernel.git] / drivers / crypto / ixp4xx_crypto.c
1 /*
2 * Intel IXP4xx NPE-C crypto driver
3 *
4 * Copyright (C) 2008 Christian Hohnstaedt <chohnstaedt@innominate.com>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of version 2 of the GNU General Public License
8 * as published by the Free Software Foundation.
9 *
10 */
11
12 #include <linux/platform_device.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/dmapool.h>
15 #include <linux/crypto.h>
16 #include <linux/kernel.h>
17 #include <linux/rtnetlink.h>
18 #include <linux/interrupt.h>
19 #include <linux/spinlock.h>
20 #include <linux/gfp.h>
21 #include <linux/module.h>
22
23 #include <crypto/ctr.h>
24 #include <crypto/des.h>
25 #include <crypto/aes.h>
26 #include <crypto/hmac.h>
27 #include <crypto/sha.h>
28 #include <crypto/algapi.h>
29 #include <crypto/internal/aead.h>
30 #include <crypto/authenc.h>
31 #include <crypto/scatterwalk.h>
32
33 #include <mach/npe.h>
34 #include <mach/qmgr.h>
35
36 #define MAX_KEYLEN 32
37
38 /* hash: cfgword + 2 * digestlen; crypt: keylen + cfgword */
39 #define NPE_CTX_LEN 80
40 #define AES_BLOCK128 16
41
42 #define NPE_OP_HASH_VERIFY 0x01
43 #define NPE_OP_CCM_ENABLE 0x04
44 #define NPE_OP_CRYPT_ENABLE 0x08
45 #define NPE_OP_HASH_ENABLE 0x10
46 #define NPE_OP_NOT_IN_PLACE 0x20
47 #define NPE_OP_HMAC_DISABLE 0x40
48 #define NPE_OP_CRYPT_ENCRYPT 0x80
49
50 #define NPE_OP_CCM_GEN_MIC 0xcc
51 #define NPE_OP_HASH_GEN_ICV 0x50
52 #define NPE_OP_ENC_GEN_KEY 0xc9
53
54 #define MOD_ECB 0x0000
55 #define MOD_CTR 0x1000
56 #define MOD_CBC_ENC 0x2000
57 #define MOD_CBC_DEC 0x3000
58 #define MOD_CCM_ENC 0x4000
59 #define MOD_CCM_DEC 0x5000
60
61 #define KEYLEN_128 4
62 #define KEYLEN_192 6
63 #define KEYLEN_256 8
64
65 #define CIPH_DECR 0x0000
66 #define CIPH_ENCR 0x0400
67
68 #define MOD_DES 0x0000
69 #define MOD_TDEA2 0x0100
70 #define MOD_3DES 0x0200
71 #define MOD_AES 0x0800
72 #define MOD_AES128 (0x0800 | KEYLEN_128)
73 #define MOD_AES192 (0x0900 | KEYLEN_192)
74 #define MOD_AES256 (0x0a00 | KEYLEN_256)
75
76 #define MAX_IVLEN 16
77 #define NPE_ID 2 /* NPE C */
78 #define NPE_QLEN 16
79 /* Space for registering when the first
80 * NPE_QLEN crypt_ctl are busy */
81 #define NPE_QLEN_TOTAL 64
82
83 #define SEND_QID 29
84 #define RECV_QID 30
85
86 #define CTL_FLAG_UNUSED 0x0000
87 #define CTL_FLAG_USED 0x1000
88 #define CTL_FLAG_PERFORM_ABLK 0x0001
89 #define CTL_FLAG_GEN_ICV 0x0002
90 #define CTL_FLAG_GEN_REVAES 0x0004
91 #define CTL_FLAG_PERFORM_AEAD 0x0008
92 #define CTL_FLAG_MASK 0x000f
93
94 #define HMAC_PAD_BLOCKLEN SHA1_BLOCK_SIZE
95
96 #define MD5_DIGEST_SIZE 16
97
98 struct buffer_desc {
99 u32 phys_next;
100 #ifdef __ARMEB__
101 u16 buf_len;
102 u16 pkt_len;
103 #else
104 u16 pkt_len;
105 u16 buf_len;
106 #endif
107 u32 phys_addr;
108 u32 __reserved[4];
109 struct buffer_desc *next;
110 enum dma_data_direction dir;
111 };
112
113 struct crypt_ctl {
114 #ifdef __ARMEB__
115 u8 mode; /* NPE_OP_* operation mode */
116 u8 init_len;
117 u16 reserved;
118 #else
119 u16 reserved;
120 u8 init_len;
121 u8 mode; /* NPE_OP_* operation mode */
122 #endif
123 u8 iv[MAX_IVLEN]; /* IV for CBC mode or CTR IV for CTR mode */
124 u32 icv_rev_aes; /* icv or rev aes */
125 u32 src_buf;
126 u32 dst_buf;
127 #ifdef __ARMEB__
128 u16 auth_offs; /* Authentication start offset */
129 u16 auth_len; /* Authentication data length */
130 u16 crypt_offs; /* Cryption start offset */
131 u16 crypt_len; /* Cryption data length */
132 #else
133 u16 auth_len; /* Authentication data length */
134 u16 auth_offs; /* Authentication start offset */
135 u16 crypt_len; /* Cryption data length */
136 u16 crypt_offs; /* Cryption start offset */
137 #endif
138 u32 aadAddr; /* Additional Auth Data Addr for CCM mode */
139 u32 crypto_ctx; /* NPE Crypto Param structure address */
140
141 /* Used by Host: 4*4 bytes*/
142 unsigned ctl_flags;
143 union {
144 struct ablkcipher_request *ablk_req;
145 struct aead_request *aead_req;
146 struct crypto_tfm *tfm;
147 } data;
148 struct buffer_desc *regist_buf;
149 u8 *regist_ptr;
150 };
151
152 struct ablk_ctx {
153 struct buffer_desc *src;
154 struct buffer_desc *dst;
155 };
156
157 struct aead_ctx {
158 struct buffer_desc *src;
159 struct buffer_desc *dst;
160 struct scatterlist ivlist;
161 /* used when the hmac is not on one sg entry */
162 u8 *hmac_virt;
163 int encrypt;
164 };
165
166 struct ix_hash_algo {
167 u32 cfgword;
168 unsigned char *icv;
169 };
170
171 struct ix_sa_dir {
172 unsigned char *npe_ctx;
173 dma_addr_t npe_ctx_phys;
174 int npe_ctx_idx;
175 u8 npe_mode;
176 };
177
178 struct ixp_ctx {
179 struct ix_sa_dir encrypt;
180 struct ix_sa_dir decrypt;
181 int authkey_len;
182 u8 authkey[MAX_KEYLEN];
183 int enckey_len;
184 u8 enckey[MAX_KEYLEN];
185 u8 salt[MAX_IVLEN];
186 u8 nonce[CTR_RFC3686_NONCE_SIZE];
187 unsigned salted;
188 atomic_t configuring;
189 struct completion completion;
190 };
191
192 struct ixp_alg {
193 struct crypto_alg crypto;
194 const struct ix_hash_algo *hash;
195 u32 cfg_enc;
196 u32 cfg_dec;
197
198 int registered;
199 };
200
201 struct ixp_aead_alg {
202 struct aead_alg crypto;
203 const struct ix_hash_algo *hash;
204 u32 cfg_enc;
205 u32 cfg_dec;
206
207 int registered;
208 };
209
210 static const struct ix_hash_algo hash_alg_md5 = {
