]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/crypto/mxs-dcp.c
Merge branch 'efi-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-hirsute-kernel.git] / drivers / crypto / mxs-dcp.c
1 /*
2 * Freescale i.MX23/i.MX28 Data Co-Processor driver
3 *
4 * Copyright (C) 2013 Marek Vasut <marex@denx.de>
5 *
6 * The code contained herein is licensed under the GNU General Public
7 * License. You may obtain a copy of the GNU General Public License
8 * Version 2 or later at the following locations:
9 *
10 * http://www.opensource.org/licenses/gpl-license.html
11 * http://www.gnu.org/copyleft/gpl.html
12 */
13
14 #include <linux/dma-mapping.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/kernel.h>
18 #include <linux/kthread.h>
19 #include <linux/module.h>
20 #include <linux/of.h>
21 #include <linux/platform_device.h>
22 #include <linux/stmp_device.h>
23
24 #include <crypto/aes.h>
25 #include <crypto/sha.h>
26 #include <crypto/internal/hash.h>
27 #include <crypto/internal/skcipher.h>
28
29 #define DCP_MAX_CHANS 4
30 #define DCP_BUF_SZ PAGE_SIZE
31
32 #define DCP_ALIGNMENT 64
33
34 /* DCP DMA descriptor. */
35 struct dcp_dma_desc {
36 uint32_t next_cmd_addr;
37 uint32_t control0;
38 uint32_t control1;
39 uint32_t source;
40 uint32_t destination;
41 uint32_t size;
42 uint32_t payload;
43 uint32_t status;
44 };
45
46 /* Coherent aligned block for bounce buffering. */
47 struct dcp_coherent_block {
48 uint8_t aes_in_buf[DCP_BUF_SZ];
49 uint8_t aes_out_buf[DCP_BUF_SZ];
50 uint8_t sha_in_buf[DCP_BUF_SZ];
51
52 uint8_t aes_key[2 * AES_KEYSIZE_128];
53
54 struct dcp_dma_desc desc[DCP_MAX_CHANS];
55 };
56
57 struct dcp {
58 struct device *dev;
59 void __iomem *base;
60
61 uint32_t caps;
62
63 struct dcp_coherent_block *coh;
64
65 struct completion completion[DCP_MAX_CHANS];
66 struct mutex mutex[DCP_MAX_CHANS];
67 struct task_struct *thread[DCP_MAX_CHANS];
68 struct crypto_queue queue[DCP_MAX_CHANS];
69 };
70
71 enum dcp_chan {
72 DCP_CHAN_HASH_SHA = 0,
73 DCP_CHAN_CRYPTO = 2,
74 };
75
76 struct dcp_async_ctx {
77 /* Common context */
78 enum dcp_chan chan;
79 uint32_t fill;
80
81 /* SHA Hash-specific context */
82 struct mutex mutex;
83 uint32_t alg;
84 unsigned int hot:1;
85
86 /* Crypto-specific context */
87 struct crypto_skcipher *fallback;
88 unsigned int key_len;
89 uint8_t key[AES_KEYSIZE_128];
90 };
91
92 struct dcp_aes_req_ctx {
93 unsigned int enc:1;
94 unsigned int ecb:1;
95 };
96
97 struct dcp_sha_req_ctx {
98 unsigned int init:1;
99 unsigned int fini:1;
100 };
101
102 /*
103 * There can even be only one instance of the MXS DCP due to the
104 * design of Linux Crypto API.
105 */
106 static struct dcp *global_sdcp;
107
108 /* DCP register layout. */
109 #define MXS_DCP_CTRL 0x00
110 #define MXS_DCP_CTRL_GATHER_RESIDUAL_WRITES (1 << 23)
111 #define MXS_DCP_CTRL_ENABLE_CONTEXT_CACHING (1 << 22)
112
113 #define MXS_DCP_STAT 0x10
114 #define MXS_DCP_STAT_CLR 0x18
115 #define MXS_DCP_STAT_IRQ_MASK 0xf
116
117 #define MXS_DCP_CHANNELCTRL 0x20
118 #define MXS_DCP_CHANNELCTRL_ENABLE_CHANNEL_MASK 0xff
119
120 #define MXS_DCP_CAPABILITY1 0x40
121 #define MXS_DCP_CAPABILITY1_SHA256 (4 << 16)
122 #define MXS_DCP_CAPABILITY1_SHA1 (1 << 16)
123 #define MXS_DCP_CAPABILITY1_AES128 (1 << 0)
124
125 #define MXS_DCP_CONTEXT 0x50
126
127 #define MXS_DCP_CH_N_CMDPTR(n) (0x100 + ((n) * 0x40))
128
129 #define MXS_DCP_CH_N_SEMA(n) (0x110 + ((n) * 0x40))
130
131 #define MXS_DCP_CH_N_STAT(n) (0x120 + ((n) * 0x40))
132 #define MXS_DCP_CH_N_STAT_CLR(n) (0x128 + ((n) * 0x40))
133
134 /* DMA descriptor bits. */
135 #define MXS_DCP_CONTROL0_HASH_TERM (1 << 13)
136 #define MXS_DCP_CONTROL0_HASH_INIT (1 << 12)
137 #define MXS_DCP_CONTROL0_PAYLOAD_KEY (1 << 11)
138 #define MXS_DCP_CONTROL0_CIPHER_ENCRYPT (1 << 8)
139 #define MXS_DCP_CONTROL0_CIPHER_INIT (1 << 9)
140 #define MXS_DCP_CONTROL0_ENABLE_HASH (1 << 6)
