]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/crypto/mxs-dcp.c
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma
[mirror_ubuntu-hirsute-kernel.git] / drivers / crypto / mxs-dcp.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Freescale i.MX23/i.MX28 Data Co-Processor driver
4 *
5 * Copyright (C) 2013 Marek Vasut <marex@denx.de>
6 */
7
8 #include <linux/dma-mapping.h>
9 #include <linux/interrupt.h>
10 #include <linux/io.h>
11 #include <linux/kernel.h>
12 #include <linux/kthread.h>
13 #include <linux/module.h>
14 #include <linux/of.h>
15 #include <linux/platform_device.h>
16 #include <linux/stmp_device.h>
17 #include <linux/clk.h>
18
19 #include <crypto/aes.h>
20 #include <crypto/sha.h>
21 #include <crypto/internal/hash.h>
22 #include <crypto/internal/skcipher.h>
23 #include <crypto/scatterwalk.h>
24
25 #define DCP_MAX_CHANS 4
26 #define DCP_BUF_SZ PAGE_SIZE
27 #define DCP_SHA_PAY_SZ 64
28
29 #define DCP_ALIGNMENT 64
30
31 /*
32 * Null hashes to align with hw behavior on imx6sl and ull
33 * these are flipped for consistency with hw output
34 */
35 static const uint8_t sha1_null_hash[] =
36 "\x09\x07\xd8\xaf\x90\x18\x60\x95\xef\xbf"
37 "\x55\x32\x0d\x4b\x6b\x5e\xee\xa3\x39\xda";
38
39 static const uint8_t sha256_null_hash[] =
40 "\x55\xb8\x52\x78\x1b\x99\x95\xa4"
41 "\x4c\x93\x9b\x64\xe4\x41\xae\x27"
42 "\x24\xb9\x6f\x99\xc8\xf4\xfb\x9a"
43 "\x14\x1c\xfc\x98\x42\xc4\xb0\xe3";
44
45 /* DCP DMA descriptor. */
46 struct dcp_dma_desc {
47 uint32_t next_cmd_addr;
48 uint32_t control0;
49 uint32_t control1;
50 uint32_t source;
51 uint32_t destination;
52 uint32_t size;
53 uint32_t payload;
54 uint32_t status;
55 };
56
57 /* Coherent aligned block for bounce buffering. */
58 struct dcp_coherent_block {
59 uint8_t aes_in_buf[DCP_BUF_SZ];
60 uint8_t aes_out_buf[DCP_BUF_SZ];
61 uint8_t sha_in_buf[DCP_BUF_SZ];
62 uint8_t sha_out_buf[DCP_SHA_PAY_SZ];
63
64 uint8_t aes_key[2 * AES_KEYSIZE_128];
65
66 struct dcp_dma_desc desc[DCP_MAX_CHANS];
67 };
68
69 struct dcp {
70 struct device *dev;
71 void __iomem *base;
72
73 uint32_t caps;
74
75 struct dcp_coherent_block *coh;
76
77 struct completion completion[DCP_MAX_CHANS];
78 spinlock_t lock[DCP_MAX_CHANS];
79 struct task_struct *thread[DCP_MAX_CHANS];
80 struct crypto_queue queue[DCP_MAX_CHANS];
81 struct clk *dcp_clk;
82 };
83
84 enum dcp_chan {
85 DCP_CHAN_HASH_SHA = 0,
86 DCP_CHAN_CRYPTO = 2,
87 };
88
89 struct dcp_async_ctx {
90 /* Common context */
91 enum dcp_chan chan;
92 uint32_t fill;
93
94 /* SHA Hash-specific context */
95 struct mutex mutex;
96 uint32_t alg;
97 unsigned int hot:1;
98
99 /* Crypto-specific context */
100 struct crypto_skcipher *fallback;
101 unsigned int key_len;
102 uint8_t key[AES_KEYSIZE_128];
103 };
104
105 struct dcp_aes_req_ctx {
106 unsigned int enc:1;
107 unsigned int ecb:1;
108 struct skcipher_request fallback_req; // keep at the end
109 };
110
111 struct dcp_sha_req_ctx {
112 unsigned int init:1;
113 unsigned int fini:1;
114 };
115
116 struct dcp_export_state {
117 struct dcp_sha_req_ctx req_ctx;
118 struct dcp_async_ctx async_ctx;
119 };
120
121 /*
122 * There can even be only one instance of the MXS DCP due to the
123 * design of Linux Crypto API.
