]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/crypto/marvell/hash.c
Merge branches 'x86/cache', 'x86/debug' and 'x86/irq' into x86/urgent
[mirror_ubuntu-artful-kernel.git] / drivers / crypto / marvell / hash.c
1 /*
2 * Hash algorithms supported by the CESA: MD5, SHA1 and SHA256.
3 *
4 * Author: Boris Brezillon <boris.brezillon@free-electrons.com>
5 * Author: Arnaud Ebalard <arno@natisbad.org>
6 *
7 * This work is based on an initial version written by
8 * Sebastian Andrzej Siewior < sebastian at breakpoint dot cc >
9 *
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License version 2 as published
12 * by the Free Software Foundation.
13 */
14
15 #include <crypto/md5.h>
16 #include <crypto/sha.h>
17
18 #include "cesa.h"
19
20 struct mv_cesa_ahash_dma_iter {
21 struct mv_cesa_dma_iter base;
22 struct mv_cesa_sg_dma_iter src;
23 };
24
25 static inline void
26 mv_cesa_ahash_req_iter_init(struct mv_cesa_ahash_dma_iter *iter,
27 struct ahash_request *req)
28 {
29 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
30 unsigned int len = req->nbytes + creq->cache_ptr;
31
32 if (!creq->last_req)
33 len &= ~CESA_HASH_BLOCK_SIZE_MSK;
34
35 mv_cesa_req_dma_iter_init(&iter->base, len);
36 mv_cesa_sg_dma_iter_init(&iter->src, req->src, DMA_TO_DEVICE);
37 iter->src.op_offset = creq->cache_ptr;
38 }
39
40 static inline bool
41 mv_cesa_ahash_req_iter_next_op(struct mv_cesa_ahash_dma_iter *iter)
42 {
43 iter->src.op_offset = 0;
44
45 return mv_cesa_req_dma_iter_next_op(&iter->base);
46 }
47
48 static inline int
49 mv_cesa_ahash_dma_alloc_cache(struct mv_cesa_ahash_dma_req *req, gfp_t flags)
50 {
51 req->cache = dma_pool_alloc(cesa_dev->dma->cache_pool, flags,
52 &req->cache_dma);
53 if (!req->cache)
54 return -ENOMEM;
55
56 return 0;
57 }
58
59 static inline void
60 mv_cesa_ahash_dma_free_cache(struct mv_cesa_ahash_dma_req *req)
61 {
62 if (!req->cache)
63 return;
64
65 dma_pool_free(cesa_dev->dma->cache_pool, req->cache,
66 req->cache_dma);
67 }
68
69 static int mv_cesa_ahash_dma_alloc_padding(struct mv_cesa_ahash_dma_req *req,
70 gfp_t flags)
71 {
72 if (req->padding)
73 return 0;
74
75 req->padding = dma_pool_alloc(cesa_dev->dma->padding_pool, flags,
76 &req->padding_dma);
77 if (!req->padding)
78 return -ENOMEM;
79
80 return 0;
81 }
82
83 static void mv_cesa_ahash_dma_free_padding(struct mv_cesa_ahash_dma_req *req)
84 {
85 if (!req->padding)
86 return;
87
88 dma_pool_free(cesa_dev->dma->padding_pool, req->padding,
89 req->padding_dma);
90 req->padding = NULL;
91 }
92
93 static inline void mv_cesa_ahash_dma_last_cleanup(struct ahash_request *req)
94 {
95 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
96
97 mv_cesa_ahash_dma_free_padding(&creq->req.dma);
98 }
99
100 static inline void mv_cesa_ahash_dma_cleanup(struct ahash_request *req)
101 {
102 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
103
104 dma_unmap_sg(cesa_dev->dev, req->src, creq->src_nents, DMA_TO_DEVICE);
105 mv_cesa_ahash_dma_free_cache(&creq->req.dma);
106 mv_cesa_dma_cleanup(&creq->base);
107 }
108
109 static inline void mv_cesa_ahash_cleanup(struct ahash_request *req)
110 {
111 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
112
113 if (mv_cesa_req_get_type(&creq->base) == CESA_DMA_REQ)
114 mv_cesa_ahash_dma_cleanup(req);
115 }
116
117 static void mv_cesa_ahash_last_cleanup(struct ahash_request *req)
118 {
119 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
120
121 if (mv_cesa_req_get_type(&creq->base) == CESA_DMA_REQ)
122 mv_cesa_ahash_dma_last_cleanup(req);
123 }
124
125 static int mv_cesa_ahash_pad_len(struct mv_cesa_ahash_req *creq)
126 {
127 unsigned int index, padlen;
128
129 index = creq->len & CESA_HASH_BLOCK_SIZE_MSK;
130 padlen = (index < 56) ? (56 - index) : (64 + 56 - index);
131
132 return padlen;
133 }
134
135 static int mv_cesa_ahash_pad_req(struct mv_cesa_ahash_req *creq, u8 *buf)
136 {
137 unsigned int index, padlen;
138
139 buf[0] = 0x80;
140 /* Pad out to 56 mod 64 */
141 index = creq->len & CESA_HASH_BLOCK_SIZE_MSK;
142 padlen = mv_cesa_ahash_pad_len(creq);
143 memset(buf + 1, 0, padlen - 1);
144
145 if (creq->algo_le) {
146 __le64 bits = cpu_to_le64(creq->len << 3);
147 memcpy(buf + padlen, &bits, sizeof(bits));
148 } else {
149 __be64 bits = cpu_to_be64(creq->len << 3);
150 memcpy(buf + padlen, &bits, sizeof(bits));
151 }
152
153 return padlen + 8;
154 }
155
156 static void mv_cesa_ahash_std_step(struct ahash_request *req)
157 {
158 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
159 struct mv_cesa_ahash_std_req *sreq = &creq->req.std;
160 struct mv_cesa_engine *engine = creq->base.engine;
161 struct mv_cesa_op_ctx *op;
162 unsigned int new_cache_ptr = 0;
163 u32 frag_mode;
164 size_t len;
165 unsigned int digsize;
166 int i;
167
168 mv_cesa_adjust_op(engine, &creq->op_tmpl);
169 memcpy_toio(engine->sram, &creq->op_tmpl, sizeof(creq->op_tmpl));
170
171 if (!sreq->offset) {
172 digsize = crypto_ahash_digestsize(crypto_ahash_reqtfm(req));
173 for (i = 0; i < digsize / 4; i++)
174 writel_relaxed(creq->state[i], engine->regs + CESA_IVDIG(i));
175 }
176
177 if (creq->cache_ptr)
178 memcpy_toio(engine->sram + CESA_SA_DATA_SRAM_OFFSET,
