]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/crypto/marvell/tdma.c
Merge tag 'rtc-4.13' of git://git.kernel.org/pub/scm/linux/kernel/git/abelloni/linux
[mirror_ubuntu-artful-kernel.git] / drivers / crypto / marvell / tdma.c
1 /*
2 * Provide TDMA helper functions used by cipher and hash algorithm
3 * implementations.
4 *
5 * Author: Boris Brezillon <boris.brezillon@free-electrons.com>
6 * Author: Arnaud Ebalard <arno@natisbad.org>
7 *
8 * This work is based on an initial version written by
9 * Sebastian Andrzej Siewior < sebastian at breakpoint dot cc >
10 *
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License version 2 as published
13 * by the Free Software Foundation.
14 */
15
16 #include "cesa.h"
17
18 bool mv_cesa_req_dma_iter_next_transfer(struct mv_cesa_dma_iter *iter,
19 struct mv_cesa_sg_dma_iter *sgiter,
20 unsigned int len)
21 {
22 if (!sgiter->sg)
23 return false;
24
25 sgiter->op_offset += len;
26 sgiter->offset += len;
27 if (sgiter->offset == sg_dma_len(sgiter->sg)) {
28 if (sg_is_last(sgiter->sg))
29 return false;
30 sgiter->offset = 0;
31 sgiter->sg = sg_next(sgiter->sg);
32 }
33
34 if (sgiter->op_offset == iter->op_len)
35 return false;
36
37 return true;
38 }
39
40 void mv_cesa_dma_step(struct mv_cesa_req *dreq)
41 {
42 struct mv_cesa_engine *engine = dreq->engine;
43
44 writel_relaxed(0, engine->regs + CESA_SA_CFG);
45
46 mv_cesa_set_int_mask(engine, CESA_SA_INT_ACC0_IDMA_DONE);
47 writel_relaxed(CESA_TDMA_DST_BURST_128B | CESA_TDMA_SRC_BURST_128B |
48 CESA_TDMA_NO_BYTE_SWAP | CESA_TDMA_EN,
49 engine->regs + CESA_TDMA_CONTROL);
50
51 writel_relaxed(CESA_SA_CFG_ACT_CH0_IDMA | CESA_SA_CFG_MULTI_PKT |
52 CESA_SA_CFG_CH0_W_IDMA | CESA_SA_CFG_PARA_DIS,
53 engine->regs + CESA_SA_CFG);
54 writel_relaxed(dreq->chain.first->cur_dma,
55 engine->regs + CESA_TDMA_NEXT_ADDR);
56 BUG_ON(readl(engine->regs + CESA_SA_CMD) &
57 CESA_SA_CMD_EN_CESA_SA_ACCL0);
58 writel(CESA_SA_CMD_EN_CESA_SA_ACCL0, engine->regs + CESA_SA_CMD);
59 }
60
61 void mv_cesa_dma_cleanup(struct mv_cesa_req *dreq)
62 {
63 struct mv_cesa_tdma_desc *tdma;
64
65 for (tdma = dreq->chain.first; tdma;) {
66 struct mv_cesa_tdma_desc *old_tdma = tdma;
67 u32 type = tdma->flags & CESA_TDMA_TYPE_MSK;
68
69 if (type == CESA_TDMA_OP)
70 dma_pool_free(cesa_dev->dma->op_pool, tdma->op,
71 le32_to_cpu(tdma->src));
72
73 tdma = tdma->next;
74 dma_pool_free(cesa_dev->dma->tdma_desc_pool, old_tdma,
75 old_tdma->cur_dma);
76 }
77
78 dreq->chain.first = NULL;
79 dreq->chain.last = NULL;
80 }
81
82 void mv_cesa_dma_prepare(struct mv_cesa_req *dreq,
83 struct mv_cesa_engine *engine)
84 {
85 struct mv_cesa_tdma_desc *tdma;
86
87 for (tdma = dreq->chain.first; tdma; tdma = tdma->next) {
88 if (tdma->flags & CESA_TDMA_DST_IN_SRAM)
89 tdma->dst = cpu_to_le32(tdma->dst + engine->sram_dma);
90
91 if (tdma->flags & CESA_TDMA_SRC_IN_SRAM)
92 tdma->src = cpu_to_le32(tdma->src + engine->sram_dma);
93
94 if ((tdma->flags & CESA_TDMA_TYPE_MSK) == CESA_TDMA_OP)
95 mv_cesa_adjust_op(engine, tdma->op);
96 }
97 }
98
99 void mv_cesa_tdma_chain(struct mv_cesa_engine *engine,
100 struct mv_cesa_req *dreq)
101 {
102 if (engine->chain.first == NULL && engine->chain.last == NULL) {
103 engine->chain.first = dreq->chain.first;
104 engine->chain.last = dreq->chain.last;
105 } else {
106 struct mv_cesa_tdma_desc *last;
107
108 last = engine->chain.last;
109 last->next = dreq->chain.first;
110 engine->chain.last = dreq->chain.last;
111
112 /*
113 * Break the DMA chain if the CESA_TDMA_BREAK_CHAIN is set on
114 * the last element of the current chain, or if the request
115 * being queued needs the IV regs to be set before lauching
116 * the request.