124 */
125 static struct dcp *global_sdcp;
126
127 /* DCP register layout. */
128 #define MXS_DCP_CTRL 0x00
129 #define MXS_DCP_CTRL_GATHER_RESIDUAL_WRITES (1 << 23)
130 #define MXS_DCP_CTRL_ENABLE_CONTEXT_CACHING (1 << 22)
131
132 #define MXS_DCP_STAT 0x10
133 #define MXS_DCP_STAT_CLR 0x18
134 #define MXS_DCP_STAT_IRQ_MASK 0xf
135
136 #define MXS_DCP_CHANNELCTRL 0x20
137 #define MXS_DCP_CHANNELCTRL_ENABLE_CHANNEL_MASK 0xff
138
139 #define MXS_DCP_CAPABILITY1 0x40
140 #define MXS_DCP_CAPABILITY1_SHA256 (4 << 16)
141 #define MXS_DCP_CAPABILITY1_SHA1 (1 << 16)
142 #define MXS_DCP_CAPABILITY1_AES128 (1 << 0)
143
144 #define MXS_DCP_CONTEXT 0x50
145
146 #define MXS_DCP_CH_N_CMDPTR(n) (0x100 + ((n) * 0x40))
147
148 #define MXS_DCP_CH_N_SEMA(n) (0x110 + ((n) * 0x40))
149
150 #define MXS_DCP_CH_N_STAT(n) (0x120 + ((n) * 0x40))
151 #define MXS_DCP_CH_N_STAT_CLR(n) (0x128 + ((n) * 0x40))
152
153 /* DMA descriptor bits. */
154 #define MXS_DCP_CONTROL0_HASH_TERM (1 << 13)
155 #define MXS_DCP_CONTROL0_HASH_INIT (1 << 12)
156 #define MXS_DCP_CONTROL0_PAYLOAD_KEY (1 << 11)
157 #define MXS_DCP_CONTROL0_CIPHER_ENCRYPT (1 << 8)
158 #define MXS_DCP_CONTROL0_CIPHER_INIT (1 << 9)
159 #define MXS_DCP_CONTROL0_ENABLE_HASH (1 << 6)
160 #define MXS_DCP_CONTROL0_ENABLE_CIPHER (1 << 5)
161 #define MXS_DCP_CONTROL0_DECR_SEMAPHORE (1 << 1)
162 #define MXS_DCP_CONTROL0_INTERRUPT (1 << 0)
163
164 #define MXS_DCP_CONTROL1_HASH_SELECT_SHA256 (2 << 16)
165 #define MXS_DCP_CONTROL1_HASH_SELECT_SHA1 (0 << 16)
166 #define MXS_DCP_CONTROL1_CIPHER_MODE_CBC (1 << 4)
167 #define MXS_DCP_CONTROL1_CIPHER_MODE_ECB (0 << 4)
168 #define MXS_DCP_CONTROL1_CIPHER_SELECT_AES128 (0 << 0)
169
170 static int mxs_dcp_start_dma(struct dcp_async_ctx *actx)
171 {
172 struct dcp *sdcp = global_sdcp;
173 const int chan = actx->chan;
174 uint32_t stat;
175 unsigned long ret;
176 struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan];
177
178 dma_addr_t desc_phys = dma_map_single(sdcp->dev, desc, sizeof(*desc),
179 DMA_TO_DEVICE);
180
181 reinit_completion(&sdcp->completion[chan]);
182
183 /* Clear status register. */
184 writel(0xffffffff, sdcp->base + MXS_DCP_CH_N_STAT_CLR(chan));
185
186 /* Load the DMA descriptor. */
187 writel(desc_phys, sdcp->base + MXS_DCP_CH_N_CMDPTR(chan));
188
189 /* Increment the semaphore to start the DMA transfer. */
190 writel(1, sdcp->base + MXS_DCP_CH_N_SEMA(chan));
191
192 ret = wait_for_completion_timeout(&sdcp->completion[chan],
193 msecs_to_jiffies(1000));
194 if (!ret) {
195 dev_err(sdcp->dev, "Channel %i timeout (DCP_STAT=0x%08x)\n",
196 chan, readl(sdcp->base + MXS_DCP_STAT));
197 return -ETIMEDOUT;
198 }
199
200 stat = readl(sdcp->base + MXS_DCP_CH_N_STAT(chan));
201 if (stat & 0xff) {
202 dev_err(sdcp->dev, "Channel %i error (CH_STAT=0x%08x)\n",
203 chan, stat);
204 return -EINVAL;
205 }
206
207 dma_unmap_single(sdcp->dev, desc_phys, sizeof(*desc), DMA_TO_DEVICE);
208
209 return 0;
210 }
211
212 /*
213 * Encryption (AES128)
214 */
215 static int mxs_dcp_run_aes(struct dcp_async_ctx *actx,
216 struct skcipher_request *req, int init)
217 {
218 struct dcp *sdcp = global_sdcp;
219 struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan];
220 struct dcp_aes_req_ctx *rctx = skcipher_request_ctx(req);
221 int ret;
222
223 dma_addr_t key_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_key,
224 2 * AES_KEYSIZE_128,
225 DMA_TO_DEVICE);
226 dma_addr_t src_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_in_buf,
227 DCP_BUF_SZ, DMA_TO_DEVICE);
228 dma_addr_t dst_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_out_buf,
229 DCP_BUF_SZ, DMA_FROM_DEVICE);
230
231 if (actx->fill % AES_BLOCK_SIZE) {
232 dev_err(sdcp->dev, "Invalid block size!\n");
233 ret = -EINVAL;
234 goto aes_done_run;
235 }
236
237 /* Fill in the DMA descriptor. */
238 desc->control0 = MXS_DCP_CONTROL0_DECR_SEMAPHORE |
239 MXS_DCP_CONTROL0_INTERRUPT |
240 MXS_DCP_CONTROL0_ENABLE_CIPHER;
241
242 /* Payload contains the key. */
243 desc->control0 |= MXS_DCP_CONTROL0_PAYLOAD_KEY;
244
245 if (rctx->enc)
246 desc->control0 |= MXS_DCP_CONTROL0_CIPHER_ENCRYPT;
247 if (init)
248 desc->control0 |= MXS_DCP_CONTROL0_CIPHER_INIT;
249
250 desc->control1 = MXS_DCP_CONTROL1_CIPHER_SELECT_AES128;
251
252 if (rctx->ecb)
253 desc->control1 |= MXS_DCP_CONTROL1_CIPHER_MODE_ECB;
254 else
255 desc->control1 |= MXS_DCP_CONTROL1_CIPHER_MODE_CBC;
256
257 desc->next_cmd_addr = 0;