179 creq->cache, creq->cache_ptr);
180
181 len = min_t(size_t, req->nbytes + creq->cache_ptr - sreq->offset,
182 CESA_SA_SRAM_PAYLOAD_SIZE);
183
184 if (!creq->last_req) {
185 new_cache_ptr = len & CESA_HASH_BLOCK_SIZE_MSK;
186 len &= ~CESA_HASH_BLOCK_SIZE_MSK;
187 }
188
189 if (len - creq->cache_ptr)
190 sreq->offset += sg_pcopy_to_buffer(req->src, creq->src_nents,
191 engine->sram +
192 CESA_SA_DATA_SRAM_OFFSET +
193 creq->cache_ptr,
194 len - creq->cache_ptr,
195 sreq->offset);
196
197 op = &creq->op_tmpl;
198
199 frag_mode = mv_cesa_get_op_cfg(op) & CESA_SA_DESC_CFG_FRAG_MSK;
200
201 if (creq->last_req && sreq->offset == req->nbytes &&
202 creq->len <= CESA_SA_DESC_MAC_SRC_TOTAL_LEN_MAX) {
203 if (frag_mode == CESA_SA_DESC_CFG_FIRST_FRAG)
204 frag_mode = CESA_SA_DESC_CFG_NOT_FRAG;
205 else if (frag_mode == CESA_SA_DESC_CFG_MID_FRAG)
206 frag_mode = CESA_SA_DESC_CFG_LAST_FRAG;
207 }
208
209 if (frag_mode == CESA_SA_DESC_CFG_NOT_FRAG ||
210 frag_mode == CESA_SA_DESC_CFG_LAST_FRAG) {
211 if (len &&
212 creq->len <= CESA_SA_DESC_MAC_SRC_TOTAL_LEN_MAX) {
213 mv_cesa_set_mac_op_total_len(op, creq->len);
214 } else {
215 int trailerlen = mv_cesa_ahash_pad_len(creq) + 8;
216
217 if (len + trailerlen > CESA_SA_SRAM_PAYLOAD_SIZE) {
218 len &= CESA_HASH_BLOCK_SIZE_MSK;
219 new_cache_ptr = 64 - trailerlen;
220 memcpy_fromio(creq->cache,
221 engine->sram +
222 CESA_SA_DATA_SRAM_OFFSET + len,
223 new_cache_ptr);
224 } else {
225 len += mv_cesa_ahash_pad_req(creq,
226 engine->sram + len +
227 CESA_SA_DATA_SRAM_OFFSET);
228 }
229
230 if (frag_mode == CESA_SA_DESC_CFG_LAST_FRAG)
231 frag_mode = CESA_SA_DESC_CFG_MID_FRAG;
232 else
233 frag_mode = CESA_SA_DESC_CFG_FIRST_FRAG;
234 }
235 }
236
237 mv_cesa_set_mac_op_frag_len(op, len);
238 mv_cesa_update_op_cfg(op, frag_mode, CESA_SA_DESC_CFG_FRAG_MSK);
239
240 /* FIXME: only update enc_len field */
241 memcpy_toio(engine->sram, op, sizeof(*op));
242
243 if (frag_mode == CESA_SA_DESC_CFG_FIRST_FRAG)
244 mv_cesa_update_op_cfg(op, CESA_SA_DESC_CFG_MID_FRAG,
245 CESA_SA_DESC_CFG_FRAG_MSK);
246
247 creq->cache_ptr = new_cache_ptr;
248
249 mv_cesa_set_int_mask(engine, CESA_SA_INT_ACCEL0_DONE);
250 writel_relaxed(CESA_SA_CFG_PARA_DIS, engine->regs + CESA_SA_CFG);
251 BUG_ON(readl(engine->regs + CESA_SA_CMD) &
252 CESA_SA_CMD_EN_CESA_SA_ACCL0);
253 writel(CESA_SA_CMD_EN_CESA_SA_ACCL0, engine->regs + CESA_SA_CMD);
254 }
255
256 static int mv_cesa_ahash_std_process(struct ahash_request *req, u32 status)
257 {
258 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
259 struct mv_cesa_ahash_std_req *sreq = &creq->req.std;
260
261 if (sreq->offset < (req->nbytes - creq->cache_ptr))
262 return -EINPROGRESS;
263
264 return 0;
265 }
266
267 static inline void mv_cesa_ahash_dma_prepare(struct ahash_request *req)
268 {
269 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
270 struct mv_cesa_req *basereq = &creq->base;
271
272 mv_cesa_dma_prepare(basereq, basereq->engine);
273 }
274
275 static void mv_cesa_ahash_std_prepare(struct ahash_request *req)
276 {
277 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
278 struct mv_cesa_ahash_std_req *sreq = &creq->req.std;
279
280 sreq->offset = 0;
281 }
282
283 static void mv_cesa_ahash_dma_step(struct ahash_request *req)
284 {
285 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
286 struct mv_cesa_req *base = &creq->base;
287
288 /* We must explicitly set the digest state. */
289 if (base->chain.first->flags & CESA_TDMA_SET_STATE) {
290 struct mv_cesa_engine *engine = base->engine;
291 int i;
292
293 /* Set the hash state in the IVDIG regs. */
294 for (i = 0; i < ARRAY_SIZE(creq->state); i++)
295 writel_relaxed(creq->state[i], engine->regs +
296 CESA_IVDIG(i));
297 }
298
299 mv_cesa_dma_step(base);
300 }
301
302 static void mv_cesa_ahash_step(struct crypto_async_request *req)
303 {
304 struct ahash_request *ahashreq = ahash_request_cast(req);
305 struct mv_cesa_ahash_req *creq = ahash_request_ctx(ahashreq);
306
307 if (mv_cesa_req_get_type(&creq->base) == CESA_DMA_REQ)
308 mv_cesa_ahash_dma_step(ahashreq);
309 else
310 mv_cesa_ahash_std_step(ahashreq);
311 }
312
313 static int mv_cesa_ahash_process(struct crypto_async_request *req, u32 status)
314 {
315 struct ahash_request *ahashreq = ahash_request_cast(req);
316 struct mv_cesa_ahash_req *creq = ahash_request_ctx(ahashreq);
317
318 if (mv_cesa_req_get_type(&creq->base) == CESA_DMA_REQ)
319 return mv_cesa_dma_process(&creq->base, status);
320
321 return mv_cesa_ahash_std_process(ahashreq, status);
322 }
323
324 static void mv_cesa_ahash_complete(struct crypto_async_request *req)
325 {
326 struct ahash_request *ahashreq = ahash_request_cast(req);
327 struct mv_cesa_ahash_req *creq = ahash_request_ctx(ahashreq);
328 struct mv_cesa_engine *engine = creq->base.engine;
329 unsigned int digsize;
330 int i;
331
332 digsize = crypto_ahash_digestsize(crypto_ahash_reqtfm(ahashreq));
333
334 if (mv_cesa_req_get_type(&creq->base) == CESA_DMA_REQ &&
335 (creq->base.chain.last->flags & CESA_TDMA_TYPE_MSK) == CESA_TDMA_RESULT) {
336 __le32 *data = NULL;
337
338 /*
339 * Result is already in the correct endianess when the SA is
340 * used
341 */
342 data = creq->base.chain.last->op->ctx.hash.hash;
