]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - drivers/crypto/mxs-dcp.c
Merge tag 'mips_5.1' of git://git.kernel.org/pub/scm/linux/kernel/git/mips/linux
[mirror_ubuntu-focal-kernel.git] / drivers / crypto / mxs-dcp.c
1 /*
2 * Freescale i.MX23/i.MX28 Data Co-Processor driver
3 *
4 * Copyright (C) 2013 Marek Vasut <marex@denx.de>
5 *
6 * The code contained herein is licensed under the GNU General Public
7 * License. You may obtain a copy of the GNU General Public License
8 * Version 2 or later at the following locations:
9 *
10 * http://www.opensource.org/licenses/gpl-license.html
11 * http://www.gnu.org/copyleft/gpl.html
12 */
13
14 #include <linux/dma-mapping.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/kernel.h>
18 #include <linux/kthread.h>
19 #include <linux/module.h>
20 #include <linux/of.h>
21 #include <linux/platform_device.h>
22 #include <linux/stmp_device.h>
23 #include <linux/clk.h>
24
25 #include <crypto/aes.h>
26 #include <crypto/sha.h>
27 #include <crypto/internal/hash.h>
28 #include <crypto/internal/skcipher.h>
29
30 #define DCP_MAX_CHANS 4
31 #define DCP_BUF_SZ PAGE_SIZE
32 #define DCP_SHA_PAY_SZ 64
33
34 #define DCP_ALIGNMENT 64
35
36 /*
37 * Null hashes to align with hw behavior on imx6sl and ull
38 * these are flipped for consistency with hw output
39 */
40 static const uint8_t sha1_null_hash[] =
41 "\x09\x07\xd8\xaf\x90\x18\x60\x95\xef\xbf"
42 "\x55\x32\x0d\x4b\x6b\x5e\xee\xa3\x39\xda";
43
44 static const uint8_t sha256_null_hash[] =
45 "\x55\xb8\x52\x78\x1b\x99\x95\xa4"
46 "\x4c\x93\x9b\x64\xe4\x41\xae\x27"
47 "\x24\xb9\x6f\x99\xc8\xf4\xfb\x9a"
48 "\x14\x1c\xfc\x98\x42\xc4\xb0\xe3";
49
50 /* DCP DMA descriptor. */
51 struct dcp_dma_desc {
52 uint32_t next_cmd_addr;
53 uint32_t control0;
54 uint32_t control1;
55 uint32_t source;
56 uint32_t destination;
57 uint32_t size;
58 uint32_t payload;
59 uint32_t status;
60 };
61
62 /* Coherent aligned block for bounce buffering. */
63 struct dcp_coherent_block {
64 uint8_t aes_in_buf[DCP_BUF_SZ];
65 uint8_t aes_out_buf[DCP_BUF_SZ];
66 uint8_t sha_in_buf[DCP_BUF_SZ];
67 uint8_t sha_out_buf[DCP_SHA_PAY_SZ];
68
69 uint8_t aes_key[2 * AES_KEYSIZE_128];
70
71 struct dcp_dma_desc desc[DCP_MAX_CHANS];
72 };
73
74 struct dcp {
75 struct device *dev;
76 void __iomem *base;
77
78 uint32_t caps;
79
80 struct dcp_coherent_block *coh;
81
82 struct completion completion[DCP_MAX_CHANS];
83 spinlock_t lock[DCP_MAX_CHANS];
84 struct task_struct *thread[DCP_MAX_CHANS];
85 struct crypto_queue queue[DCP_MAX_CHANS];
86 struct clk *dcp_clk;
87 };
88
89 enum dcp_chan {
90 DCP_CHAN_HASH_SHA = 0,
91 DCP_CHAN_CRYPTO = 2,
92 };
93
94 struct dcp_async_ctx {
95 /* Common context */
96 enum dcp_chan chan;
97 uint32_t fill;
98
99 /* SHA Hash-specific context */
100 struct mutex mutex;
101 uint32_t alg;
102 unsigned int hot:1;
103
104 /* Crypto-specific context */
105 struct crypto_sync_skcipher *fallback;
106 unsigned int key_len;
107 uint8_t key[AES_KEYSIZE_128];
108 };
109
110 struct dcp_aes_req_ctx {
111 unsigned int enc:1;
112 unsigned int ecb:1;
113 };
114
115 struct dcp_sha_req_ctx {
116 unsigned int init:1;
117 unsigned int fini:1;
118 };
119
120 struct dcp_export_state {
121 struct dcp_sha_req_ctx req_ctx;
122 struct dcp_async_ctx async_ctx;
123 };
124
125 /*
126 * There can even be only one instance of the MXS DCP due to the
127 * design of Linux Crypto API.