211 .cfgword = 0xAA010004,
212 .icv = "\x01\x23\x45\x67\x89\xAB\xCD\xEF"
213 "\xFE\xDC\xBA\x98\x76\x54\x32\x10",
214 };
215 static const struct ix_hash_algo hash_alg_sha1 = {
216 .cfgword = 0x00000005,
217 .icv = "\x67\x45\x23\x01\xEF\xCD\xAB\x89\x98\xBA"
218 "\xDC\xFE\x10\x32\x54\x76\xC3\xD2\xE1\xF0",
219 };
220
221 static struct npe *npe_c;
222 static struct dma_pool *buffer_pool = NULL;
223 static struct dma_pool *ctx_pool = NULL;
224
225 static struct crypt_ctl *crypt_virt = NULL;
226 static dma_addr_t crypt_phys;
227
228 static int support_aes = 1;
229
230 #define DRIVER_NAME "ixp4xx_crypto"
231
232 static struct platform_device *pdev;
233
234 static inline dma_addr_t crypt_virt2phys(struct crypt_ctl *virt)
235 {
236 return crypt_phys + (virt - crypt_virt) * sizeof(struct crypt_ctl);
237 }
238
239 static inline struct crypt_ctl *crypt_phys2virt(dma_addr_t phys)
240 {
241 return crypt_virt + (phys - crypt_phys) / sizeof(struct crypt_ctl);
242 }
243
244 static inline u32 cipher_cfg_enc(struct crypto_tfm *tfm)
245 {
246 return container_of(tfm->__crt_alg, struct ixp_alg,crypto)->cfg_enc;
247 }
248
249 static inline u32 cipher_cfg_dec(struct crypto_tfm *tfm)
250 {
251 return container_of(tfm->__crt_alg, struct ixp_alg,crypto)->cfg_dec;
252 }
253
254 static inline const struct ix_hash_algo *ix_hash(struct crypto_tfm *tfm)
255 {
256 return container_of(tfm->__crt_alg, struct ixp_alg, crypto)->hash;
257 }
258
259 static int setup_crypt_desc(void)
260 {
261 struct device *dev = &pdev->dev;
262 BUILD_BUG_ON(sizeof(struct crypt_ctl) != 64);
263 crypt_virt = dma_zalloc_coherent(dev,
264 NPE_QLEN * sizeof(struct crypt_ctl),
265 &crypt_phys, GFP_ATOMIC);
266 if (!crypt_virt)
267 return -ENOMEM;
268 return 0;
269 }
270
271 static spinlock_t desc_lock;
272 static struct crypt_ctl *get_crypt_desc(void)
273 {
274 int i;
275 static int idx = 0;
276 unsigned long flags;
277
278 spin_lock_irqsave(&desc_lock, flags);
279
280 if (unlikely(!crypt_virt))
281 setup_crypt_desc();
282 if (unlikely(!crypt_virt)) {
283 spin_unlock_irqrestore(&desc_lock, flags);
284 return NULL;
285 }
286 i = idx;
287 if (crypt_virt[i].ctl_flags == CTL_FLAG_UNUSED) {
288 if (++idx >= NPE_QLEN)
289 idx = 0;
290 crypt_virt[i].ctl_flags = CTL_FLAG_USED;
291 spin_unlock_irqrestore(&desc_lock, flags);
292 return crypt_virt +i;
293 } else {
294 spin_unlock_irqrestore(&desc_lock, flags);
295 return NULL;
296 }
297 }
298
299 static spinlock_t emerg_lock;
300 static struct crypt_ctl *get_crypt_desc_emerg(void)
301 {
302 int i;
303 static int idx = NPE_QLEN;
304 struct crypt_ctl *desc;
305 unsigned long flags;
306
307 desc = get_crypt_desc();
308 if (desc)
309 return desc;
310 if (unlikely(!crypt_virt))
311 return NULL;
312
313 spin_lock_irqsave(&emerg_lock, flags);
314 i = idx;
315 if (crypt_virt[i].ctl_flags == CTL_FLAG_UNUSED) {
316 if (++idx >= NPE_QLEN_TOTAL)
317 idx = NPE_QLEN;
318 crypt_virt[i].ctl_flags = CTL_FLAG_USED;
319 spin_unlock_irqrestore(&emerg_lock, flags);
320 return crypt_virt +i;
321 } else {
322 spin_unlock_irqrestore(&emerg_lock, flags);
323 return NULL;
324 }
325 }
326
327 static void free_buf_chain(struct device *dev, struct buffer_desc *buf,u32 phys)
328 {
329 while (buf) {
330 struct buffer_desc *buf1;
331 u32 phys1;
332
333 buf1 = buf->next;
334 phys1 = buf->phys_next;
335 dma_unmap_single(dev, buf->phys_next, buf->buf_len, buf->dir);
336 dma_pool_free(buffer_pool, buf, phys);
337 buf = buf1;
338 phys = phys1;
339 }
340 }
341
342 static struct tasklet_struct crypto_done_tasklet;
343
344 static void finish_scattered_hmac(struct crypt_ctl *crypt)
345 {
346 struct aead_request *req = crypt->data.aead_req;
347 struct aead_ctx *req_ctx = aead_request_ctx(req);
348 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
349 int authsize = crypto_aead_authsize(tfm);
350 int decryptlen = req->assoclen + req->cryptlen - authsize;
351
352 if (req_ctx->encrypt) {
353 scatterwalk_map_and_copy(req_ctx->hmac_virt,
354 req->dst, decryptlen, authsize, 1);
355 }
356 dma_pool_free(buffer_pool, req_ctx->hmac_virt, crypt->icv_rev_aes);
357 }
358
359 static void one_packet(dma_addr_t phys)
360 {
361 struct device *dev = &pdev->dev;
362 struct crypt_ctl *crypt;
363 struct ixp_ctx *ctx;
364 int failed;
365
366 failed = phys & 0x1 ? -EBADMSG : 0;
367 phys &= ~0x3;
368 crypt = crypt_phys2virt(phys);
369
370 switch (crypt->ctl_flags & CTL_FLAG_MASK) {
371 case CTL_FLAG_PERFORM_AEAD: {
372 struct aead_request *req = crypt->data.aead_req;
373 struct aead_ctx *req_ctx = aead_request_ctx(req);
374
375 free_buf_chain(dev, req_ctx->src, crypt->src_buf);
376 free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
377 if (req_ctx->hmac_virt) {
378 finish_scattered_hmac(crypt);
379 }
380 req->base.complete(&req->base, failed);
381 break;
382 }
383 case CTL_FLAG_PERFORM_ABLK: {
384 struct ablkcipher_request *req = crypt->data.ablk_req;
385 struct ablk_ctx *req_ctx = ablkcipher_request_ctx(req);
386
387 if (req_ctx->dst) {
388 free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
389 }
390 free_buf_chain(dev, req_ctx->src, crypt->src_buf);
391 req->base.complete(&req->base, failed);
392 break;
393 }
394 case CTL_FLAG_GEN_ICV:
395 ctx = crypto_tfm_ctx(crypt->data.tfm);
396 dma_pool_free(ctx_pool, crypt->regist_ptr,