258 desc->source = src_phys;
259 desc->destination = dst_phys;
260 desc->size = actx->fill;
261 desc->payload = key_phys;
262 desc->status = 0;
263
264 ret = mxs_dcp_start_dma(actx);
265
266 aes_done_run:
267 dma_unmap_single(sdcp->dev, key_phys, 2 * AES_KEYSIZE_128,
268 DMA_TO_DEVICE);
269 dma_unmap_single(sdcp->dev, src_phys, DCP_BUF_SZ, DMA_TO_DEVICE);
270 dma_unmap_single(sdcp->dev, dst_phys, DCP_BUF_SZ, DMA_FROM_DEVICE);
271
272 return ret;
273 }
274
275 static int mxs_dcp_aes_block_crypt(struct crypto_async_request *arq)
276 {
277 struct dcp *sdcp = global_sdcp;
278
279 struct skcipher_request *req = skcipher_request_cast(arq);
280 struct dcp_async_ctx *actx = crypto_tfm_ctx(arq->tfm);
281 struct dcp_aes_req_ctx *rctx = skcipher_request_ctx(req);
282
283 struct scatterlist *dst = req->dst;
284 struct scatterlist *src = req->src;
285 const int nents = sg_nents(req->src);
286
287 const int out_off = DCP_BUF_SZ;
288 uint8_t *in_buf = sdcp->coh->aes_in_buf;
289 uint8_t *out_buf = sdcp->coh->aes_out_buf;
290
291 uint8_t *out_tmp, *src_buf, *dst_buf = NULL;
292 uint32_t dst_off = 0;
293 uint32_t last_out_len = 0;
294
295 uint8_t *key = sdcp->coh->aes_key;
296
297 int ret = 0;
298 int split = 0;
299 unsigned int i, len, clen, rem = 0, tlen = 0;
300 int init = 0;
301 bool limit_hit = false;
302
303 actx->fill = 0;
304
305 /* Copy the key from the temporary location. */
306 memcpy(key, actx->key, actx->key_len);
307
308 if (!rctx->ecb) {
309 /* Copy the CBC IV just past the key. */
310 memcpy(key + AES_KEYSIZE_128, req->iv, AES_KEYSIZE_128);
311 /* CBC needs the INIT set. */
312 init = 1;
313 } else {
314 memset(key + AES_KEYSIZE_128, 0, AES_KEYSIZE_128);
315 }
316
317 for_each_sg(req->src, src, nents, i) {
318 src_buf = sg_virt(src);
319 len = sg_dma_len(src);
320 tlen += len;
321 limit_hit = tlen > req->cryptlen;
322
323 if (limit_hit)
324 len = req->cryptlen - (tlen - len);
325
326 do {
327 if (actx->fill + len > out_off)
328 clen = out_off - actx->fill;
329 else
330 clen = len;
331
332 memcpy(in_buf + actx->fill, src_buf, clen);
333 len -= clen;
334 src_buf += clen;
335 actx->fill += clen;
336
337 /*
338 * If we filled the buffer or this is the last SG,
339 * submit the buffer.
340 */
341 if (actx->fill == out_off || sg_is_last(src) ||
342 limit_hit) {
343 ret = mxs_dcp_run_aes(actx, req, init);
344 if (ret)
345 return ret;
346 init = 0;
347
348 out_tmp = out_buf;
349 last_out_len = actx->fill;
350 while (dst && actx->fill) {
351 if (!split) {
352 dst_buf = sg_virt(dst);
353 dst_off = 0;
354 }
355 rem = min(sg_dma_len(dst) - dst_off,
356 actx->fill);
357
358 memcpy(dst_buf + dst_off, out_tmp, rem);
359 out_tmp += rem;
360 dst_off += rem;
361 actx->fill -= rem;
362
363 if (dst_off == sg_dma_len(dst)) {
364 dst = sg_next(dst);
365 split = 0;
366 } else {
367 split = 1;
368 }
369 }
370 }
371 } while (len);
372
373 if (limit_hit)
374 break;
375 }
376
377 /* Copy the IV for CBC for chaining */
378 if (!rctx->ecb) {
379 if (rctx->enc)
380 memcpy(req->iv, out_buf+(last_out_len-AES_BLOCK_SIZE),
381 AES_BLOCK_SIZE);
382 else
383 memcpy(req->iv, in_buf+(last_out_len-AES_BLOCK_SIZE),
384 AES_BLOCK_SIZE);
385 }
386
387 return ret;
388 }
389
390 static int dcp_chan_thread_aes(void *data)
391 {
392 struct dcp *sdcp = global_sdcp;
393 const int chan = DCP_CHAN_CRYPTO;
394
395 struct crypto_async_request *backlog;
396 struct crypto_async_request *arq;
397
398 int ret;
399
400 while (!kthread_should_stop()) {
401 set_current_state(TASK_INTERRUPTIBLE);
402
403 spin_lock(&sdcp->lock[chan]);
404 backlog = crypto_get_backlog(&sdcp->queue[chan]);
405 arq = crypto_dequeue_request(&sdcp->queue[chan]);
406 spin_unlock(&sdcp->lock[chan]);
407
408 if (!backlog && !arq) {
409 schedule();
410 continue;
411 }
412
413 set_current_state(TASK_RUNNING);
414
415 if (backlog)
416 backlog->complete(backlog, -EINPROGRESS);
417
418 if (arq) {
419 ret = mxs_dcp_aes_block_crypt(arq);
420 arq->complete(arq, ret);
421 }
422 }
423
424 return 0;
425 }
426
427 static int mxs_dcp_block_fallback(struct skcipher_request *req, int enc)
428 {
429 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
430 struct dcp_aes_req_ctx *rctx = skcipher_request_ctx(req);
431 struct dcp_async_ctx *ctx = crypto_skcipher_ctx(tfm);
432 int ret;
433
434 skcipher_request_set_tfm(&rctx->fallback_req, ctx->fallback);
435 skcipher_request_set_callback(&rctx->fallback_req, req->base.flags,