128 */
129 static struct dcp *global_sdcp;
130
131 /* DCP register layout. */
132 #define MXS_DCP_CTRL 0x00
133 #define MXS_DCP_CTRL_GATHER_RESIDUAL_WRITES (1 << 23)
134 #define MXS_DCP_CTRL_ENABLE_CONTEXT_CACHING (1 << 22)
135
136 #define MXS_DCP_STAT 0x10
137 #define MXS_DCP_STAT_CLR 0x18
138 #define MXS_DCP_STAT_IRQ_MASK 0xf
139
140 #define MXS_DCP_CHANNELCTRL 0x20
141 #define MXS_DCP_CHANNELCTRL_ENABLE_CHANNEL_MASK 0xff
142
143 #define MXS_DCP_CAPABILITY1 0x40
144 #define MXS_DCP_CAPABILITY1_SHA256 (4 << 16)
145 #define MXS_DCP_CAPABILITY1_SHA1 (1 << 16)
146 #define MXS_DCP_CAPABILITY1_AES128 (1 << 0)
147
148 #define MXS_DCP_CONTEXT 0x50
149
150 #define MXS_DCP_CH_N_CMDPTR(n) (0x100 + ((n) * 0x40))
151
152 #define MXS_DCP_CH_N_SEMA(n) (0x110 + ((n) * 0x40))
153
154 #define MXS_DCP_CH_N_STAT(n) (0x120 + ((n) * 0x40))
155 #define MXS_DCP_CH_N_STAT_CLR(n) (0x128 + ((n) * 0x40))
156
157 /* DMA descriptor bits. */
158 #define MXS_DCP_CONTROL0_HASH_TERM (1 << 13)
159 #define MXS_DCP_CONTROL0_HASH_INIT (1 << 12)
160 #define MXS_DCP_CONTROL0_PAYLOAD_KEY (1 << 11)
161 #define MXS_DCP_CONTROL0_CIPHER_ENCRYPT (1 << 8)
162 #define MXS_DCP_CONTROL0_CIPHER_INIT (1 << 9)
163 #define MXS_DCP_CONTROL0_ENABLE_HASH (1 << 6)
164 #define MXS_DCP_CONTROL0_ENABLE_CIPHER (1 << 5)
165 #define MXS_DCP_CONTROL0_DECR_SEMAPHORE (1 << 1)
166 #define MXS_DCP_CONTROL0_INTERRUPT (1 << 0)
167
168 #define MXS_DCP_CONTROL1_HASH_SELECT_SHA256 (2 << 16)
169 #define MXS_DCP_CONTROL1_HASH_SELECT_SHA1 (0 << 16)
170 #define MXS_DCP_CONTROL1_CIPHER_MODE_CBC (1 << 4)
171 #define MXS_DCP_CONTROL1_CIPHER_MODE_ECB (0 << 4)
172 #define MXS_DCP_CONTROL1_CIPHER_SELECT_AES128 (0 << 0)
173
174 static int mxs_dcp_start_dma(struct dcp_async_ctx *actx)
175 {
176 struct dcp *sdcp = global_sdcp;
177 const int chan = actx->chan;
178 uint32_t stat;
179 unsigned long ret;
180 struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan];
181
182 dma_addr_t desc_phys = dma_map_single(sdcp->dev, desc, sizeof(*desc),
183 DMA_TO_DEVICE);
184
185 reinit_completion(&sdcp->completion[chan]);
186
187 /* Clear status register. */
188 writel(0xffffffff, sdcp->base + MXS_DCP_CH_N_STAT_CLR(chan));
189
190 /* Load the DMA descriptor. */
191 writel(desc_phys, sdcp->base + MXS_DCP_CH_N_CMDPTR(chan));
192
193 /* Increment the semaphore to start the DMA transfer. */
194 writel(1, sdcp->base + MXS_DCP_CH_N_SEMA(chan));
195
196 ret = wait_for_completion_timeout(&sdcp->completion[chan],
197 msecs_to_jiffies(1000));
198 if (!ret) {
199 dev_err(sdcp->dev, "Channel %i timeout (DCP_STAT=0x%08x)\n",
200 chan, readl(sdcp->base + MXS_DCP_STAT));
201 return -ETIMEDOUT;
202 }
203
204 stat = readl(sdcp->base + MXS_DCP_CH_N_STAT(chan));
205 if (stat & 0xff) {
206 dev_err(sdcp->dev, "Channel %i error (CH_STAT=0x%08x)\n",
207 chan, stat);
208 return -EINVAL;
209 }
210
211 dma_unmap_single(sdcp->dev, desc_phys, sizeof(*desc), DMA_TO_DEVICE);
212
213 return 0;
214 }
215
216 /*
217 * Encryption (AES128)
218 */
219 static int mxs_dcp_run_aes(struct dcp_async_ctx *actx,
220 struct ablkcipher_request *req, int init)
221 {
222 struct dcp *sdcp = global_sdcp;
223 struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan];
224 struct dcp_aes_req_ctx *rctx = ablkcipher_request_ctx(req);
225 int ret;
226
227 dma_addr_t key_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_key,
228 2 * AES_KEYSIZE_128,
229 DMA_TO_DEVICE);
230 dma_addr_t src_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_in_buf,
231 DCP_BUF_SZ, DMA_TO_DEVICE);
232 dma_addr_t dst_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_out_buf,
233 DCP_BUF_SZ, DMA_FROM_DEVICE);
234
235 if (actx->fill % AES_BLOCK_SIZE) {
236 dev_err(sdcp->dev, "Invalid block size!\n");
237 ret = -EINVAL;
238 goto aes_done_run;
239 }
240
241 /* Fill in the DMA descriptor. */
242 desc->control0 = MXS_DCP_CONTROL0_DECR_SEMAPHORE |
243 MXS_DCP_CONTROL0_INTERRUPT |
244 MXS_DCP_CONTROL0_ENABLE_CIPHER;
245
246 /* Payload contains the key. */
247 desc->control0 |= MXS_DCP_CONTROL0_PAYLOAD_KEY;
248
249 if (rctx->enc)
250 desc->control0 |= MXS_DCP_CONTROL0_CIPHER_ENCRYPT;
251 if (init)
252 desc->control0 |= MXS_DCP_CONTROL0_CIPHER_INIT;
253
254 desc->control1 = MXS_DCP_CONTROL1_CIPHER_SELECT_AES128;
255
256 if (rctx->ecb)
257 desc->control1 |= MXS_DCP_CONTROL1_CIPHER_MODE_ECB;
258 else
259 desc->control1 |= MXS_DCP_CONTROL1_CIPHER_MODE_CBC;
260
261 desc->next_cmd_addr = 0;
262 desc->source = src_phys;
263 desc->destination = dst_phys;
