]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/crypto/mediatek/mtk-platform.c
UBUNTU: Ubuntu-5.11.0-22.23
[mirror_ubuntu-hirsute-kernel.git] / drivers / crypto / mediatek / mtk-platform.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Driver for EIP97 cryptographic accelerator.
4 *
5 * Copyright (c) 2016 Ryder Lee <ryder.lee@mediatek.com>
6 */
7
8 #include <linux/clk.h>
9 #include <linux/init.h>
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/mod_devicetable.h>
13 #include <linux/platform_device.h>
14 #include <linux/pm_runtime.h>
15 #include "mtk-platform.h"
16
17 #define MTK_BURST_SIZE_MSK GENMASK(7, 4)
18 #define MTK_BURST_SIZE(x) ((x) << 4)
19 #define MTK_DESC_SIZE(x) ((x) << 0)
20 #define MTK_DESC_OFFSET(x) ((x) << 16)
21 #define MTK_DESC_FETCH_SIZE(x) ((x) << 0)
22 #define MTK_DESC_FETCH_THRESH(x) ((x) << 16)
23 #define MTK_DESC_OVL_IRQ_EN BIT(25)
24 #define MTK_DESC_ATP_PRESENT BIT(30)
25
26 #define MTK_DFSE_IDLE GENMASK(3, 0)
27 #define MTK_DFSE_THR_CTRL_EN BIT(30)
28 #define MTK_DFSE_THR_CTRL_RESET BIT(31)
29 #define MTK_DFSE_RING_ID(x) (((x) >> 12) & GENMASK(3, 0))
30 #define MTK_DFSE_MIN_DATA(x) ((x) << 0)
31 #define MTK_DFSE_MAX_DATA(x) ((x) << 8)
32 #define MTK_DFE_MIN_CTRL(x) ((x) << 16)
33 #define MTK_DFE_MAX_CTRL(x) ((x) << 24)
34
35 #define MTK_IN_BUF_MIN_THRESH(x) ((x) << 8)
36 #define MTK_IN_BUF_MAX_THRESH(x) ((x) << 12)
37 #define MTK_OUT_BUF_MIN_THRESH(x) ((x) << 0)
38 #define MTK_OUT_BUF_MAX_THRESH(x) ((x) << 4)
39 #define MTK_IN_TBUF_SIZE(x) (((x) >> 4) & GENMASK(3, 0))
40 #define MTK_IN_DBUF_SIZE(x) (((x) >> 8) & GENMASK(3, 0))
41 #define MTK_OUT_DBUF_SIZE(x) (((x) >> 16) & GENMASK(3, 0))
42 #define MTK_CMD_FIFO_SIZE(x) (((x) >> 8) & GENMASK(3, 0))
43 #define MTK_RES_FIFO_SIZE(x) (((x) >> 12) & GENMASK(3, 0))
44
45 #define MTK_PE_TK_LOC_AVL BIT(2)
46 #define MTK_PE_PROC_HELD BIT(14)
47 #define MTK_PE_TK_TIMEOUT_EN BIT(22)
48 #define MTK_PE_INPUT_DMA_ERR BIT(0)
49 #define MTK_PE_OUTPUT_DMA_ERR BIT(1)
50 #define MTK_PE_PKT_PORC_ERR BIT(2)
51 #define MTK_PE_PKT_TIMEOUT BIT(3)
52 #define MTK_PE_FATAL_ERR BIT(14)
53 #define MTK_PE_INPUT_DMA_ERR_EN BIT(16)
54 #define MTK_PE_OUTPUT_DMA_ERR_EN BIT(17)
55 #define MTK_PE_PKT_PORC_ERR_EN BIT(18)
56 #define MTK_PE_PKT_TIMEOUT_EN BIT(19)
57 #define MTK_PE_FATAL_ERR_EN BIT(30)
58 #define MTK_PE_INT_OUT_EN BIT(31)
59
60 #define MTK_HIA_SIGNATURE ((u16)0x35ca)
61 #define MTK_HIA_DATA_WIDTH(x) (((x) >> 25) & GENMASK(1, 0))
62 #define MTK_HIA_DMA_LENGTH(x) (((x) >> 20) & GENMASK(4, 0))
63 #define MTK_CDR_STAT_CLR GENMASK(4, 0)
64 #define MTK_RDR_STAT_CLR GENMASK(7, 0)
65
66 #define MTK_AIC_INT_MSK GENMASK(5, 0)
67 #define MTK_AIC_VER_MSK (GENMASK(15, 0) | GENMASK(27, 20))
68 #define MTK_AIC_VER11 0x011036c9
69 #define MTK_AIC_VER12 0x012036c9
70 #define MTK_AIC_G_CLR GENMASK(30, 20)
71
72 /**
73 * EIP97 is an integrated security subsystem to accelerate cryptographic
74 * functions and protocols to offload the host processor.