436 req->base.complete, req->base.data);
437 skcipher_request_set_crypt(&rctx->fallback_req, req->src, req->dst,
438 req->cryptlen, req->iv);
439
440 if (enc)
441 ret = crypto_skcipher_encrypt(&rctx->fallback_req);
442 else
443 ret = crypto_skcipher_decrypt(&rctx->fallback_req);
444
445 return ret;
446 }
447
448 static int mxs_dcp_aes_enqueue(struct skcipher_request *req, int enc, int ecb)
449 {
450 struct dcp *sdcp = global_sdcp;
451 struct crypto_async_request *arq = &req->base;
452 struct dcp_async_ctx *actx = crypto_tfm_ctx(arq->tfm);
453 struct dcp_aes_req_ctx *rctx = skcipher_request_ctx(req);
454 int ret;
455
456 if (unlikely(actx->key_len != AES_KEYSIZE_128))
457 return mxs_dcp_block_fallback(req, enc);
458
459 rctx->enc = enc;
460 rctx->ecb = ecb;
461 actx->chan = DCP_CHAN_CRYPTO;
462
463 spin_lock(&sdcp->lock[actx->chan]);
464 ret = crypto_enqueue_request(&sdcp->queue[actx->chan], &req->base);
465 spin_unlock(&sdcp->lock[actx->chan]);
466
467 wake_up_process(sdcp->thread[actx->chan]);
468
469 return ret;
470 }
471
472 static int mxs_dcp_aes_ecb_decrypt(struct skcipher_request *req)
473 {
474 return mxs_dcp_aes_enqueue(req, 0, 1);
475 }
476
477 static int mxs_dcp_aes_ecb_encrypt(struct skcipher_request *req)
478 {
479 return mxs_dcp_aes_enqueue(req, 1, 1);
480 }
481
482 static int mxs_dcp_aes_cbc_decrypt(struct skcipher_request *req)
483 {
484 return mxs_dcp_aes_enqueue(req, 0, 0);
485 }
486
487 static int mxs_dcp_aes_cbc_encrypt(struct skcipher_request *req)
488 {
489 return mxs_dcp_aes_enqueue(req, 1, 0);
490 }
491
492 static int mxs_dcp_aes_setkey(struct crypto_skcipher *tfm, const u8 *key,
493 unsigned int len)
494 {
495 struct dcp_async_ctx *actx = crypto_skcipher_ctx(tfm);
496
497 /*
498 * AES 128 is supposed by the hardware, store key into temporary
499 * buffer and exit. We must use the temporary buffer here, since
500 * there can still be an operation in progress.
501 */
502 actx->key_len = len;
503 if (len == AES_KEYSIZE_128) {
504 memcpy(actx->key, key, len);
505 return 0;
506 }
507
508 /*
509 * If the requested AES key size is not supported by the hardware,
510 * but is supported by in-kernel software implementation, we use
511 * software fallback.
512 */
513 crypto_skcipher_clear_flags(actx->fallback, CRYPTO_TFM_REQ_MASK);
514 crypto_skcipher_set_flags(actx->fallback,
515 tfm->base.crt_flags & CRYPTO_TFM_REQ_MASK);
516 return crypto_skcipher_setkey(actx->fallback, key, len);
517 }
518
519 static int mxs_dcp_aes_fallback_init_tfm(struct crypto_skcipher *tfm)
520 {
521 const char *name = crypto_tfm_alg_name(crypto_skcipher_tfm(tfm));
522 struct dcp_async_ctx *actx = crypto_skcipher_ctx(tfm);
523 struct crypto_skcipher *blk;
524
525 blk = crypto_alloc_skcipher(name, 0, CRYPTO_ALG_NEED_FALLBACK);
526 if (IS_ERR(blk))
527 return PTR_ERR(blk);
528
529 actx->fallback = blk;
530 crypto_skcipher_set_reqsize(tfm, sizeof(struct dcp_aes_req_ctx) +
531 crypto_skcipher_reqsize(blk));
532 return 0;
533 }
534
535 static void mxs_dcp_aes_fallback_exit_tfm(struct crypto_skcipher *tfm)
536 {
537 struct dcp_async_ctx *actx = crypto_skcipher_ctx(tfm);
538
539 crypto_free_skcipher(actx->fallback);
540 }
541
542 /*
543 * Hashing (SHA1/SHA256)
544 */
545 static int mxs_dcp_run_sha(struct ahash_request *req)
546 {
547 struct dcp *sdcp = global_sdcp;
548 int ret;
549
550 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
551 struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
552 struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
553 struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan];
554
555 dma_addr_t digest_phys = 0;
556 dma_addr_t buf_phys = dma_map_single(sdcp->dev, sdcp->coh->sha_in_buf,
557 DCP_BUF_SZ, DMA_TO_DEVICE);
558
559 /* Fill in the DMA descriptor. */
560 desc->control0 = MXS_DCP_CONTROL0_DECR_SEMAPHORE |
561 MXS_DCP_CONTROL0_INTERRUPT |
562 MXS_DCP_CONTROL0_ENABLE_HASH;
563 if (rctx->init)
564 desc->control0 |= MXS_DCP_CONTROL0_HASH_INIT;
565
566 desc->control1 = actx->alg;
567 desc->next_cmd_addr = 0;
568 desc->source = buf_phys;
569 desc->destination = 0;
570 desc->size = actx->fill;
571 desc->payload = 0;
572 desc->status = 0;
573
574 /*
575 * Align driver with hw behavior when generating null hashes
576 */
577 if (rctx->init && rctx->fini && desc->size == 0) {
578 struct hash_alg_common *halg = crypto_hash_alg_common(tfm);
579 const uint8_t *sha_buf =
580 (actx->alg == MXS_DCP_CONTROL1_HASH_SELECT_SHA1) ?