264 desc->size = actx->fill;
265 desc->payload = key_phys;
266 desc->status = 0;
267
268 ret = mxs_dcp_start_dma(actx);
269
270 aes_done_run:
271 dma_unmap_single(sdcp->dev, key_phys, 2 * AES_KEYSIZE_128,
272 DMA_TO_DEVICE);
273 dma_unmap_single(sdcp->dev, src_phys, DCP_BUF_SZ, DMA_TO_DEVICE);
274 dma_unmap_single(sdcp->dev, dst_phys, DCP_BUF_SZ, DMA_FROM_DEVICE);
275
276 return ret;
277 }
278
279 static int mxs_dcp_aes_block_crypt(struct crypto_async_request *arq)
280 {
281 struct dcp *sdcp = global_sdcp;
282
283 struct ablkcipher_request *req = ablkcipher_request_cast(arq);
284 struct dcp_async_ctx *actx = crypto_tfm_ctx(arq->tfm);
285 struct dcp_aes_req_ctx *rctx = ablkcipher_request_ctx(req);
286
287 struct scatterlist *dst = req->dst;
288 struct scatterlist *src = req->src;
289 const int nents = sg_nents(req->src);
290
291 const int out_off = DCP_BUF_SZ;
292 uint8_t *in_buf = sdcp->coh->aes_in_buf;
293 uint8_t *out_buf = sdcp->coh->aes_out_buf;
294
295 uint8_t *out_tmp, *src_buf, *dst_buf = NULL;
296 uint32_t dst_off = 0;
297 uint32_t last_out_len = 0;
298
299 uint8_t *key = sdcp->coh->aes_key;
300
301 int ret = 0;
302 int split = 0;
303 unsigned int i, len, clen, rem = 0, tlen = 0;
304 int init = 0;
305 bool limit_hit = false;
306
307 actx->fill = 0;
308
309 /* Copy the key from the temporary location. */
310 memcpy(key, actx->key, actx->key_len);
311
312 if (!rctx->ecb) {
313 /* Copy the CBC IV just past the key. */
314 memcpy(key + AES_KEYSIZE_128, req->info, AES_KEYSIZE_128);
315 /* CBC needs the INIT set. */
316 init = 1;
317 } else {
318 memset(key + AES_KEYSIZE_128, 0, AES_KEYSIZE_128);
319 }
320
321 for_each_sg(req->src, src, nents, i) {
322 src_buf = sg_virt(src);
323 len = sg_dma_len(src);
324 tlen += len;
325 limit_hit = tlen > req->nbytes;
326
327 if (limit_hit)
328 len = req->nbytes - (tlen - len);
329
330 do {
331 if (actx->fill + len > out_off)
332 clen = out_off - actx->fill;
333 else
334 clen = len;
335
336 memcpy(in_buf + actx->fill, src_buf, clen);
337 len -= clen;
338 src_buf += clen;
339 actx->fill += clen;
340
341 /*
342 * If we filled the buffer or this is the last SG,
343 * submit the buffer.
344 */
345 if (actx->fill == out_off || sg_is_last(src) ||
346 limit_hit) {
347 ret = mxs_dcp_run_aes(actx, req, init);
348 if (ret)
349 return ret;
350 init = 0;
351
352 out_tmp = out_buf;
353 last_out_len = actx->fill;
354 while (dst && actx->fill) {
355 if (!split) {
356 dst_buf = sg_virt(dst);
357 dst_off = 0;
358 }
359 rem = min(sg_dma_len(dst) - dst_off,
360 actx->fill);
361
362 memcpy(dst_buf + dst_off, out_tmp, rem);
363 out_tmp += rem;
364 dst_off += rem;
365 actx->fill -= rem;
366
367 if (dst_off == sg_dma_len(dst)) {
368 dst = sg_next(dst);
369 split = 0;
370 } else {
371 split = 1;
372 }
373 }
374 }
375 } while (len);
376
377 if (limit_hit)
378 break;
379 }
380
381 /* Copy the IV for CBC for chaining */
382 if (!rctx->ecb) {
383 if (rctx->enc)
384 memcpy(req->info, out_buf+(last_out_len-AES_BLOCK_SIZE),
385 AES_BLOCK_SIZE);
386 else
387 memcpy(req->info, in_buf+(last_out_len-AES_BLOCK_SIZE),
388 AES_BLOCK_SIZE);
389 }
390
391 return ret;
392 }
393
394 static int dcp_chan_thread_aes(void *data)
395 {
396 struct dcp *sdcp = global_sdcp;
397 const int chan = DCP_CHAN_CRYPTO;
398
399 struct crypto_async_request *backlog;
400 struct crypto_async_request *arq;
401
402 int ret;
403
404 while (!kthread_should_stop()) {
405 set_current_state(TASK_INTERRUPTIBLE);
406
407 spin_lock(&sdcp->lock[chan]);
408 backlog = crypto_get_backlog(&sdcp->queue[chan]);
409 arq = crypto_dequeue_request(&sdcp->queue[chan]);
410 spin_unlock(&sdcp->lock[chan]);
411
412 if (!backlog && !arq) {
413 schedule();
414 continue;
415 }
416
417 set_current_state(TASK_RUNNING);
418
419 if (backlog)
420 backlog->complete(backlog, -EINPROGRESS);
421
422 if (arq) {
423 ret = mxs_dcp_aes_block_crypt(arq);
424 arq->complete(arq, ret);
425 }
426 }
427
428 return 0;
429 }
430
431 static int mxs_dcp_block_fallback(struct ablkcipher_request *req, int enc)
432 {
433 struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
434 struct dcp_async_ctx *ctx = crypto_ablkcipher_ctx(tfm);
435 SYNC_SKCIPHER_REQUEST_ON_STACK(subreq, ctx->fallback);
436 int ret;
437
438 skcipher_request_set_sync_tfm(subreq, ctx->fallback);
439 skcipher_request_set_callback(subreq, req->base.flags, NULL, NULL);
440 skcipher_request_set_crypt(subreq, req->src, req->dst,
441 req->nbytes, req->info);
442
443 if (enc)