75 * Some important hardware modules are briefly introduced below:
76 *
77 * Host Interface Adapter(HIA) - the main interface between the host
78 * system and the hardware subsystem. It is responsible for attaching
79 * processing engine to the specific host bus interface and provides a
80 * standardized software view for off loading tasks to the engine.
81 *
82 * Command Descriptor Ring Manager(CDR Manager) - keeps track of how many
83 * CD the host has prepared in the CDR. It monitors the fill level of its
84 * CD-FIFO and if there's sufficient space for the next block of descriptors,
85 * then it fires off a DMA request to fetch a block of CDs.
86 *
87 * Data fetch engine(DFE) - It is responsible for parsing the CD and
88 * setting up the required control and packet data DMA transfers from
89 * system memory to the processing engine.
90 *
91 * Result Descriptor Ring Manager(RDR Manager) - same as CDR Manager,
92 * but target is result descriptors, Moreover, it also handles the RD
93 * updates under control of the DSE. For each packet data segment
94 * processed, the DSE triggers the RDR Manager to write the updated RD.
95 * If triggered to update, the RDR Manager sets up a DMA operation to
96 * copy the RD from the DSE to the correct location in the RDR.
97 *
98 * Data Store Engine(DSE) - It is responsible for parsing the prepared RD
99 * and setting up the required control and packet data DMA transfers from
100 * the processing engine to system memory.
101 *
102 * Advanced Interrupt Controllers(AICs) - receive interrupt request signals
103 * from various sources and combine them into one interrupt output.
104 * The AICs are used by:
105 * - One for the HIA global and processing engine interrupts.
106 * - The others for the descriptor ring interrupts.
107 */
108
109 /* Cryptographic engine capabilities */
110 struct mtk_sys_cap {
111 /* host interface adapter */
112 u32 hia_ver;
113 u32 hia_opt;
114 /* packet engine */
115 u32 pkt_eng_opt;
116 /* global hardware */
117 u32 hw_opt;
118 };
119
120 static void mtk_desc_ring_link(struct mtk_cryp *cryp, u32 mask)
121 {
122 /* Assign rings to DFE/DSE thread and enable it */
123 writel(MTK_DFSE_THR_CTRL_EN | mask, cryp->base + DFE_THR_CTRL);
124 writel(MTK_DFSE_THR_CTRL_EN | mask, cryp->base + DSE_THR_CTRL);
125 }
126
127 static void mtk_dfe_dse_buf_setup(struct mtk_cryp *cryp,
128 struct mtk_sys_cap *cap)
129 {
130 u32 width = MTK_HIA_DATA_WIDTH(cap->hia_opt) + 2;
131 u32 len = MTK_HIA_DMA_LENGTH(cap->hia_opt) - 1;
132 u32 ipbuf = min((u32)MTK_IN_DBUF_SIZE(cap->hw_opt) + width, len);
133 u32 opbuf = min((u32)MTK_OUT_DBUF_SIZE(cap->hw_opt) + width, len);
134 u32 itbuf = min((u32)MTK_IN_TBUF_SIZE(cap->hw_opt) + width, len);
135
136 writel(MTK_DFSE_MIN_DATA(ipbuf - 1) |
137 MTK_DFSE_MAX_DATA(ipbuf) |
138 MTK_DFE_MIN_CTRL(itbuf - 1) |
139 MTK_DFE_MAX_CTRL(itbuf),