581 sha1_null_hash : sha256_null_hash;
582 memcpy(sdcp->coh->sha_out_buf, sha_buf, halg->digestsize);
583 ret = 0;
584 goto done_run;
585 }
586
587 /* Set HASH_TERM bit for last transfer block. */
588 if (rctx->fini) {
589 digest_phys = dma_map_single(sdcp->dev, sdcp->coh->sha_out_buf,
590 DCP_SHA_PAY_SZ, DMA_FROM_DEVICE);
591 desc->control0 |= MXS_DCP_CONTROL0_HASH_TERM;
592 desc->payload = digest_phys;
593 }
594
595 ret = mxs_dcp_start_dma(actx);
596
597 if (rctx->fini)
598 dma_unmap_single(sdcp->dev, digest_phys, DCP_SHA_PAY_SZ,
599 DMA_FROM_DEVICE);
600
601 done_run:
602 dma_unmap_single(sdcp->dev, buf_phys, DCP_BUF_SZ, DMA_TO_DEVICE);
603
604 return ret;
605 }
606
607 static int dcp_sha_req_to_buf(struct crypto_async_request *arq)
608 {
609 struct dcp *sdcp = global_sdcp;
610
611 struct ahash_request *req = ahash_request_cast(arq);
612 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
613 struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
614 struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
615 struct hash_alg_common *halg = crypto_hash_alg_common(tfm);
616
617 uint8_t *in_buf = sdcp->coh->sha_in_buf;
618 uint8_t *out_buf = sdcp->coh->sha_out_buf;
619
620 struct scatterlist *src;
621
622 unsigned int i, len, clen, oft = 0;
623 int ret;
624
625 int fin = rctx->fini;
626 if (fin)
627 rctx->fini = 0;
628
629 src = req->src;
630 len = req->nbytes;
631
632 while (len) {
633 if (actx->fill + len > DCP_BUF_SZ)
634 clen = DCP_BUF_SZ - actx->fill;
635 else
636 clen = len;
637
638 scatterwalk_map_and_copy(in_buf + actx->fill, src, oft, clen,
639 0);
640
641 len -= clen;
642 oft += clen;
643 actx->fill += clen;
644
645 /*
646 * If we filled the buffer and still have some
647 * more data, submit the buffer.
648 */
649 if (len && actx->fill == DCP_BUF_SZ) {
650 ret = mxs_dcp_run_sha(req);
651 if (ret)
652 return ret;
653 actx->fill = 0;
654 rctx->init = 0;
655 }
656 }
657
658 if (fin) {
659 rctx->fini = 1;
660
661 /* Submit whatever is left. */
662 if (!req->result)
663 return -EINVAL;
664
665 ret = mxs_dcp_run_sha(req);
666 if (ret)
667 return ret;
668
669 actx->fill = 0;
670
671 /* For some reason the result is flipped */
672 for (i = 0; i < halg->digestsize; i++)
673 req->result[i] = out_buf[halg->digestsize - i - 1];
674 }
675
676 return 0;
677 }
678
679 static int dcp_chan_thread_sha(void *data)
680 {
681 struct dcp *sdcp = global_sdcp;
682 const int chan = DCP_CHAN_HASH_SHA;
683
684 struct crypto_async_request *backlog;
685 struct crypto_async_request *arq;
686 int ret;
687
688 while (!kthread_should_stop()) {
689 set_current_state(TASK_INTERRUPTIBLE);
690
691 spin_lock(&sdcp->lock[chan]);
692 backlog = crypto_get_backlog(&sdcp->queue[chan]);
693 arq = crypto_dequeue_request(&sdcp->queue[chan]);
694 spin_unlock(&sdcp->lock[chan]);
695
696 if (!backlog && !arq) {
697 schedule();
698 continue;
699 }
700
701 set_current_state(TASK_RUNNING);
702
703 if (backlog)
704 backlog->complete(backlog, -EINPROGRESS);
705
706 if (arq) {
707 ret = dcp_sha_req_to_buf(arq);
708 arq->complete(arq, ret);
709 }
710 }
711
712 return 0;
713 }
714
715 static int dcp_sha_init(struct ahash_request *req)
716 {
717 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
718 struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
719
720 struct hash_alg_common *halg = crypto_hash_alg_common(tfm);
721
722 /*
723 * Start hashing session. The code below only inits the
724 * hashing session context, nothing more.
725 */
726 memset(actx, 0, sizeof(*actx));
727
728 if (strcmp(halg->base.cra_name, "sha1") == 0)
729 actx->alg = MXS_DCP_CONTROL1_HASH_SELECT_SHA1;
730 else
731 actx->alg = MXS_DCP_CONTROL1_HASH_SELECT_SHA256;
732
733 actx->fill = 0;
734 actx->hot = 0;
735 actx->chan = DCP_CHAN_HASH_SHA;
736
737 mutex_init(&actx->mutex);
738
739 return 0;
740 }
741
742 static int dcp_sha_update_fx(struct ahash_request *req, int fini)
743 {
744 struct dcp *sdcp = global_sdcp;
745
746 struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
747 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
748 struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
749
750 int ret;
751
752 /*
753 * Ignore requests that have no data in them and are not
754 * the trailing requests in the stream of requests.