343 for (i = 0; i < digsize / 4; i++)
344 creq->state[i] = cpu_to_le32(data[i]);
345
346 memcpy(ahashreq->result, data, digsize);
347 } else {
348 for (i = 0; i < digsize / 4; i++)
349 creq->state[i] = readl_relaxed(engine->regs +
350 CESA_IVDIG(i));
351 if (creq->last_req) {
352 /*
353 * Hardware's MD5 digest is in little endian format, but
354 * SHA in big endian format
355 */
356 if (creq->algo_le) {
357 __le32 *result = (void *)ahashreq->result;
358
359 for (i = 0; i < digsize / 4; i++)
360 result[i] = cpu_to_le32(creq->state[i]);
361 } else {
362 __be32 *result = (void *)ahashreq->result;
363
364 for (i = 0; i < digsize / 4; i++)
365 result[i] = cpu_to_be32(creq->state[i]);
366 }
367 }
368 }
369
370 atomic_sub(ahashreq->nbytes, &engine->load);
371 }
372
373 static void mv_cesa_ahash_prepare(struct crypto_async_request *req,
374 struct mv_cesa_engine *engine)
375 {
376 struct ahash_request *ahashreq = ahash_request_cast(req);
377 struct mv_cesa_ahash_req *creq = ahash_request_ctx(ahashreq);
378
379 creq->base.engine = engine;
380
381 if (mv_cesa_req_get_type(&creq->base) == CESA_DMA_REQ)
382 mv_cesa_ahash_dma_prepare(ahashreq);
383 else
384 mv_cesa_ahash_std_prepare(ahashreq);
385 }
386
387 static void mv_cesa_ahash_req_cleanup(struct crypto_async_request *req)
388 {
389 struct ahash_request *ahashreq = ahash_request_cast(req);
390 struct mv_cesa_ahash_req *creq = ahash_request_ctx(ahashreq);
391
392 if (creq->last_req)
393 mv_cesa_ahash_last_cleanup(ahashreq);
394
395 mv_cesa_ahash_cleanup(ahashreq);
396
397 if (creq->cache_ptr)
398 sg_pcopy_to_buffer(ahashreq->src, creq->src_nents,
399 creq->cache,
400 creq->cache_ptr,
401 ahashreq->nbytes - creq->cache_ptr);
402 }
403
404 static const struct mv_cesa_req_ops mv_cesa_ahash_req_ops = {
405 .step = mv_cesa_ahash_step,
406 .process = mv_cesa_ahash_process,
407 .cleanup = mv_cesa_ahash_req_cleanup,
408 .complete = mv_cesa_ahash_complete,
409 };
410
411 static void mv_cesa_ahash_init(struct ahash_request *req,
412 struct mv_cesa_op_ctx *tmpl, bool algo_le)
413 {
414 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
415
416 memset(creq, 0, sizeof(*creq));
417 mv_cesa_update_op_cfg(tmpl,
418 CESA_SA_DESC_CFG_OP_MAC_ONLY |
419 CESA_SA_DESC_CFG_FIRST_FRAG,
420 CESA_SA_DESC_CFG_OP_MSK |
421 CESA_SA_DESC_CFG_FRAG_MSK);
422 mv_cesa_set_mac_op_total_len(tmpl, 0);
423 mv_cesa_set_mac_op_frag_len(tmpl, 0);
424 creq->op_tmpl = *tmpl;
425 creq->len = 0;
426 creq->algo_le = algo_le;
427 }
428
429 static inline int mv_cesa_ahash_cra_init(struct crypto_tfm *tfm)
430 {
431 struct mv_cesa_hash_ctx *ctx = crypto_tfm_ctx(tfm);
432
433 ctx->base.ops = &mv_cesa_ahash_req_ops;
434
435 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
436 sizeof(struct mv_cesa_ahash_req));
437 return 0;
438 }
439
440 static bool mv_cesa_ahash_cache_req(struct ahash_request *req)
441 {
442 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
443 bool cached = false;
444
445 if (creq->cache_ptr + req->nbytes < CESA_MAX_HASH_BLOCK_SIZE && !creq->last_req) {
446 cached = true;
447
448 if (!req->nbytes)
449 return cached;
450
451 sg_pcopy_to_buffer(req->src, creq->src_nents,
452 creq->cache + creq->cache_ptr,
453 req->nbytes, 0);
454
455 creq->cache_ptr += req->nbytes;
456 }
457
458 return cached;
459 }
460
461 static struct mv_cesa_op_ctx *
462 mv_cesa_dma_add_frag(struct mv_cesa_tdma_chain *chain,
463 struct mv_cesa_op_ctx *tmpl, unsigned int frag_len,
464 gfp_t flags)
465 {
466 struct mv_cesa_op_ctx *op;
467 int ret;
468
469 op = mv_cesa_dma_add_op(chain, tmpl, false, flags);
470 if (IS_ERR(op))
471 return op;
472
473 /* Set the operation block fragment length. */
474 mv_cesa_set_mac_op_frag_len(op, frag_len);
475
476 /* Append dummy desc to launch operation */
477 ret = mv_cesa_dma_add_dummy_launch(chain, flags);
478 if (ret)
479 return ERR_PTR(ret);
480
481 if (mv_cesa_mac_op_is_first_frag(tmpl))
482 mv_cesa_update_op_cfg(tmpl,
483 CESA_SA_DESC_CFG_MID_FRAG,
484 CESA_SA_DESC_CFG_FRAG_MSK);
485
486 return op;
487 }
488
489 static int
490 mv_cesa_ahash_dma_add_cache(struct mv_cesa_tdma_chain *chain,
491 struct mv_cesa_ahash_req *creq,
492 gfp_t flags)
493 {
494 struct mv_cesa_ahash_dma_req *ahashdreq = &creq->req.dma;
495 int ret;
496
497 if (!creq->cache_ptr)
498 return 0;
499
500 ret = mv_cesa_ahash_dma_alloc_cache(ahashdreq, flags);
501 if (ret)
502 return ret;
503
504 memcpy(ahashdreq->cache, creq->cache, creq->cache_ptr);
505
506 return mv_cesa_dma_add_data_transfer(chain,
507 CESA_SA_DATA_SRAM_OFFSET,
508 ahashdreq->cache_dma,
509 creq->cache_ptr,
510 CESA_TDMA_DST_IN_SRAM,
511 flags);
512 }
513
514 static struct mv_cesa_op_ctx *
515 mv_cesa_ahash_dma_last_req(struct mv_cesa_tdma_chain *chain,
516 struct mv_cesa_ahash_dma_iter *dma_iter,
517 struct mv_cesa_ahash_req *creq,
518 unsigned int frag_len, gfp_t flags)
519 {
520 struct mv_cesa_ahash_dma_req *ahashdreq = &creq->req.dma;
521 unsigned int len, trailerlen, padoff = 0;
522 struct mv_cesa_op_ctx *op;
523 int ret;
524
525 /*
526 * If the transfer is smaller than our maximum length, and we have
527 * some data outstanding, we can ask the engine to finish the hash.