444 ret = crypto_skcipher_encrypt(subreq);
445 else
446 ret = crypto_skcipher_decrypt(subreq);
447
448 skcipher_request_zero(subreq);
449
450 return ret;
451 }
452
453 static int mxs_dcp_aes_enqueue(struct ablkcipher_request *req, int enc, int ecb)
454 {
455 struct dcp *sdcp = global_sdcp;
456 struct crypto_async_request *arq = &req->base;
457 struct dcp_async_ctx *actx = crypto_tfm_ctx(arq->tfm);
458 struct dcp_aes_req_ctx *rctx = ablkcipher_request_ctx(req);
459 int ret;
460
461 if (unlikely(actx->key_len != AES_KEYSIZE_128))
462 return mxs_dcp_block_fallback(req, enc);
463
464 rctx->enc = enc;
465 rctx->ecb = ecb;
466 actx->chan = DCP_CHAN_CRYPTO;
467
468 spin_lock(&sdcp->lock[actx->chan]);
469 ret = crypto_enqueue_request(&sdcp->queue[actx->chan], &req->base);
470 spin_unlock(&sdcp->lock[actx->chan]);
471
472 wake_up_process(sdcp->thread[actx->chan]);
473
474 return -EINPROGRESS;
475 }
476
477 static int mxs_dcp_aes_ecb_decrypt(struct ablkcipher_request *req)
478 {
479 return mxs_dcp_aes_enqueue(req, 0, 1);
480 }
481
482 static int mxs_dcp_aes_ecb_encrypt(struct ablkcipher_request *req)
483 {
484 return mxs_dcp_aes_enqueue(req, 1, 1);
485 }
486
487 static int mxs_dcp_aes_cbc_decrypt(struct ablkcipher_request *req)
488 {
489 return mxs_dcp_aes_enqueue(req, 0, 0);
490 }
491
492 static int mxs_dcp_aes_cbc_encrypt(struct ablkcipher_request *req)
493 {
494 return mxs_dcp_aes_enqueue(req, 1, 0);
495 }
496
497 static int mxs_dcp_aes_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
498 unsigned int len)
499 {
500 struct dcp_async_ctx *actx = crypto_ablkcipher_ctx(tfm);
501 unsigned int ret;
502
503 /*
504 * AES 128 is supposed by the hardware, store key into temporary
505 * buffer and exit. We must use the temporary buffer here, since
506 * there can still be an operation in progress.
507 */
508 actx->key_len = len;
509 if (len == AES_KEYSIZE_128) {
510 memcpy(actx->key, key, len);
511 return 0;
512 }
513
514 /*
515 * If the requested AES key size is not supported by the hardware,
516 * but is supported by in-kernel software implementation, we use
517 * software fallback.
518 */
519 crypto_sync_skcipher_clear_flags(actx->fallback, CRYPTO_TFM_REQ_MASK);
520 crypto_sync_skcipher_set_flags(actx->fallback,
521 tfm->base.crt_flags & CRYPTO_TFM_REQ_MASK);
522
523 ret = crypto_sync_skcipher_setkey(actx->fallback, key, len);
524 if (!ret)
525 return 0;
526
527 tfm->base.crt_flags &= ~CRYPTO_TFM_RES_MASK;
528 tfm->base.crt_flags |= crypto_sync_skcipher_get_flags(actx->fallback) &
529 CRYPTO_TFM_RES_MASK;
530
531 return ret;
532 }
533
534 static int mxs_dcp_aes_fallback_init(struct crypto_tfm *tfm)
535 {
536 const char *name = crypto_tfm_alg_name(tfm);
537 struct dcp_async_ctx *actx = crypto_tfm_ctx(tfm);
538 struct crypto_sync_skcipher *blk;
539
540 blk = crypto_alloc_sync_skcipher(name, 0, CRYPTO_ALG_NEED_FALLBACK);
541 if (IS_ERR(blk))
542 return PTR_ERR(blk);
543
544 actx->fallback = blk;
545 tfm->crt_ablkcipher.reqsize = sizeof(struct dcp_aes_req_ctx);
546 return 0;
547 }
548
549 static void mxs_dcp_aes_fallback_exit(struct crypto_tfm *tfm)
550 {
551 struct dcp_async_ctx *actx = crypto_tfm_ctx(tfm);
552
553 crypto_free_sync_skcipher(actx->fallback);
554 }
555
556 /*
557 * Hashing (SHA1/SHA256)
558 */
559 static int mxs_dcp_run_sha(struct ahash_request *req)
560 {
561 struct dcp *sdcp = global_sdcp;
562 int ret;
563
564 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
565 struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
566 struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
567 struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan];
568
569 dma_addr_t digest_phys = 0;
570 dma_addr_t buf_phys = dma_map_single(sdcp->dev, sdcp->coh->sha_in_buf,
571 DCP_BUF_SZ, DMA_TO_DEVICE);
572
573 /* Fill in the DMA descriptor. */
574 desc->control0 = MXS_DCP_CONTROL0_DECR_SEMAPHORE |
575 MXS_DCP_CONTROL0_INTERRUPT |
576 MXS_DCP_CONTROL0_ENABLE_HASH;
577 if (rctx->init)
578 desc->control0 |= MXS_DCP_CONTROL0_HASH_INIT;
579
580 desc->control1 = actx->alg;
581 desc->next_cmd_addr = 0;
582 desc->source = buf_phys;
583 desc->destination = 0;
584 desc->size = actx->fill;
585 desc->payload = 0;
586 desc->status = 0;
587
588 /*
589 * Align driver with hw behavior when generating null hashes
590 */
591 if (rctx->init && rctx->fini && desc->size == 0) {
592 struct hash_alg_common *halg = crypto_hash_alg_common(tfm);
593 const uint8_t *sha_buf =
594 (actx->alg == MXS_DCP_CONTROL1_HASH_SELECT_SHA1) ?