141 #define MXS_DCP_CONTROL0_ENABLE_CIPHER (1 << 5)
142 #define MXS_DCP_CONTROL0_DECR_SEMAPHORE (1 << 1)
143 #define MXS_DCP_CONTROL0_INTERRUPT (1 << 0)
144
145 #define MXS_DCP_CONTROL1_HASH_SELECT_SHA256 (2 << 16)
146 #define MXS_DCP_CONTROL1_HASH_SELECT_SHA1 (0 << 16)
147 #define MXS_DCP_CONTROL1_CIPHER_MODE_CBC (1 << 4)
148 #define MXS_DCP_CONTROL1_CIPHER_MODE_ECB (0 << 4)
149 #define MXS_DCP_CONTROL1_CIPHER_SELECT_AES128 (0 << 0)
150
151 static int mxs_dcp_start_dma(struct dcp_async_ctx *actx)
152 {
153 struct dcp *sdcp = global_sdcp;
154 const int chan = actx->chan;
155 uint32_t stat;
156 unsigned long ret;
157 struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan];
158
159 dma_addr_t desc_phys = dma_map_single(sdcp->dev, desc, sizeof(*desc),
160 DMA_TO_DEVICE);
161
162 reinit_completion(&sdcp->completion[chan]);
163
164 /* Clear status register. */
165 writel(0xffffffff, sdcp->base + MXS_DCP_CH_N_STAT_CLR(chan));
166
167 /* Load the DMA descriptor. */
168 writel(desc_phys, sdcp->base + MXS_DCP_CH_N_CMDPTR(chan));
169
170 /* Increment the semaphore to start the DMA transfer. */
171 writel(1, sdcp->base + MXS_DCP_CH_N_SEMA(chan));
172
173 ret = wait_for_completion_timeout(&sdcp->completion[chan],
174 msecs_to_jiffies(1000));
175 if (!ret) {
176 dev_err(sdcp->dev, "Channel %i timeout (DCP_STAT=0x%08x)\n",
177 chan, readl(sdcp->base + MXS_DCP_STAT));
178 return -ETIMEDOUT;
179 }
180
181 stat = readl(sdcp->base + MXS_DCP_CH_N_STAT(chan));
182 if (stat & 0xff) {
183 dev_err(sdcp->dev, "Channel %i error (CH_STAT=0x%08x)\n",
184 chan, stat);
185 return -EINVAL;
186 }
187
188 dma_unmap_single(sdcp->dev, desc_phys, sizeof(*desc), DMA_TO_DEVICE);
189
190 return 0;
191 }
192
193 /*
194 * Encryption (AES128)
195 */
196 static int mxs_dcp_run_aes(struct dcp_async_ctx *actx,
197 struct ablkcipher_request *req, int init)
198 {
199 struct dcp *sdcp = global_sdcp;
200 struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan];
201 struct dcp_aes_req_ctx *rctx = ablkcipher_request_ctx(req);
202 int ret;
203
204 dma_addr_t key_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_key,
205 2 * AES_KEYSIZE_128,
206 DMA_TO_DEVICE);
207 dma_addr_t src_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_in_buf,
208 DCP_BUF_SZ, DMA_TO_DEVICE);
209 dma_addr_t dst_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_out_buf,
210 DCP_BUF_SZ, DMA_FROM_DEVICE);
211
212 /* Fill in the DMA descriptor. */
213 desc->control0 = MXS_DCP_CONTROL0_DECR_SEMAPHORE |
214 MXS_DCP_CONTROL0_INTERRUPT |
215 MXS_DCP_CONTROL0_ENABLE_CIPHER;
216
217 /* Payload contains the key. */
218 desc->control0 |= MXS_DCP_CONTROL0_PAYLOAD_KEY;
219
220 if (rctx->enc)
221 desc->control0 |= MXS_DCP_CONTROL0_CIPHER_ENCRYPT;
222 if (init)
223 desc->control0 |= MXS_DCP_CONTROL0_CIPHER_INIT;
224
225 desc->control1 = MXS_DCP_CONTROL1_CIPHER_SELECT_AES128;
226
227 if (rctx->ecb)
228 desc->control1 |= MXS_DCP_CONTROL1_CIPHER_MODE_ECB;
229 else
230 desc->control1 |= MXS_DCP_CONTROL1_CIPHER_MODE_CBC;
231
232 desc->next_cmd_addr = 0;
233 desc->source = src_phys;
234 desc->destination = dst_phys;
235 desc->size = actx->fill;
236 desc->payload = key_phys;
237 desc->status = 0;
238
239 ret = mxs_dcp_start_dma(actx);
240
241 dma_unmap_single(sdcp->dev, key_phys, 2 * AES_KEYSIZE_128,
242 DMA_TO_DEVICE);
243 dma_unmap_single(sdcp->dev, src_phys, DCP_BUF_SZ, DMA_TO_DEVICE);
244 dma_unmap_single(sdcp->dev, dst_phys, DCP_BUF_SZ, DMA_FROM_DEVICE);
245
246 return ret;
247 }
248
249 static int mxs_dcp_aes_block_crypt(struct crypto_async_request *arq)
250 {
251 struct dcp *sdcp = global_sdcp;
252
253 struct ablkcipher_request *req = ablkcipher_request_cast(arq);
254 struct dcp_async_ctx *actx = crypto_tfm_ctx(arq->tfm);
255 struct dcp_aes_req_ctx *rctx = ablkcipher_request_ctx(req);
256
257 struct scatterlist *dst = req->dst;
258 struct scatterlist *src = req->src;
259 const int nents = sg_nents(req->src);