528 */
529 if (creq->len <= CESA_SA_DESC_MAC_SRC_TOTAL_LEN_MAX && frag_len) {
530 op = mv_cesa_dma_add_frag(chain, &creq->op_tmpl, frag_len,
531 flags);
532 if (IS_ERR(op))
533 return op;
534
535 mv_cesa_set_mac_op_total_len(op, creq->len);
536 mv_cesa_update_op_cfg(op, mv_cesa_mac_op_is_first_frag(op) ?
537 CESA_SA_DESC_CFG_NOT_FRAG :
538 CESA_SA_DESC_CFG_LAST_FRAG,
539 CESA_SA_DESC_CFG_FRAG_MSK);
540
541 ret = mv_cesa_dma_add_result_op(chain,
542 CESA_SA_CFG_SRAM_OFFSET,
543 CESA_SA_DATA_SRAM_OFFSET,
544 CESA_TDMA_SRC_IN_SRAM, flags);
545 if (ret)
546 return ERR_PTR(-ENOMEM);
547 return op;
548 }
549
550 /*
551 * The request is longer than the engine can handle, or we have
552 * no data outstanding. Manually generate the padding, adding it
553 * as a "mid" fragment.
554 */
555 ret = mv_cesa_ahash_dma_alloc_padding(ahashdreq, flags);
556 if (ret)
557 return ERR_PTR(ret);
558
559 trailerlen = mv_cesa_ahash_pad_req(creq, ahashdreq->padding);
560
561 len = min(CESA_SA_SRAM_PAYLOAD_SIZE - frag_len, trailerlen);
562 if (len) {
563 ret = mv_cesa_dma_add_data_transfer(chain,
564 CESA_SA_DATA_SRAM_OFFSET +
565 frag_len,
566 ahashdreq->padding_dma,
567 len, CESA_TDMA_DST_IN_SRAM,
568 flags);
569 if (ret)
570 return ERR_PTR(ret);
571
572 op = mv_cesa_dma_add_frag(chain, &creq->op_tmpl, frag_len + len,
573 flags);
574 if (IS_ERR(op))
575 return op;
576
577 if (len == trailerlen)
578 return op;
579
580 padoff += len;
581 }
582
583 ret = mv_cesa_dma_add_data_transfer(chain,
584 CESA_SA_DATA_SRAM_OFFSET,
585 ahashdreq->padding_dma +
586 padoff,
587 trailerlen - padoff,
588 CESA_TDMA_DST_IN_SRAM,
589 flags);
590 if (ret)
591 return ERR_PTR(ret);
592
593 return mv_cesa_dma_add_frag(chain, &creq->op_tmpl, trailerlen - padoff,
594 flags);
595 }
596
597 static int mv_cesa_ahash_dma_req_init(struct ahash_request *req)
598 {
599 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
600 gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
601 GFP_KERNEL : GFP_ATOMIC;
602 struct mv_cesa_req *basereq = &creq->base;
603 struct mv_cesa_ahash_dma_iter iter;
604 struct mv_cesa_op_ctx *op = NULL;
605 unsigned int frag_len;
606 bool set_state = false;
607 int ret;
608 u32 type;
609
610 basereq->chain.first = NULL;
611 basereq->chain.last = NULL;
612
613 if (!mv_cesa_mac_op_is_first_frag(&creq->op_tmpl))
614 set_state = true;
615
616 if (creq->src_nents) {
617 ret = dma_map_sg(cesa_dev->dev, req->src, creq->src_nents,
618 DMA_TO_DEVICE);
619 if (!ret) {
620 ret = -ENOMEM;
621 goto err;
622 }
623 }
624
625 mv_cesa_tdma_desc_iter_init(&basereq->chain);
626 mv_cesa_ahash_req_iter_init(&iter, req);
627
628 /*
629 * Add the cache (left-over data from a previous block) first.
630 * This will never overflow the SRAM size.
631 */
632 ret = mv_cesa_ahash_dma_add_cache(&basereq->chain, creq, flags);
633 if (ret)
634 goto err_free_tdma;
635
636 if (iter.src.sg) {
637 /*
638 * Add all the new data, inserting an operation block and
639 * launch command between each full SRAM block-worth of
640 * data. We intentionally do not add the final op block.
641 */
642 while (true) {
643 ret = mv_cesa_dma_add_op_transfers(&basereq->chain,
644 &iter.base,
645 &iter.src, flags);
646 if (ret)
647 goto err_free_tdma;
648
649 frag_len = iter.base.op_len;
650
651 if (!mv_cesa_ahash_req_iter_next_op(&iter))
652 break;
653
654 op = mv_cesa_dma_add_frag(&basereq->chain, &creq->op_tmpl,
655 frag_len, flags);
656 if (IS_ERR(op)) {
657 ret = PTR_ERR(op);
658 goto err_free_tdma;
659 }
660 }
661 } else {
662 /* Account for the data that was in the cache. */
663 frag_len = iter.base.op_len;
664 }
665
666 /*
667 * At this point, frag_len indicates whether we have any data
668 * outstanding which needs an operation. Queue up the final
669 * operation, which depends whether this is the final request.
670 */
671 if (creq->last_req)
672 op = mv_cesa_ahash_dma_last_req(&basereq->chain, &iter, creq,
673 frag_len, flags);
674 else if (frag_len)
675 op = mv_cesa_dma_add_frag(&basereq->chain, &creq->op_tmpl,
676 frag_len, flags);
677
678 if (IS_ERR(op)) {
679 ret = PTR_ERR(op);
680 goto err_free_tdma;
681 }
682
683 /*
684 * If results are copied via DMA, this means that this
685 * request can be directly processed by the engine,
686 * without partial updates. So we can chain it at the
687 * DMA level with other requests.