595 sha1_null_hash : sha256_null_hash;
596 memcpy(sdcp->coh->sha_out_buf, sha_buf, halg->digestsize);
597 ret = 0;
598 goto done_run;
599 }
600
601 /* Set HASH_TERM bit for last transfer block. */
602 if (rctx->fini) {
603 digest_phys = dma_map_single(sdcp->dev, sdcp->coh->sha_out_buf,
604 DCP_SHA_PAY_SZ, DMA_FROM_DEVICE);
605 desc->control0 |= MXS_DCP_CONTROL0_HASH_TERM;
606 desc->payload = digest_phys;
607 }
608
609 ret = mxs_dcp_start_dma(actx);
610
611 if (rctx->fini)
612 dma_unmap_single(sdcp->dev, digest_phys, DCP_SHA_PAY_SZ,
613 DMA_FROM_DEVICE);
614
615 done_run:
616 dma_unmap_single(sdcp->dev, buf_phys, DCP_BUF_SZ, DMA_TO_DEVICE);
617
618 return ret;
619 }
620
621 static int dcp_sha_req_to_buf(struct crypto_async_request *arq)
622 {
623 struct dcp *sdcp = global_sdcp;
624
625 struct ahash_request *req = ahash_request_cast(arq);
626 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
627 struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
628 struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
629 struct hash_alg_common *halg = crypto_hash_alg_common(tfm);
630 const int nents = sg_nents(req->src);
631
632 uint8_t *in_buf = sdcp->coh->sha_in_buf;
633 uint8_t *out_buf = sdcp->coh->sha_out_buf;
634
635 uint8_t *src_buf;
636
637 struct scatterlist *src;
638
639 unsigned int i, len, clen;
640 int ret;
641
642 int fin = rctx->fini;
643 if (fin)
644 rctx->fini = 0;
645
646 for_each_sg(req->src, src, nents, i) {
647 src_buf = sg_virt(src);
648 len = sg_dma_len(src);
649
650 do {
651 if (actx->fill + len > DCP_BUF_SZ)
652 clen = DCP_BUF_SZ - actx->fill;
653 else
654 clen = len;
655
656 memcpy(in_buf + actx->fill, src_buf, clen);
657 len -= clen;
658 src_buf += clen;
659 actx->fill += clen;
660
661 /*
662 * If we filled the buffer and still have some
663 * more data, submit the buffer.
664 */
665 if (len && actx->fill == DCP_BUF_SZ) {
666 ret = mxs_dcp_run_sha(req);
667 if (ret)
668 return ret;
669 actx->fill = 0;
670 rctx->init = 0;
671 }
672 } while (len);
673 }
674
675 if (fin) {
676 rctx->fini = 1;
677
678 /* Submit whatever is left. */
679 if (!req->result)
680 return -EINVAL;
681
682 ret = mxs_dcp_run_sha(req);
683 if (ret)
684 return ret;
685
686 actx->fill = 0;
687
688 /* For some reason the result is flipped */
689 for (i = 0; i < halg->digestsize; i++)
690 req->result[i] = out_buf[halg->digestsize - i - 1];
691 }
692
693 return 0;
694 }
695
696 static int dcp_chan_thread_sha(void *data)
697 {
698 struct dcp *sdcp = global_sdcp;
699 const int chan = DCP_CHAN_HASH_SHA;
700
701 struct crypto_async_request *backlog;
702 struct crypto_async_request *arq;
703
704 struct dcp_sha_req_ctx *rctx;
705
706 struct ahash_request *req;
707 int ret, fini;
708
709 while (!kthread_should_stop()) {
710 set_current_state(TASK_INTERRUPTIBLE);
711
712 spin_lock(&sdcp->lock[chan]);
713 backlog = crypto_get_backlog(&sdcp->queue[chan]);
714 arq = crypto_dequeue_request(&sdcp->queue[chan]);
715 spin_unlock(&sdcp->lock[chan]);
716
717 if (!backlog && !arq) {
718 schedule();
719 continue;
720 }
721
722 set_current_state(TASK_RUNNING);
723
724 if (backlog)
725 backlog->complete(backlog, -EINPROGRESS);
726
727 if (arq) {
728 req = ahash_request_cast(arq);
729 rctx = ahash_request_ctx(req);
730
731 ret = dcp_sha_req_to_buf(arq);
732 fini = rctx->fini;
733 arq->complete(arq, ret);
734 }
735 }
736
737 return 0;
738 }
739
740 static int dcp_sha_init(struct ahash_request *req)
741 {
742 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
743 struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
744
745 struct hash_alg_common *halg = crypto_hash_alg_common(tfm);
746
747 /*
748 * Start hashing session. The code below only inits the
749 * hashing session context, nothing more.
750 */
751 memset(actx, 0, sizeof(*actx));
752
753 if (strcmp(halg->base.cra_name, "sha1") == 0)
754 actx->alg = MXS_DCP_CONTROL1_HASH_SELECT_SHA1;
755 else
756 actx->alg = MXS_DCP_CONTROL1_HASH_SELECT_SHA256;
757
758 actx->fill = 0;
759 actx->hot = 0;
760 actx->chan = DCP_CHAN_HASH_SHA;
761
762 mutex_init(&actx->mutex);
763
764 return 0;
765 }
766
767 static int dcp_sha_update_fx(struct ahash_request *req, int fini)
768 {
769 struct dcp *sdcp = global_sdcp;
770
771 struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
772 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
773 struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
774
775 int ret;
776
777 /*
778 * Ignore requests that have no data in them and are not
779 * the trailing requests in the stream of requests.