140 cryp->base + DFE_CFG);
141
142 writel(MTK_DFSE_MIN_DATA(opbuf - 1) |
143 MTK_DFSE_MAX_DATA(opbuf),
144 cryp->base + DSE_CFG);
145
146 writel(MTK_IN_BUF_MIN_THRESH(ipbuf - 1) |
147 MTK_IN_BUF_MAX_THRESH(ipbuf),
148 cryp->base + PE_IN_DBUF_THRESH);
149
150 writel(MTK_IN_BUF_MIN_THRESH(itbuf - 1) |
151 MTK_IN_BUF_MAX_THRESH(itbuf),
152 cryp->base + PE_IN_TBUF_THRESH);
153
154 writel(MTK_OUT_BUF_MIN_THRESH(opbuf - 1) |
155 MTK_OUT_BUF_MAX_THRESH(opbuf),
156 cryp->base + PE_OUT_DBUF_THRESH);
157
158 writel(0, cryp->base + PE_OUT_TBUF_THRESH);
159 writel(0, cryp->base + PE_OUT_BUF_CTRL);
160 }
161
162 static int mtk_dfe_dse_state_check(struct mtk_cryp *cryp)
163 {
164 int ret = -EINVAL;
165 u32 val;
166
167 /* Check for completion of all DMA transfers */
168 val = readl(cryp->base + DFE_THR_STAT);
169 if (MTK_DFSE_RING_ID(val) == MTK_DFSE_IDLE) {
170 val = readl(cryp->base + DSE_THR_STAT);
171 if (MTK_DFSE_RING_ID(val) == MTK_DFSE_IDLE)
172 ret = 0;
173 }
174
175 if (!ret) {
176 /* Take DFE/DSE thread out of reset */
177 writel(0, cryp->base + DFE_THR_CTRL);
178 writel(0, cryp->base + DSE_THR_CTRL);
179 } else {
180 return -EBUSY;
181 }
182
183 return 0;
184 }
185
186 static int mtk_dfe_dse_reset(struct mtk_cryp *cryp)
187 {
188 /* Reset DSE/DFE and correct system priorities for all rings. */
189 writel(MTK_DFSE_THR_CTRL_RESET, cryp->base + DFE_THR_CTRL);
190 writel(0, cryp->base + DFE_PRIO_0);
191 writel(0, cryp->base + DFE_PRIO_1);
192 writel(0, cryp->base + DFE_PRIO_2);
193 writel(0, cryp->base + DFE_PRIO_3);
194
195 writel(MTK_DFSE_THR_CTRL_RESET, cryp->base + DSE_THR_CTRL);
196 writel(0, cryp->base + DSE_PRIO_0);
197 writel(0, cryp->base + DSE_PRIO_1);
198 writel(0, cryp->base + DSE_PRIO_2);
199 writel(0, cryp->base + DSE_PRIO_3);
200
201 return mtk_dfe_dse_state_check(cryp);
202 }
203
204 static void mtk_cmd_desc_ring_setup(struct mtk_cryp *cryp,
205 int i, struct mtk_sys_cap *cap)
206 {
207 /* Full descriptor that fits FIFO minus one */
208 u32 count =
209 ((1 << MTK_CMD_FIFO_SIZE(cap->hia_opt)) / MTK_DESC_SZ) - 1;
210
211 /* Temporarily disable external triggering */
212 writel(0, cryp->base + CDR_CFG(i));
213
214 /* Clear CDR count */
215 writel(MTK_CNT_RST, cryp->base + CDR_PREP_COUNT(i));
216 writel(MTK_CNT_RST, cryp->base + CDR_PROC_COUNT(i));
217
218 writel(0, cryp->base + CDR_PREP_PNTR(i));
219 writel(0, cryp->base + CDR_PROC_PNTR(i));
220 writel(0, cryp->base + CDR_DMA_CFG(i));
221
222 /* Configure CDR host address space */
223 writel(0, cryp->base + CDR_BASE_ADDR_HI(i));
224 writel(cryp->ring[i]->cmd_dma, cryp->base + CDR_BASE_ADDR_LO(i));
225
226 writel(MTK_DESC_RING_SZ, cryp->base + CDR_RING_SIZE(i));
227
228 /* Clear and disable all CDR interrupts */
229 writel(MTK_CDR_STAT_CLR, cryp->base + CDR_STAT(i));
230
231 /*
232 * Set command descriptor offset and enable additional
233 * token present in descriptor.