260
261 const int out_off = DCP_BUF_SZ;
262 uint8_t *in_buf = sdcp->coh->aes_in_buf;
263 uint8_t *out_buf = sdcp->coh->aes_out_buf;
264
265 uint8_t *out_tmp, *src_buf, *dst_buf = NULL;
266 uint32_t dst_off = 0;
267
268 uint8_t *key = sdcp->coh->aes_key;
269
270 int ret = 0;
271 int split = 0;
272 unsigned int i, len, clen, rem = 0;
273 int init = 0;
274
275 actx->fill = 0;
276
277 /* Copy the key from the temporary location. */
278 memcpy(key, actx->key, actx->key_len);
279
280 if (!rctx->ecb) {
281 /* Copy the CBC IV just past the key. */
282 memcpy(key + AES_KEYSIZE_128, req->info, AES_KEYSIZE_128);
283 /* CBC needs the INIT set. */
284 init = 1;
285 } else {
286 memset(key + AES_KEYSIZE_128, 0, AES_KEYSIZE_128);
287 }
288
289 for_each_sg(req->src, src, nents, i) {
290 src_buf = sg_virt(src);
291 len = sg_dma_len(src);
292
293 do {
294 if (actx->fill + len > out_off)
295 clen = out_off - actx->fill;
296 else
297 clen = len;
298
299 memcpy(in_buf + actx->fill, src_buf, clen);
300 len -= clen;
301 src_buf += clen;
302 actx->fill += clen;
303
304 /*
305 * If we filled the buffer or this is the last SG,
306 * submit the buffer.
307 */
308 if (actx->fill == out_off || sg_is_last(src)) {
309 ret = mxs_dcp_run_aes(actx, req, init);
310 if (ret)
311 return ret;
312 init = 0;
313
314 out_tmp = out_buf;
315 while (dst && actx->fill) {
316 if (!split) {
317 dst_buf = sg_virt(dst);
318 dst_off = 0;
319 }
320 rem = min(sg_dma_len(dst) - dst_off,
321 actx->fill);
322
323 memcpy(dst_buf + dst_off, out_tmp, rem);
324 out_tmp += rem;
325 dst_off += rem;
326 actx->fill -= rem;
327
328 if (dst_off == sg_dma_len(dst)) {
329 dst = sg_next(dst);
330 split = 0;
331 } else {
332 split = 1;
333 }
334 }
335 }
336 } while (len);
337 }
338
339 return ret;
340 }
341
342 static int dcp_chan_thread_aes(void *data)
343 {
344 struct dcp *sdcp = global_sdcp;
345 const int chan = DCP_CHAN_CRYPTO;
346
347 struct crypto_async_request *backlog;
348 struct crypto_async_request *arq;
349
350 int ret;
351
352 do {
353 __set_current_state(TASK_INTERRUPTIBLE);
354
355 mutex_lock(&sdcp->mutex[chan]);
356 backlog = crypto_get_backlog(&sdcp->queue[chan]);
357 arq = crypto_dequeue_request(&sdcp->queue[chan]);
358 mutex_unlock(&sdcp->mutex[chan]);
359
360 if (backlog)
361 backlog->complete(backlog, -EINPROGRESS);
362
363 if (arq) {
364 ret = mxs_dcp_aes_block_crypt(arq);
365 arq->complete(arq, ret);
366 continue;
367 }
368
369 schedule();
370 } while (!kthread_should_stop());
371
372 return 0;
373 }
374
375 static int mxs_dcp_block_fallback(struct ablkcipher_request *req, int enc)
376 {
377 struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
378 struct dcp_async_ctx *ctx = crypto_ablkcipher_ctx(tfm);
379 SKCIPHER_REQUEST_ON_STACK(subreq, ctx->fallback);
380 int ret;
381
382 skcipher_request_set_tfm(subreq, ctx->fallback);
383 skcipher_request_set_callback(subreq, req->base.flags, NULL, NULL);
384 skcipher_request_set_crypt(subreq, req->src, req->dst,
385 req->nbytes, req->info);
386
387 if (enc)
388 ret = crypto_skcipher_encrypt(subreq);
389 else
390 ret = crypto_skcipher_decrypt(subreq);
391
392 skcipher_request_zero(subreq);
393
394 return ret;
395 }
396
397 static int mxs_dcp_aes_enqueue(struct ablkcipher_request *req, int enc, int ecb)
398 {
399 struct dcp *sdcp = global_sdcp;
400 struct crypto_async_request *arq = &req->base;
401 struct dcp_async_ctx *actx = crypto_tfm_ctx(arq->tfm);
402 struct dcp_aes_req_ctx *rctx = ablkcipher_request_ctx(req);
403 int ret;
404
405 if (unlikely(actx->key_len != AES_KEYSIZE_128))
406 return mxs_dcp_block_fallback(req, enc);
407
408 rctx->enc = enc;
409 rctx->ecb = ecb;
410 actx->chan = DCP_CHAN_CRYPTO;
411
412 mutex_lock(&sdcp->mutex[actx->chan]);
413 ret = crypto_enqueue_request(&sdcp->queue[actx->chan], &req->base);
414 mutex_unlock(&sdcp->mutex[actx->chan]);
415