117 */
118 if (!(last->flags & CESA_TDMA_BREAK_CHAIN) &&
119 !(dreq->chain.first->flags & CESA_TDMA_SET_STATE))
120 last->next_dma = dreq->chain.first->cur_dma;
121 }
122 }
123
124 int mv_cesa_tdma_process(struct mv_cesa_engine *engine, u32 status)
125 {
126 struct crypto_async_request *req = NULL;
127 struct mv_cesa_tdma_desc *tdma = NULL, *next = NULL;
128 dma_addr_t tdma_cur;
129 int res = 0;
130
131 tdma_cur = readl(engine->regs + CESA_TDMA_CUR);
132
133 for (tdma = engine->chain.first; tdma; tdma = next) {
134 spin_lock_bh(&engine->lock);
135 next = tdma->next;
136 spin_unlock_bh(&engine->lock);
137
138 if (tdma->flags & CESA_TDMA_END_OF_REQ) {
139 struct crypto_async_request *backlog = NULL;
140 struct mv_cesa_ctx *ctx;
141 u32 current_status;
142
143 spin_lock_bh(&engine->lock);
144 /*
145 * if req is NULL, this means we're processing the
146 * request in engine->req.
147 */
148 if (!req)
149 req = engine->req;
150 else
151 req = mv_cesa_dequeue_req_locked(engine,
152 &backlog);
153
154 /* Re-chaining to the next request */
155 engine->chain.first = tdma->next;
156 tdma->next = NULL;
157
158 /* If this is the last request, clear the chain */
159 if (engine->chain.first == NULL)
160 engine->chain.last = NULL;
161 spin_unlock_bh(&engine->lock);
162
163 ctx = crypto_tfm_ctx(req->tfm);
164 current_status = (tdma->cur_dma == tdma_cur) ?
165 status : CESA_SA_INT_ACC0_IDMA_DONE;
166 res = ctx->ops->process(req, current_status);
167 ctx->ops->complete(req);
168
169 if (res == 0)
170 mv_cesa_engine_enqueue_complete_request(engine,
171 req);
172
173 if (backlog)
174 backlog->complete(backlog, -EINPROGRESS);
175 }
176
177 if (res || tdma->cur_dma == tdma_cur)
178 break;
179 }
180
181 /* Save the last request in error to engine->req, so that the core
182 * knows which request was fautly */
183 if (res) {
184 spin_lock_bh(&engine->lock);
185 engine->req = req;
186 spin_unlock_bh(&engine->lock);
187 }
188
189 return res;
190 }
191
192 static struct mv_cesa_tdma_desc *
193 mv_cesa_dma_add_desc(struct mv_cesa_tdma_chain *chain, gfp_t flags)
194 {
195 struct mv_cesa_tdma_desc *new_tdma = NULL;
196 dma_addr_t dma_handle;
197
198 new_tdma = dma_pool_zalloc(cesa_dev->dma->tdma_desc_pool, flags,
199 &dma_handle);
200 if (!new_tdma)
201 return ERR_PTR(-ENOMEM);
202
203 new_tdma->cur_dma = dma_handle;
204 if (chain->last) {
205 chain->last->next_dma = cpu_to_le32(dma_handle);
206 chain->last->next = new_tdma;
207 } else {
208 chain->first = new_tdma;
209 }
210
211 chain->last = new_tdma;
212
213 return new_tdma;
214 }
215
216 int mv_cesa_dma_add_result_op(struct mv_cesa_tdma_chain *chain, dma_addr_t src,
217 u32 size, u32 flags, gfp_t gfp_flags)
218 {
219 struct mv_cesa_tdma_desc *tdma, *op_desc;
220
221 tdma = mv_cesa_dma_add_desc(chain, gfp_flags);
222 if (IS_ERR(tdma))
223 return PTR_ERR(tdma);
224
225 /* We re-use an existing op_desc object to retrieve the context
226 * and result instead of allocating a new one.
227 * There is at least one object of this type in a CESA crypto
228 * req, just pick the first one in the chain.