780 */
781 if (!req->nbytes && !fini)
782 return 0;
783
784 mutex_lock(&actx->mutex);
785
786 rctx->fini = fini;
787
788 if (!actx->hot) {
789 actx->hot = 1;
790 rctx->init = 1;
791 }
792
793 spin_lock(&sdcp->lock[actx->chan]);
794 ret = crypto_enqueue_request(&sdcp->queue[actx->chan], &req->base);
795 spin_unlock(&sdcp->lock[actx->chan]);
796
797 wake_up_process(sdcp->thread[actx->chan]);
798 mutex_unlock(&actx->mutex);
799
800 return -EINPROGRESS;
801 }
802
803 static int dcp_sha_update(struct ahash_request *req)
804 {
805 return dcp_sha_update_fx(req, 0);
806 }
807
808 static int dcp_sha_final(struct ahash_request *req)
809 {
810 ahash_request_set_crypt(req, NULL, req->result, 0);
811 req->nbytes = 0;
812 return dcp_sha_update_fx(req, 1);
813 }
814
815 static int dcp_sha_finup(struct ahash_request *req)
816 {
817 return dcp_sha_update_fx(req, 1);
818 }
819
820 static int dcp_sha_digest(struct ahash_request *req)
821 {
822 int ret;
823
824 ret = dcp_sha_init(req);
825 if (ret)
826 return ret;
827
828 return dcp_sha_finup(req);
829 }
830
831 static int dcp_sha_import(struct ahash_request *req, const void *in)
832 {
833 struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
834 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
835 struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
836 const struct dcp_export_state *export = in;
837
838 memset(rctx, 0, sizeof(struct dcp_sha_req_ctx));
839 memset(actx, 0, sizeof(struct dcp_async_ctx));
840 memcpy(rctx, &export->req_ctx, sizeof(struct dcp_sha_req_ctx));
841 memcpy(actx, &export->async_ctx, sizeof(struct dcp_async_ctx));
842
843 return 0;
844 }
845
846 static int dcp_sha_export(struct ahash_request *req, void *out)
847 {
848 struct dcp_sha_req_ctx *rctx_state = ahash_request_ctx(req);
849 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
850 struct dcp_async_ctx *actx_state = crypto_ahash_ctx(tfm);
851 struct dcp_export_state *export = out;
852
853 memcpy(&export->req_ctx, rctx_state, sizeof(struct dcp_sha_req_ctx));
854 memcpy(&export->async_ctx, actx_state, sizeof(struct dcp_async_ctx));
855
856 return 0;
857 }
858
859 static int dcp_sha_cra_init(struct crypto_tfm *tfm)
860 {
861 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
862 sizeof(struct dcp_sha_req_ctx));
863 return 0;
864 }
865
866 static void dcp_sha_cra_exit(struct crypto_tfm *tfm)
867 {
868 }
869
870 /* AES 128 ECB and AES 128 CBC */
871 static struct crypto_alg dcp_aes_algs[] = {
872 {
873 .cra_name = "ecb(aes)",
874 .cra_driver_name = "ecb-aes-dcp",
875 .cra_priority = 400,
876 .cra_alignmask = 15,
877 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
878 CRYPTO_ALG_ASYNC |
879 CRYPTO_ALG_NEED_FALLBACK,
880 .cra_init = mxs_dcp_aes_fallback_init,
881 .cra_exit = mxs_dcp_aes_fallback_exit,
882 .cra_blocksize = AES_BLOCK_SIZE,
883 .cra_ctxsize = sizeof(struct dcp_async_ctx),
884 .cra_type = &crypto_ablkcipher_type,
885 .cra_module = THIS_MODULE,
886 .cra_u = {
887 .ablkcipher = {
888 .min_keysize = AES_MIN_KEY_SIZE,
889 .max_keysize = AES_MAX_KEY_SIZE,
890 .setkey = mxs_dcp_aes_setkey,
891 .encrypt = mxs_dcp_aes_ecb_encrypt,
892 .decrypt = mxs_dcp_aes_ecb_decrypt
893 },
894 },
895 }, {
896 .cra_name = "cbc(aes)",
897 .cra_driver_name = "cbc-aes-dcp",
898 .cra_priority = 400,
899 .cra_alignmask = 15,
900 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
901 CRYPTO_ALG_ASYNC |
902 CRYPTO_ALG_NEED_FALLBACK,
903 .cra_init = mxs_dcp_aes_fallback_init,
904 .cra_exit = mxs_dcp_aes_fallback_exit,
905 .cra_blocksize = AES_BLOCK_SIZE,
906 .cra_ctxsize = sizeof(struct dcp_async_ctx),
907 .cra_type = &crypto_ablkcipher_type,
908 .cra_module = THIS_MODULE,
909 .cra_u = {
910 .ablkcipher = {
911 .min_keysize = AES_MIN_KEY_SIZE,
912 .max_keysize = AES_MAX_KEY_SIZE,
913 .setkey = mxs_dcp_aes_setkey,
914 .encrypt = mxs_dcp_aes_cbc_encrypt,
915 .decrypt = mxs_dcp_aes_cbc_decrypt,
916 .ivsize = AES_BLOCK_SIZE,
917 },
918 },
919 },
920 };
921
922 /* SHA1 */
923 static struct ahash_alg dcp_sha1_alg = {
924 .init = dcp_sha_init,
925 .update = dcp_sha_update,
926 .final = dcp_sha_final,
927 .finup = dcp_sha_finup,
928 .digest = dcp_sha_digest,
929 .import = dcp_sha_import,
930 .export = dcp_sha_export,
931 .halg = {
932 .digestsize = SHA1_DIGEST_SIZE,
933 .statesize = sizeof(struct dcp_export_state),
934 .base = {
935 .cra_name = "sha1",