688 */
689 type = basereq->chain.last->flags & CESA_TDMA_TYPE_MSK;
690
691 if (op && type != CESA_TDMA_RESULT) {
692 /* Add dummy desc to wait for crypto operation end */
693 ret = mv_cesa_dma_add_dummy_end(&basereq->chain, flags);
694 if (ret)
695 goto err_free_tdma;
696 }
697
698 if (!creq->last_req)
699 creq->cache_ptr = req->nbytes + creq->cache_ptr -
700 iter.base.len;
701 else
702 creq->cache_ptr = 0;
703
704 basereq->chain.last->flags |= CESA_TDMA_END_OF_REQ;
705
706 if (type != CESA_TDMA_RESULT)
707 basereq->chain.last->flags |= CESA_TDMA_BREAK_CHAIN;
708
709 if (set_state) {
710 /*
711 * Put the CESA_TDMA_SET_STATE flag on the first tdma desc to
712 * let the step logic know that the IVDIG registers should be
713 * explicitly set before launching a TDMA chain.
714 */
715 basereq->chain.first->flags |= CESA_TDMA_SET_STATE;
716 }
717
718 return 0;
719
720 err_free_tdma:
721 mv_cesa_dma_cleanup(basereq);
722 dma_unmap_sg(cesa_dev->dev, req->src, creq->src_nents, DMA_TO_DEVICE);
723
724 err:
725 mv_cesa_ahash_last_cleanup(req);
726
727 return ret;
728 }
729
730 static int mv_cesa_ahash_req_init(struct ahash_request *req, bool *cached)
731 {
732 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
733
734 creq->src_nents = sg_nents_for_len(req->src, req->nbytes);
735 if (creq->src_nents < 0) {
736 dev_err(cesa_dev->dev, "Invalid number of src SG");
737 return creq->src_nents;
738 }
739
740 *cached = mv_cesa_ahash_cache_req(req);
741
742 if (*cached)
743 return 0;
744
745 if (cesa_dev->caps->has_tdma)
746 return mv_cesa_ahash_dma_req_init(req);
747 else
748 return 0;
749 }
750
751 static int mv_cesa_ahash_queue_req(struct ahash_request *req)
752 {
753 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
754 struct mv_cesa_engine *engine;
755 bool cached = false;
756 int ret;
757
758 ret = mv_cesa_ahash_req_init(req, &cached);
759 if (ret)
760 return ret;
761
762 if (cached)
763 return 0;
764
765 engine = mv_cesa_select_engine(req->nbytes);
766 mv_cesa_ahash_prepare(&req->base, engine);
767
768 ret = mv_cesa_queue_req(&req->base, &creq->base);
769
770 if (mv_cesa_req_needs_cleanup(&req->base, ret))
771 mv_cesa_ahash_cleanup(req);
772
773 return ret;
774 }
775
776 static int mv_cesa_ahash_update(struct ahash_request *req)
777 {
778 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
779
780 creq->len += req->nbytes;
781
782 return mv_cesa_ahash_queue_req(req);
783 }
784
785 static int mv_cesa_ahash_final(struct ahash_request *req)
786 {
787 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
788 struct mv_cesa_op_ctx *tmpl = &creq->op_tmpl;
789
790 mv_cesa_set_mac_op_total_len(tmpl, creq->len);
791 creq->last_req = true;
792 req->nbytes = 0;
793
794 return mv_cesa_ahash_queue_req(req);
795 }
796
797 static int mv_cesa_ahash_finup(struct ahash_request *req)
798 {
799 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
800 struct mv_cesa_op_ctx *tmpl = &creq->op_tmpl;
801
802 creq->len += req->nbytes;
803 mv_cesa_set_mac_op_total_len(tmpl, creq->len);
804 creq->last_req = true;
805
806 return mv_cesa_ahash_queue_req(req);
807 }
808
809 static int mv_cesa_ahash_export(struct ahash_request *req, void *hash,
810 u64 *len, void *cache)
811 {
812 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
813 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
814 unsigned int digsize = crypto_ahash_digestsize(ahash);
815 unsigned int blocksize;
816
817 blocksize = crypto_ahash_blocksize(ahash);
818
819 *len = creq->len;
820 memcpy(hash, creq->state, digsize);
821 memset(cache, 0, blocksize);
822 memcpy(cache, creq->cache, creq->cache_ptr);
823
824 return 0;
825 }
826
827 static int mv_cesa_ahash_import(struct ahash_request *req, const void *hash,
828 u64 len, const void *cache)
829 {
830 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
831 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
832 unsigned int digsize = crypto_ahash_digestsize(ahash);
833 unsigned int blocksize;
834 unsigned int cache_ptr;
835 int ret;
836
837 ret = crypto_ahash_init(req);
838 if (ret)
839 return ret;
840
841 blocksize = crypto_ahash_blocksize(ahash);
842 if (len >= blocksize)
843 mv_cesa_update_op_cfg(&creq->op_tmpl,
844 CESA_SA_DESC_CFG_MID_FRAG,
845 CESA_SA_DESC_CFG_FRAG_MSK);
846
847 creq->len = len;
848 memcpy(creq->state, hash, digsize);
849 creq->cache_ptr = 0;
850
851 cache_ptr = do_div(len, blocksize);
852 if (!cache_ptr)
853 return 0;
854
855 memcpy(creq->cache, cache, cache_ptr);
856 creq->cache_ptr = cache_ptr;
857
858 return 0;
859 }
860
861 static int mv_cesa_md5_init(struct ahash_request *req)
862 {
863 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
864 struct mv_cesa_op_ctx tmpl = { };
865
866 mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_MACM_MD5);
867
868 mv_cesa_ahash_init(req, &tmpl, true);
869
870 creq->state[0] = MD5_H0;
871 creq->state[1] = MD5_H1;
872 creq->state[2] = MD5_H2;
873 creq->state[3] = MD5_H3;
874
875 return 0;
876 }
877
878 static int mv_cesa_md5_export(struct ahash_request *req, void *out)
879 {
880 struct md5_state *out_state = out;
881
882 return mv_cesa_ahash_export(req, out_state->hash,