234 */
235 writel(MTK_DESC_SIZE(MTK_DESC_SZ) |
236 MTK_DESC_OFFSET(MTK_DESC_OFF) |
237 MTK_DESC_ATP_PRESENT,
238 cryp->base + CDR_DESC_SIZE(i));
239
240 writel(MTK_DESC_FETCH_SIZE(count * MTK_DESC_OFF) |
241 MTK_DESC_FETCH_THRESH(count * MTK_DESC_SZ),
242 cryp->base + CDR_CFG(i));
243 }
244
245 static void mtk_res_desc_ring_setup(struct mtk_cryp *cryp,
246 int i, struct mtk_sys_cap *cap)
247 {
248 u32 rndup = 2;
249 u32 count = ((1 << MTK_RES_FIFO_SIZE(cap->hia_opt)) / rndup) - 1;
250
251 /* Temporarily disable external triggering */
252 writel(0, cryp->base + RDR_CFG(i));
253
254 /* Clear RDR count */
255 writel(MTK_CNT_RST, cryp->base + RDR_PREP_COUNT(i));
256 writel(MTK_CNT_RST, cryp->base + RDR_PROC_COUNT(i));
257
258 writel(0, cryp->base + RDR_PREP_PNTR(i));
259 writel(0, cryp->base + RDR_PROC_PNTR(i));
260 writel(0, cryp->base + RDR_DMA_CFG(i));
261
262 /* Configure RDR host address space */
263 writel(0, cryp->base + RDR_BASE_ADDR_HI(i));
264 writel(cryp->ring[i]->res_dma, cryp->base + RDR_BASE_ADDR_LO(i));
265
266 writel(MTK_DESC_RING_SZ, cryp->base + RDR_RING_SIZE(i));
267 writel(MTK_RDR_STAT_CLR, cryp->base + RDR_STAT(i));
268
269 /*
270 * RDR manager generates update interrupts on a per-completed-packet,
271 * and the rd_proc_thresh_irq interrupt is fired when proc_pkt_count
272 * for the RDR exceeds the number of packets.
273 */
274 writel(MTK_RDR_PROC_THRESH | MTK_RDR_PROC_MODE,
275 cryp->base + RDR_THRESH(i));
276
277 /*
278 * Configure a threshold and time-out value for the processed
279 * result descriptors (or complete packets) that are written to
280 * the RDR.
281 */
282 writel(MTK_DESC_SIZE(MTK_DESC_SZ) | MTK_DESC_OFFSET(MTK_DESC_OFF),
283 cryp->base + RDR_DESC_SIZE(i));
284
285 /*
286 * Configure HIA fetch size and fetch threshold that are used to
287 * fetch blocks of multiple descriptors.
288 */
289 writel(MTK_DESC_FETCH_SIZE(count * MTK_DESC_OFF) |
290 MTK_DESC_FETCH_THRESH(count * rndup) |
291 MTK_DESC_OVL_IRQ_EN,
292 cryp->base + RDR_CFG(i));
293 }
294
295 static int mtk_packet_engine_setup(struct mtk_cryp *cryp)
296 {
297 struct mtk_sys_cap cap;
298 int i, err;
299 u32 val;
300
301 cap.hia_ver = readl(cryp->base + HIA_VERSION);
302 cap.hia_opt = readl(cryp->base + HIA_OPTIONS);
303 cap.hw_opt = readl(cryp->base + EIP97_OPTIONS);
304
305 if (!(((u16)cap.hia_ver) == MTK_HIA_SIGNATURE))
306 return -EINVAL;
307
308 /* Configure endianness conversion method for master (DMA) interface */
309 writel(0, cryp->base + EIP97_MST_CTRL);
310
311 /* Set HIA burst size */
312 val = readl(cryp->base + HIA_MST_CTRL);
313 val &= ~MTK_BURST_SIZE_MSK;
314 val |= MTK_BURST_SIZE(5);
315 writel(val, cryp->base + HIA_MST_CTRL);
316
317 err = mtk_dfe_dse_reset(cryp);
318 if (err) {
319 dev_err(cryp->dev, "Failed to reset DFE and DSE.\n");
320 return err;
321 }
322
323 mtk_dfe_dse_buf_setup(cryp, &cap);
324
325 /* Enable the 4 rings for the packet engines. */
326 mtk_desc_ring_link(cryp, 0xf);
327
328 for (i = 0; i < MTK_RING_MAX; i++) {
329 mtk_cmd_desc_ring_setup(cryp, i, &cap);
330 mtk_res_desc_ring_setup(cryp, i, &cap);
331 }
332
333 writel(MTK_PE_TK_LOC_AVL | MTK_PE_PROC_HELD | MTK_PE_TK_TIMEOUT_EN,
334 cryp->base + PE_TOKEN_CTRL_STAT);
335