397 crypt->regist_buf->phys_addr);
398 dma_pool_free(buffer_pool, crypt->regist_buf, crypt->src_buf);
399 if (atomic_dec_and_test(&ctx->configuring))
400 complete(&ctx->completion);
401 break;
402 case CTL_FLAG_GEN_REVAES:
403 ctx = crypto_tfm_ctx(crypt->data.tfm);
404 *(u32*)ctx->decrypt.npe_ctx &= cpu_to_be32(~CIPH_ENCR);
405 if (atomic_dec_and_test(&ctx->configuring))
406 complete(&ctx->completion);
407 break;
408 default:
409 BUG();
410 }
411 crypt->ctl_flags = CTL_FLAG_UNUSED;
412 }
413
414 static void irqhandler(void *_unused)
415 {
416 tasklet_schedule(&crypto_done_tasklet);
417 }
418
419 static void crypto_done_action(unsigned long arg)
420 {
421 int i;
422
423 for(i=0; i<4; i++) {
424 dma_addr_t phys = qmgr_get_entry(RECV_QID);
425 if (!phys)
426 return;
427 one_packet(phys);
428 }
429 tasklet_schedule(&crypto_done_tasklet);
430 }
431
432 static int init_ixp_crypto(struct device *dev)
433 {
434 int ret = -ENODEV;
435 u32 msg[2] = { 0, 0 };
436
437 if (! ( ~(*IXP4XX_EXP_CFG2) & (IXP4XX_FEATURE_HASH |
438 IXP4XX_FEATURE_AES | IXP4XX_FEATURE_DES))) {
439 printk(KERN_ERR "ixp_crypto: No HW crypto available\n");
440 return ret;
441 }
442 npe_c = npe_request(NPE_ID);
443 if (!npe_c)
444 return ret;
445
446 if (!npe_running(npe_c)) {
447 ret = npe_load_firmware(npe_c, npe_name(npe_c), dev);
448 if (ret)
449 goto npe_release;
450 if (npe_recv_message(npe_c, msg, "STATUS_MSG"))
451 goto npe_error;
452 } else {
453 if (npe_send_message(npe_c, msg, "STATUS_MSG"))
454 goto npe_error;
455
456 if (npe_recv_message(npe_c, msg, "STATUS_MSG"))
457 goto npe_error;
458 }
459
460 switch ((msg[1]>>16) & 0xff) {
461 case 3:
462 printk(KERN_WARNING "Firmware of %s lacks AES support\n",
463 npe_name(npe_c));
464 support_aes = 0;
465 break;
466 case 4:
467 case 5:
468 support_aes = 1;
469 break;
470 default:
471 printk(KERN_ERR "Firmware of %s lacks crypto support\n",
472 npe_name(npe_c));
473 ret = -ENODEV;
474 goto npe_release;
475 }
476 /* buffer_pool will also be used to sometimes store the hmac,
477 * so assure it is large enough
478 */
479 BUILD_BUG_ON(SHA1_DIGEST_SIZE > sizeof(struct buffer_desc));
480 buffer_pool = dma_pool_create("buffer", dev,
481 sizeof(struct buffer_desc), 32, 0);
482 ret = -ENOMEM;
483 if (!buffer_pool) {
484 goto err;
485 }
486 ctx_pool = dma_pool_create("context", dev,
487 NPE_CTX_LEN, 16, 0);
488 if (!ctx_pool) {
489 goto err;
490 }
491 ret = qmgr_request_queue(SEND_QID, NPE_QLEN_TOTAL, 0, 0,
492 "ixp_crypto:out", NULL);
493 if (ret)
494 goto err;
495 ret = qmgr_request_queue(RECV_QID, NPE_QLEN, 0, 0,
496 "ixp_crypto:in", NULL);
497 if (ret) {
498 qmgr_release_queue(SEND_QID);
499 goto err;
500 }
501 qmgr_set_irq(RECV_QID, QUEUE_IRQ_SRC_NOT_EMPTY, irqhandler, NULL);
502 tasklet_init(&crypto_done_tasklet, crypto_done_action, 0);
503
504 qmgr_enable_irq(RECV_QID);
505 return 0;
506
507 npe_error:
508 printk(KERN_ERR "%s not responding\n", npe_name(npe_c));
509 ret = -EIO;
510 err:
511 dma_pool_destroy(ctx_pool);
512 dma_pool_destroy(buffer_pool);
513 npe_release:
514 npe_release(npe_c);
515 return ret;
516 }
517
518 static void release_ixp_crypto(struct device *dev)
519 {
520 qmgr_disable_irq(RECV_QID);
521 tasklet_kill(&crypto_done_tasklet);
522
523 qmgr_release_queue(SEND_QID);
524 qmgr_release_queue(RECV_QID);
525
526 dma_pool_destroy(ctx_pool);
527 dma_pool_destroy(buffer_pool);
528
529 npe_release(npe_c);
530
531 if (crypt_virt) {
532 dma_free_coherent(dev,
533 NPE_QLEN_TOTAL * sizeof( struct crypt_ctl),
534 crypt_virt, crypt_phys);
535 }
536 }
537
538 static void reset_sa_dir(struct ix_sa_dir *dir)
539 {
540 memset(dir->npe_ctx, 0, NPE_CTX_LEN);
541 dir->npe_ctx_idx = 0;
542 dir->npe_mode = 0;
543 }
544
545 static int init_sa_dir(struct ix_sa_dir *dir)
546 {
547 dir->npe_ctx = dma_pool_alloc(ctx_pool, GFP_KERNEL, &dir->npe_ctx_phys);
548 if (!dir->npe_ctx) {
549 return -ENOMEM;
550 }
551 reset_sa_dir(dir);
552 return 0;
553 }
554
555 static void free_sa_dir(struct ix_sa_dir *dir)
556 {
557 memset(dir->npe_ctx, 0, NPE_CTX_LEN);
558 dma_pool_free(ctx_pool, dir->npe_ctx, dir->npe_ctx_phys);
559 }
560
561 static int init_tfm(struct crypto_tfm *tfm)
562 {
563 struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
564 int ret;
565
566 atomic_set(&ctx->configuring, 0);
567 ret = init_sa_dir(&ctx->encrypt);
568 if (ret)
569 return ret;
570 ret = init_sa_dir(&ctx->decrypt);
571 if (ret) {
572 free_sa_dir(&ctx->encrypt);
573 }
574 return ret;
575 }
576
577 static int init_tfm_ablk(struct crypto_tfm *tfm)
578 {
579 tfm->crt_ablkcipher.reqsize = sizeof(struct ablk_ctx);
580 return init_tfm(tfm);
581 }
582
583 static int init_tfm_aead(struct crypto_aead *tfm)
584 {
585 crypto_aead_set_reqsize(tfm, sizeof(struct aead_ctx));
586 return init_tfm(crypto_aead_tfm(tfm));
587 }
588
589 static void exit_tfm(struct crypto_tfm *tfm)
590 {
591 struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
592 free_sa_dir(&ctx->encrypt);
593 free_sa_dir(&ctx->decrypt);
594 }
595
596 static void exit_tfm_aead(struct crypto_aead *tfm)
597 {
598 exit_tfm(crypto_aead_tfm(tfm));
599 }
600
601 static int register_chain_var(struct crypto_tfm *tfm, u8 xpad, u32 target,
602 int init_len, u32 ctx_addr, const u8 *key, int key_len)
603 {