936 .cra_driver_name = "sha1-dcp",
937 .cra_priority = 400,
938 .cra_alignmask = 63,
939 .cra_flags = CRYPTO_ALG_ASYNC,
940 .cra_blocksize = SHA1_BLOCK_SIZE,
941 .cra_ctxsize = sizeof(struct dcp_async_ctx),
942 .cra_module = THIS_MODULE,
943 .cra_init = dcp_sha_cra_init,
944 .cra_exit = dcp_sha_cra_exit,
945 },
946 },
947 };
948
949 /* SHA256 */
950 static struct ahash_alg dcp_sha256_alg = {
951 .init = dcp_sha_init,
952 .update = dcp_sha_update,
953 .final = dcp_sha_final,
954 .finup = dcp_sha_finup,
955 .digest = dcp_sha_digest,
956 .import = dcp_sha_import,
957 .export = dcp_sha_export,
958 .halg = {
959 .digestsize = SHA256_DIGEST_SIZE,
960 .statesize = sizeof(struct dcp_export_state),
961 .base = {
962 .cra_name = "sha256",
963 .cra_driver_name = "sha256-dcp",
964 .cra_priority = 400,
965 .cra_alignmask = 63,
966 .cra_flags = CRYPTO_ALG_ASYNC,
967 .cra_blocksize = SHA256_BLOCK_SIZE,
968 .cra_ctxsize = sizeof(struct dcp_async_ctx),
969 .cra_module = THIS_MODULE,
970 .cra_init = dcp_sha_cra_init,
971 .cra_exit = dcp_sha_cra_exit,
972 },
973 },
974 };
975
976 static irqreturn_t mxs_dcp_irq(int irq, void *context)
977 {
978 struct dcp *sdcp = context;
979 uint32_t stat;
980 int i;
981
982 stat = readl(sdcp->base + MXS_DCP_STAT);
983 stat &= MXS_DCP_STAT_IRQ_MASK;
984 if (!stat)
985 return IRQ_NONE;
986
987 /* Clear the interrupts. */
988 writel(stat, sdcp->base + MXS_DCP_STAT_CLR);
989
990 /* Complete the DMA requests that finished. */
991 for (i = 0; i < DCP_MAX_CHANS; i++)
992 if (stat & (1 << i))
993 complete(&sdcp->completion[i]);
994
995 return IRQ_HANDLED;
996 }
997
998 static int mxs_dcp_probe(struct platform_device *pdev)
999 {
1000 struct device *dev = &pdev->dev;
1001 struct dcp *sdcp = NULL;
1002 int i, ret;
1003
1004 struct resource *iores;
1005 int dcp_vmi_irq, dcp_irq;
1006
1007 if (global_sdcp) {
1008 dev_err(dev, "Only one DCP instance allowed!\n");
1009 return -ENODEV;
1010 }
1011
1012 iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1013 dcp_vmi_irq = platform_get_irq(pdev, 0);
1014 if (dcp_vmi_irq < 0) {
1015 dev_err(dev, "Failed to get IRQ: (%d)!\n", dcp_vmi_irq);
1016 return dcp_vmi_irq;
1017 }
1018
1019 dcp_irq = platform_get_irq(pdev, 1);
1020 if (dcp_irq < 0) {
1021 dev_err(dev, "Failed to get IRQ: (%d)!\n", dcp_irq);
1022 return dcp_irq;
1023 }
1024
1025 sdcp = devm_kzalloc(dev, sizeof(*sdcp), GFP_KERNEL);
1026 if (!sdcp)
1027 return -ENOMEM;
1028
1029 sdcp->dev = dev;
1030 sdcp->base = devm_ioremap_resource(dev, iores);
1031 if (IS_ERR(sdcp->base))
1032 return PTR_ERR(sdcp->base);
1033
1034
1035 ret = devm_request_irq(dev, dcp_vmi_irq, mxs_dcp_irq, 0,
1036 "dcp-vmi-irq", sdcp);
1037 if (ret) {
1038 dev_err(dev, "Failed to claim DCP VMI IRQ!\n");
1039 return ret;
1040 }
1041
1042 ret = devm_request_irq(dev, dcp_irq, mxs_dcp_irq, 0,
1043 "dcp-irq", sdcp);
1044 if (ret) {
1045 dev_err(dev, "Failed to claim DCP IRQ!\n");
1046 return ret;
1047 }
1048
1049 /* Allocate coherent helper block. */
1050 sdcp->coh = devm_kzalloc(dev, sizeof(*sdcp->coh) + DCP_ALIGNMENT,
1051 GFP_KERNEL);
1052 if (!sdcp->coh)
1053 return -ENOMEM;
1054
1055 /* Re-align the structure so it fits the DCP constraints. */
1056 sdcp->coh = PTR_ALIGN(sdcp->coh, DCP_ALIGNMENT);
1057
1058 /* DCP clock is optional, only used on some SOCs */
1059 sdcp->dcp_clk = devm_clk_get(dev, "dcp");
1060 if (IS_ERR(sdcp->dcp_clk)) {
1061 if (sdcp->dcp_clk != ERR_PTR(-ENOENT))
1062 return PTR_ERR(sdcp->dcp_clk);
1063 sdcp->dcp_clk = NULL;
1064 }
1065 ret = clk_prepare_enable(sdcp->dcp_clk);
1066 if (ret)
1067 return ret;
1068
1069 /* Restart the DCP block. */
1070 ret = stmp_reset_block(sdcp->base);
1071 if (ret) {
1072 dev_err(dev, "Failed reset\n");
1073 goto err_disable_unprepare_clk;
1074 }
1075
1076 /* Initialize control register. */
1077 writel(MXS_DCP_CTRL_GATHER_RESIDUAL_WRITES |
1078 MXS_DCP_CTRL_ENABLE_CONTEXT_CACHING | 0xf,
1079 sdcp->base + MXS_DCP_CTRL);
1080
1081 /* Enable all DCP DMA channels. */
1082 writel(MXS_DCP_CHANNELCTRL_ENABLE_CHANNEL_MASK,
1083 sdcp->base + MXS_DCP_CHANNELCTRL);
1084
1085 /*
1086 * We do not enable context switching. Give the context buffer a
1087 * pointer to an illegal address so if context switching is
1088 * inadvertantly enabled, the DCP will return an error instead of
1089 * trashing good memory. The DCP DMA cannot access ROM, so any ROM
1090 * address will do.