883 &out_state->byte_count, out_state->block);
884 }
885
886 static int mv_cesa_md5_import(struct ahash_request *req, const void *in)
887 {
888 const struct md5_state *in_state = in;
889
890 return mv_cesa_ahash_import(req, in_state->hash, in_state->byte_count,
891 in_state->block);
892 }
893
894 static int mv_cesa_md5_digest(struct ahash_request *req)
895 {
896 int ret;
897
898 ret = mv_cesa_md5_init(req);
899 if (ret)
900 return ret;
901
902 return mv_cesa_ahash_finup(req);
903 }
904
905 struct ahash_alg mv_md5_alg = {
906 .init = mv_cesa_md5_init,
907 .update = mv_cesa_ahash_update,
908 .final = mv_cesa_ahash_final,
909 .finup = mv_cesa_ahash_finup,
910 .digest = mv_cesa_md5_digest,
911 .export = mv_cesa_md5_export,
912 .import = mv_cesa_md5_import,
913 .halg = {
914 .digestsize = MD5_DIGEST_SIZE,
915 .statesize = sizeof(struct md5_state),
916 .base = {
917 .cra_name = "md5",
918 .cra_driver_name = "mv-md5",
919 .cra_priority = 300,
920 .cra_flags = CRYPTO_ALG_ASYNC |
921 CRYPTO_ALG_KERN_DRIVER_ONLY,
922 .cra_blocksize = MD5_HMAC_BLOCK_SIZE,
923 .cra_ctxsize = sizeof(struct mv_cesa_hash_ctx),
924 .cra_init = mv_cesa_ahash_cra_init,
925 .cra_module = THIS_MODULE,
926 }
927 }
928 };
929
930 static int mv_cesa_sha1_init(struct ahash_request *req)
931 {
932 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
933 struct mv_cesa_op_ctx tmpl = { };
934
935 mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_MACM_SHA1);
936
937 mv_cesa_ahash_init(req, &tmpl, false);
938
939 creq->state[0] = SHA1_H0;
940 creq->state[1] = SHA1_H1;
941 creq->state[2] = SHA1_H2;
942 creq->state[3] = SHA1_H3;
943 creq->state[4] = SHA1_H4;
944
945 return 0;
946 }
947
948 static int mv_cesa_sha1_export(struct ahash_request *req, void *out)
949 {
950 struct sha1_state *out_state = out;
951
952 return mv_cesa_ahash_export(req, out_state->state, &out_state->count,
953 out_state->buffer);
954 }
955
956 static int mv_cesa_sha1_import(struct ahash_request *req, const void *in)
957 {
958 const struct sha1_state *in_state = in;
959
960 return mv_cesa_ahash_import(req, in_state->state, in_state->count,
961 in_state->buffer);
962 }
963
964 static int mv_cesa_sha1_digest(struct ahash_request *req)
965 {
966 int ret;
967
968 ret = mv_cesa_sha1_init(req);
969 if (ret)
970 return ret;
971
972 return mv_cesa_ahash_finup(req);
973 }
974
975 struct ahash_alg mv_sha1_alg = {
976 .init = mv_cesa_sha1_init,
977 .update = mv_cesa_ahash_update,
978 .final = mv_cesa_ahash_final,
979 .finup = mv_cesa_ahash_finup,
980 .digest = mv_cesa_sha1_digest,
981 .export = mv_cesa_sha1_export,
982 .import = mv_cesa_sha1_import,
983 .halg = {
984 .digestsize = SHA1_DIGEST_SIZE,
985 .statesize = sizeof(struct sha1_state),
986 .base = {
987 .cra_name = "sha1",
988 .cra_driver_name = "mv-sha1",
989 .cra_priority = 300,
990 .cra_flags = CRYPTO_ALG_ASYNC |
991 CRYPTO_ALG_KERN_DRIVER_ONLY,
992 .cra_blocksize = SHA1_BLOCK_SIZE,
993 .cra_ctxsize = sizeof(struct mv_cesa_hash_ctx),
994 .cra_init = mv_cesa_ahash_cra_init,
995 .cra_module = THIS_MODULE,
996 }
997 }
998 };
999
1000 static int mv_cesa_sha256_init(struct ahash_request *req)
1001 {
1002 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
1003 struct mv_cesa_op_ctx tmpl = { };
1004
1005 mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_MACM_SHA256);
1006
1007 mv_cesa_ahash_init(req, &tmpl, false);
1008
1009 creq->state[0] = SHA256_H0;
1010 creq->state[1] = SHA256_H1;
1011 creq->state[2] = SHA256_H2;
1012 creq->state[3] = SHA256_H3;
1013 creq->state[4] = SHA256_H4;
1014 creq->state[5] = SHA256_H5;
1015 creq->state[6] = SHA256_H6;
1016 creq->state[7] = SHA256_H7;
1017
1018 return 0;
1019 }
1020
1021 static int mv_cesa_sha256_digest(struct ahash_request *req)
1022 {
1023 int ret;
1024
1025 ret = mv_cesa_sha256_init(req);
1026 if (ret)
1027 return ret;
1028
1029 return mv_cesa_ahash_finup(req);
1030 }
1031
1032 static int mv_cesa_sha256_export(struct ahash_request *req, void *out)
1033 {
1034 struct sha256_state *out_state = out;
1035
1036 return mv_cesa_ahash_export(req, out_state->state, &out_state->count,
1037 out_state->buf);
1038 }
1039
1040 static int mv_cesa_sha256_import(struct ahash_request *req, const void *in)
1041 {
1042 const struct sha256_state *in_state = in;
1043
1044 return mv_cesa_ahash_import(req, in_state->state, in_state->count,
1045 in_state->buf);
1046 }
1047
1048 struct ahash_alg mv_sha256_alg = {
1049 .init = mv_cesa_sha256_init,
1050 .update = mv_cesa_ahash_update,
1051 .final = mv_cesa_ahash_final,
1052 .finup = mv_cesa_ahash_finup,
1053 .digest = mv_cesa_sha256_digest,
1054 .export = mv_cesa_sha256_export,
1055 .import = mv_cesa_sha256_import,
1056 .halg = {
1057 .digestsize = SHA256_DIGEST_SIZE,
1058 .statesize = sizeof(struct sha256_state),
1059 .base = {
1060 .cra_name = "sha256",
1061 .cra_driver_name = "mv-sha256",
1062 .cra_priority = 300,
1063 .cra_flags = CRYPTO_ALG_ASYNC |
1064 CRYPTO_ALG_KERN_DRIVER_ONLY,
1065 .cra_blocksize = SHA256_BLOCK_SIZE,
1066 .cra_ctxsize = sizeof(struct mv_cesa_hash_ctx),
1067 .cra_init = mv_cesa_ahash_cra_init,
1068 .cra_module = THIS_MODULE,
1069 }
1070 }
1071 };
1072