604 struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
605 struct crypt_ctl *crypt;
606 struct buffer_desc *buf;
607 int i;
608 u8 *pad;
609 u32 pad_phys, buf_phys;
610
611 BUILD_BUG_ON(NPE_CTX_LEN < HMAC_PAD_BLOCKLEN);
612 pad = dma_pool_alloc(ctx_pool, GFP_KERNEL, &pad_phys);
613 if (!pad)
614 return -ENOMEM;
615 buf = dma_pool_alloc(buffer_pool, GFP_KERNEL, &buf_phys);
616 if (!buf) {
617 dma_pool_free(ctx_pool, pad, pad_phys);
618 return -ENOMEM;
619 }
620 crypt = get_crypt_desc_emerg();
621 if (!crypt) {
622 dma_pool_free(ctx_pool, pad, pad_phys);
623 dma_pool_free(buffer_pool, buf, buf_phys);
624 return -EAGAIN;
625 }
626
627 memcpy(pad, key, key_len);
628 memset(pad + key_len, 0, HMAC_PAD_BLOCKLEN - key_len);
629 for (i = 0; i < HMAC_PAD_BLOCKLEN; i++) {
630 pad[i] ^= xpad;
631 }
632
633 crypt->data.tfm = tfm;
634 crypt->regist_ptr = pad;
635 crypt->regist_buf = buf;
636
637 crypt->auth_offs = 0;
638 crypt->auth_len = HMAC_PAD_BLOCKLEN;
639 crypt->crypto_ctx = ctx_addr;
640 crypt->src_buf = buf_phys;
641 crypt->icv_rev_aes = target;
642 crypt->mode = NPE_OP_HASH_GEN_ICV;
643 crypt->init_len = init_len;
644 crypt->ctl_flags |= CTL_FLAG_GEN_ICV;
645
646 buf->next = 0;
647 buf->buf_len = HMAC_PAD_BLOCKLEN;
648 buf->pkt_len = 0;
649 buf->phys_addr = pad_phys;
650
651 atomic_inc(&ctx->configuring);
652 qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
653 BUG_ON(qmgr_stat_overflow(SEND_QID));
654 return 0;
655 }
656
657 static int setup_auth(struct crypto_tfm *tfm, int encrypt, unsigned authsize,
658 const u8 *key, int key_len, unsigned digest_len)
659 {
660 u32 itarget, otarget, npe_ctx_addr;
661 unsigned char *cinfo;
662 int init_len, ret = 0;
663 u32 cfgword;
664 struct ix_sa_dir *dir;
665 struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
666 const struct ix_hash_algo *algo;
667
668 dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
669 cinfo = dir->npe_ctx + dir->npe_ctx_idx;
670 algo = ix_hash(tfm);
671
672 /* write cfg word to cryptinfo */
673 cfgword = algo->cfgword | ( authsize << 6); /* (authsize/4) << 8 */
674 #ifndef __ARMEB__
675 cfgword ^= 0xAA000000; /* change the "byte swap" flags */
676 #endif
677 *(u32*)cinfo = cpu_to_be32(cfgword);
678 cinfo += sizeof(cfgword);
679
680 /* write ICV to cryptinfo */
681 memcpy(cinfo, algo->icv, digest_len);
682 cinfo += digest_len;
683
684 itarget = dir->npe_ctx_phys + dir->npe_ctx_idx
685 + sizeof(algo->cfgword);
686 otarget = itarget + digest_len;
687 init_len = cinfo - (dir->npe_ctx + dir->npe_ctx_idx);
688 npe_ctx_addr = dir->npe_ctx_phys + dir->npe_ctx_idx;
689
690 dir->npe_ctx_idx += init_len;
691 dir->npe_mode |= NPE_OP_HASH_ENABLE;
692
693 if (!encrypt)
694 dir->npe_mode |= NPE_OP_HASH_VERIFY;
695
696 ret = register_chain_var(tfm, HMAC_OPAD_VALUE, otarget,
697 init_len, npe_ctx_addr, key, key_len);
698 if (ret)
699 return ret;
700 return register_chain_var(tfm, HMAC_IPAD_VALUE, itarget,
701 init_len, npe_ctx_addr, key, key_len);
702 }
703
704 static int gen_rev_aes_key(struct crypto_tfm *tfm)
705 {
706 struct crypt_ctl *crypt;
707 struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
708 struct ix_sa_dir *dir = &ctx->decrypt;
709
710 crypt = get_crypt_desc_emerg();
711 if (!crypt) {
712 return -EAGAIN;
713 }
714 *(u32*)dir->npe_ctx |= cpu_to_be32(CIPH_ENCR);
715
716 crypt->data.tfm = tfm;
717 crypt->crypt_offs = 0;
718 crypt->crypt_len = AES_BLOCK128;
719 crypt->src_buf = 0;
720 crypt->crypto_ctx = dir->npe_ctx_phys;
721 crypt->icv_rev_aes = dir->npe_ctx_phys + sizeof(u32);
722 crypt->mode = NPE_OP_ENC_GEN_KEY;
723 crypt->init_len = dir->npe_ctx_idx;
724 crypt->ctl_flags |= CTL_FLAG_GEN_REVAES;
725
726 atomic_inc(&ctx->configuring);
727 qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
728 BUG_ON(qmgr_stat_overflow(SEND_QID));
729 return 0;
730 }
731
732 static int setup_cipher(struct crypto_tfm *tfm, int encrypt,
733 const u8 *key, int key_len)
734 {
735 u8 *cinfo;
736 u32 cipher_cfg;
737 u32 keylen_cfg = 0;
738 struct ix_sa_dir *dir;
739 struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
740 u32 *flags = &tfm->crt_flags;
741
742 dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
743 cinfo = dir->npe_ctx;
744
745 if (encrypt) {
746 cipher_cfg = cipher_cfg_enc(tfm);
747 dir->npe_mode |= NPE_OP_CRYPT_ENCRYPT;
748 } else {
749 cipher_cfg = cipher_cfg_dec(tfm);
750 }
751 if (cipher_cfg & MOD_AES) {
752 switch (key_len) {
753 case 16: keylen_cfg = MOD_AES128; break;
754 case 24: keylen_cfg = MOD_AES192; break;
755 case 32: keylen_cfg = MOD_AES256; break;
756 default:
757 *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
758 return -EINVAL;
759 }
760 cipher_cfg |= keylen_cfg;
761 } else if (cipher_cfg & MOD_3DES) {
762 const u32 *K = (const u32 *)key;
763 if (unlikely(!((K[0] ^ K[2]) | (K[1] ^ K[3])) ||
764 !((K[2] ^ K[4]) | (K[3] ^ K[5]))))
765 {
766 *flags |= CRYPTO_TFM_RES_BAD_KEY_SCHED;
767 return -EINVAL;
768 }
769 } else {
770 u32 tmp[DES_EXPKEY_WORDS];
771 if (des_ekey(tmp, key) == 0) {
772 *flags |= CRYPTO_TFM_RES_WEAK_KEY;
773 }
774 }
775 /* write cfg word to cryptinfo */
776 *(u32*)cinfo = cpu_to_be32(cipher_cfg);
777 cinfo += sizeof(cipher_cfg);
778
779 /* write cipher key to cryptinfo */
780 memcpy(cinfo, key, key_len);
781 /* NPE wants keylen set to DES3_EDE_KEY_SIZE even for single DES */