336 /* Clear all pending interrupts */
337 writel(MTK_AIC_G_CLR, cryp->base + AIC_G_ACK);
338 writel(MTK_PE_INPUT_DMA_ERR | MTK_PE_OUTPUT_DMA_ERR |
339 MTK_PE_PKT_PORC_ERR | MTK_PE_PKT_TIMEOUT |
340 MTK_PE_FATAL_ERR | MTK_PE_INPUT_DMA_ERR_EN |
341 MTK_PE_OUTPUT_DMA_ERR_EN | MTK_PE_PKT_PORC_ERR_EN |
342 MTK_PE_PKT_TIMEOUT_EN | MTK_PE_FATAL_ERR_EN |
343 MTK_PE_INT_OUT_EN,
344 cryp->base + PE_INTERRUPT_CTRL_STAT);
345
346 return 0;
347 }
348
349 static int mtk_aic_cap_check(struct mtk_cryp *cryp, int hw)
350 {
351 u32 val;
352
353 if (hw == MTK_RING_MAX)
354 val = readl(cryp->base + AIC_G_VERSION);
355 else
356 val = readl(cryp->base + AIC_VERSION(hw));
357
358 val &= MTK_AIC_VER_MSK;
359 if (val != MTK_AIC_VER11 && val != MTK_AIC_VER12)
360 return -ENXIO;
361
362 if (hw == MTK_RING_MAX)
363 val = readl(cryp->base + AIC_G_OPTIONS);
364 else
365 val = readl(cryp->base + AIC_OPTIONS(hw));
366
367 val &= MTK_AIC_INT_MSK;
368 if (!val || val > 32)
369 return -ENXIO;
370
371 return 0;
372 }
373
374 static int mtk_aic_init(struct mtk_cryp *cryp, int hw)
375 {
376 int err;
377
378 err = mtk_aic_cap_check(cryp, hw);
379 if (err)
380 return err;
381
382 /* Disable all interrupts and set initial configuration */
383 if (hw == MTK_RING_MAX) {
384 writel(0, cryp->base + AIC_G_ENABLE_CTRL);
385 writel(0, cryp->base + AIC_G_POL_CTRL);
386 writel(0, cryp->base + AIC_G_TYPE_CTRL);
387 writel(0, cryp->base + AIC_G_ENABLE_SET);
388 } else {
389 writel(0, cryp->base + AIC_ENABLE_CTRL(hw));
390 writel(0, cryp->base + AIC_POL_CTRL(hw));
391 writel(0, cryp->base + AIC_TYPE_CTRL(hw));
392 writel(0, cryp->base + AIC_ENABLE_SET(hw));
393 }
394
395 return 0;
396 }
397
398 static int mtk_accelerator_init(struct mtk_cryp *cryp)
399 {
400 int i, err;
401
402 /* Initialize advanced interrupt controller(AIC) */
403 for (i = 0; i < MTK_IRQ_NUM; i++) {
404 err = mtk_aic_init(cryp, i);
405 if (err) {
406 dev_err(cryp->dev, "Failed to initialize AIC.\n");
407 return err;
408 }
409 }
410
411 /* Initialize packet engine */
412 err = mtk_packet_engine_setup(cryp);
413 if (err) {
414 dev_err(cryp->dev, "Failed to configure packet engine.\n");
415 return err;
416 }
417
418 return 0;
419 }
420
421 static void mtk_desc_dma_free(struct mtk_cryp *cryp)
422 {
423 int i;
424
425 for (i = 0; i < MTK_RING_MAX; i++) {
426 dma_free_coherent(cryp->dev, MTK_DESC_RING_SZ,
427 cryp->ring[i]->res_base,
428 cryp->ring[i]->res_dma);
429 dma_free_coherent(cryp->dev, MTK_DESC_RING_SZ,
430 cryp->ring[i]->cmd_base,
431 cryp->ring[i]->cmd_dma);
432 kfree(cryp->ring[i]);
433 }
434 }
435
436 static int mtk_desc_ring_alloc(struct mtk_cryp *cryp)
437 {
438 struct mtk_ring **ring = cryp->ring;
439 int i;
440
441 for (i = 0; i < MTK_RING_MAX; i++) {
442 ring[i] = kzalloc(sizeof(**ring), GFP_KERNEL);
443 if (!ring[i])
444 goto err_cleanup;
445
446 ring[i]->cmd_base = dma_alloc_coherent(cryp->dev,
447 MTK_DESC_RING_SZ,
448 &ring[i]->cmd_dma,
449 GFP_KERNEL);
450 if (!ring[i]->cmd_base)
451 goto err_cleanup;
452
453 ring[i]->res_base = dma_alloc_coherent(cryp->dev,
454 MTK_DESC_RING_SZ,
455 &ring[i]->res_dma,
456 GFP_KERNEL);
457 if (!ring[i]->res_base)
458 goto err_cleanup;
459
460 ring[i]->cmd_next = ring[i]->cmd_base;