416 wake_up_process(sdcp->thread[actx->chan]);
417
418 return -EINPROGRESS;
419 }
420
421 static int mxs_dcp_aes_ecb_decrypt(struct ablkcipher_request *req)
422 {
423 return mxs_dcp_aes_enqueue(req, 0, 1);
424 }
425
426 static int mxs_dcp_aes_ecb_encrypt(struct ablkcipher_request *req)
427 {
428 return mxs_dcp_aes_enqueue(req, 1, 1);
429 }
430
431 static int mxs_dcp_aes_cbc_decrypt(struct ablkcipher_request *req)
432 {
433 return mxs_dcp_aes_enqueue(req, 0, 0);
434 }
435
436 static int mxs_dcp_aes_cbc_encrypt(struct ablkcipher_request *req)
437 {
438 return mxs_dcp_aes_enqueue(req, 1, 0);
439 }
440
441 static int mxs_dcp_aes_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
442 unsigned int len)
443 {
444 struct dcp_async_ctx *actx = crypto_ablkcipher_ctx(tfm);
445 unsigned int ret;
446
447 /*
448 * AES 128 is supposed by the hardware, store key into temporary
449 * buffer and exit. We must use the temporary buffer here, since
450 * there can still be an operation in progress.
451 */
452 actx->key_len = len;
453 if (len == AES_KEYSIZE_128) {
454 memcpy(actx->key, key, len);
455 return 0;
456 }
457
458 /*
459 * If the requested AES key size is not supported by the hardware,
460 * but is supported by in-kernel software implementation, we use
461 * software fallback.
462 */
463 crypto_skcipher_clear_flags(actx->fallback, CRYPTO_TFM_REQ_MASK);
464 crypto_skcipher_set_flags(actx->fallback,
465 tfm->base.crt_flags & CRYPTO_TFM_REQ_MASK);
466
467 ret = crypto_skcipher_setkey(actx->fallback, key, len);
468 if (!ret)
469 return 0;
470
471 tfm->base.crt_flags &= ~CRYPTO_TFM_RES_MASK;
472 tfm->base.crt_flags |= crypto_skcipher_get_flags(actx->fallback) &
473 CRYPTO_TFM_RES_MASK;
474
475 return ret;
476 }
477
478 static int mxs_dcp_aes_fallback_init(struct crypto_tfm *tfm)
479 {
480 const char *name = crypto_tfm_alg_name(tfm);
481 const uint32_t flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK;
482 struct dcp_async_ctx *actx = crypto_tfm_ctx(tfm);
483 struct crypto_skcipher *blk;
484
485 blk = crypto_alloc_skcipher(name, 0, flags);
486 if (IS_ERR(blk))
487 return PTR_ERR(blk);
488
489 actx->fallback = blk;
490 tfm->crt_ablkcipher.reqsize = sizeof(struct dcp_aes_req_ctx);
491 return 0;
492 }
493
494 static void mxs_dcp_aes_fallback_exit(struct crypto_tfm *tfm)
495 {
496 struct dcp_async_ctx *actx = crypto_tfm_ctx(tfm);
497
498 crypto_free_skcipher(actx->fallback);
499 }
500
501 /*
502 * Hashing (SHA1/SHA256)
503 */
504 static int mxs_dcp_run_sha(struct ahash_request *req)
505 {
506 struct dcp *sdcp = global_sdcp;
507 int ret;
508
509 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
510 struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
511 struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
512 struct hash_alg_common *halg = crypto_hash_alg_common(tfm);
513
514 struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan];
515
516 dma_addr_t digest_phys = 0;
517 dma_addr_t buf_phys = dma_map_single(sdcp->dev, sdcp->coh->sha_in_buf,
518 DCP_BUF_SZ, DMA_TO_DEVICE);
519
520 /* Fill in the DMA descriptor. */
521 desc->control0 = MXS_DCP_CONTROL0_DECR_SEMAPHORE |
522 MXS_DCP_CONTROL0_INTERRUPT |
523 MXS_DCP_CONTROL0_ENABLE_HASH;
524 if (rctx->init)
525 desc->control0 |= MXS_DCP_CONTROL0_HASH_INIT;
526
527 desc->control1 = actx->alg;
528 desc->next_cmd_addr = 0;
529 desc->source = buf_phys;
530 desc->destination = 0;
531 desc->size = actx->fill;
532 desc->payload = 0;
533 desc->status = 0;
534
535 /* Set HASH_TERM bit for last transfer block. */
536 if (rctx->fini) {
537 digest_phys = dma_map_single(sdcp->dev, req->result,
538 halg->digestsize, DMA_FROM_DEVICE);
539 desc->control0 |= MXS_DCP_CONTROL0_HASH_TERM;
540 desc->payload = digest_phys;
541 }
542
543 ret = mxs_dcp_start_dma(actx);
544
545 if (rctx->fini)
546 dma_unmap_single(sdcp->dev, digest_phys, halg->digestsize,
547 DMA_FROM_DEVICE);
548