782 if (key_len < DES3_EDE_KEY_SIZE && !(cipher_cfg & MOD_AES)) {
783 memset(cinfo + key_len, 0, DES3_EDE_KEY_SIZE -key_len);
784 key_len = DES3_EDE_KEY_SIZE;
785 }
786 dir->npe_ctx_idx = sizeof(cipher_cfg) + key_len;
787 dir->npe_mode |= NPE_OP_CRYPT_ENABLE;
788 if ((cipher_cfg & MOD_AES) && !encrypt) {
789 return gen_rev_aes_key(tfm);
790 }
791 return 0;
792 }
793
794 static struct buffer_desc *chainup_buffers(struct device *dev,
795 struct scatterlist *sg, unsigned nbytes,
796 struct buffer_desc *buf, gfp_t flags,
797 enum dma_data_direction dir)
798 {
799 for (; nbytes > 0; sg = sg_next(sg)) {
800 unsigned len = min(nbytes, sg->length);
801 struct buffer_desc *next_buf;
802 u32 next_buf_phys;
803 void *ptr;
804
805 nbytes -= len;
806 ptr = sg_virt(sg);
807 next_buf = dma_pool_alloc(buffer_pool, flags, &next_buf_phys);
808 if (!next_buf) {
809 buf = NULL;
810 break;
811 }
812 sg_dma_address(sg) = dma_map_single(dev, ptr, len, dir);
813 buf->next = next_buf;
814 buf->phys_next = next_buf_phys;
815 buf = next_buf;
816
817 buf->phys_addr = sg_dma_address(sg);
818 buf->buf_len = len;
819 buf->dir = dir;
820 }
821 buf->next = NULL;
822 buf->phys_next = 0;
823 return buf;
824 }
825
826 static int ablk_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
827 unsigned int key_len)
828 {
829 struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
830 u32 *flags = &tfm->base.crt_flags;
831 int ret;
832
833 init_completion(&ctx->completion);
834 atomic_inc(&ctx->configuring);
835
836 reset_sa_dir(&ctx->encrypt);
837 reset_sa_dir(&ctx->decrypt);
838
839 ctx->encrypt.npe_mode = NPE_OP_HMAC_DISABLE;
840 ctx->decrypt.npe_mode = NPE_OP_HMAC_DISABLE;
841
842 ret = setup_cipher(&tfm->base, 0, key, key_len);
843 if (ret)
844 goto out;
845 ret = setup_cipher(&tfm->base, 1, key, key_len);
846 if (ret)
847 goto out;
848
849 if (*flags & CRYPTO_TFM_RES_WEAK_KEY) {
850 if (*flags & CRYPTO_TFM_REQ_WEAK_KEY) {
851 ret = -EINVAL;
852 } else {
853 *flags &= ~CRYPTO_TFM_RES_WEAK_KEY;
854 }
855 }
856 out:
857 if (!atomic_dec_and_test(&ctx->configuring))
858 wait_for_completion(&ctx->completion);
859 return ret;
860 }
861
862 static int ablk_rfc3686_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
863 unsigned int key_len)
864 {
865 struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
866
867 /* the nonce is stored in bytes at end of key */
868 if (key_len < CTR_RFC3686_NONCE_SIZE)
869 return -EINVAL;
870
871 memcpy(ctx->nonce, key + (key_len - CTR_RFC3686_NONCE_SIZE),
872 CTR_RFC3686_NONCE_SIZE);
873
874 key_len -= CTR_RFC3686_NONCE_SIZE;
875 return ablk_setkey(tfm, key, key_len);
876 }
877
878 static int ablk_perform(struct ablkcipher_request *req, int encrypt)
879 {
880 struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
881 struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
882 unsigned ivsize = crypto_ablkcipher_ivsize(tfm);
883 struct ix_sa_dir *dir;
884 struct crypt_ctl *crypt;
885 unsigned int nbytes = req->nbytes;
886 enum dma_data_direction src_direction = DMA_BIDIRECTIONAL;
887 struct ablk_ctx *req_ctx = ablkcipher_request_ctx(req);
888 struct buffer_desc src_hook;
889 struct device *dev = &pdev->dev;
890 gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
891 GFP_KERNEL : GFP_ATOMIC;
892
893 if (qmgr_stat_full(SEND_QID))
894 return -EAGAIN;
895 if (atomic_read(&ctx->configuring))
896 return -EAGAIN;
897
898 dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
899
900 crypt = get_crypt_desc();
901 if (!crypt)
902 return -ENOMEM;
903
904 crypt->data.ablk_req = req;
905 crypt->crypto_ctx = dir->npe_ctx_phys;
906 crypt->mode = dir->npe_mode;
907 crypt->init_len = dir->npe_ctx_idx;
908
909 crypt->crypt_offs = 0;
910 crypt->crypt_len = nbytes;
911
912 BUG_ON(ivsize && !req->info);
913 memcpy(crypt->iv, req->info, ivsize);
914 if (req->src != req->dst) {
915 struct buffer_desc dst_hook;
916 crypt->mode |= NPE_OP_NOT_IN_PLACE;
917 /* This was never tested by Intel
918 * for more than one dst buffer, I think. */
919 req_ctx->dst = NULL;
920 if (!chainup_buffers(dev, req->dst, nbytes, &dst_hook,
921 flags, DMA_FROM_DEVICE))
922 goto free_buf_dest;
923 src_direction = DMA_TO_DEVICE;
924 req_ctx->dst = dst_hook.next;
925 crypt->dst_buf = dst_hook.phys_next;
926 } else {
927 req_ctx->dst = NULL;
928 }
929 req_ctx->src = NULL;
930 if (!chainup_buffers(dev, req->src, nbytes, &src_hook,
931 flags, src_direction))
932 goto free_buf_src;
933
934 req_ctx->src = src_hook.next;
935 crypt->src_buf = src_hook.phys_next;
936 crypt->ctl_flags |= CTL_FLAG_PERFORM_ABLK;
937 qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
938 BUG_ON(qmgr_stat_overflow(SEND_QID));
939 return -EINPROGRESS;
940
941 free_buf_src:
942 free_buf_chain(dev, req_ctx->src, crypt->src_buf);
943 free_buf_dest:
944 if (req->src != req->dst) {
945 free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
946 }
947 crypt->ctl_flags = CTL_FLAG_UNUSED;
948 return -ENOMEM;
949 }
950
951 static int ablk_encrypt(struct ablkcipher_request *req)
952 {
953 return ablk_perform(req, 1);
954 }
955
956 static int ablk_decrypt(struct ablkcipher_request *req)
957 {
958 return ablk_perform(req, 0);
959 }
960
961 static int ablk_rfc3686_crypt(struct ablkcipher_request *req)
962 {