1073 struct mv_cesa_ahash_result {
1074 struct completion completion;
1075 int error;
1076 };
1077
1078 static void mv_cesa_hmac_ahash_complete(struct crypto_async_request *req,
1079 int error)
1080 {
1081 struct mv_cesa_ahash_result *result = req->data;
1082
1083 if (error == -EINPROGRESS)
1084 return;
1085
1086 result->error = error;
1087 complete(&result->completion);
1088 }
1089
1090 static int mv_cesa_ahmac_iv_state_init(struct ahash_request *req, u8 *pad,
1091 void *state, unsigned int blocksize)
1092 {
1093 struct mv_cesa_ahash_result result;
1094 struct scatterlist sg;
1095 int ret;
1096
1097 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
1098 mv_cesa_hmac_ahash_complete, &result);
1099 sg_init_one(&sg, pad, blocksize);
1100 ahash_request_set_crypt(req, &sg, pad, blocksize);
1101 init_completion(&result.completion);
1102
1103 ret = crypto_ahash_init(req);
1104 if (ret)
1105 return ret;
1106
1107 ret = crypto_ahash_update(req);
1108 if (ret && ret != -EINPROGRESS)
1109 return ret;
1110
1111 wait_for_completion_interruptible(&result.completion);
1112 if (result.error)
1113 return result.error;
1114
1115 ret = crypto_ahash_export(req, state);
1116 if (ret)
1117 return ret;
1118
1119 return 0;
1120 }
1121
1122 static int mv_cesa_ahmac_pad_init(struct ahash_request *req,
1123 const u8 *key, unsigned int keylen,
1124 u8 *ipad, u8 *opad,
1125 unsigned int blocksize)
1126 {
1127 struct mv_cesa_ahash_result result;
1128 struct scatterlist sg;
1129 int ret;
1130 int i;
1131
1132 if (keylen <= blocksize) {
1133 memcpy(ipad, key, keylen);
1134 } else {
1135 u8 *keydup = kmemdup(key, keylen, GFP_KERNEL);
1136
1137 if (!keydup)
1138 return -ENOMEM;
1139
1140 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
1141 mv_cesa_hmac_ahash_complete,
1142 &result);
1143 sg_init_one(&sg, keydup, keylen);
1144 ahash_request_set_crypt(req, &sg, ipad, keylen);
1145 init_completion(&result.completion);
1146
1147 ret = crypto_ahash_digest(req);
1148 if (ret == -EINPROGRESS) {
1149 wait_for_completion_interruptible(&result.completion);
1150 ret = result.error;
1151 }
1152
1153 /* Set the memory region to 0 to avoid any leak. */
1154 memset(keydup, 0, keylen);
1155 kfree(keydup);
1156
1157 if (ret)
1158 return ret;
1159
1160 keylen = crypto_ahash_digestsize(crypto_ahash_reqtfm(req));
1161 }
1162
1163 memset(ipad + keylen, 0, blocksize - keylen);
1164 memcpy(opad, ipad, blocksize);
1165
1166 for (i = 0; i < blocksize; i++) {
1167 ipad[i] ^= 0x36;
1168 opad[i] ^= 0x5c;
1169 }
1170
1171 return 0;
1172 }
1173
1174 static int mv_cesa_ahmac_setkey(const char *hash_alg_name,
1175 const u8 *key, unsigned int keylen,
1176 void *istate, void *ostate)
1177 {
1178 struct ahash_request *req;
1179 struct crypto_ahash *tfm;
1180 unsigned int blocksize;
1181 u8 *ipad = NULL;
1182 u8 *opad;
1183 int ret;
1184
1185 tfm = crypto_alloc_ahash(hash_alg_name, CRYPTO_ALG_TYPE_AHASH,
1186 CRYPTO_ALG_TYPE_AHASH_MASK);
1187 if (IS_ERR(tfm))
1188 return PTR_ERR(tfm);
1189
1190 req = ahash_request_alloc(tfm, GFP_KERNEL);
1191 if (!req) {
1192 ret = -ENOMEM;
1193 goto free_ahash;
1194 }
1195
1196 crypto_ahash_clear_flags(tfm, ~0);
1197
1198 blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
1199
1200 ipad = kzalloc(2 * blocksize, GFP_KERNEL);
1201 if (!ipad) {
1202 ret = -ENOMEM;
1203 goto free_req;
1204 }
1205
1206 opad = ipad + blocksize;
1207
1208 ret = mv_cesa_ahmac_pad_init(req, key, keylen, ipad, opad, blocksize);
1209 if (ret)
1210 goto free_ipad;
1211
1212 ret = mv_cesa_ahmac_iv_state_init(req, ipad, istate, blocksize);
1213 if (ret)
1214 goto free_ipad;
1215
1216 ret = mv_cesa_ahmac_iv_state_init(req, opad, ostate, blocksize);
1217
1218 free_ipad:
1219 kfree(ipad);
1220 free_req:
1221 ahash_request_free(req);
1222 free_ahash:
1223 crypto_free_ahash(tfm);
1224
1225 return ret;
1226 }
1227
1228 static int mv_cesa_ahmac_cra_init(struct crypto_tfm *tfm)
1229 {
1230 struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(tfm);
1231
1232 ctx->base.ops = &mv_cesa_ahash_req_ops;
1233
1234 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1235 sizeof(struct mv_cesa_ahash_req));
1236 return 0;
1237 }
1238
1239 static int mv_cesa_ahmac_md5_init(struct ahash_request *req)
1240 {
1241 struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
1242 struct mv_cesa_op_ctx tmpl = { };
1243
1244 mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_MACM_HMAC_MD5);
1245 memcpy(tmpl.ctx.hash.iv, ctx->iv, sizeof(ctx->iv));
1246
1247 mv_cesa_ahash_init(req, &tmpl, true);
1248
1249 return 0;
1250 }
1251
1252 static int mv_cesa_ahmac_md5_setkey(struct crypto_ahash *tfm, const u8 *key,
1253 unsigned int keylen)
1254 {
1255 struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm));
1256 struct md5_state istate, ostate;
1257 int ret, i;
1258
1259 ret = mv_cesa_ahmac_setkey("mv-md5", key, keylen, &istate, &ostate);
1260 if (ret)
1261 return ret;
1262
1263 for (i = 0; i < ARRAY_SIZE(istate.hash); i++)
1264 ctx->iv[i] = be32_to_cpu(istate.hash[i]);
1265
1266 for (i = 0; i < ARRAY_SIZE(ostate.hash); i++)
1267 ctx->iv[i + 8] = be32_to_cpu(ostate.hash[i]);
1268
1269 return 0;
1270 }
1271