549 dma_unmap_single(sdcp->dev, buf_phys, DCP_BUF_SZ, DMA_TO_DEVICE);
550
551 return ret;
552 }
553
554 static int dcp_sha_req_to_buf(struct crypto_async_request *arq)
555 {
556 struct dcp *sdcp = global_sdcp;
557
558 struct ahash_request *req = ahash_request_cast(arq);
559 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
560 struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
561 struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
562 struct hash_alg_common *halg = crypto_hash_alg_common(tfm);
563 const int nents = sg_nents(req->src);
564
565 uint8_t *in_buf = sdcp->coh->sha_in_buf;
566
567 uint8_t *src_buf;
568
569 struct scatterlist *src;
570
571 unsigned int i, len, clen;
572 int ret;
573
574 int fin = rctx->fini;
575 if (fin)
576 rctx->fini = 0;
577
578 for_each_sg(req->src, src, nents, i) {
579 src_buf = sg_virt(src);
580 len = sg_dma_len(src);
581
582 do {
583 if (actx->fill + len > DCP_BUF_SZ)
584 clen = DCP_BUF_SZ - actx->fill;
585 else
586 clen = len;
587
588 memcpy(in_buf + actx->fill, src_buf, clen);
589 len -= clen;
590 src_buf += clen;
591 actx->fill += clen;
592
593 /*
594 * If we filled the buffer and still have some
595 * more data, submit the buffer.
596 */
597 if (len && actx->fill == DCP_BUF_SZ) {
598 ret = mxs_dcp_run_sha(req);
599 if (ret)
600 return ret;
601 actx->fill = 0;
602 rctx->init = 0;
603 }
604 } while (len);
605 }
606
607 if (fin) {
608 rctx->fini = 1;
609
610 /* Submit whatever is left. */
611 if (!req->result)
612 return -EINVAL;
613
614 ret = mxs_dcp_run_sha(req);
615 if (ret)
616 return ret;
617
618 actx->fill = 0;
619
620 /* For some reason, the result is flipped. */
621 for (i = 0; i < halg->digestsize / 2; i++) {
622 swap(req->result[i],
623 req->result[halg->digestsize - i - 1]);
624 }
625 }
626
627 return 0;
628 }
629
630 static int dcp_chan_thread_sha(void *data)
631 {
632 struct dcp *sdcp = global_sdcp;
633 const int chan = DCP_CHAN_HASH_SHA;
634
635 struct crypto_async_request *backlog;
636 struct crypto_async_request *arq;
637
638 struct dcp_sha_req_ctx *rctx;
639
640 struct ahash_request *req;
641 int ret, fini;
642
643 do {
644 __set_current_state(TASK_INTERRUPTIBLE);
645
646 mutex_lock(&sdcp->mutex[chan]);
647 backlog = crypto_get_backlog(&sdcp->queue[chan]);
648 arq = crypto_dequeue_request(&sdcp->queue[chan]);
649 mutex_unlock(&sdcp->mutex[chan]);
650
651 if (backlog)
652 backlog->complete(backlog, -EINPROGRESS);
653
654 if (arq) {
655 req = ahash_request_cast(arq);
656 rctx = ahash_request_ctx(req);
657
658 ret = dcp_sha_req_to_buf(arq);
659 fini = rctx->fini;
660 arq->complete(arq, ret);
661 if (!fini)
662 continue;
663 }
664
665 schedule();
666 } while (!kthread_should_stop());
667
668 return 0;
669 }
670
671 static int dcp_sha_init(struct ahash_request *req)
672 {
673 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
674 struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
675
676 struct hash_alg_common *halg = crypto_hash_alg_common(tfm);
677
678 /*
679 * Start hashing session. The code below only inits the
680 * hashing session context, nothing more.
681 */
682 memset(actx, 0, sizeof(*actx));
683
684 if (strcmp(halg->base.cra_name, "sha1") == 0)
685 actx->alg = MXS_DCP_CONTROL1_HASH_SELECT_SHA1;
686 else
687 actx->alg = MXS_DCP_CONTROL1_HASH_SELECT_SHA256;
688
689 actx->fill = 0;
690 actx->hot = 0;
691 actx->chan = DCP_CHAN_HASH_SHA;
692
693 mutex_init(&actx->mutex);
694
695 return 0;
696 }
697
698 static int dcp_sha_update_fx(struct ahash_request *req, int fini)
699 {
700 struct dcp *sdcp = global_sdcp;
701
702 struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
703 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
704 struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
705
706 int ret;
707
708 /*
709 * Ignore requests that have no data in them and are not
710 * the trailing requests in the stream of requests.