963 struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
964 struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
965 u8 iv[CTR_RFC3686_BLOCK_SIZE];
966 u8 *info = req->info;
967 int ret;
968
969 /* set up counter block */
970 memcpy(iv, ctx->nonce, CTR_RFC3686_NONCE_SIZE);
971 memcpy(iv + CTR_RFC3686_NONCE_SIZE, info, CTR_RFC3686_IV_SIZE);
972
973 /* initialize counter portion of counter block */
974 *(__be32 *)(iv + CTR_RFC3686_NONCE_SIZE + CTR_RFC3686_IV_SIZE) =
975 cpu_to_be32(1);
976
977 req->info = iv;
978 ret = ablk_perform(req, 1);
979 req->info = info;
980 return ret;
981 }
982
983 static int aead_perform(struct aead_request *req, int encrypt,
984 int cryptoffset, int eff_cryptlen, u8 *iv)
985 {
986 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
987 struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
988 unsigned ivsize = crypto_aead_ivsize(tfm);
989 unsigned authsize = crypto_aead_authsize(tfm);
990 struct ix_sa_dir *dir;
991 struct crypt_ctl *crypt;
992 unsigned int cryptlen;
993 struct buffer_desc *buf, src_hook;
994 struct aead_ctx *req_ctx = aead_request_ctx(req);
995 struct device *dev = &pdev->dev;
996 gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
997 GFP_KERNEL : GFP_ATOMIC;
998 enum dma_data_direction src_direction = DMA_BIDIRECTIONAL;
999 unsigned int lastlen;
1000
1001 if (qmgr_stat_full(SEND_QID))
1002 return -EAGAIN;
1003 if (atomic_read(&ctx->configuring))
1004 return -EAGAIN;
1005
1006 if (encrypt) {
1007 dir = &ctx->encrypt;
1008 cryptlen = req->cryptlen;
1009 } else {
1010 dir = &ctx->decrypt;
1011 /* req->cryptlen includes the authsize when decrypting */
1012 cryptlen = req->cryptlen -authsize;
1013 eff_cryptlen -= authsize;
1014 }
1015 crypt = get_crypt_desc();
1016 if (!crypt)
1017 return -ENOMEM;
1018
1019 crypt->data.aead_req = req;
1020 crypt->crypto_ctx = dir->npe_ctx_phys;
1021 crypt->mode = dir->npe_mode;
1022 crypt->init_len = dir->npe_ctx_idx;
1023
1024 crypt->crypt_offs = cryptoffset;
1025 crypt->crypt_len = eff_cryptlen;
1026
1027 crypt->auth_offs = 0;
1028 crypt->auth_len = req->assoclen + cryptlen;
1029 BUG_ON(ivsize && !req->iv);
1030 memcpy(crypt->iv, req->iv, ivsize);
1031
1032 buf = chainup_buffers(dev, req->src, crypt->auth_len,
1033 &src_hook, flags, src_direction);
1034 req_ctx->src = src_hook.next;
1035 crypt->src_buf = src_hook.phys_next;
1036 if (!buf)
1037 goto free_buf_src;
1038
1039 lastlen = buf->buf_len;
1040 if (lastlen >= authsize)
1041 crypt->icv_rev_aes = buf->phys_addr +
1042 buf->buf_len - authsize;
1043
1044 req_ctx->dst = NULL;
1045
1046 if (req->src != req->dst) {
1047 struct buffer_desc dst_hook;
1048
1049 crypt->mode |= NPE_OP_NOT_IN_PLACE;
1050 src_direction = DMA_TO_DEVICE;
1051
1052 buf = chainup_buffers(dev, req->dst, crypt->auth_len,
1053 &dst_hook, flags, DMA_FROM_DEVICE);
1054 req_ctx->dst = dst_hook.next;
1055 crypt->dst_buf = dst_hook.phys_next;
1056
1057 if (!buf)
1058 goto free_buf_dst;
1059
1060 if (encrypt) {
1061 lastlen = buf->buf_len;
1062 if (lastlen >= authsize)
1063 crypt->icv_rev_aes = buf->phys_addr +
1064 buf->buf_len - authsize;
1065 }
1066 }
1067
1068 if (unlikely(lastlen < authsize)) {
1069 /* The 12 hmac bytes are scattered,
1070 * we need to copy them into a safe buffer */
1071 req_ctx->hmac_virt = dma_pool_alloc(buffer_pool, flags,
1072 &crypt->icv_rev_aes);
1073 if (unlikely(!req_ctx->hmac_virt))
1074 goto free_buf_dst;
1075 if (!encrypt) {
1076 scatterwalk_map_and_copy(req_ctx->hmac_virt,
1077 req->src, cryptlen, authsize, 0);
1078 }
1079 req_ctx->encrypt = encrypt;
1080 } else {
1081 req_ctx->hmac_virt = NULL;
1082 }
1083
1084 crypt->ctl_flags |= CTL_FLAG_PERFORM_AEAD;
1085 qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
1086 BUG_ON(qmgr_stat_overflow(SEND_QID));
1087 return -EINPROGRESS;
1088
1089 free_buf_dst:
1090 free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
1091 free_buf_src:
1092 free_buf_chain(dev, req_ctx->src, crypt->src_buf);
1093 crypt->ctl_flags = CTL_FLAG_UNUSED;
1094 return -ENOMEM;
1095 }
1096
1097 static int aead_setup(struct crypto_aead *tfm, unsigned int authsize)
1098 {
1099 struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1100 u32 *flags = &tfm->base.crt_flags;
1101 unsigned digest_len = crypto_aead_maxauthsize(tfm);
1102 int ret;
1103
1104 if (!ctx->enckey_len && !ctx->authkey_len)
1105 return 0;
1106 init_completion(&ctx->completion);
1107 atomic_inc(&ctx->configuring);
1108
1109 reset_sa_dir(&ctx->encrypt);
1110 reset_sa_dir(&ctx->decrypt);
1111
1112 ret = setup_cipher(&tfm->base, 0, ctx->enckey, ctx->enckey_len);
1113 if (ret)
1114 goto out;
1115 ret = setup_cipher(&tfm->base, 1, ctx->enckey, ctx->enckey_len);
1116 if (ret)
1117 goto out;
1118 ret = setup_auth(&tfm->base, 0, authsize, ctx->authkey,
1119 ctx->authkey_len, digest_len);
1120 if (ret)
1121 goto out;
1122 ret = setup_auth(&tfm->base, 1, authsize, ctx->authkey,
1123 ctx->authkey_len, digest_len);
1124 if (ret)
1125 goto out;
1126
1127 if (*flags & CRYPTO_TFM_RES_WEAK_KEY) {
1128 if (*flags & CRYPTO_TFM_REQ_WEAK_KEY) {
1129 ret = -EINVAL;
1130 goto out;
1131 } else {
1132 *flags &= ~CRYPTO_TFM_RES_WEAK_KEY;
1133 }
1134 }
1135 out:
1136 if (!atomic_dec_and_test(&ctx->configuring))
1137 wait_for_completion(&ctx->completion);