755 */
756 if (!req->nbytes && !fini)
757 return 0;
758
759 mutex_lock(&actx->mutex);
760
761 rctx->fini = fini;
762
763 if (!actx->hot) {
764 actx->hot = 1;
765 rctx->init = 1;
766 }
767
768 spin_lock(&sdcp->lock[actx->chan]);
769 ret = crypto_enqueue_request(&sdcp->queue[actx->chan], &req->base);
770 spin_unlock(&sdcp->lock[actx->chan]);
771
772 wake_up_process(sdcp->thread[actx->chan]);
773 mutex_unlock(&actx->mutex);
774
775 return ret;
776 }
777
778 static int dcp_sha_update(struct ahash_request *req)
779 {
780 return dcp_sha_update_fx(req, 0);
781 }
782
783 static int dcp_sha_final(struct ahash_request *req)
784 {
785 ahash_request_set_crypt(req, NULL, req->result, 0);
786 req->nbytes = 0;
787 return dcp_sha_update_fx(req, 1);
788 }
789
790 static int dcp_sha_finup(struct ahash_request *req)
791 {
792 return dcp_sha_update_fx(req, 1);
793 }
794
795 static int dcp_sha_digest(struct ahash_request *req)
796 {
797 int ret;
798
799 ret = dcp_sha_init(req);
800 if (ret)
801 return ret;
802
803 return dcp_sha_finup(req);
804 }
805
806 static int dcp_sha_import(struct ahash_request *req, const void *in)
807 {
808 struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
809 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
810 struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
811 const struct dcp_export_state *export = in;
812
813 memset(rctx, 0, sizeof(struct dcp_sha_req_ctx));
814 memset(actx, 0, sizeof(struct dcp_async_ctx));
815 memcpy(rctx, &export->req_ctx, sizeof(struct dcp_sha_req_ctx));
816 memcpy(actx, &export->async_ctx, sizeof(struct dcp_async_ctx));
817
818 return 0;
819 }
820
821 static int dcp_sha_export(struct ahash_request *req, void *out)
822 {
823 struct dcp_sha_req_ctx *rctx_state = ahash_request_ctx(req);
824 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
825 struct dcp_async_ctx *actx_state = crypto_ahash_ctx(tfm);
826 struct dcp_export_state *export = out;
827
828 memcpy(&export->req_ctx, rctx_state, sizeof(struct dcp_sha_req_ctx));
829 memcpy(&export->async_ctx, actx_state, sizeof(struct dcp_async_ctx));
830
831 return 0;
832 }
833
834 static int dcp_sha_cra_init(struct crypto_tfm *tfm)
835 {
836 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
837 sizeof(struct dcp_sha_req_ctx));
838 return 0;
839 }
840
841 static void dcp_sha_cra_exit(struct crypto_tfm *tfm)
842 {
843 }
844
845 /* AES 128 ECB and AES 128 CBC */
846 static struct skcipher_alg dcp_aes_algs[] = {
847 {
848 .base.cra_name = "ecb(aes)",
849 .base.cra_driver_name = "ecb-aes-dcp",
850 .base.cra_priority = 400,
851 .base.cra_alignmask = 15,
852 .base.cra_flags = CRYPTO_ALG_ASYNC |
853 CRYPTO_ALG_NEED_FALLBACK,
854 .base.cra_blocksize = AES_BLOCK_SIZE,
855 .base.cra_ctxsize = sizeof(struct dcp_async_ctx),
856 .base.cra_module = THIS_MODULE,
857
858 .min_keysize = AES_MIN_KEY_SIZE,
859 .max_keysize = AES_MAX_KEY_SIZE,
860 .setkey = mxs_dcp_aes_setkey,
861 .encrypt = mxs_dcp_aes_ecb_encrypt,
862 .decrypt = mxs_dcp_aes_ecb_decrypt,
863 .init = mxs_dcp_aes_fallback_init_tfm,
864 .exit = mxs_dcp_aes_fallback_exit_tfm,
865 }, {
866 .base.cra_name = "cbc(aes)",
867 .base.cra_driver_name = "cbc-aes-dcp",
868 .base.cra_priority = 400,
869 .base.cra_alignmask = 15,
870 .base.cra_flags = CRYPTO_ALG_ASYNC |
871 CRYPTO_ALG_NEED_FALLBACK,
872 .base.cra_blocksize = AES_BLOCK_SIZE,
873 .base.cra_ctxsize = sizeof(struct dcp_async_ctx),
874 .base.cra_module = THIS_MODULE,
875
876 .min_keysize = AES_MIN_KEY_SIZE,
877 .max_keysize = AES_MAX_KEY_SIZE,
878 .setkey = mxs_dcp_aes_setkey,
879 .encrypt = mxs_dcp_aes_cbc_encrypt,
880 .decrypt = mxs_dcp_aes_cbc_decrypt,
881 .ivsize = AES_BLOCK_SIZE,
882 .init = mxs_dcp_aes_fallback_init_tfm,
883 .exit = mxs_dcp_aes_fallback_exit_tfm,
884 },
885 };
886
887 /* SHA1 */
888 static struct ahash_alg dcp_sha1_alg = {
889 .init = dcp_sha_init,
890 .update = dcp_sha_update,
891 .final = dcp_sha_final,
892 .finup = dcp_sha_finup,
893 .digest = dcp_sha_digest,
894 .import = dcp_sha_import,
895 .export = dcp_sha_export,
896 .halg = {
897 .digestsize = SHA1_DIGEST_SIZE,
898 .statesize = sizeof(struct dcp_export_state),
899 .base = {