711 */
712 if (!req->nbytes && !fini)
713 return 0;
714
715 mutex_lock(&actx->mutex);
716
717 rctx->fini = fini;
718
719 if (!actx->hot) {
720 actx->hot = 1;
721 rctx->init = 1;
722 }
723
724 mutex_lock(&sdcp->mutex[actx->chan]);
725 ret = crypto_enqueue_request(&sdcp->queue[actx->chan], &req->base);
726 mutex_unlock(&sdcp->mutex[actx->chan]);
727
728 wake_up_process(sdcp->thread[actx->chan]);
729 mutex_unlock(&actx->mutex);
730
731 return -EINPROGRESS;
732 }
733
734 static int dcp_sha_update(struct ahash_request *req)
735 {
736 return dcp_sha_update_fx(req, 0);
737 }
738
739 static int dcp_sha_final(struct ahash_request *req)
740 {
741 ahash_request_set_crypt(req, NULL, req->result, 0);
742 req->nbytes = 0;
743 return dcp_sha_update_fx(req, 1);
744 }
745
746 static int dcp_sha_finup(struct ahash_request *req)
747 {
748 return dcp_sha_update_fx(req, 1);
749 }
750
751 static int dcp_sha_digest(struct ahash_request *req)
752 {
753 int ret;
754
755 ret = dcp_sha_init(req);
756 if (ret)
757 return ret;
758
759 return dcp_sha_finup(req);
760 }
761
762 static int dcp_sha_noimport(struct ahash_request *req, const void *in)
763 {
764 return -ENOSYS;
765 }
766
767 static int dcp_sha_noexport(struct ahash_request *req, void *out)
768 {
769 return -ENOSYS;
770 }
771
772 static int dcp_sha_cra_init(struct crypto_tfm *tfm)
773 {
774 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
775 sizeof(struct dcp_sha_req_ctx));
776 return 0;
777 }
778
779 static void dcp_sha_cra_exit(struct crypto_tfm *tfm)
780 {
781 }
782
783 /* AES 128 ECB and AES 128 CBC */
784 static struct crypto_alg dcp_aes_algs[] = {
785 {
786 .cra_name = "ecb(aes)",
787 .cra_driver_name = "ecb-aes-dcp",
788 .cra_priority = 400,
789 .cra_alignmask = 15,
790 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
791 CRYPTO_ALG_ASYNC |
792 CRYPTO_ALG_NEED_FALLBACK,
793 .cra_init = mxs_dcp_aes_fallback_init,
794 .cra_exit = mxs_dcp_aes_fallback_exit,
795 .cra_blocksize = AES_BLOCK_SIZE,
796 .cra_ctxsize = sizeof(struct dcp_async_ctx),
797 .cra_type = &crypto_ablkcipher_type,
798 .cra_module = THIS_MODULE,
799 .cra_u = {
800 .ablkcipher = {
801 .min_keysize = AES_MIN_KEY_SIZE,
802 .max_keysize = AES_MAX_KEY_SIZE,
803 .setkey = mxs_dcp_aes_setkey,
804 .encrypt = mxs_dcp_aes_ecb_encrypt,
805 .decrypt = mxs_dcp_aes_ecb_decrypt
806 },
807 },
808 }, {
809 .cra_name = "cbc(aes)",
810 .cra_driver_name = "cbc-aes-dcp",
811 .cra_priority = 400,
812 .cra_alignmask = 15,
813 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
814 CRYPTO_ALG_ASYNC |
815 CRYPTO_ALG_NEED_FALLBACK,
816 .cra_init = mxs_dcp_aes_fallback_init,
817 .cra_exit = mxs_dcp_aes_fallback_exit,
818 .cra_blocksize = AES_BLOCK_SIZE,
819 .cra_ctxsize = sizeof(struct dcp_async_ctx),
820 .cra_type = &crypto_ablkcipher_type,
821 .cra_module = THIS_MODULE,
822 .cra_u = {
823 .ablkcipher = {
824 .min_keysize = AES_MIN_KEY_SIZE,
825 .max_keysize = AES_MAX_KEY_SIZE,
826 .setkey = mxs_dcp_aes_setkey,
827 .encrypt = mxs_dcp_aes_cbc_encrypt,
828 .decrypt = mxs_dcp_aes_cbc_decrypt,
829 .ivsize = AES_BLOCK_SIZE,
830 },
831 },
832 },
833 };
834
835 /* SHA1 */
836 static struct ahash_alg dcp_sha1_alg = {
837 .init = dcp_sha_init,
838 .update = dcp_sha_update,
839 .final = dcp_sha_final,
840 .finup = dcp_sha_finup,
841 .digest = dcp_sha_digest,
842 .import = dcp_sha_noimport,
843 .export = dcp_sha_noexport,
844 .halg = {
845 .digestsize = SHA1_DIGEST_SIZE,
846 .base = {
847 .cra_name = "sha1",
848 .cra_driver_name = "sha1-dcp",
849 .cra_priority = 400,
850 .cra_alignmask = 63,
851 .cra_flags = CRYPTO_ALG_ASYNC,
852 .cra_blocksize = SHA1_BLOCK_SIZE,
853 .cra_ctxsize = sizeof(struct dcp_async_ctx),