1091 */
1092 writel(0xffff0000, sdcp->base + MXS_DCP_CONTEXT);
1093 for (i = 0; i < DCP_MAX_CHANS; i++)
1094 writel(0xffffffff, sdcp->base + MXS_DCP_CH_N_STAT_CLR(i));
1095 writel(0xffffffff, sdcp->base + MXS_DCP_STAT_CLR);
1096
1097 global_sdcp = sdcp;
1098
1099 platform_set_drvdata(pdev, sdcp);
1100
1101 for (i = 0; i < DCP_MAX_CHANS; i++) {
1102 spin_lock_init(&sdcp->lock[i]);
1103 init_completion(&sdcp->completion[i]);
1104 crypto_init_queue(&sdcp->queue[i], 50);
1105 }
1106
1107 /* Create the SHA and AES handler threads. */
1108 sdcp->thread[DCP_CHAN_HASH_SHA] = kthread_run(dcp_chan_thread_sha,
1109 NULL, "mxs_dcp_chan/sha");
1110 if (IS_ERR(sdcp->thread[DCP_CHAN_HASH_SHA])) {
1111 dev_err(dev, "Error starting SHA thread!\n");
1112 ret = PTR_ERR(sdcp->thread[DCP_CHAN_HASH_SHA]);
1113 goto err_disable_unprepare_clk;
1114 }
1115
1116 sdcp->thread[DCP_CHAN_CRYPTO] = kthread_run(dcp_chan_thread_aes,
1117 NULL, "mxs_dcp_chan/aes");
1118 if (IS_ERR(sdcp->thread[DCP_CHAN_CRYPTO])) {
1119 dev_err(dev, "Error starting SHA thread!\n");
1120 ret = PTR_ERR(sdcp->thread[DCP_CHAN_CRYPTO]);
1121 goto err_destroy_sha_thread;
1122 }
1123
1124 /* Register the various crypto algorithms. */
1125 sdcp->caps = readl(sdcp->base + MXS_DCP_CAPABILITY1);
1126
1127 if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128) {
1128 ret = crypto_register_algs(dcp_aes_algs,
1129 ARRAY_SIZE(dcp_aes_algs));
1130 if (ret) {
1131 /* Failed to register algorithm. */
1132 dev_err(dev, "Failed to register AES crypto!\n");
1133 goto err_destroy_aes_thread;
1134 }
1135 }
1136
1137 if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1) {
1138 ret = crypto_register_ahash(&dcp_sha1_alg);
1139 if (ret) {
1140 dev_err(dev, "Failed to register %s hash!\n",
1141 dcp_sha1_alg.halg.base.cra_name);
1142 goto err_unregister_aes;
1143 }
1144 }
1145
1146 if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA256) {
1147 ret = crypto_register_ahash(&dcp_sha256_alg);
1148 if (ret) {
1149 dev_err(dev, "Failed to register %s hash!\n",
1150 dcp_sha256_alg.halg.base.cra_name);
1151 goto err_unregister_sha1;
1152 }
1153 }
1154
1155 return 0;
1156
1157 err_unregister_sha1:
1158 if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1)
1159 crypto_unregister_ahash(&dcp_sha1_alg);
1160
1161 err_unregister_aes:
1162 if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128)
1163 crypto_unregister_algs(dcp_aes_algs, ARRAY_SIZE(dcp_aes_algs));
1164
1165 err_destroy_aes_thread:
1166 kthread_stop(sdcp->thread[DCP_CHAN_CRYPTO]);
1167
1168 err_destroy_sha_thread:
1169 kthread_stop(sdcp->thread[DCP_CHAN_HASH_SHA]);
1170
1171 err_disable_unprepare_clk:
1172 clk_disable_unprepare(sdcp->dcp_clk);
1173
1174 return ret;
1175 }
1176
1177 static int mxs_dcp_remove(struct platform_device *pdev)
1178 {
1179 struct dcp *sdcp = platform_get_drvdata(pdev);
1180
1181 if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA256)
1182 crypto_unregister_ahash(&dcp_sha256_alg);
1183
1184 if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1)
1185 crypto_unregister_ahash(&dcp_sha1_alg);
1186
1187 if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128)
1188 crypto_unregister_algs(dcp_aes_algs, ARRAY_SIZE(dcp_aes_algs));
1189
1190 kthread_stop(sdcp->thread[DCP_CHAN_HASH_SHA]);
1191 kthread_stop(sdcp->thread[DCP_CHAN_CRYPTO]);
1192
1193 clk_disable_unprepare(sdcp->dcp_clk);
1194
1195 platform_set_drvdata(pdev, NULL);
1196
1197 global_sdcp = NULL;
1198
1199 return 0;
1200 }
1201
1202 static const struct of_device_id mxs_dcp_dt_ids[] = {
1203 { .compatible = "fsl,imx23-dcp", .data = NULL, },
1204 { .compatible = "fsl,imx28-dcp", .data = NULL, },
1205 { /* sentinel */ }
1206 };
1207
1208 MODULE_DEVICE_TABLE(of, mxs_dcp_dt_ids);
1209
1210 static struct platform_driver mxs_dcp_driver = {
1211 .probe = mxs_dcp_probe,
1212 .remove = mxs_dcp_remove,
1213 .driver = {
1214 .name = "mxs-dcp",
1215 .of_match_table = mxs_dcp_dt_ids,
1216 },
1217 };
1218
1219 module_platform_driver(mxs_dcp_driver);
1220
1221 MODULE_AUTHOR("Marek Vasut <marex@denx.de>");
1222 MODULE_DESCRIPTION("Freescale MXS DCP Driver");
1223 MODULE_LICENSE("GPL");
1224 MODULE_ALIAS("platform:mxs-dcp");