1138 return ret;
1139 }
1140
1141 static int aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
1142 {
1143 int max = crypto_aead_maxauthsize(tfm) >> 2;
1144
1145 if ((authsize>>2) < 1 || (authsize>>2) > max || (authsize & 3))
1146 return -EINVAL;
1147 return aead_setup(tfm, authsize);
1148 }
1149
1150 static int aead_setkey(struct crypto_aead *tfm, const u8 *key,
1151 unsigned int keylen)
1152 {
1153 struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1154 struct crypto_authenc_keys keys;
1155
1156 if (crypto_authenc_extractkeys(&keys, key, keylen) != 0)
1157 goto badkey;
1158
1159 if (keys.authkeylen > sizeof(ctx->authkey))
1160 goto badkey;
1161
1162 if (keys.enckeylen > sizeof(ctx->enckey))
1163 goto badkey;
1164
1165 memcpy(ctx->authkey, keys.authkey, keys.authkeylen);
1166 memcpy(ctx->enckey, keys.enckey, keys.enckeylen);
1167 ctx->authkey_len = keys.authkeylen;
1168 ctx->enckey_len = keys.enckeylen;
1169
1170 memzero_explicit(&keys, sizeof(keys));
1171 return aead_setup(tfm, crypto_aead_authsize(tfm));
1172 badkey:
1173 crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
1174 memzero_explicit(&keys, sizeof(keys));
1175 return -EINVAL;
1176 }
1177
1178 static int aead_encrypt(struct aead_request *req)
1179 {
1180 return aead_perform(req, 1, req->assoclen, req->cryptlen, req->iv);
1181 }
1182
1183 static int aead_decrypt(struct aead_request *req)
1184 {
1185 return aead_perform(req, 0, req->assoclen, req->cryptlen, req->iv);
1186 }
1187
1188 static struct ixp_alg ixp4xx_algos[] = {
1189 {
1190 .crypto = {
1191 .cra_name = "cbc(des)",
1192 .cra_blocksize = DES_BLOCK_SIZE,
1193 .cra_u = { .ablkcipher = {
1194 .min_keysize = DES_KEY_SIZE,
1195 .max_keysize = DES_KEY_SIZE,
1196 .ivsize = DES_BLOCK_SIZE,
1197 .geniv = "eseqiv",
1198 }
1199 }
1200 },
1201 .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1202 .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1203
1204 }, {
1205 .crypto = {
1206 .cra_name = "ecb(des)",
1207 .cra_blocksize = DES_BLOCK_SIZE,
1208 .cra_u = { .ablkcipher = {
1209 .min_keysize = DES_KEY_SIZE,
1210 .max_keysize = DES_KEY_SIZE,
1211 }
1212 }
1213 },
1214 .cfg_enc = CIPH_ENCR | MOD_DES | MOD_ECB | KEYLEN_192,
1215 .cfg_dec = CIPH_DECR | MOD_DES | MOD_ECB | KEYLEN_192,
1216 }, {
1217 .crypto = {
1218 .cra_name = "cbc(des3_ede)",
1219 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1220 .cra_u = { .ablkcipher = {
1221 .min_keysize = DES3_EDE_KEY_SIZE,
1222 .max_keysize = DES3_EDE_KEY_SIZE,
1223 .ivsize = DES3_EDE_BLOCK_SIZE,
1224 .geniv = "eseqiv",
1225 }
1226 }
1227 },
1228 .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1229 .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1230 }, {
1231 .crypto = {
1232 .cra_name = "ecb(des3_ede)",
1233 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1234 .cra_u = { .ablkcipher = {
1235 .min_keysize = DES3_EDE_KEY_SIZE,
1236 .max_keysize = DES3_EDE_KEY_SIZE,
1237 }
1238 }
1239 },
1240 .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_ECB | KEYLEN_192,
1241 .cfg_dec = CIPH_DECR | MOD_3DES | MOD_ECB | KEYLEN_192,
1242 }, {
1243 .crypto = {
1244 .cra_name = "cbc(aes)",
1245 .cra_blocksize = AES_BLOCK_SIZE,
1246 .cra_u = { .ablkcipher = {
1247 .min_keysize = AES_MIN_KEY_SIZE,
1248 .max_keysize = AES_MAX_KEY_SIZE,
1249 .ivsize = AES_BLOCK_SIZE,
1250 .geniv = "eseqiv",
1251 }
1252 }
1253 },
1254 .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1255 .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1256 }, {
1257 .crypto = {
1258 .cra_name = "ecb(aes)",
1259 .cra_blocksize = AES_BLOCK_SIZE,
1260 .cra_u = { .ablkcipher = {
1261 .min_keysize = AES_MIN_KEY_SIZE,
1262 .max_keysize = AES_MAX_KEY_SIZE,
1263 }
1264 }
1265 },
1266 .cfg_enc = CIPH_ENCR | MOD_AES | MOD_ECB,
1267 .cfg_dec = CIPH_DECR | MOD_AES | MOD_ECB,
1268 }, {
1269 .crypto = {
1270 .cra_name = "ctr(aes)",
1271 .cra_blocksize = AES_BLOCK_SIZE,
1272 .cra_u = { .ablkcipher = {
1273 .min_keysize = AES_MIN_KEY_SIZE,
1274 .max_keysize = AES_MAX_KEY_SIZE,
1275 .ivsize = AES_BLOCK_SIZE,
1276 .geniv = "eseqiv",
1277 }
1278 }
1279 },
1280 .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CTR,
1281 .cfg_dec = CIPH_ENCR | MOD_AES | MOD_CTR,
1282 }, {
1283 .crypto = {
1284 .cra_name = "rfc3686(ctr(aes))",
1285 .cra_blocksize = AES_BLOCK_SIZE,
1286 .cra_u = { .ablkcipher = {
1287 .min_keysize = AES_MIN_KEY_SIZE,
1288 .max_keysize = AES_MAX_KEY_SIZE,
1289 .ivsize = AES_BLOCK_SIZE,
1290 .geniv = "eseqiv",
1291 .setkey = ablk_rfc3686_setkey,
1292 .encrypt = ablk_rfc3686_crypt,
1293 .decrypt = ablk_rfc3686_crypt }
1294 }
1295 },
1296 .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CTR,
1297 .cfg_dec = CIPH_ENCR | MOD_AES | MOD_CTR,
1298 } };
1299
1300 static struct ixp_aead_alg ixp4xx_aeads[] = {
1301 {
1302 .crypto = {
1303 .base = {
1304 .cra_name = "authenc(hmac(md5),cbc(des))",
1305 .cra_blocksize = DES_BLOCK_SIZE,
1306 },
1307 .ivsize = DES_BLOCK_SIZE,
1308 .maxauthsize = MD5_DIGEST_SIZE,
1309 },
1310 .hash = &hash_alg_md5,
1311 .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1312 .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1313 }, {
1314 .crypto = {
1315 .base = {
1316 .cra_name = "authenc(hmac(md5),cbc(des3_ede))",
1317 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1318 },