854 .cra_module = THIS_MODULE,
855 .cra_init = dcp_sha_cra_init,
856 .cra_exit = dcp_sha_cra_exit,
857 },
858 },
859 };
860
861 /* SHA256 */
862 static struct ahash_alg dcp_sha256_alg = {
863 .init = dcp_sha_init,
864 .update = dcp_sha_update,
865 .final = dcp_sha_final,
866 .finup = dcp_sha_finup,
867 .digest = dcp_sha_digest,
868 .import = dcp_sha_noimport,
869 .export = dcp_sha_noexport,
870 .halg = {
871 .digestsize = SHA256_DIGEST_SIZE,
872 .base = {
873 .cra_name = "sha256",
874 .cra_driver_name = "sha256-dcp",
875 .cra_priority = 400,
876 .cra_alignmask = 63,
877 .cra_flags = CRYPTO_ALG_ASYNC,
878 .cra_blocksize = SHA256_BLOCK_SIZE,
879 .cra_ctxsize = sizeof(struct dcp_async_ctx),
880 .cra_module = THIS_MODULE,
881 .cra_init = dcp_sha_cra_init,
882 .cra_exit = dcp_sha_cra_exit,
883 },
884 },
885 };
886
887 static irqreturn_t mxs_dcp_irq(int irq, void *context)
888 {
889 struct dcp *sdcp = context;
890 uint32_t stat;
891 int i;
892
893 stat = readl(sdcp->base + MXS_DCP_STAT);
894 stat &= MXS_DCP_STAT_IRQ_MASK;
895 if (!stat)
896 return IRQ_NONE;
897
898 /* Clear the interrupts. */
899 writel(stat, sdcp->base + MXS_DCP_STAT_CLR);
900
901 /* Complete the DMA requests that finished. */
902 for (i = 0; i < DCP_MAX_CHANS; i++)
903 if (stat & (1 << i))
904 complete(&sdcp->completion[i]);
905
906 return IRQ_HANDLED;
907 }
908
909 static int mxs_dcp_probe(struct platform_device *pdev)
910 {
911 struct device *dev = &pdev->dev;
912 struct dcp *sdcp = NULL;
913 int i, ret;
914
915 struct resource *iores;
916 int dcp_vmi_irq, dcp_irq;
917
918 if (global_sdcp) {
919 dev_err(dev, "Only one DCP instance allowed!\n");
920 return -ENODEV;
921 }
922
923 iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
924 dcp_vmi_irq = platform_get_irq(pdev, 0);
925 if (dcp_vmi_irq < 0) {
926 dev_err(dev, "Failed to get IRQ: (%d)!\n", dcp_vmi_irq);
927 return dcp_vmi_irq;
928 }
929
930 dcp_irq = platform_get_irq(pdev, 1);
931 if (dcp_irq < 0) {
932 dev_err(dev, "Failed to get IRQ: (%d)!\n", dcp_irq);
933 return dcp_irq;
934 }
935
936 sdcp = devm_kzalloc(dev, sizeof(*sdcp), GFP_KERNEL);
937 if (!sdcp)
938 return -ENOMEM;
939
940 sdcp->dev = dev;
941 sdcp->base = devm_ioremap_resource(dev, iores);
942 if (IS_ERR(sdcp->base))
943 return PTR_ERR(sdcp->base);
944
945
946 ret = devm_request_irq(dev, dcp_vmi_irq, mxs_dcp_irq, 0,
947 "dcp-vmi-irq", sdcp);
948 if (ret) {
949 dev_err(dev, "Failed to claim DCP VMI IRQ!\n");
950 return ret;
951 }
952
953 ret = devm_request_irq(dev, dcp_irq, mxs_dcp_irq, 0,
954 "dcp-irq", sdcp);
955 if (ret) {
956 dev_err(dev, "Failed to claim DCP IRQ!\n");
957 return ret;
958 }
959
960 /* Allocate coherent helper block. */
961 sdcp->coh = devm_kzalloc(dev, sizeof(*sdcp->coh) + DCP_ALIGNMENT,
962 GFP_KERNEL);
963 if (!sdcp->coh)
964 return -ENOMEM;
965
966 /* Re-align the structure so it fits the DCP constraints. */
967 sdcp->coh = PTR_ALIGN(sdcp->coh, DCP_ALIGNMENT);
968
969 /* Restart the DCP block. */
970 ret = stmp_reset_block(sdcp->base);
971 if (ret)
972 return ret;
973
974 /* Initialize control register. */
975 writel(MXS_DCP_CTRL_GATHER_RESIDUAL_WRITES |
976 MXS_DCP_CTRL_ENABLE_CONTEXT_CACHING | 0xf,
977 sdcp->base + MXS_DCP_CTRL);
978
979 /* Enable all DCP DMA channels. */
980 writel(MXS_DCP_CHANNELCTRL_ENABLE_CHANNEL_MASK,
981 sdcp->base + MXS_DCP_CHANNELCTRL);
982
983 /*
984 * We do not enable context switching. Give the context buffer a
985 * pointer to an illegal address so if context switching is
986 * inadvertantly enabled, the DCP will return an error instead of
987 * trashing good memory. The DCP DMA cannot access ROM, so any ROM
988 * address will do.