1272 static int mv_cesa_ahmac_md5_digest(struct ahash_request *req)
1273 {
1274 int ret;
1275
1276 ret = mv_cesa_ahmac_md5_init(req);
1277 if (ret)
1278 return ret;
1279
1280 return mv_cesa_ahash_finup(req);
1281 }
1282
1283 struct ahash_alg mv_ahmac_md5_alg = {
1284 .init = mv_cesa_ahmac_md5_init,
1285 .update = mv_cesa_ahash_update,
1286 .final = mv_cesa_ahash_final,
1287 .finup = mv_cesa_ahash_finup,
1288 .digest = mv_cesa_ahmac_md5_digest,
1289 .setkey = mv_cesa_ahmac_md5_setkey,
1290 .export = mv_cesa_md5_export,
1291 .import = mv_cesa_md5_import,
1292 .halg = {
1293 .digestsize = MD5_DIGEST_SIZE,
1294 .statesize = sizeof(struct md5_state),
1295 .base = {
1296 .cra_name = "hmac(md5)",
1297 .cra_driver_name = "mv-hmac-md5",
1298 .cra_priority = 300,
1299 .cra_flags = CRYPTO_ALG_ASYNC |
1300 CRYPTO_ALG_KERN_DRIVER_ONLY,
1301 .cra_blocksize = MD5_HMAC_BLOCK_SIZE,
1302 .cra_ctxsize = sizeof(struct mv_cesa_hmac_ctx),
1303 .cra_init = mv_cesa_ahmac_cra_init,
1304 .cra_module = THIS_MODULE,
1305 }
1306 }
1307 };
1308
1309 static int mv_cesa_ahmac_sha1_init(struct ahash_request *req)
1310 {
1311 struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
1312 struct mv_cesa_op_ctx tmpl = { };
1313
1314 mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_MACM_HMAC_SHA1);
1315 memcpy(tmpl.ctx.hash.iv, ctx->iv, sizeof(ctx->iv));
1316
1317 mv_cesa_ahash_init(req, &tmpl, false);
1318
1319 return 0;
1320 }
1321
1322 static int mv_cesa_ahmac_sha1_setkey(struct crypto_ahash *tfm, const u8 *key,
1323 unsigned int keylen)
1324 {
1325 struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm));
1326 struct sha1_state istate, ostate;
1327 int ret, i;
1328
1329 ret = mv_cesa_ahmac_setkey("mv-sha1", key, keylen, &istate, &ostate);
1330 if (ret)
1331 return ret;
1332
1333 for (i = 0; i < ARRAY_SIZE(istate.state); i++)
1334 ctx->iv[i] = be32_to_cpu(istate.state[i]);
1335
1336 for (i = 0; i < ARRAY_SIZE(ostate.state); i++)
1337 ctx->iv[i + 8] = be32_to_cpu(ostate.state[i]);
1338
1339 return 0;
1340 }
1341
1342 static int mv_cesa_ahmac_sha1_digest(struct ahash_request *req)
1343 {
1344 int ret;
1345
1346 ret = mv_cesa_ahmac_sha1_init(req);
1347 if (ret)
1348 return ret;
1349
1350 return mv_cesa_ahash_finup(req);
1351 }
1352
1353 struct ahash_alg mv_ahmac_sha1_alg = {
1354 .init = mv_cesa_ahmac_sha1_init,
1355 .update = mv_cesa_ahash_update,
1356 .final = mv_cesa_ahash_final,
1357 .finup = mv_cesa_ahash_finup,
1358 .digest = mv_cesa_ahmac_sha1_digest,
1359 .setkey = mv_cesa_ahmac_sha1_setkey,
1360 .export = mv_cesa_sha1_export,
1361 .import = mv_cesa_sha1_import,
1362 .halg = {
1363 .digestsize = SHA1_DIGEST_SIZE,
1364 .statesize = sizeof(struct sha1_state),
1365 .base = {
1366 .cra_name = "hmac(sha1)",
1367 .cra_driver_name = "mv-hmac-sha1",
1368 .cra_priority = 300,
1369 .cra_flags = CRYPTO_ALG_ASYNC |
1370 CRYPTO_ALG_KERN_DRIVER_ONLY,
1371 .cra_blocksize = SHA1_BLOCK_SIZE,
1372 .cra_ctxsize = sizeof(struct mv_cesa_hmac_ctx),
1373 .cra_init = mv_cesa_ahmac_cra_init,
1374 .cra_module = THIS_MODULE,
1375 }
1376 }
1377 };
1378
1379 static int mv_cesa_ahmac_sha256_setkey(struct crypto_ahash *tfm, const u8 *key,
1380 unsigned int keylen)
1381 {
1382 struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm));
1383 struct sha256_state istate, ostate;
1384 int ret, i;
1385
1386 ret = mv_cesa_ahmac_setkey("mv-sha256", key, keylen, &istate, &ostate);
1387 if (ret)
1388 return ret;
1389
1390 for (i = 0; i < ARRAY_SIZE(istate.state); i++)
1391 ctx->iv[i] = be32_to_cpu(istate.state[i]);
1392
1393 for (i = 0; i < ARRAY_SIZE(ostate.state); i++)
1394 ctx->iv[i + 8] = be32_to_cpu(ostate.state[i]);
1395
1396 return 0;
1397 }
1398
1399 static int mv_cesa_ahmac_sha256_init(struct ahash_request *req)
1400 {
1401 struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
1402 struct mv_cesa_op_ctx tmpl = { };
1403
1404 mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_MACM_HMAC_SHA256);
1405 memcpy(tmpl.ctx.hash.iv, ctx->iv, sizeof(ctx->iv));
1406
1407 mv_cesa_ahash_init(req, &tmpl, false);
1408
1409 return 0;
1410 }
1411
1412 static int mv_cesa_ahmac_sha256_digest(struct ahash_request *req)
1413 {
1414 int ret;
1415
1416 ret = mv_cesa_ahmac_sha256_init(req);
1417 if (ret)
1418 return ret;
1419
1420 return mv_cesa_ahash_finup(req);
1421 }
1422
1423 struct ahash_alg mv_ahmac_sha256_alg = {
1424 .init = mv_cesa_ahmac_sha256_init,
1425 .update = mv_cesa_ahash_update,
1426 .final = mv_cesa_ahash_final,
1427 .finup = mv_cesa_ahash_finup,
1428 .digest = mv_cesa_ahmac_sha256_digest,
1429 .setkey = mv_cesa_ahmac_sha256_setkey,
1430 .export = mv_cesa_sha256_export,
1431 .import = mv_cesa_sha256_import,
1432 .halg = {
1433 .digestsize = SHA256_DIGEST_SIZE,
1434 .statesize = sizeof(struct sha256_state),
1435 .base = {
1436 .cra_name = "hmac(sha256)",
1437 .cra_driver_name = "mv-hmac-sha256",
1438 .cra_priority = 300,
1439 .cra_flags = CRYPTO_ALG_ASYNC |
1440 CRYPTO_ALG_KERN_DRIVER_ONLY,
1441 .cra_blocksize = SHA256_BLOCK_SIZE,
1442 .cra_ctxsize = sizeof(struct mv_cesa_hmac_ctx),
1443 .cra_init = mv_cesa_ahmac_cra_init,
1444 .cra_module = THIS_MODULE,
1445 }
1446 }
1447 };