1319 .ivsize = DES3_EDE_BLOCK_SIZE,
1320 .maxauthsize = MD5_DIGEST_SIZE,
1321 },
1322 .hash = &hash_alg_md5,
1323 .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1324 .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1325 }, {
1326 .crypto = {
1327 .base = {
1328 .cra_name = "authenc(hmac(sha1),cbc(des))",
1329 .cra_blocksize = DES_BLOCK_SIZE,
1330 },
1331 .ivsize = DES_BLOCK_SIZE,
1332 .maxauthsize = SHA1_DIGEST_SIZE,
1333 },
1334 .hash = &hash_alg_sha1,
1335 .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1336 .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1337 }, {
1338 .crypto = {
1339 .base = {
1340 .cra_name = "authenc(hmac(sha1),cbc(des3_ede))",
1341 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1342 },
1343 .ivsize = DES3_EDE_BLOCK_SIZE,
1344 .maxauthsize = SHA1_DIGEST_SIZE,
1345 },
1346 .hash = &hash_alg_sha1,
1347 .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1348 .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1349 }, {
1350 .crypto = {
1351 .base = {
1352 .cra_name = "authenc(hmac(md5),cbc(aes))",
1353 .cra_blocksize = AES_BLOCK_SIZE,
1354 },
1355 .ivsize = AES_BLOCK_SIZE,
1356 .maxauthsize = MD5_DIGEST_SIZE,
1357 },
1358 .hash = &hash_alg_md5,
1359 .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1360 .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1361 }, {
1362 .crypto = {
1363 .base = {
1364 .cra_name = "authenc(hmac(sha1),cbc(aes))",
1365 .cra_blocksize = AES_BLOCK_SIZE,
1366 },
1367 .ivsize = AES_BLOCK_SIZE,
1368 .maxauthsize = SHA1_DIGEST_SIZE,
1369 },
1370 .hash = &hash_alg_sha1,
1371 .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1372 .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1373 } };
1374
1375 #define IXP_POSTFIX "-ixp4xx"
1376
1377 static const struct platform_device_info ixp_dev_info __initdata = {
1378 .name = DRIVER_NAME,
1379 .id = 0,
1380 .dma_mask = DMA_BIT_MASK(32),
1381 };
1382
1383 static int __init ixp_module_init(void)
1384 {
1385 int num = ARRAY_SIZE(ixp4xx_algos);
1386 int i, err;
1387
1388 pdev = platform_device_register_full(&ixp_dev_info);
1389 if (IS_ERR(pdev))
1390 return PTR_ERR(pdev);
1391
1392 spin_lock_init(&desc_lock);
1393 spin_lock_init(&emerg_lock);
1394
1395 err = init_ixp_crypto(&pdev->dev);
1396 if (err) {
1397 platform_device_unregister(pdev);
1398 return err;
1399 }
1400 for (i=0; i< num; i++) {
1401 struct crypto_alg *cra = &ixp4xx_algos[i].crypto;
1402
1403 if (snprintf(cra->cra_driver_name, CRYPTO_MAX_ALG_NAME,
1404 "%s"IXP_POSTFIX, cra->cra_name) >=
1405 CRYPTO_MAX_ALG_NAME)
1406 {
1407 continue;
1408 }
1409 if (!support_aes && (ixp4xx_algos[i].cfg_enc & MOD_AES)) {
1410 continue;
1411 }
1412
1413 /* block ciphers */
1414 cra->cra_type = &crypto_ablkcipher_type;
1415 cra->cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1416 CRYPTO_ALG_KERN_DRIVER_ONLY |
1417 CRYPTO_ALG_ASYNC;
1418 if (!cra->cra_ablkcipher.setkey)
1419 cra->cra_ablkcipher.setkey = ablk_setkey;
1420 if (!cra->cra_ablkcipher.encrypt)
1421 cra->cra_ablkcipher.encrypt = ablk_encrypt;
1422 if (!cra->cra_ablkcipher.decrypt)
1423 cra->cra_ablkcipher.decrypt = ablk_decrypt;
1424 cra->cra_init = init_tfm_ablk;
1425
1426 cra->cra_ctxsize = sizeof(struct ixp_ctx);
1427 cra->cra_module = THIS_MODULE;
1428 cra->cra_alignmask = 3;
1429 cra->cra_priority = 300;
1430 cra->cra_exit = exit_tfm;
1431 if (crypto_register_alg(cra))
1432 printk(KERN_ERR "Failed to register '%s'\n",
1433 cra->cra_name);
1434 else
1435 ixp4xx_algos[i].registered = 1;
1436 }
1437
1438 for (i = 0; i < ARRAY_SIZE(ixp4xx_aeads); i++) {
1439 struct aead_alg *cra = &ixp4xx_aeads[i].crypto;
1440
1441 if (snprintf(cra->base.cra_driver_name, CRYPTO_MAX_ALG_NAME,
1442 "%s"IXP_POSTFIX, cra->base.cra_name) >=
1443 CRYPTO_MAX_ALG_NAME)
1444 continue;
1445 if (!support_aes && (ixp4xx_algos[i].cfg_enc & MOD_AES))
1446 continue;
1447
1448 /* authenc */
1449 cra->base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1450 CRYPTO_ALG_ASYNC;
1451 cra->setkey = aead_setkey;
1452 cra->setauthsize = aead_setauthsize;
1453 cra->encrypt = aead_encrypt;
1454 cra->decrypt = aead_decrypt;
1455 cra->init = init_tfm_aead;
1456 cra->exit = exit_tfm_aead;
1457
1458 cra->base.cra_ctxsize = sizeof(struct ixp_ctx);
1459 cra->base.cra_module = THIS_MODULE;
1460 cra->base.cra_alignmask = 3;
1461 cra->base.cra_priority = 300;
1462
1463 if (crypto_register_aead(cra))
1464 printk(KERN_ERR "Failed to register '%s'\n",
1465 cra->base.cra_driver_name);
1466 else
1467 ixp4xx_aeads[i].registered = 1;
1468 }
1469 return 0;
1470 }
1471
1472 static void __exit ixp_module_exit(void)
1473 {
1474 int num = ARRAY_SIZE(ixp4xx_algos);
1475 int i;
1476
1477 for (i = 0; i < ARRAY_SIZE(ixp4xx_aeads); i++) {
1478 if (ixp4xx_aeads[i].registered)
1479 crypto_unregister_aead(&ixp4xx_aeads[i].crypto);
1480 }
1481
1482 for (i=0; i< num; i++) {
1483 if (ixp4xx_algos[i].registered)
1484 crypto_unregister_alg(&ixp4xx_algos[i].crypto);
1485 }
1486 release_ixp_crypto(&pdev->dev);
1487 platform_device_unregister(pdev);
1488 }
1489
1490 module_init(ixp_module_init);
1491 module_exit(ixp_module_exit);
1492
1493 MODULE_LICENSE("GPL");
1494 MODULE_AUTHOR("Christian Hohnstaedt <chohnstaedt@innominate.com>");
1495 MODULE_DESCRIPTION("IXP4xx hardware crypto");
1496