989 */
990 writel(0xffff0000, sdcp->base + MXS_DCP_CONTEXT);
991 for (i = 0; i < DCP_MAX_CHANS; i++)
992 writel(0xffffffff, sdcp->base + MXS_DCP_CH_N_STAT_CLR(i));
993 writel(0xffffffff, sdcp->base + MXS_DCP_STAT_CLR);
994
995 global_sdcp = sdcp;
996
997 platform_set_drvdata(pdev, sdcp);
998
999 for (i = 0; i < DCP_MAX_CHANS; i++) {
1000 mutex_init(&sdcp->mutex[i]);
1001 init_completion(&sdcp->completion[i]);
1002 crypto_init_queue(&sdcp->queue[i], 50);
1003 }
1004
1005 /* Create the SHA and AES handler threads. */
1006 sdcp->thread[DCP_CHAN_HASH_SHA] = kthread_run(dcp_chan_thread_sha,
1007 NULL, "mxs_dcp_chan/sha");
1008 if (IS_ERR(sdcp->thread[DCP_CHAN_HASH_SHA])) {
1009 dev_err(dev, "Error starting SHA thread!\n");
1010 return PTR_ERR(sdcp->thread[DCP_CHAN_HASH_SHA]);
1011 }
1012
1013 sdcp->thread[DCP_CHAN_CRYPTO] = kthread_run(dcp_chan_thread_aes,
1014 NULL, "mxs_dcp_chan/aes");
1015 if (IS_ERR(sdcp->thread[DCP_CHAN_CRYPTO])) {
1016 dev_err(dev, "Error starting SHA thread!\n");
1017 ret = PTR_ERR(sdcp->thread[DCP_CHAN_CRYPTO]);
1018 goto err_destroy_sha_thread;
1019 }
1020
1021 /* Register the various crypto algorithms. */
1022 sdcp->caps = readl(sdcp->base + MXS_DCP_CAPABILITY1);
1023
1024 if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128) {
1025 ret = crypto_register_algs(dcp_aes_algs,
1026 ARRAY_SIZE(dcp_aes_algs));
1027 if (ret) {
1028 /* Failed to register algorithm. */
1029 dev_err(dev, "Failed to register AES crypto!\n");
1030 goto err_destroy_aes_thread;
1031 }
1032 }
1033
1034 if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1) {
1035 ret = crypto_register_ahash(&dcp_sha1_alg);
1036 if (ret) {
1037 dev_err(dev, "Failed to register %s hash!\n",
1038 dcp_sha1_alg.halg.base.cra_name);
1039 goto err_unregister_aes;
1040 }
1041 }
1042
1043 if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA256) {
1044 ret = crypto_register_ahash(&dcp_sha256_alg);
1045 if (ret) {
1046 dev_err(dev, "Failed to register %s hash!\n",
1047 dcp_sha256_alg.halg.base.cra_name);
1048 goto err_unregister_sha1;
1049 }
1050 }
1051
1052 return 0;
1053
1054 err_unregister_sha1:
1055 if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1)
1056 crypto_unregister_ahash(&dcp_sha1_alg);
1057
1058 err_unregister_aes:
1059 if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128)
1060 crypto_unregister_algs(dcp_aes_algs, ARRAY_SIZE(dcp_aes_algs));
1061
1062 err_destroy_aes_thread:
1063 kthread_stop(sdcp->thread[DCP_CHAN_CRYPTO]);
1064
1065 err_destroy_sha_thread:
1066 kthread_stop(sdcp->thread[DCP_CHAN_HASH_SHA]);
1067 return ret;
1068 }
1069
1070 static int mxs_dcp_remove(struct platform_device *pdev)
1071 {
1072 struct dcp *sdcp = platform_get_drvdata(pdev);
1073
1074 if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA256)
1075 crypto_unregister_ahash(&dcp_sha256_alg);
1076
1077 if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1)
1078 crypto_unregister_ahash(&dcp_sha1_alg);
1079
1080 if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128)
1081 crypto_unregister_algs(dcp_aes_algs, ARRAY_SIZE(dcp_aes_algs));
1082
1083 kthread_stop(sdcp->thread[DCP_CHAN_HASH_SHA]);
1084 kthread_stop(sdcp->thread[DCP_CHAN_CRYPTO]);
1085
1086 platform_set_drvdata(pdev, NULL);
1087
1088 global_sdcp = NULL;
1089
1090 return 0;
1091 }
1092
1093 static const struct of_device_id mxs_dcp_dt_ids[] = {
1094 { .compatible = "fsl,imx23-dcp", .data = NULL, },
1095 { .compatible = "fsl,imx28-dcp", .data = NULL, },
1096 { /* sentinel */ }
1097 };
1098
1099 MODULE_DEVICE_TABLE(of, mxs_dcp_dt_ids);
1100
1101 static struct platform_driver mxs_dcp_driver = {
1102 .probe = mxs_dcp_probe,
1103 .remove = mxs_dcp_remove,
1104 .driver = {
1105 .name = "mxs-dcp",
1106 .of_match_table = mxs_dcp_dt_ids,
1107 },
1108 };
1109
1110 module_platform_driver(mxs_dcp_driver);
1111
1112 MODULE_AUTHOR("Marek Vasut <marex@denx.de>");
1113 MODULE_DESCRIPTION("Freescale MXS DCP Driver");
1114 MODULE_LICENSE("GPL");
1115 MODULE_ALIAS("platform:mxs-dcp");