229 */
230 for (op_desc = chain->first; op_desc; op_desc = op_desc->next) {
231 u32 type = op_desc->flags & CESA_TDMA_TYPE_MSK;
232
233 if (type == CESA_TDMA_OP)
234 break;
235 }
236
237 if (!op_desc)
238 return -EIO;
239
240 tdma->byte_cnt = cpu_to_le32(size | BIT(31));
241 tdma->src = src;
242 tdma->dst = op_desc->src;
243 tdma->op = op_desc->op;
244
245 flags &= (CESA_TDMA_DST_IN_SRAM | CESA_TDMA_SRC_IN_SRAM);
246 tdma->flags = flags | CESA_TDMA_RESULT;
247 return 0;
248 }
249
250 struct mv_cesa_op_ctx *mv_cesa_dma_add_op(struct mv_cesa_tdma_chain *chain,
251 const struct mv_cesa_op_ctx *op_templ,
252 bool skip_ctx,
253 gfp_t flags)
254 {
255 struct mv_cesa_tdma_desc *tdma;
256 struct mv_cesa_op_ctx *op;
257 dma_addr_t dma_handle;
258 unsigned int size;
259
260 tdma = mv_cesa_dma_add_desc(chain, flags);
261 if (IS_ERR(tdma))
262 return ERR_CAST(tdma);
263
264 op = dma_pool_alloc(cesa_dev->dma->op_pool, flags, &dma_handle);
265 if (!op)
266 return ERR_PTR(-ENOMEM);
267
268 *op = *op_templ;
269
270 size = skip_ctx ? sizeof(op->desc) : sizeof(*op);
271
272 tdma = chain->last;
273 tdma->op = op;
274 tdma->byte_cnt = cpu_to_le32(size | BIT(31));
275 tdma->src = cpu_to_le32(dma_handle);
276 tdma->dst = CESA_SA_CFG_SRAM_OFFSET;
277 tdma->flags = CESA_TDMA_DST_IN_SRAM | CESA_TDMA_OP;
278
279 return op;
280 }
281
282 int mv_cesa_dma_add_data_transfer(struct mv_cesa_tdma_chain *chain,
283 dma_addr_t dst, dma_addr_t src, u32 size,
284 u32 flags, gfp_t gfp_flags)
285 {
286 struct mv_cesa_tdma_desc *tdma;
287
288 tdma = mv_cesa_dma_add_desc(chain, gfp_flags);
289 if (IS_ERR(tdma))
290 return PTR_ERR(tdma);
291
292 tdma->byte_cnt = cpu_to_le32(size | BIT(31));
293 tdma->src = src;
294 tdma->dst = dst;
295
296 flags &= (CESA_TDMA_DST_IN_SRAM | CESA_TDMA_SRC_IN_SRAM);
297 tdma->flags = flags | CESA_TDMA_DATA;
298
299 return 0;
300 }
301
302 int mv_cesa_dma_add_dummy_launch(struct mv_cesa_tdma_chain *chain, gfp_t flags)
303 {
304 struct mv_cesa_tdma_desc *tdma;
305
306 tdma = mv_cesa_dma_add_desc(chain, flags);
307 if (IS_ERR(tdma))
308 return PTR_ERR(tdma);
309
310 return 0;
311 }
312
313 int mv_cesa_dma_add_dummy_end(struct mv_cesa_tdma_chain *chain, gfp_t flags)
314 {
315 struct mv_cesa_tdma_desc *tdma;
316
317 tdma = mv_cesa_dma_add_desc(chain, flags);
318 if (IS_ERR(tdma))
319 return PTR_ERR(tdma);
320
321 tdma->byte_cnt = cpu_to_le32(BIT(31));
322
323 return 0;
324 }
325
326 int mv_cesa_dma_add_op_transfers(struct mv_cesa_tdma_chain *chain,
327 struct mv_cesa_dma_iter *dma_iter,
328 struct mv_cesa_sg_dma_iter *sgiter,
329 gfp_t gfp_flags)
330 {
331 u32 flags = sgiter->dir == DMA_TO_DEVICE ?
332 CESA_TDMA_DST_IN_SRAM : CESA_TDMA_SRC_IN_SRAM;
333 unsigned int len;
334
335 do {
336 dma_addr_t dst, src;
337 int ret;
338
339 len = mv_cesa_req_dma_iter_transfer_len(dma_iter, sgiter);
340 if (sgiter->dir == DMA_TO_DEVICE) {
341 dst = CESA_SA_DATA_SRAM_OFFSET + sgiter->op_offset;
342 src = sg_dma_address(sgiter->sg) + sgiter->offset;
343 } else {
344 dst = sg_dma_address(sgiter->sg) + sgiter->offset;
345 src = CESA_SA_DATA_SRAM_OFFSET + sgiter->op_offset;
346 }
347
348 ret = mv_cesa_dma_add_data_transfer(chain, dst, src, len,
349 flags, gfp_flags);
350 if (ret)
351 return ret;
352
353 } while (mv_cesa_req_dma_iter_next_transfer(dma_iter, sgiter, len));
354
355 return 0;
356 }