900 .cra_name = "sha1",
901 .cra_driver_name = "sha1-dcp",
902 .cra_priority = 400,
903 .cra_alignmask = 63,
904 .cra_flags = CRYPTO_ALG_ASYNC,
905 .cra_blocksize = SHA1_BLOCK_SIZE,
906 .cra_ctxsize = sizeof(struct dcp_async_ctx),
907 .cra_module = THIS_MODULE,
908 .cra_init = dcp_sha_cra_init,
909 .cra_exit = dcp_sha_cra_exit,
910 },
911 },
912 };
913
914 /* SHA256 */
915 static struct ahash_alg dcp_sha256_alg = {
916 .init = dcp_sha_init,
917 .update = dcp_sha_update,
918 .final = dcp_sha_final,
919 .finup = dcp_sha_finup,
920 .digest = dcp_sha_digest,
921 .import = dcp_sha_import,
922 .export = dcp_sha_export,
923 .halg = {
924 .digestsize = SHA256_DIGEST_SIZE,
925 .statesize = sizeof(struct dcp_export_state),
926 .base = {
927 .cra_name = "sha256",
928 .cra_driver_name = "sha256-dcp",
929 .cra_priority = 400,
930 .cra_alignmask = 63,
931 .cra_flags = CRYPTO_ALG_ASYNC,
932 .cra_blocksize = SHA256_BLOCK_SIZE,
933 .cra_ctxsize = sizeof(struct dcp_async_ctx),
934 .cra_module = THIS_MODULE,
935 .cra_init = dcp_sha_cra_init,
936 .cra_exit = dcp_sha_cra_exit,
937 },
938 },
939 };
940
941 static irqreturn_t mxs_dcp_irq(int irq, void *context)
942 {
943 struct dcp *sdcp = context;
944 uint32_t stat;
945 int i;
946
947 stat = readl(sdcp->base + MXS_DCP_STAT);
948 stat &= MXS_DCP_STAT_IRQ_MASK;
949 if (!stat)
950 return IRQ_NONE;
951
952 /* Clear the interrupts. */
953 writel(stat, sdcp->base + MXS_DCP_STAT_CLR);
954
955 /* Complete the DMA requests that finished. */
956 for (i = 0; i < DCP_MAX_CHANS; i++)
957 if (stat & (1 << i))
958 complete(&sdcp->completion[i]);
959
960 return IRQ_HANDLED;
961 }
962
963 static int mxs_dcp_probe(struct platform_device *pdev)
964 {
965 struct device *dev = &pdev->dev;
966 struct dcp *sdcp = NULL;
967 int i, ret;
968 int dcp_vmi_irq, dcp_irq;
969
970 if (global_sdcp) {
971 dev_err(dev, "Only one DCP instance allowed!\n");
972 return -ENODEV;
973 }
974
975 dcp_vmi_irq = platform_get_irq(pdev, 0);
976 if (dcp_vmi_irq < 0)
977 return dcp_vmi_irq;
978
979 dcp_irq = platform_get_irq(pdev, 1);
980 if (dcp_irq < 0)
981 return dcp_irq;
982
983 sdcp = devm_kzalloc(dev, sizeof(*sdcp), GFP_KERNEL);
984 if (!sdcp)
985 return -ENOMEM;
986
987 sdcp->dev = dev;
988 sdcp->base = devm_platform_ioremap_resource(pdev, 0);
989 if (IS_ERR(sdcp->base))
990 return PTR_ERR(sdcp->base);
991
992
993 ret = devm_request_irq(dev, dcp_vmi_irq, mxs_dcp_irq, 0,
994 "dcp-vmi-irq", sdcp);
995 if (ret) {
996 dev_err(dev, "Failed to claim DCP VMI IRQ!\n");
997 return ret;
998 }
999
1000 ret = devm_request_irq(dev, dcp_irq, mxs_dcp_irq, 0,
1001 "dcp-irq", sdcp);
1002 if (ret) {
1003 dev_err(dev, "Failed to claim DCP IRQ!\n");
1004 return ret;
1005 }
1006
1007 /* Allocate coherent helper block. */
1008 sdcp->coh = devm_kzalloc(dev, sizeof(*sdcp->coh) + DCP_ALIGNMENT,
1009 GFP_KERNEL);
1010 if (!sdcp->coh)
1011 return -ENOMEM;
1012
1013 /* Re-align the structure so it fits the DCP constraints. */
1014 sdcp->coh = PTR_ALIGN(sdcp->coh, DCP_ALIGNMENT);
1015
1016 /* DCP clock is optional, only used on some SOCs */
1017 sdcp->dcp_clk = devm_clk_get(dev, "dcp");
1018 if (IS_ERR(sdcp->dcp_clk)) {
1019 if (sdcp->dcp_clk != ERR_PTR(-ENOENT))
1020 return PTR_ERR(sdcp->dcp_clk);
1021 sdcp->dcp_clk = NULL;
1022 }
1023 ret = clk_prepare_enable(sdcp->dcp_clk);
1024 if (ret)
1025 return ret;
1026
1027 /* Restart the DCP block. */
1028 ret = stmp_reset_block(sdcp->base);
1029 if (ret) {
1030 dev_err(dev, "Failed reset\n");
1031 goto err_disable_unprepare_clk;
1032 }
1033
1034 /* Initialize control register. */
1035 writel(MXS_DCP_CTRL_GATHER_RESIDUAL_WRITES |
1036 MXS_DCP_CTRL_ENABLE_CONTEXT_CACHING | 0xf,
1037 sdcp->base + MXS_DCP_CTRL);
1038
1039 /* Enable all DCP DMA channels. */
1040 writel(MXS_DCP_CHANNELCTRL_ENABLE_CHANNEL_MASK,
1041 sdcp->base + MXS_DCP_CHANNELCTRL);
1042
1043 /*
1044 * We do not enable context switching. Give the context buffer a
1045 * pointer to an illegal address so if context switching is
1046 * inadvertantly enabled, the DCP will return an error instead of
1047 * trashing good memory. The DCP DMA cannot access ROM, so any ROM
1048 * address will do.