461 ring[i]->res_next = ring[i]->res_base;
462 }
463 return 0;
464
465 err_cleanup:
466 do {
467 dma_free_coherent(cryp->dev, MTK_DESC_RING_SZ,
468 ring[i]->res_base, ring[i]->res_dma);
469 dma_free_coherent(cryp->dev, MTK_DESC_RING_SZ,
470 ring[i]->cmd_base, ring[i]->cmd_dma);
471 kfree(ring[i]);
472 } while (i--);
473 return -ENOMEM;
474 }
475
476 static int mtk_crypto_probe(struct platform_device *pdev)
477 {
478 struct mtk_cryp *cryp;
479 int i, err;
480
481 cryp = devm_kzalloc(&pdev->dev, sizeof(*cryp), GFP_KERNEL);
482 if (!cryp)
483 return -ENOMEM;
484
485 cryp->base = devm_platform_ioremap_resource(pdev, 0);
486 if (IS_ERR(cryp->base))
487 return PTR_ERR(cryp->base);
488
489 for (i = 0; i < MTK_IRQ_NUM; i++) {
490 cryp->irq[i] = platform_get_irq(pdev, i);
491 if (cryp->irq[i] < 0)
492 return cryp->irq[i];
493 }
494
495 cryp->clk_cryp = devm_clk_get(&pdev->dev, "cryp");
496 if (IS_ERR(cryp->clk_cryp))
497 return -EPROBE_DEFER;
498
499 cryp->dev = &pdev->dev;
500 pm_runtime_enable(cryp->dev);
501 pm_runtime_get_sync(cryp->dev);
502
503 err = clk_prepare_enable(cryp->clk_cryp);
504 if (err)
505 goto err_clk_cryp;
506
507 /* Allocate four command/result descriptor rings */
508 err = mtk_desc_ring_alloc(cryp);
509 if (err) {
510 dev_err(cryp->dev, "Unable to allocate descriptor rings.\n");
511 goto err_resource;
512 }
513
514 /* Initialize hardware modules */
515 err = mtk_accelerator_init(cryp);
516 if (err) {
517 dev_err(cryp->dev, "Failed to initialize cryptographic engine.\n");
518 goto err_engine;
519 }
520
521 err = mtk_cipher_alg_register(cryp);
522 if (err) {
523 dev_err(cryp->dev, "Unable to register cipher algorithm.\n");
524 goto err_cipher;
525 }
526
527 err = mtk_hash_alg_register(cryp);
528 if (err) {
529 dev_err(cryp->dev, "Unable to register hash algorithm.\n");
530 goto err_hash;
531 }
532
533 platform_set_drvdata(pdev, cryp);
534 return 0;
535
536 err_hash:
537 mtk_cipher_alg_release(cryp);
538 err_cipher:
539 mtk_dfe_dse_reset(cryp);
540 err_engine:
541 mtk_desc_dma_free(cryp);
542 err_resource:
543 clk_disable_unprepare(cryp->clk_cryp);
544 err_clk_cryp:
545 pm_runtime_put_sync(cryp->dev);
546 pm_runtime_disable(cryp->dev);
547
548 return err;
549 }
550
551 static int mtk_crypto_remove(struct platform_device *pdev)
552 {
553 struct mtk_cryp *cryp = platform_get_drvdata(pdev);
554
555 mtk_hash_alg_release(cryp);
556 mtk_cipher_alg_release(cryp);
557 mtk_desc_dma_free(cryp);
558
559 clk_disable_unprepare(cryp->clk_cryp);
560
561 pm_runtime_put_sync(cryp->dev);
562 pm_runtime_disable(cryp->dev);
563 platform_set_drvdata(pdev, NULL);
564
565 return 0;
566 }
567
568 static const struct of_device_id of_crypto_id[] = {
569 { .compatible = "mediatek,eip97-crypto" },
570 {},
571 };
572 MODULE_DEVICE_TABLE(of, of_crypto_id);
573
574 static struct platform_driver mtk_crypto_driver = {
575 .probe = mtk_crypto_probe,
576 .remove = mtk_crypto_remove,
577 .driver = {
578 .name = "mtk-crypto",
579 .of_match_table = of_crypto_id,
580 },
581 };
582 module_platform_driver(mtk_crypto_driver);
583
584 MODULE_LICENSE("GPL");
585 MODULE_AUTHOR("Ryder Lee <ryder.lee@mediatek.com>");
586 MODULE_DESCRIPTION("Cryptographic accelerator driver for EIP97");