1049 */
1050 writel(0xffff0000, sdcp->base + MXS_DCP_CONTEXT);
1051 for (i = 0; i < DCP_MAX_CHANS; i++)
1052 writel(0xffffffff, sdcp->base + MXS_DCP_CH_N_STAT_CLR(i));
1053 writel(0xffffffff, sdcp->base + MXS_DCP_STAT_CLR);
1054
1055 global_sdcp = sdcp;
1056
1057 platform_set_drvdata(pdev, sdcp);
1058
1059 for (i = 0; i < DCP_MAX_CHANS; i++) {
1060 spin_lock_init(&sdcp->lock[i]);
1061 init_completion(&sdcp->completion[i]);
1062 crypto_init_queue(&sdcp->queue[i], 50);
1063 }
1064
1065 /* Create the SHA and AES handler threads. */
1066 sdcp->thread[DCP_CHAN_HASH_SHA] = kthread_run(dcp_chan_thread_sha,
1067 NULL, "mxs_dcp_chan/sha");
1068 if (IS_ERR(sdcp->thread[DCP_CHAN_HASH_SHA])) {
1069 dev_err(dev, "Error starting SHA thread!\n");
1070 ret = PTR_ERR(sdcp->thread[DCP_CHAN_HASH_SHA]);
1071 goto err_disable_unprepare_clk;
1072 }
1073
1074 sdcp->thread[DCP_CHAN_CRYPTO] = kthread_run(dcp_chan_thread_aes,
1075 NULL, "mxs_dcp_chan/aes");
1076 if (IS_ERR(sdcp->thread[DCP_CHAN_CRYPTO])) {
1077 dev_err(dev, "Error starting SHA thread!\n");
1078 ret = PTR_ERR(sdcp->thread[DCP_CHAN_CRYPTO]);
1079 goto err_destroy_sha_thread;
1080 }
1081
1082 /* Register the various crypto algorithms. */
1083 sdcp->caps = readl(sdcp->base + MXS_DCP_CAPABILITY1);
1084
1085 if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128) {
1086 ret = crypto_register_skciphers(dcp_aes_algs,
1087 ARRAY_SIZE(dcp_aes_algs));
1088 if (ret) {
1089 /* Failed to register algorithm. */
1090 dev_err(dev, "Failed to register AES crypto!\n");
1091 goto err_destroy_aes_thread;
1092 }
1093 }
1094
1095 if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1) {
1096 ret = crypto_register_ahash(&dcp_sha1_alg);
1097 if (ret) {
1098 dev_err(dev, "Failed to register %s hash!\n",
1099 dcp_sha1_alg.halg.base.cra_name);
1100 goto err_unregister_aes;
1101 }
1102 }
1103
1104 if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA256) {
1105 ret = crypto_register_ahash(&dcp_sha256_alg);
1106 if (ret) {
1107 dev_err(dev, "Failed to register %s hash!\n",
1108 dcp_sha256_alg.halg.base.cra_name);
1109 goto err_unregister_sha1;
1110 }
1111 }
1112
1113 return 0;
1114
1115 err_unregister_sha1:
1116 if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1)
1117 crypto_unregister_ahash(&dcp_sha1_alg);
1118
1119 err_unregister_aes:
1120 if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128)
1121 crypto_unregister_skciphers(dcp_aes_algs, ARRAY_SIZE(dcp_aes_algs));
1122
1123 err_destroy_aes_thread:
1124 kthread_stop(sdcp->thread[DCP_CHAN_CRYPTO]);
1125
1126 err_destroy_sha_thread:
1127 kthread_stop(sdcp->thread[DCP_CHAN_HASH_SHA]);
1128
1129 err_disable_unprepare_clk:
1130 clk_disable_unprepare(sdcp->dcp_clk);
1131
1132 return ret;
1133 }
1134
1135 static int mxs_dcp_remove(struct platform_device *pdev)
1136 {
1137 struct dcp *sdcp = platform_get_drvdata(pdev);
1138
1139 if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA256)
1140 crypto_unregister_ahash(&dcp_sha256_alg);
1141
1142 if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1)
1143 crypto_unregister_ahash(&dcp_sha1_alg);
1144
1145 if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128)
1146 crypto_unregister_skciphers(dcp_aes_algs, ARRAY_SIZE(dcp_aes_algs));
1147
1148 kthread_stop(sdcp->thread[DCP_CHAN_HASH_SHA]);
1149 kthread_stop(sdcp->thread[DCP_CHAN_CRYPTO]);
1150
1151 clk_disable_unprepare(sdcp->dcp_clk);
1152
1153 platform_set_drvdata(pdev, NULL);
1154
1155 global_sdcp = NULL;
1156
1157 return 0;
1158 }
1159
1160 static const struct of_device_id mxs_dcp_dt_ids[] = {
1161 { .compatible = "fsl,imx23-dcp", .data = NULL, },
1162 { .compatible = "fsl,imx28-dcp", .data = NULL, },
1163 { /* sentinel */ }
1164 };
1165
1166 MODULE_DEVICE_TABLE(of, mxs_dcp_dt_ids);
1167
1168 static struct platform_driver mxs_dcp_driver = {
1169 .probe = mxs_dcp_probe,
1170 .remove = mxs_dcp_remove,
1171 .driver = {
1172 .name = "mxs-dcp",
1173 .of_match_table = mxs_dcp_dt_ids,
1174 },
1175 };
1176
1177 module_platform_driver(mxs_dcp_driver);
1178
1179 MODULE_AUTHOR("Marek Vasut <marex@denx.de>");
1180 MODULE_DESCRIPTION("Freescale MXS DCP Driver");
1181 MODULE_LICENSE("GPL");
1182 MODULE_ALIAS("platform:mxs-dcp");